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ABSTRACT
In an outsourced data framework, we introduce and demonstrate
mechanisms for securely storing a set of data items (documents)
on an un-trusted server, while allowing for subsequent conjunc-
tive keyword searches for matching documents. The protocols pro-
vide full computational privacy, query correctness assurances and
no leaks: the server either correctly executes client queries or (if
it behaves maliciously) is immediately detected. The client is then
provided with strong assurances proving the authenticity and com-
pleteness of results. This is different from existing secure keyword
search research efforts where a cooperating, non-malicious server
behavior is assumed. Additionally, not only does the oblivious
search protocol conceal the outsourced data (from the un-trusted
server) but it also does not leak client access patterns, thequeries
themselves, the association between different queries or between
newly added documents and their corresponding keywords (not
even in encrypted form). These assurances come at the expense
of additional computation costs which we analyze in the context of
today’s hardware.

Introduction
In an increasingly networked world, computing and storage ser-
vices require security assurances against malicious attacks or faulty
behavior. Protecting the confidentiality and integrity ofstored data
is paramount to ensure safe computing. In networked storage, data
could be geographically distributed, and thus might be stored on
potentially vulnerable remote servers or transferred across untrusted
networks; this adds security vulnerabilities compared to direct-access
storage. Networked storage architectures are becoming increas-
ingly prevalent: e.g., networked file systems and online relational
databases in public and commercial infra-structures such as email
and storage portals, libraries, health and financial networks.

Today, sensitive data is being stored on remote servers main-
tained by third party storage vendors. This is because the total cost
of storage management is 5–10 times higher than the initial ac-
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quisition costs [10]. Moreover, most third party storage vendors
do not provide strong assurances of data confidentiality andin-
tegrity. For example, personal emails and confidential filesare be-
ing stored on third party servers such as Gmail [2], Yahoo Mail [4],
Xdrive [3], and Files Anywhere [1]. Privacy guarantees of such ser-
vices are at best declarative and often subject customers tounrea-
sonable fine-print clauses—e.g., allowing the server operator (and
thus malicious attackers gaining access to its systems) to use cus-
tomer behavior and content for commercial, profiling, or govern-
mental surveillance purposes [9]. To protect data stored inthis
untrusted server model, security systems should offer users assur-
ances of data confidentiality and access pattern privacy. However,
a large class of existing solutions delegate this by assuming the ex-
istence of co-operating, non-malicious servers.

Additionally, the ability to search easily and efficiently within re-
mote data is a very important feature. Some efficient content-based
keyword search indexing schemes exist today. However, support-
ing content-based searchwith privacy in a secure remote storage
is hard, and often tends to compromise either security or perfor-
mance significantly. For example, if data is stored encrypted on a
remote server, to perform content-based searches, one cannot af-
ford to decrypt it at the server nor transfer the bulk of the encrypted
data to the client; the former compromises security as a potentially
untrusted server needs to know decryption keys, and the latter com-
promises performance because of huge data transfers.

In this paper we explore three important security dimensions
of networked storage with untrusted servers, in the contextof ad-
vanced content-based search: (1) confidentiality, (2) access pattern
privacy, and (3) retrieval correctness (result completeness and data
integrity). We design efficient search algorithms so as to scale to
a large number of documents, keywords and queries. Our solution
provides content-based searches with the following security assur-
ances:

Confidentiality. The data being stored on the server is not de-
cipherable either during client-server transit, or at the server side,
even by a malicious server.

Privacy of Searches. An intruder or a malicious server is not
able to perform statistical attacks by exploiting search patterns. For
example, it is not able to compromise confidentiality by correlating
known public information with frequently searched items.

Retrieval Correctness. Clients are be able to verify the integrity
and completeness of any results the server returns. For example,
when a client sends the server a keyword-based query, the client is
able to verify that the server returnedall matching documents.

To ensure confidentiality, all data and associated meta-data are
encrypted at the client side using non-malleable encryption, before
being sent to the server. The data remains encrypted throughout its
lifetime at the server. In response to retrieval requests, the server
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sends encrypted documents which are decrypted by the client. To
enable content-based search on encrypted data, any stored docu-
ments are indexed securely in the process of storage, at the data
owner’s site. This results in the confidential storage of theindex
structures at the server side, available for future secure client ac-
cess. We ensure access pattern privacy by both cryptographic ob-
fuscation of the index and the deployment of practical informa-
tion retrieval schemes with privacy. Retrieval correctness can be
ensured partly by deploying a secure, incremental checksumming
technique allowing also for data updates.

Model
In the model considered, a server offers data hosting services; for
example it may store files, e-mails or relational data. Clients need
to perform queries on the stored data items (“documents”) while
revealing a minimal amount of information (preferably none) to
the server. In this paper we are dealing with applications where
documents are retrieved according to keywords. More precisely,
we assume that a number of keywords is associated with each out-
sourced document; later, a client must be able to retrieveall doc-
uments matching one or more keywords. In addition to document
retrieval queries, the clients must be able to add new documents
and remove or update arbitrary previously-stored ones.

In a malicious adversarial setting,correctness andcompleteness
of server replies — besides confidentiality and integrity ofthe doc-
uments — are of crucial importance. In this setting, query correct-
ness assures that only documents are returned that match thequery;
query completeness assures thatall such documents are returned
by the server. Additionally, it is often essential to conceal client
access patterns from the server. Here we introduce query protocols
for secure indexed data storage that provide confidentiality, com-
pleteness, privacy of search patterns; and the immediate detection
of a dishonest server by the client.

Let D = (di)i=1,...,n be the outsourced documents. LetK =
(ki)i=1,...,k be the set of keywords associated with the documents
andk their total number. Both the stored documents inD as well
as the query keywordsq = {ki1 , ki2 , . . . , kiq} will be encrypted
with a symmetric key under the client’s control.

For analysis, we represent both the server and the client as in-
teractive polynomial-time Turing Machines; we write CLI for the
client and SERV for the server machine. A client interacts with the
server and issues a sequence of update requestsU1, . . . , Ul; here,
an update is either a document addition or removal request. We
call such a sequence of requests atrace T . In addition to update
queries the client can also issue document retrieval queries Q =
(k1, . . . , ki), indicating that the client wishes to obtain all docu-
ments that match (e.g., contain) all keywordsk1, . . . , ki. After ex-
ecuting a retrieval query the client Turing Machine either outputs⊤
or ⊥, indicating whether the client accepts or rejects the server re-
sponse (denoted asDT ,Q) – in the first case the client believes that
the server replied honestly. We write CLI(T , Q, DT ,Q) ∈ {⊤,⊥}
to denote the output of the client as a result of the server execution
of traceT and queryQ and the resultDT ,Q. A server response
D is said to beconsistent with bothT andQ, if an honest server,
after starting at the empty database and executing traceT honestly,
would reply with D to the queryQ. Two tracesT and T ′ are
calledsimilar with respect toQ, written asT ≈QT ′, if the query
Q yields the same answer when queried after a traceT or T ′, i.e.,
DT ,Q = DT ′,Q.

DEFINITION 1. A query protocol is complete, if (except with
negligibleprobability [11]) for all traces T and T ′ with T ′ 6≈QT ,
document retrieval queries Q and server responses DT ′,Q, we have

CLI(T , Q,DT ′,Q) = ⊥.

Informally, a query mechanism iscomplete, if the server is bound
to the sequence of update requests performed by the client: either
the server responds correctly to a query or its malicious behavior is
immediately detected by the client.

Information Leaks. Even though all documents are stored in
encrypted form on the server, the queries performed by the client
(theclient access patterns) leak (potentially essential) information
about the data. A curious server can, for example, perform statis-
tics on the search queries and relate the queries to corresponding
documents. In the following we provide an informal classification
of such information leaks that areintroduced either by the query
protocol itself or by the storage data structures on the server.

In order to perform a document retrieval request, the clientwill
need to submit a query, naturally composed of a set of informa-
tion items (keyword tokens) that relate uniquely to the queried key-
words. In a very simple query protocol, these tokens could bethe
(encrypted) actual query keywords. Depending on the information
that is obtained by the server from the keyword tokens, we candis-
tinguish several leak types:

A type 1 leak occurred if, after receiving and executing a query,
the server can systematically construct any association between the
already seen keyword tokens (including the ones for the current
query) and the query results (encrypted documents) returned so far.

A type 2 leak, which is arguably more undesirable, allows the
server to construct a mapping betweeneach and every considered
keyword tokens and all stored documents.

A type 3 leak leak occurs in the process of adding new keywords
if as a result of a query the server knows that documents that were
previously stored do not contain the added new keywords.

Solution Outline
Our solution is composed of a set of layered mechanisms that op-
erate together to provide security assurances. For confidentiality,
non-malleable, semantically secure, symmetric encryption is de-
ployed. Correctness assurances are achieved by maintaining a min-
imal set of client-side checksums that can operate for dynamic ac-
cess patterns (e.g., document removals). Client access privacy is
provided by a combination of custom private information retrieval
protocols, together with search index obfuscation mechanisms. In
the following we briefly outline these mechanisms. We will start
by discussing search query correctness assurances.

We will represent the server-side search index as a collection of
posting lists, or PL for short. For each search keywordki we main-
tain PLki

containing all document identifiers of documents asso-
ciated with it. To avoid possible manipulations of the PLs bythe
server, we keep a cryptographic checksumhash of each PL on the
client; for this purpose, we use a special purpose hash function
H(PLki

) that is able to hash sets. The server maintains the PL
elements encrypted: each PLki

contains encrypted document iden-
tifiers of documents that match keywordki. To prevent the server
from cross-correlating different PLs, we use a different encryption
key for each setKki

. We compute this key from a fixed master
secret key and the keyword name using a one-way random crypto-
graphic hash function or a HMAC [14].

For correctness, upon issuing a search query, clients will be able
to check server replies by using these set hashes. In other words,
upon receipt of these sets, the client first checks whether the server
honestly returned the PLs, i.e., the client computes all hash values
H(PLk1

), H(PLk2
), . . ., H(PLkn) and compares them with the

locally stored values. If at least one hash differs, the client outputs
⊥ and assumes that the server is malicious. Otherwise, the client
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computes the encryption keys for the PLs from its master key and
decrypts all elements in the received PLs. Finally, the client com-
putes the intersection of the received PLs, requests the correspond-
ing documents from the server and outputs⊤.

Due to special properties of the set hashes, adding documents to
or removing documents from the server can be done in a straightfor-
ward manner, with minimal communication overheads. The client
hash values can be updated directly upon removal / addition of doc-
uments, without retrieving additional data from the server. Without
discussing further implementation details (theincremental hashing
paradigm of Bellare and Micciancio [8] is deployed to construct
this function), we point out that it can be shown that the above
query protocol provides query completeness if the hash function H

is collision - resistant, i.e., if it is computationally infeasible to find
two setsA andB with A 6= B andH(A) = H(B):

THEOREM 1. The above query protocol provides completeness
if H is collision-resistant.

Even though the proposed protocol is provably complete, theso-
lution does not achieve the desired privacy properties. In astatic
setting (where no documents are added or removed) it exhibits a
type 1 leak, since the server can map the queried encrypted PLs to
the retrieved encrypted documents. In a dynamic setting, iteven ex-
hibits a type 2 leak: each time a document is added, for consistency,
the client needs to update the PLs corresponding to keywordscon-
tained in the document. The server can then map these PL updates
to the newly added documents. In the following we show how more
sophisticated access protocols and data structures for representing
the PLs can reduce information leaks.
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Figure 1: Adding a new document requires (1) creating a vector indi-
cating the contained keywords, (2a) encrypting the vector with F , (2b)
permuting the column according toσ (not shown) and (3) sending the
result to the server.

The leak source of the above methods is the client signaling
the server the keywords contained in newly added document. To
avoid this leak, we will modify document addition such that the
server learns nothing of the new document through the addition.
We now represent the PLs in the form of ak × n binary matrix
C. The bit at rowi and columnj, denotedCij , is set to one if
and only if keywordi is contained in documentj. On the server
we store an “obfuscated” version of the matrix,eC, computed by
applyingF , a bit-wise pseudo-random function [11] andσ, a ran-
dom permutation of1, . . . , k. The matrix elementeCi,j is given by
eCi,j = lsb(F (kσ(i) ‖ dj)) ⊕ Cσ(i)j , where⊕ denotes the XOR
operation, andlsb denotes the least significant bit of a string. Now
keyword ki corresponds to rowσ(i) of eC. While the pseudo-
random function assures proper encryption of the matrixC, the

permutation assures that the server cannot infer information on the
keywordski by looking at the order in which they are represented
in eC.

To add a new document, the client will now construct a column
having ones (1s) only in positions corresponding to keywords con-
tained in the document and encoding this column using the permu-
tationσ and the functionF . The resulting column, along with an
encrypted version of the document are then sent to the server, who
appends the column to his matrixeC and stores the document using
its unique identifier.

In a conjunctive keyword search{ki1 , ki2 , . . ., kim}, the client
requests rowsσ(i1), σ(i2), . . ., σ(im) of the matrix eC from the
server, which correspond to the PLs of the searched keywords; we
denote these rows byCσ(i1), . . ., Cσ(im).

The client reconstructs the rowsCij
, 1 ≤ j ≤ m, by comput-

ing the XOR of the received rowbCσ(ij) with a vector formed of
the valueslsb(F (kij) ‖ dl)), for 1 ≤ l ≤ n. The reconstructed
rows Ci1 , . . . , Cim uniquely correspond to the PLs PLki1

, . . .,
PLkim

: PLkij
contains all document namesdl with Cij ,l = 1.

Now, the protocol continues in a similar manner as before: the
client computes theH(PLkij

) checksum for each requested key-
word and checks whether it matches the locally stored value.If
any one hash value differs, the client outputs⊥. Similar to The-
orem 1 the completeness of the query protocol can be established.
This solution exhibits a type 1 leak however, since the client reveals
row indexes corresponding to the searched keywords and alsothe
encrypted documents containing them.

In the following we propose a method that prevents even such
leaks (by deploying a variation of computational PIR) at theex-
pense of additional computation costs. The only information leaked
to the server consists of the number of keywords contained incon-
junctive queries, shared by sets of documents. To achieve this goal,
we deploy a modified version of the Computational PIR mecha-
nisms of Kushilevitz and Ostrovsky [12]. Initially, the client ran-
domly chooses two prime numbersp andq of equal bit length, com-
putes their product,N = pq and sends it to the server.

To perform a conjunctive keyword search{ki1 , ki2 , . . . , kim},
for each keywordkij

a client deploys PIR to obtain the roweCij

without leaking to the server the row indexij , as follows. It cre-
atesk numbers (one for each stored keyword)s1, s2, . . . , sk, such
that theij -th numbersij

, corresponding to the rowij of C, is a
quadratic non-residue (QNR) and the rest are quadratic residues
(QR) inZ

∗

N . The client sendss1, s2, . . . , sk to the server. For each
columnc in the bit matrix eC, the server computes exactly one value
vc asvc =

Qk

i=1 vic, wherevic corresponds to thei-th row of col-
umn c and is computed in the following fashion. IfeCic = 0 then
vic = 1, otherwise,vic = si. The server sends the computed val-
ues (for all columns)v1, v2, . . . , vn to the client, who checks their
quadratic residuosity inZ∗

N . Then, if vc is a quadratic residue,
eCpic is known to be0, otherwise it is1. Sincespi

is a quadratic
non-residue,vpic is a quadratic residue if and only ifeCpic is 0 (see
[12]). The remaining steps of this solution follow exactly the proto-
col presented above. Again, similar to Theorem 1 the completeness
of the query protocol can be established. Moreover:

THEOREM 2. If the quadratic residuosity assumption holds then
the above protocol offers full computational access pattern privacy.
It only leaks the number of keywords in a conjunctive query.

Scaling Up. Multiple Clients. Dynamic Data.
The server side complexity of the oblivious keyword search proto-
col presented above grows linearly with the number of indexed key-
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Figure 2: Oblivious Keyword Search.

words and documents. To reduce this computation overhead, two
techniques can be used, either separately or in conjunction: (1) To
keep the number of indexed keywords small, an additional search
structure can be deployed, which allows searching for each key-
word exactly once – not yet indexed keywords can be first searched
for in the additional data structure and then obliviously added to
the index. (2) The index can be accessed more efficiently in a par-
titioned fashion, at the expense of reduced privacy (Figure3).

document serverdata client

k1

k2

k3 x

x

x

d’4d’3d’2d’1

k4 x

C~

x

x

x

k5 x

k6 x

k7 x x

…

x

d’6d’5

x

x

x

x

S1

S4

S5

S2 S3

S6

query: {k3 }

query: {k1 ,k4}

query: {k6 ,k7}

Figure 3: Index segmentation.

To enable multiple client instances to access shared data, the (en-
crypted) set hashes can be placed on the server to be accessedby
the different instances. For dynamic data, commitment protocols
will need to be put in place in conjunction with exclusive write
locks. Moreover, now the clients need to defend against a server
aiming to present different versions of the universe to eachclient,
e.g., by ignoring the other clients’ updates. This can be achieved
in a fashion similar to SUNDR [13], by requiring clients to share
some mutual awareness state about their transactions, e.g., in the
simplest case, client instances will be required to share last-time-
of-update state as well as authentication and encryption secrets. If
such inter-instance interaction is not possible however, multi-client
access becomes a harder problem. It can likely be solved by de-
ploying trusted hardware [5, 7] at the server side.

Future Work
Several ongoing results impact the future of this work. Specifically,
in recent research [15, 6] we explored the limits of single-server
computational private information retrieval (PIR)for the purpose of
preserving client access patterns leakage. We realized that deploy-
ment of non-trivial single server PIR protocols on real hardware
of the recent past would have been orders of magnitude less time-
efficient than trivially transferring the entire database.These results
are beyond existing knowledge of mere “impracticality” under un-
favorable assumptions. They rather reflect an inherent limitation
with respect to modern hardware, likely the result of a communication-
cost centric protocol design. We argued that this is likely to hold on
non-specialized traditional hardware in the foreseeable future. We
also validated our reasoning in an experimental setup on modern
off-the-shelf hardware.

This result has a direct implication in the NS2 work. Specifically,
in the privacy setup, deploying PIR is likely to be less efficient
than trivially transferring the relevant index information (we left
the PIR description above in place for completeness and to allow
the understanding of this intuition). However, in the immediate
future it is important thus to develop novel PIR-compatibleprivate
information access mechanisms that can be applied in this and other
related contexts.

1. REFERENCES
[1] FilesAnywhere. Online at

http://www.filesanywhere.com/.
[2] GMail. Online athttp://gmail.google.com/.
[3] Xdrive. Online athttp://www.xdrive.com/.
[4] Yahoo Mail. Online athttp://mail.yahoo.com/.
[5] Trusted Computing Group. Online at

https://www.trustedcomputinggroup.org/,
2005.

[6] Achieving Practical Private Information Retrieval (Panel).
Online at
https://www.cs.stonybrook.edu/∼sion/
research/PIR.Panel.Securecomm.2006/, 2006.

[7] IBM Cryptographic Hardware. Online at
http://www-03.ibm.com/security/products/,
2006.

[8] M. Bellare and D. Micciancio. A new paradigm for
collision-free hashing: Incrementality at reduced cost. In
Proceedings of EuroCrypt, 1997.

[9] CNN. Feds seek Google records in porn probe. Online at
http://www.cnn.com, Jan. 2006.

[10] Gartner, Inc. Server Storage and RAID Worldwide.
Technical report, Gartner Group/Dataquest, 1999.
www.gartner.com.

[11] O. Goldreich.Foundations of Cryptography. Cambridge
University Press, 2001.

[12] E. Kushilevitz and R. Ostrovsky. Replication is not needed:
single database, computationally-private information
retrieval. InProceedings of FOCS. IEEE Computer Society,
1997.

[13] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
Untrusted Data Repository (SUNDR). InProceedings of the
6th Symposium on Operating Systems Design and
Implementation (OSDI 2004), pages 121–136, San
Francisco, CA, December 2004. ACM SIGOPS.

[14] B. Schneier.Applied Cryptography: Protocols, Algorithms
and Source Code in C. Wiley & Sons, 1996.

[15] R. Sion and B. Carbunar. On the Computational Practicality
of Private Information Retrieval. InProceedings of the
Network and Distributed Systems Security Symposium, 2007.
Stony Brook Network Security and Applied Cryptography
Lab Tech Report 2006-06.

1345


