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ABSTRACT

In an outsourced data framework, we introduce and demdastra
mechanisms for securely storing a set of data items (doctghen
on an un-trusted server, while allowing for subsequent Wy
tive keyword searches for matching documents. The prosqual-
vide full computational privacy, query correctness asscea and
no leaks: the server either correctly executes client ggeor (if

it behaves maliciously) is immediately detected. The tlisthen
provided with strong assurances proving the authenticitycam-
pleteness of results. This is different from existing secure keyword
search research efforts where a cooperating, non-maticsewer
behavior is assumed. Additionally, not only does the obligi
search protocol conceal the outsourced data (from theustet
server) but it also does not leak client access patterngjubdes
themselves, the association between different querieetvden
newly added documents and their corresponding keywords (no

even in encrypted form). These assurances come at the expens

of additional computation costs which we analyze in the exinof
today’s hardware.

Introduction

In an increasingly networked world, computing and storage s
vices require security assurances against maliciouskattadaulty
behavior. Protecting the confidentiality and integritystifred data
is paramount to ensure safe computing. In networked stpdaje
could be geographically distributed, and thus might beestan
potentially vulnerable remote servers or transferredsgtmtrusted
networks; this adds security vulnerabilities comparediteat-access
storage. Networked storage architectures are becomirrgéane
ingly prevalent: e.g., networked file systems and onlinatiehal
databases in public and commercial infra-structures saamaail
and storage portals, libraries, health and financial netsvor

Today, sensitive data is being stored on remote servers-main Confidentiality.

tained by third party storage vendors. This is because thédost
of storage management is 5-10 times higher than the initial a
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quisition costs [10]. Moreover, most third party storageders
do not provide strong assurances of data confidentiality iand
tegrity. For example, personal emails and confidential filesbe-
ing stored on third party servers such as Gmail [2], Yahoo! [4&i
Xdrive [3], and Files Anywhere [1]. Privacy guarantees aftsger-
vices are at best declarative and often subject customensrea-
sonable fine-print clauses—e.g., allowing the server dpefand
thus malicious attackers gaining access to its systemsjdaus-
tomer behavior and content for commercial, profiling, or gow
mental surveillance purposes [9]. To protect data storethis
untrusted server model, security systems should offersuesssur-
ances of data confidentiality and access pattern privacyeMer,
a large class of existing solutions delegate this by assyithia ex-
istence of co-operating, non-malicious servers.

Additionally, the ability to search easily and efficientljtkin re-
mote data is a very important feature. Some efficient corttesed
keyword search indexing schemes exist today. However,astypp
ing content-based searetith privacy in a secure remote storage
is hard, and often tends to compromise either security dioper
mance significantly. For example, if data is stored enciyjpte a
remote server, to perform content-based searches, onetcafin
ford to decrypt it at the server nor transfer the bulk of thergpted
data to the client; the former compromises security as anpiaty
untrusted server needs to know decryption keys, and thes lzdm-
promises performance because of huge data transfers.

In this paper we explore three important security dimersion
of networked storage with untrusted servers, in the coraéxd-
vanced content-based search: (1) confidentiality, (2)sscpattern
privacy, and (3) retrieval correctness (result completsrand data
integrity). We design efficient search algorithms so as @lesto
a large number of documents, keywords and queries. Ourigolut
provides content-based searches with the following sicasisur-
ances:

The data being stored on the server is not de-
cipherable either during client-server transit, or at teever side,
even by a malicious server.

Privacy of Searches. An intruder or a malicious server is not
able to perform statistical attacks by exploiting seardtepas. For
example, it is not able to compromise confidentiality by etating
known public information with frequently searched items.

Retrieval Correctness. Clients are be able to verify the integrity
and completeness of any results the server returns. Forpgam
when a client sends the server a keyword-based query, & i
able to verify that the server returnell matching documents.

To ensure confidentiality, all data and associated meta-aiat
encrypted at the client side using non-malleable encryptiefore
being sent to the server. The data remains encrypted thoomdfis
lifetime at the server. In response to retrieval requesis,server
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sends encrypted documents which are decrypted by the .cllent
enable content-based search on encrypted data, any stoced d
ments are indexed securely in the process of storage, atatiae d
owner’s site. This results in the confidential storage ofitidex
structures at the server side, available for future seclieatcac-
cess. We ensure access pattern privacy by both cryptographi
fuscation of the index and the deployment of practical infar
tion retrieval schemes with privacy. Retrieval correcsean be
ensured partly by deploying a secure, incremental checksog
technique allowing also for data updates.

Model

In the model considered, a server offers data hosting sesyior
example it may store files, e-mails or relational data. Géiereed

to perform queries on the stored data items (“documents’ijewh
revealing a minimal amount of information (preferably nphe
the server. In this paper we are dealing with applicationgreh
documents are retrieved according to keywords. More pedgis
we assume that a number of keywords is associated with each ou
sourced document; later, a client must be able to retradvdoc-
uments matching one or more keywords. In addition to documen
retrieval queries, the clients must be able to add new dontsne
and remove or update arbitrary previously-stored ones.

In a malicious adversarial settingprrectness andcompl eteness
of server replies — besides confidentiality and integritytef doc-
uments — are of crucial importance. In this setting, quenyeszi-
ness assures that only documents are returned that matghehge
query completeness assures thitsuch documents are returned
by the server. Additionally, it is often essential to corlcglaéent
access patterns from the server. Here we introduce quetyquis
for secure indexed data storage that provide confidemtiadm-
pleteness, privacy of search patterns; and the immedia¢etin
of a dishonest server by the client.

LetD = (d;)i=1,....n be the outsourced documents. l€&t=
(k:)i=1,...,x be the set of keywords associated with the documents
andk their total number. Both the stored document®ias well
as the query keywordg = {ki,, ki,, ..., ki, } will be encrypted
with a symmetric key under the client’s control.

For analysis, we represent both the server and the cliemt-as i
teractive polynomial-time Turing Machines; we write iCfor the
client and &RV for the server machine. A client interacts with the
server and issues a sequence of update reqUests. , U;; here,
an update is either a document addition or removal reques. W
call such a sequence of requestsace 7. In addition to update
queries the client can also issue document retrieval qri€}ie=
(k1,..., ki), indicating that the client wishes to obtain all docu-
ments that match (e.g., contain) all keywokds. . ., k;. After ex-
ecuting a retrieval query the client Turing Machine eithetputs T
or L, indicating whether the client accepts or rejects the sepre
sponse (denoted d37 ) — in the first case the client believes that
the server replied honestly. We write 7, Q, Dr.¢) € {T, L}
to denote the output of the client as a result of the serverigian
of trace7 and query@ and the resultDr . A server response
D is said to beconsistent with both7 and @, if an honest server,
after starting at the empty database and executing Faoenestly,
would reply with D to the queryQ. Two traces7 and 7’ are
calledsimilar with respect taQ, written as7~¢7’, if the query
Q yields the same answer when queried after a tAae 7/, i.e.,
DT’Q = DT/,Q'

DEFINITION 1. A query protocol is complete, if (except with
negligible probability [11]) for all traces 7 and 7" with 7' 7,
document retrieval queries (Q and server responses D7+ ¢, wehave

Cul (T, Q, DT/’Q) = 1.

Informally, a query mechanism omplete, if the server is bound
to the sequence of update requests performed by the clighér e
the server responds correctly to a query or its malicioustbien is
immediately detected by the client.

Information Leaks. Even though all documents are stored in
encrypted form on the server, the queries performed by tieatcl
(theclient access patterns) leak (potentially essential) information
about the data. A curious server can, for example, perfoatisst
tics on the search queries and relate the queries to condsp
documents. In the following we provide an informal classifion

of such information leaks that aratroduced either by the query
protocol itself or by the storage data structures on the server.

In order to perform a document retrieval request, the cheitit
need to submit a query, naturally composed of a set of inferma
tion items keyword tokens) that relate uniquely to the queried key-
words. In a very simple query protocol, these tokens coulthbe
(encrypted) actual query keywords. Depending on the in&tion
that is obtained by the server from the keyword tokens, wedésin
tinguish several leak types:

A type 1 leak occurred if, after receiving and executing a query,
the server can systematically construct any associatitwess the
already seen keyword tokens (including the ones for theeotrr
query) and the query results (encrypted documents) redlsodar.

A type 2 leak, which is arguably more undesirable, allows the
server to construct a mapping betwesch and every considered
keyword tokens and all stored documents.

A type 3 leak leak occurs in the process of adding new keywords
if as a result of a query the server knows that documents tbeg w
previously stored do not contain the added new keywords.

Solution Outline

Our solution is composed of a set of layered mechanisms that o
erate together to provide security assurances. For conifdign
non-malleable, semantically secure, symmetric encrppisode-
ployed. Correctness assurances are achieved by mairgaimiin-
imal set of client-side checksums that can operate for dynau:
cess patterns (e.g., document removals). Client accesscpris
provided by a combination of custom private informationiestal
protocols, together with search index obfuscation mecmasi In
the following we briefly outline these mechanisms. We widlrst
by discussing search query correctness assurances.

We will represent the server-side search index as a catlecif
posting lists, or PL for short. For each search keywdfgwe main-
tain PL,, containing all document identifiers of documents asso-
ciated with it. To avoid possible manipulations of the PLstly
server, we keep a cryptographic checkshash of each PL on the
client; for this purpose, we use a special purpose hashiimct
H(PLy,) that is able to hash sets. The server maintains the PL
elements encrypted: each Plcontains encrypted document iden-
tifiers of documents that match keywokd. To prevent the server
from cross-correlating different PLs, we use a differertrgption
key for each sef,. We compute this key from a fixed master
secret key and the keyword name using a one-way random erypto
graphic hash function or a HMAC [14].

For correctness, upon issuing a search query, clients widltide
to check server replies by using these set hashes. In othelswo
upon receipt of these sets, the client first checks whetteesehver
honestly returned the PLs, i.e., the client computes al vatues
H(PL,), H(PLk,), ..., H(PLg, ) and compares them with the
locally stored values. If at least one hash differs, thentl@itputs
1 and assumes that the server is malicious. Otherwise, tartcli
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computes the encryption keys for the PLs from its master kel a
decrypts all elements in the received PLs. Finally, thentlemm-
putes the intersection of the received PLs, requests thespnd-
ing documents from the server and outpuits

Due to special properties of the set hashes, adding docartent
or removing documents from the server can be done in a stfaigh
ward manner, with minimal communication overheads. Thentli
hash values can be updated directly upon removal / addifido®
uments, without retrieving additional data from the serwithout
discussing further implementation details (theremental hashing
paradigm of Bellare and Micciancio [8] is deployed to counstr
this function), we point out that it can be shown that the &bov
query protocol provides query completeness if the hashtiimmé?
is collision - resistant, i.e., if it is computationally infeasible to find
two setsA and B with A # B andH (A) = H(B):

THEOREM 1. The above query protocol provides compl eteness
if H iscollision-resistant.

Even though the proposed protocol is provably completesthe
lution does not achieve the desired privacy properties. $tatic
setting (where no documents are added or removed) it exhabit
type 1 leak, since the server can map the queried encryptedd”L
the retrieved encrypted documents. In a dynamic settieggit ex-
hibits a type 2 leak: each time a document is added, for clamgig,
the client needs to update the PLs corresponding to keywamns
tained in the document. The server can then map these PLagpdat
to the newly added documents. In the following we show howemor
sophisticated access protocols and data structures forseqming
the PLs can reduce information leaks.

Ol

addd, i

data client document server

Figure 1: Adding a new document requires (1) creating a vector indi-
cating the contained keywords, (2a) encrypting the vector ith F', (2b)
permuting the column according too (not shown) and (3) sending the
result to the server.

The leak source of the above methods is the client signaling
the server the keywords contained in newly added documemt. T
avoid this leak, we will modify document addition such thiaé t
server learns nothing of the new document through the andtditi
We now represent the PLs in the form ofvax n binary matrix
C. The bit at row: and columnj, denotedC;;, is set to one if
and only if keyword: is contained in document On the server
we store an “obfuscated” version of the matrix, computed by
applying F', a bit-wise pseudo-random function [11] amda ran-
dom permutation of , . .., k. The matrix elemem’fi,j is given by
Cij = Isb(F(kowy || dj)) ® Cy(i);, whered denotes the XOR
operation, andsb denotes the least significant bit of a string. Now
keyword k; corresponds to rovws (i) of C. While the pseudo-
random function assures proper encryption of the maffixthe

permutation assures that the server cannot infer infoonaih the
keywordsk; by looking at the order in which they are represented
inC.

To add a new document, the client will now construct a column
having oness) only in positions corresponding to keywords con-
tained in the document and encoding this column using thaper
tation o and the functionF. The resulting column, along with an
encrypted version of the document are then sent to the sevier
appends the column to his mati@xand stores the document using
its unique identifier.

In a conjunctive keyword seardk;, , ki, - . -, ki., }, the client
requests rows (i1), o(is), . .., o(im) of the matrixC from the
server, which correspond to the PLs of the searched keywarels
denote these rows ¥, ;,y, . - -, Co(ipn)-

The client reconstructs the rows;;, 1 < j < m, by comput-

ing the XOR of the received ro@[,(ij) with a vector formed of
the valueslsb(#'(k;,) || di)), for 1 < I < n. The reconstructed
rows Cj,,...,Cj,, uniquely correspond to the PLs RL. ...,
PLg, : PLkij contains all document namels with Ci;u = 1.
Now, the protocol continues in a similar manner as before th
client computes theH(PLkl.j) checksum for each requested key-
word and checks whether it matches the locally stored valtie.
any one hash value differs, the client outputs Similar to The-
orem 1 the completeness of the query protocol can be esieblis
This solution exhibits a type 1 leak however, since the tliemeals
row indexes corresponding to the searched keywords andlaso
encrypted documents containing them.

In the following we propose a method that prevents even such
leaks (by deploying a variation of computational PIR) at #xe
pense of additional computation costs. The only informeléaked
to the server consists of the number of keywords containedin
junctive queries, shared by sets of documents. To achiévgadal,
we deploy a modified version of the Computational PIR mecha-
nisms of Kushilevitz and Ostrovsky [12]. Initially, the efit ran-
domly chooses two prime numberandq of equal bit length, com-
putes their productN = pg and sends it to the server.

To perform a conjunctive keyword sear¢k;, , ki,, - - ., ki,, },
for each keywordk;; a client deploys PIR to obtain the ro@j
without leaking to the server the row indey, as follows. It cre-
atesk numbers (one for each stored keywosd) so, . . ., sk, such
that thei;-th numbers;,, corresponding to the row; of C, is a
quadratic non-residue (QNR) and the rest are quadratiduesi
(QR)inZ}y. The client sendsy, sz, . . ., si to the server. For each
columncin the bit matrixC, the server computes exactly one value
ve asve = [1¥_, vic, wherev;. corresponds to theth row of col-
umn ¢ and is computed in the following fashion. df,. = 0 then
vic = 1, otherwisey;. = s;. The server sends the computed val-
ues (for all columns)y, ve, .. ., v, to the client, who checks their
quadratic residuosity itZy,. Then, ifv. is a quadratic residue,
Ch, e is known to be0, otherwise it isl. Sinces,, is a quadratic
non-residuey,, . is a quadratic residue if and onlyﬁpic is0 (see
[12]). The remaining steps of this solution follow exactigtproto-
col presented above. Again, similar to Theorem 1 the coraplsts
of the query protocol can be established. Moreover:

THEOREM 2. If thequadratic residuosity assumption holdsthen
the above protocol offersfull computational access pattern privacy.
It only leaks the number of keywords in a conjunctive query.

Scaling Up. Multiple Clients. Dynamic Data.

The server side complexity of the oblivious keyword seanadtg
col presented above grows linearly with the number of indekesy-
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Figure 2: Oblivious Keyword Search.

words and documents. To reduce this computation overhaed, t
techniques can be used, either separately or in conjunatigriio
keep the number of indexed keywords small, an additionathea
structure can be deployed, which allows searching for eagh k
word exactly once — not yet indexed keywords can be first bearc
for in the additional data structure and then obliviouslyled to
the index. (2) The index can be accessed more efficiently ara p
titioned fashion, at the expense of reduced privacy (Figire

S d, A, dy d, Ay dp
Sli
o O RY
query: {k,} § k 0 XX [
kX O OX [
query {kl-ka)s A k, \4 ] M
| >
o
kL [ N
: ke L] L] D
query: {kg ket |
o XX X
6
data client : document server

Figure 3: Index segmentation.

To enable multiple client instances to access shared tiatéen-
crypted) set hashes can be placed on the server to be acdsssed
the different instances. For dynamic data, commitmentouais
will need to be put in place in conjunction with exclusive teri
locks. Moreover, now the clients need to defend against\eeser
aiming to present different versions of the universe to edient,
e.g., by ignoring the other clients’ updates. This can béexeld
in a fashion similar to SUNDR [13], by requiring clients toash
some mutual awareness state about their transactionsjrete
simplest case, client instances will be required to shasetime-
of-update state as well as authentication and encryptioretse If
such inter-instance interaction is not possible howeveitiralient

access becomes a harder problem. It can likely be solved by de

ploying trusted hardware [5, 7] at the server side.

Future Work

Several ongoing results impact the future of this work. Hjmdly,

in recent research [15, 6] we explored the limits of singlever
computational private information retrieval (PI#) the purpose of
preserving client access patterns leakage. We realized that deploy-
ment of non-trivial single server PIR protocols on real heack
of the recent past would have been orders of magnitude les ti
efficient than trivially transferring the entire databa¥bese results
are beyond existing knowledge of mere “impracticality” endin-
favorable assumptions. They rather reflect an inherentdtioin
with respect to modern hardware, likely the result of a comitation-
cost centric protocol design. We argued that this is likeliaold on
non-specialized traditional hardware in the foreseealieré. We
also validated our reasoning in an experimental setup onemod
off-the-shelf hardware.

This result has a directimplication in the NS2 work. Speaific
in the privacy setup, deploying PIR is likely to be less effiti
than trivially transferring the relevant index informatigwe left
the PIR description above in place for completeness andduw al
the understanding of this intuition). However, in the imnatel
future it is important thus to develop novel PIR-compatibtivate
information access mechanisms that can be applied in tHistier
related contexts.
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