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ABSTRACT

Bitmap indices have been widely and successfully used in scien-
tific and commercial databases. Compression techniques based on
run-length encoding are used to improve the storage performance.
However, these techniques introduce significant overheads in query
processing even when only a few rows are queried. We propose a
new bitmap encoding scheme based on multiple hashing, where
the bitmap is kept in a compressed form, and can be directly ac-
cessed without decompression. Any subset of rows and/or columns
can be retrieved efficiently by reconstructing and processing only
the necessary subset of the bitmap. The proposed scheme provides
approximate results with a trade-off between the amount of space
and the accuracy. False misses are guaranteed not to occur, and
the false positive rate can be estimated and controlled. We show
that query execution is significantly faster than WAH-compressed
bitmaps, which have been previously shown to achieve the fastest
query response times. The proposed scheme achieves accurate re-
sults (90% -100%) and improves the speed of query processing
from 1 to 3 orders of magnitude compared to WAH.

1. INTRODUCTION

Bitmap indices are widely used in data warehouses and scientific
applications to efficiently query large-scale data repositories. They
are also successfully implemented in commercial Database Man-
agement Systems, e.g., Oracle [2, 4], IBM [32], Informix [15, 28],
Sybase [12, 16]. Bitmaps have found many other applications such
as visualization of scientific data [19, 38, 39]. The idea of a bitmap
is basically to partition the data into bins. In general, the bit in row
i and column jis a1 if the data in row i falls into bin j. Each column
is then stored as a bitmap. Query execution uses fast bit-wise opera-
tions over the bitmaps which are supported by hardware. The result
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of the query is a bitmap where the bits set correspond to the rows
that satisfy the query, i.e., the fifth bit in the final result is 1 if the
fifth record satisfies the query criteria. Bitmaps inherently involve
redundant representation and are compressed for faster retrieval.
Many of the proposed compression techniques [2, 18, 24, 34, 45]
use run-length encoding, which replaces the continuous streams of
0’s or 1’s in a bitmap by a single instance of the symbol and a
run count. One of the most effective compression techniques is
Word Aligned-Hybrid (WAH) [43, 44, 46] which has been recently
shown to provide the fastest query execution when compared with
other techniques.

While space is gained by compressing the bitmap, the ability to di-
rectly locate the row identifier by the bit position in the bitmap is
lost. Now the fifth bit in the compressed bitmap does not necessar-
ily correspond to the fifth record. This is acceptable when queries
do not involve the row identifier, or a range of identifiers, as part of
the query, i.e. all records are considered as potential answers to the
query. However, many queries are executed over a subset of data,
which is usually identified by a set of constraints. For example,
a typical scientific visualization query focuses on a certain region
or time range. In a data warehouse, queries are specified over the
dimensions (or the higher level dimensions in the hierarchy) such
as date (or month, quarter, year), account (or customer, customer
class, profession), or product (or product type, vendor). In many
cases, queries pose multiple constraints and the result of executing
one of the constraints is a list of candidate row identifiers to be fur-
ther processed. In a multi-dimensional range query, the rows that
do not satisfy a condition in one of the dimensions do not need to
be processed in other dimensions. The performance of the current
bitmap encoding schemes would suffer under all these scenarios
where relevant rows are provided as part of the query. Moreover,
the task of handling queries with WAH that ask for only a few rows
needs extra bit operations or decompression of the bitmap.

Queries that only ask for a few rows are very common. The row
number could represent time, product, or spatial position. In fact,
the row number can indicate any attribute as long as the data set is
physically ordered by it. For example, consider a data warehouse
where the data is physically ordered by date. A query that asks
for the total sales of every Monday for the last 3 months would
effectively select twelve rows. Similarly, a query that asks for the
sales of the last seven days is asking for seven rows. Moreover, the
row number in the bitmap can represent more than one attribute.
For example, we could map the x, y, and z coordinates of a data
point to a single integer by using a well-known mapping function



or a space-filling curve and physically order the points by three
attributes at the same time. When users ask for a particular region,
a small cube within the data space, we can map all the points in
the query to their index and evaluate the query conditions over the
resulting rows.

While many other approaches, including compressed bitmaps, com-
pute the answer in O(V) time, where N is the number of points in
the grid, we want to be able to compute the answers in the op-
timal O(c) time, where ¢ is the number of points in the region
queried. Our goal is to provide a structure that enables direct and
efficient access to any subset of the bitmap, just as the decom-
pressed bitmaps can, and which does not take as much space, i.e. it
is stored in compressed form.

We propose an approximate bitmap encoding that stores the bitmaps
in compressed form while maintaining efficient query processing
over any subset of rows or columns. The proposed scheme inserts
the set-bits of the bitmap matrix into an Approximate Bitmap (AB)
through hashing. Retrieval is done by testing the bits in the AB,
where any subset of the bitmap matrix can be retrieved efficiently.
It is shown that there would be no false negatives, i.e., no rows
that satisfy the query constraints are missed. False positive rate can
be controlled by selecting the parameters of the encoding properly.
Approximate query answers are tolerable in many typical applica-
tions, e.g., visualization, data warehousing. For applications requir-
ing exact answers, false positives can be pruned in a second step in
query execution. Thus, the recall is always 100% and the precision
depends on the amount of resources we are willing to use. For ex-
ample, a visualization tool can allow some margin of imprecision,
and exact answers can be retrieved for a finer granularity query.

Contributions of this paper include the following:

1. We propose a new bitmap encoding scheme that approxi-
mates the bitmaps using multiple hashing of the set bits.

2. The proposed scheme allows efficient retrieval of any subset
of rows and columns. In fact, retrieval cost is O(c) where ¢
is the cardinality of the subset.

3. The AB parameters can be specified in two ways: setting a
maximum size, in which case the AB is built to achieve the
best precision for the available memory; or setting a mini-
mum precision, where the least amount of space is used to
ensure the minimum precision.

4. The proposed scheme can be applied at three different lev-
els of resolution: Building one AB for each attribute makes
compression size independent of the cardinality of the at-
tributes. Building one AB for the whole data set makes the
compressed size independent of the dimensionality of the
data set. Building one AB for each column makes each AB
size dependent only on the number of set bits.

5. The approach presented in this paper can be combined with
other structures to further improve the query execution time
and the precision of the results using minimal memory.

6. The approximate nature of the proposed approach makes it a
privacy preserving structure that can be used without database
access to retrieve query answers.

The rest of the paper is organized as follows. Section 2 presents the
related work in this area. Section 3 describes the proposed scheme.
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Figure 1: A Bloom Filter

Section 4 gives the theoretical analysis of the proposed scheme.
Sections 5 and 6 present the experimental framework and results.
We conclude in Section 7.

2. BACKGROUND

2.1 Bloom Filters

Our solution is inspired by Bloom Filters [5]. Bloom Filters are
used in many applications in databases and networking including
query processing [7, 11, 23, 25, 26], IP traceback [35, 36], per-
flow measurements [10, 21, 22], web caching [13, 14, 40] and loop
detection [41]. A survey of Bloom Filter (BF) applications is de-
scribed in [6]. A BF computes & distinct independent uniform hash
functions. Each hash function returns an m-bit result and this result
is used as an index into a 2™ sized bit array. The array is initially
set to zeros and bits are set as data items are inserted. Insertion of
a data object is accomplished by computing the % hash function re-
sults and setting the corresponding bits to 1 in the BF. Retrieval can
be performed by computing the % digests on the data in question
and checking the indicated bit positions. If any of them is zero, the
data item is not a member of the data set (since member data items
would set the bits). If all the checked bits are set, the data item is
stored in the data set with high probability. It is possible to have all
the bits set by some other insertions. This is called a false positive,
i.e., BF returns a result indicating the data item is in the filter but
actually it is not a member of the data set. On the other hand, BFs
do not cause false negatives. It is not possible to return a result that
reports a member item as a non-member, i.e., member data items
are always in the filter. Operation of a BF is given in Figure 1.

2.2 Bitmaps

Bitmap indexes were introduced in [29]. Several bitmap encod-
ing schemes have been developed, such as equality [29], range [8],
interval [9], and workload and attribute distribution oriented [20].
Several commercial database management systems use bitmaps [4,
16, 27]. Numerous performance evaluations and improvements
have been performed over bitmaps [8, 37, 42, 45, 47, 48]. While
the fast bitwise operations afforded by bitmaps are perhaps their
biggest advantage, a limitation of bitmaps is the index size.

2.2.1 Bitmap Compression

A major disadvantage of bitmap indices is the amount of space they
require. Several compression techniques have been developed in
order to reduce bitmap size and at the same time maintain the ad-
vantage of fast operations [1, 3, 37, 43].



The two most popular run-length compression techniques are the
Byte-aligned Bitmap Code (BBC) [3] and the Word-Aligned Hy-
brid (WAH) code [43]. BBC stores the compressed data in bytes
while WAH stores it in words. WAH is simpler because it only
has two types of words: literal words and fill words. In our im-
plementation, it is the most significant bit that indicates the type
of the word we are dealing with. Let w denote the number of bits
in a word, the lower (w — 1) bits of a literal word contain the bit
values from the bitmap. If the word is a fill, then the second most
significant bit is the fill bit, and the remaining (w — 2) bits store the
fill length. WAH imposes the word-alignment requirement on the
fills. This requirement is key to ensure that logical operations only
access words. Bit operations over the compressed WAH bitmap
file are faster than BBC (2-20 times) [43] while BBC gives better
compression ratio.

Recently, reordering has been proposed as a preprocessing step for
improving the compression of bitmaps. The objective with reorder-
ing is to increase the performance of run length encoding. By re-
ordering columns, compression ratio of large boolean matrices can
be improved [17]. However, matrix reordering is NP-hard and the
authors use traveling salesman heuristics to compute the new or-
der. Reordering idea is also applied to compression of bitmap in-
dices [31]. The authors show that tuple reordering problem is NP-
complete and propose gray code ordering heuristic.

3. PROPOSED SCHEME

The goal of this work is to encode bitmaps in a way that provides
fast and integrated querying over compressed bitmaps with direct
access and no need to decompress the bitmap. In addition, an effi-
cient extraction of any subset of the index is desired. Bitmaps can
be considered to be a special case of boolean matrices. In general,
the solution can be applied to boolean matrices. First, we describe
how the proposed scheme can be applied to encode boolean matri-
ces and then describe how it can be used to retrieve any subset of
the matrix efficiently. Next, we describe the particular solution and
its variations for bitmap encoding.

3.1 Encoding General Boolean Matrices
Consider the boolean matrix M in Figure 2 as an example. To
compress this boolean matrix, we encode it into a binary array AB
using multiple hash functions. For each bit set in the matrix, we
construct a hashing string « as a function of the row and the column
number. Then, k independent hash functions are applied over = and
the positions pointed by the hash values are set to 1 in the binary
array. The insertion algorithm is provided in Figure 3.

Collisions can happen when a hash function maps two different
strings to the same value or two different hash functions map dif-
ferent strings to the same value.

Figure 4 presents the 32-bit AB that encodes M with F(i,j) =
concatenate(i, j), k = 1,and Hi(z) = = mod 32.

Definition: A query Q = {(r1, 1), (r2,¢2), ..., (Ti,c1) } is a sub-
set of a boolean matrix M and query result 7" = {b1, b2, ..., bi}
is a set of bits such that b; = 1 if M (ri,c;) = 1 and b; = 0 if
M(Ti, Ci) = 0

To obtain the query result set T' using AB we process each cell
(rs,c;) specified in the query. We compute the hash string x =
F(r;,c;) and for all the & hash functions obtain the hash value
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Figure 2: Example of a Boolean Matrix M

insert(M)
01 for i =1 to columns

02 for j=1to rows

03 if M(i,j)==1

04 x =F(i,j)

05 fort=1tok

06 b=H:(z)

07 set AB[b]to 1

Figure 3: Insertion Algorithm

he = H(x). If all the bits pointed by h:, 1 < ¢t < k, are 1,
then the value of (r;, ¢;) is reported as 1. If a bit pointed by any of
he values is 0, the value of (7, ¢;) is reported as 0. The retrieval
algorithm is given in Figure 5.

Let @1 = {(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)} be a query
example over M. This query is asking for the values in the third
row. The answer to this query is 7% = {0,0,0,0,0,0}. An-
swering this query using the AB in Figure 4 would produce Tl,
{0,0,1,0,0,0}. The third element in the answer set is a false posi-
tive set by cell (6, 5). Similarly, Q2 = {(1, 6), (2,6), (3,6), (4,6),
(5,6),(6,6),(7,6), (8,6)} which is asking for column 6, would
produce the approximate result TQ/ (1,0,0,1,0,0,1,1), where
the seventh element is a false positive. A second step in the query
execution can prune the false positives later. The scheme is guar-
anteed not to produce false negatives.

We want to retrieve any subset of M efficiently. A structure that
stores M by rows would retrieve a row efficiently but not a col-
umn, and vice versa. By using this encoding we can retrieve any
subset efficiently, even a diagonal query for which other structures
would need to access the entire matrix. The time complexity of
the retrieval algorithm is O(c), where c is the cardinality of the
subset being queried. For Q1 and Q- the cardinalities are 6 and 8
respectively. Using the hash values, AB can be accessed directly to
approximate the value of the corresponding cell.

3.2 Approximate Bitmap (AB) Encoding

Consider the boolean matrix in Figure 6. This matrix represents the
bitmaps for a table 7" with three Attributes A, B, C and 8 rows. Each
attribute is divided into 3 bins. Columns 1, 2, and 3 correspond to
Attribute A; Columns 4, 5, and 6 correspond to Attribute B; and the
rest to Attribute C. Note that only one bit is set for each attribute
column. This bit corresponds to the value of that attribute for the

[ 0100 0001 0001 0101 0010 0100 1000 1000 ]

Figure 4: AB(M) for F'(i,j) = concatenate(i,j), k = 1, and
Hi(x) = z mod 32.



retrieve(Q)

017T=0

02 for each (i,j) in Q

03 in = true

04 x = F(i,j)

05 fort=1tok

06 if AB[H(z)]==0
07 in = false

08 T=TU{0}
09 break loop
10 if in == true

11 T=TuU{1}
return(T)

Figure 5: Retrieval Algorithm

given row. Bitmaps are stored by columns, therefore there are nine
bitmap vectors for table T'.
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Figure 6: Example of a bitmap table

In the case of bitmap matrices we can apply the encoding scheme
at three different levels:

e One AB for the whole data set.
e One AB for each attribute.

e One AB for each column.

Construction of the AB for bitmaps is very similar to the construc-
tion for general boolean matrices. Depending on the level of encod-
ing, we define different hash string mapping functions and different
hash functions to take advantage of the intrinsic characteristics of
the bitmaps.

3.2.1 Hash String Mapping Functions

The goal of the mapping function F' is to map each cell to a differ-
ent hash string z. Mapping different cells to the same string would
make the bitmap table cells map to the same cells in the AB for all
the hash functions, increasing the number of collisions.

First, we assign a global column identifier to each column in the
bitmap table. Then, we use both the column and the row number
to construct x = F'(4,7) where ¢ is the row number and j is the
column number.

When we construct one AB per data set or one AB per attribute,
we define F'(4, j) = i << wl|j, where w is a user-defined offset.
This string is in fact unique when w is large enough to accommo-
date all 7. In the case when we construct one approximate bitmap
per column we use F'(4, j) = 4, since the column number is already
encoded in the AB itself.
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3.2.2 Hash Functions

The hash functions used to build the AB have an impact in both
the execution time and the accuracy of the results. We explore two
hash function approaches. In the first one, we compute a single
large hash function and use k partial values from the hash output
to decide which bitmap bits to set. The motivation is to prevent
the overhead introduced when computing several hash functions.
In addition, such functions usually have hardware support which
makes them very fast. In the second approach, we try & indepen-
dent hash functions and use their hash values to set the bits in the
approximate bitmap.

Single Hash Function. The main advantage of using a single hash
function is that the function is called once and then the result is di-
vided into pieces and each piece is considered to be the value of a
different hash function. Table 1 illustrates this approach. However,
the hash function selected should be secure in the sense that no pat-
terns or similar runs should be found in the output. The reason is
that the mapping of the inputs will point to different bits of the AB,
and the chances of collisions in the AB will be smaller. For the sin-
gle hash function approach we adopt the Secure Hash Algorithm
(SHA), developed by National Institute of Standards and Technol-
ogy (NIST), along with the NSA, for use with the Digital Signature
Standard (DSS) [33].

Independent Hash Functions. Hash functions can be designed to
take into account the characteristics of the bitmaps being encoded:
each row number appears exactly once per attribute and only one
column per attribute is set per row. Some hash functions would per-
form better than others. For example, a hash function that ignores
the column number such as F(i,5) = 4, would perform poorly
when encoding the bitmaps as one AB per data set or one AB per
attribute. Using this function, all bits are set in the insertion step
since each row 4 has at least one 1 in it. The retrieval algorithm
would always find all the bits set and the answer would have a false
positive rate of 1, i.e., every cell considered in the query would
be reported as an answer. We define two hash functions, namely
Column Group and Circular Hash, in Section 5.2.2.

3.2.3 Bitmap Query Processing with AB

Generally, the type of queries executed over bitmaps are point and
range queries over columns. Other type of queries would require
more bitmap operations or decompression of the final bitmap be-
cause of the column-wise storage and the run-length compression
which prevents the direct access of a given bit in the bit vector. Our
technique can support these types of queries as well because the
compression and storage of the bitmap is not done column-wise.
For comparison with the current bitmap techniques we define rect-
angular queries over the AB and logic for interval evaluation.

Definition: Aquery Q ={(A1, 1, u1), ..., (Aqdim, lgdim, Ugdim ),
(R, 74, ..., m2) } is @ bitmap query over a bitmap table B and query
result T = {b1, ba, ..., bz } is a set of bits such that

qdim i

b=\ (\/ Bk, Ai))

i=1 j=li

Let Qs = {(4,1,2),(R,4,5,6,7,8)} be a query example over
bitmap table in Figure 6. This query is asking for the rows be-
tween 4 and 8 where Attribute A falls into bin 1 or 2. Tradi-
tional bitmaps would apply the bit-wise OR operation over the



Hash Function Hy H, H> Hio
Bits 159 — 144 143 — 128 127 — 112 15—-0
SHA Output 0100100010001010 1000010100100001 0111100011100010 0000010101110011

Table 1: Single Hash Function 160-bit output split into 10 sets (k=10) of 16 bits (AB Size = 2'9).

retrieve(Q)
01T7T=0
02 for each (i) inR

03 andpart = true

04 for A =1toqdim

05 orpart = false

06 forj=A(4)to A(ua)
07 x = F(i,j)

08 in = true

09 fort=1tok

10 if AB[H:(z)]==0
11 in = false

12 break loop

13 orpart = orpart OR in
14 if orpart == true

15 break loop

16 andpart = andpart AND orpart
17 if andpart == false

18 T=Tu {0}

19 break loop

20 if andpart == true

21 T=Tu{1}

21 break loop

return(T)

Figure 7: Retrieval Algorithm for Bitmap Queries

bitmaps corresponding to Attribute A value 1 and Attribute A value
2. Then, it would have to scan the resulting bitmap to find the
values for positions 4 through 8 or perform a bit-wise AND op-
eration with the resulting bitmap and an auxiliary bitmap which
only has set positions 4 through 8 to provide the final answer. The
exact answer of this query would be T = {0,1,1,1,0} which
translates into row numbers 5, 6, and 7. To execute this query us-
ing AB we first find the approximate value for the first cell of the
query (4,1). If the value is 1 then we can skip the rest of the row
since the answer is going to be 1. If the value is 0, we approxi-
mate the value for the next cell (4,2) and OR them together. We
then continue processing rows 5, 6, 7, and 8 similarly. Qs is a
one dimensional query because it is only asking for one attribute.
Qs ={(A,1,2),(B,2,3),(R,4,5,6,7,8)} is a two dimensional
query asking for the rows between 4 and 8 where Attribute A falls
into bin 1 or 2 and Attribute B falls into bin 2 or 3. Here each
interval is evaluated as a one dimensional query and the result is
ANDed together. The retrieval algorithm for bitmap queries using
AB is given in Figure 7.

4. ANALYSISOF PROPOSED SCHEME

In this section, we analyze the false positive rate of the AB and
provide the theoretical foundation to compute the size and the pre-
cision for each level of encoding.

4.1 FalsePositive Rate

In this section we analyze the false positive rate of the AB and
discuss how to select the parameters. We use the notation given in
Table 2.
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[ Symbol | Meaning |
Number of rows in the relation
Number of columns in the relation
Number of attributes

Number of bits that are set
Number of hash functions

AB Size

Hash Function Size (logz2n)

AB Size Parameter ([ s/n])

3|3 | »|xq=

Table 2: Notation

Assuming the hash transforms are random, the probability of a
bitmap cell being set by a single hash function is % and not be-
ing setis 1 — . After s elements are inserted into the AB, the
probability of a particular bit being zero (or non-set) is given as

11— =)~ e
n

The probability that all the & bits of an element are already marked
(false positive) is

(== ) m e )

Since most of the large scientific data sets are read-only, we know
the parameter s, and we have control over the parameters & and
n. ldeally we want a data structure whose size depends only on
number of set bits s. For sparse matrices, such as most bitmaps, the
size of the data structure should be small. Assume that we use an
AB whose size n is as, where « is an integer denoting how much
space is allocated as a multiple of s. The false positive rate of the
AB can be expressed as

1 ksyk N T
A-A-—=)") ' m(Q-e =) =(1-e=)
False positive rate is plotted in Figure 8. As « increases false pos-
itive rate goes down since collisions are less likely in a large AB.
For a fixed «, false positive rate depends on k. The value of & that
minimizes the false positive rate can be found by taking derivative
of false positive rate and setting it to zero. The change in false
positive rate for some values of « is given in Figure 9.

4.2 Sizevs. Precision
In this section, we formulate the size and the precision of AB, as a
function of the input parameters.

Let D = {A1, Ao, ..., Ay} be a data set with IV records and let C;
be the cardinality of attribute A;. The number of set bits s under
various scenarios can be computed as follows:
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Figure 9: False Positive Rate as a function of k&

e One AB for the whole data set: In this case we only construct
one approximate bitmap and the number of set bits s = dN.

—k
False positive rate of this AB is (1 — e*14V )¥,

e One AB for each attribute: In this case we construct d ap-
proximate bitmaps and the number of set bits s = N for

—k
each one. The false positive rate of each AB is (1—e 2N )*.
Compared with above scenario, we can use an AB that has
az = 5L and still achieve the same false positive rate.

e One AB for each column: In this case we construct > C;
approximate bitmaps, one for each attribute value pair, and
the number of set bits (s) may be different for each bitmap
depending on the number of records that have that particular
value.

Let the size of the approximate bitmap be 2. Using the notation
from the previous section, we can derive m to be

m = [(logz(sa))] @
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Precision (P) is defined as a function of the false positive rate (F' P)
as follows

P=1-FP=1—(1—¢ =)k

Given a maximum AB size 2™™ae*  « can be computed using
Equation 1 above. Largest possible AB size is chosen since large
ABs are preferable for their low false positive rate. \We then com-
pute the minimum k that maximizes P (minimizes F'P).

Given a minimum precision P,,;, the AB size can be computed
using «, which can be computed as a function of & as the following

—k

a= In(1—Pryjn)
%

In(l—e

)

In order to decide whether to build one AB per data set or one AB
per attribute, one needs to compare the AB sizes: AB per data set
(2Mteg2(dNNTy ys - AB per attribute (2/°°92(N)1q). In our case,
where we always make « to be a power of 2, it is the same to
compare 2109241 wjith gltes2N1g  |f 2lteg2(dM] g |ess than
2012921 7 then one AB per data set would give better compression.
It can be seen that if n is a power of 2 and d is not, then it is always
better to construct one AB per attribute.

On the other hand, to decide whether to build one AB per attribute
or one AB per column, one will need the number of set bits for each
column and will need to compare 2*°92(N )1 g with

d Cgq
Z Z 2”092(Sijaﬂ

i=1 j=1

In our experience, if the attribute is uniformly distributed it is better
to build one AB per column. However, for highly skewed data it is
better to build one AB per attribute.

5. EXPERIMENTAL FRAMEWORK
5.1 Data Sets

For the experiments we use two real and one synthetic data sets.
Table 3 gives a description for each data set. Uniform is a ran-
domly generated data set following a uniform distribution, HEP is
data from high energy physic experiments, and Landsat is the is the
SVD transformation of satellite images. The uniformly distributed
data set is a representative data set for bitmap experiments, since
generally data need to be discretized into bins before constructing
the bitmaps and it is well known that having bins with the same
number of points is better than having bins with the same inter-
val size. The intuition is that evenly distributing skewed attributes
achieve uniform search times for all queries. Effectively, any data
set can be encoded into uniformly distributed bitmaps by dividing
the attribute domain into bins that roughly have the same number
of data points.

5.2 Hash Functions
5.2.1 Single Hash Function (SHA-1)

SHA is a cryptographic message digest algorithm similar to the
MD4 family of hash functions developed by Rivest (RSA). It differs



Uncompressed WAH Size | Compression
Data set Rows Attributes | Bitmaps Setbits Bitmap Size (bytes) (bytes) Ratio
Uniform 100,000 2 100 200,000 1,290,800 922,868 0.71
Landsat 275,465 60 900 16,527,900 31,993,200 30,103,376 0.94
HEP 2,173,762 6 66 13,042,572 18,512,472 12,021,328 0.65
Table 3: Data Set Descriptions
[ Dataset [ Numberof ABs | a=2 [ a=4 | a=8 [ a=16 |
Uniform 1 65,536 131,072 262,144 524,288
Landsat 1 4,194,304 | 8,388,608 | 16,777,216 | 33,554,432
HEP 1 4,194,304 | 8,388,608 | 16,777,216 | 33,554,432
Table 4: AB Size (in bytes) as a function of a. One AB per data set
in that the entire transformation was designed to accommodate the [ Dataset | gdim | sel | r]
DSS block size for efficiency. Uniform 2] 6 1,5,1,5,10
Landsat 21 20 04,2,424
HEP 2 | 25 .005,.01,.05,.1,.5

The Secure Hash Algorithm takes a message of any length and pro-
duces a 160-bit message digest, which is designed so that finding a
text which matches a given hash is computationally very expensive.

We utilize SHA-1 [33] algorithm in our single hash function imple-
mentation. SHA-1 was a revision to SHA to overcome a weakness,
and the revision corrected an unpublished defect in SHA.

5.2.2 Independent Hash Functions

The purpose of using different hash functions is to measure the im-
pact of the hash function in the precision of the results. Here we
describe the hash functions we use in the experiments. The rest of
the hash functions used in this work come from the General Pur-
pose Hash Function Algorithms Library [30] with small variations
to account for the size of the AB.

e Column Group. This hash function splits the AB into groups.
The number of groups is the cardinality of the attribute. The
group number is selected based on the column number and
the offset is computed using the modulo operation over the
row number. We only use this hash function when we con-
struct one AB per data set or one AB per attribute. H (4,j) =
Jjn + (i mod n).

Circular Hash. This hash function constructs a unique num-
ber using the row and column number and maps the number
to a cell in the AB using the modulo operation. In the case
when we have one approximate bitmap per column only the
row number is used. H(z) = x mod n.

5.3 Queries

As the query generation strategy we used sampling. For sampled
queries there is at least one row that match the query criteria. This
fact is important for AB experiments because if the number of ac-
tual query results is 0, the precision of the AB would always be 0.
Queries producing 2 or 1,000 false positives would have the same
precision. The input parameters for the query generator are:

e Number of queries (¢): The total number of queries to be
generated. We set this parameter to 100.

e Dataset(D={A1, A2, ...Aq}): This s the data set for which
we generate the queries. The number of attributes d, each at-
tribute A; where 1 < 4 < d, the cardinality of each attribute
C';, and the number of rows N can all be derived from D.

852

Table 7: Parameter Values for Query Generation

e Query dimensionality (¢dim): The number of attributes in
the query. 1 < gdim < d

Attribute selectivity (sel): The percentage of values from the
attribute cardinality that constitute the interval queried for
that attribute.

Percent of rows (r): The percentage of rows that is selected
in the queries. A hundred percent indicates that the query is
executed over the whole data set. The range for the rows is
produced using the row number, i.e., the physical order of
the data set. The lower value [ is picked randomly between 1
and N. The upper bound w is computed as I + (r * V), but
in the case when this value is greater than N, we set u = N.

For the query generation, we randomly select ¢ rows from the data
set. Let us identify those rows by {r1,ra,...,7q}. Each query g;
is based on r;. gdim distinct attributes are selected randomly for
each query. For each A; picked where {1 < i < gdim}, the lower
bound I; is given by the value of A; in r;. The upper bound wu; is
computed as I; + (sel = C;), but in the case this value is greater
than C;, we set u; = C;.

5.4 Experimental Setup

To generate the approximate bitmaps we set « to be a power of
2 between 2 and 16, and & to be between 1 and 10. The results
presented in the next section are using the largest « for the given
data set for which the AB Size is smaller or comparable to the WAH
bitmap size.

Table 7 gives the list of parameter values for query generation. We
adjust the parameters to have 2 dimensional queries of 4 columns
each, and varying the number of rows from 100 to 10,000 (100,500,
1K,5K,10K) for all data sets.

6. EXPERIMENTAL RESULTS

In this section we measure size, precision, and execution time of
the Approximate Bitmaps. We compare size and execution time
against the WAH-Compressed Bitmaps [43, 44, 46]. Results are
given varying the appropriate parameters:



Number a=2 a=4 a=28 a=16
Dataset | of ABs | Single AB | AITABs | Single AB | AIl ABs Single AB [ AITABs Single AB | AIT ABs
Uniform 2 32,768 65,536 65,536 131,072 131,072 262,144 262,144 524,288
Landsat 60 131,072 7,864,320 262,144 15,728,640 524,288 31,457,280 | 1,048,576 | 62,914,560
HEP 6 1,048,576 | 6,291,456 | 2,097,152 | 12,582,912 | 4,194,304 | 25,165,824 | 8,388,608 | 50,331,648
Table 5: AB Size (in bytes) as a function of a. One AB per attribute
Number a=2 a=14 a=28 a=16

Dataset | of ABs | AygAB | AITABs | AigAB | AITABs Avg AB | AITABs AvgAB | Al ABs

Uniform 100 574 57,344 1,147 114,688 2,294 229,376 4,588 458,752

Landsat 900 6,809 6,127,616 13,617 12,255,232 27,234 24,510,464 | 54,468 | 49,020,928

HEP 66 67,986 | 4,487,048 | 135,972 8,974,096 271,943 | 17,948,194 | 543,885 | 35,896,388

Table 6: AB Size (in bytes) as a function of a. One AB per column

e The AB size, changing o and m.

Precision vs.

m for k=1 (uniform)

. Precision vs. # of Hash Functions (uniform)

e The number of hash functions k.

e The number of rows queried.

The results presented in the following subsections are averages over
100 queries of the same type using independent hash functions in-
stead of SHA-1. At the end of this section, SHA-1 results are dis-
cussed. We show that by setting the experimental parameters such
that the AB size is less than or at least comparable to the WAH-
compressed bitmaps, we obtain good precision (more than 90% in
most cases) and execution time from 1 to 3 orders of magnitude
faster than WAH.

6.1 AB Size

Tables 4, 5, and 6 show the AB sizes in bytes for the cases when
we construct one AB per data set, one AB per attribute, and one AB
per column, respectively. The size of each AB is calculated based
on the discussion in Section 4.2, i.e. finding the lowest power of
2 that is greater or equal to sa.. For example, in Table 4 the value
for Landsat data for « = 4 is calculated as follows. The number
of set bits (s) for Landsat is 16,527,900. The lowest power of 2
that is greater or equal to s« is 67,108,864 in bits, and 8,388,608 in
bytes. Note that this is also the size we obtain for HEP data, since
we are restricting ourselves to powers of 2. Similarly, in Table 5 the
Landsat data has 60 ABs. In this case, the parameter s is equal to
the number of rows, which is 275,465 (given in Table 3). Therefore,
the lowest power of 2 we are seeking per an AB (for « = 4) is
2,097,152 in bits, and 262,144 in bytes. However, for 60 ABs we
have 15,728,640 bytes in total. The values in Table 6 are calculated
similarly with the only difference that the number of set bits s varies
for each column. Recall that the number of set bits for each column
would be the number of rows that fall into the corresponding bin.
Therefore the size is not the same for all ABs. Table 6 presents the
average and total AB size.

e For Uniform data, the best size is obtained when construct-
ing one AB per column. The reason is that the difference
between the data set dimensionality (2) and the attribute car-
dinality (50) is enough to achieve the same precision («) by
constructing one AB per column or one AB for the whole
data set. However, the former uses less space than the latter,
e.g., 524,288 bytes in Table 4 vs. 458,752 bytes in Table 6.

e For Landsat and HEP data sets, which have more attributes,
constructing one AB for the whole data set requires less space
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Figure 10: The effect of utilizing more space. (m =logan)

than constructing one AB per column (refer to Tables 4 and
6).

Experiments show that AB can always be constructed using less
space than WAH. The following are the « for which AB com-
presses better or comparable to WAH compressed bitmaps.

e For uniform data, when we construct one AB per column for
a = 16, the AB total size is less than half of the total size
required by the WAH-compressed bitmaps.

e For HEP data, = 4 produces AB whose total size is about
two thirds of the WAH-compressed bitmaps. For o = 8
the AB size is comparable to the WAH size needing only
one third more of the space and the AB size is still smaller
than the uncompressed bitmaps. Since the theoretical false
positive rate for « = 4 is high (given in Figure 9), the results
for HEP data for o« = 8 are also included in the following
subsections.

e For Landsat data, « = 8 produces ABs whose total size is
about half the size of the WAH-compressed bitmaps.

6.2 Precision

Figure 10(a) supports our initial claim that the selection of the hash
functions have a significant impact in the accuracy of the results
if only one hash function is utilized. The Figure sketches that the
precision varies for the same m with different hash functions. As m
increases, the precision also increases since there are less collisions
as a hash function can map elements to more values. For H;, the
precision is 1 when there are enough bits to accommodate all rows.
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However, as we increase k the false positive rate decreases and 0 Exec. Time vs. a
the impact of using one set of hash functions over another is not
evident as all of them perform similarly with only small variations. 01— oo
Figure 10(b) shows the precision as a function of the number of 300 1
. : L -=[andsat
hash functions, i.e., k. As can be seen, the precision increases for hep
250 - -

larger k. However, after certain k, the improvement is not very
significant and it may even start to decrease. The optimal & can be
computed using the theoretical foundation given in Section 4.

Figure 11(a) illustrates the precision for all the data sets as « in-
creases. Note that the precision increases steadily as « increases
and it is very close to 1 for larger a.

For a specific o of each data set, Figure 11(b) depicts the preci-
sion as a function of the number of hash functions (k). Up to the
optimal k, the precision increases as k increases. After the opti-
mum point, the precision starts decreasing because a large number
of hash functions produces more collisions.

Figure 11(c) shows that the precision is independent of the number
of rows queried remaining constant for each data set. The small
variations in the precision are caused by having different columns
queried in each case. For uniform data and queries of 10K rows, on
the average, the number of tuples retrieve by each query is 59 and
AB returns only 3 more tuples on the average. For queries of 100
rows, the results are much more accurate, i.e., 100 different queries
using WAH returned 170 tuples and the same queries using AB re-
turned 179 tuples. For landsat data and queries of 10K rows, the
number of tuples returned by each query is 723 and the number of
tuples returned by AB is 821, and for queries of 100 rows, the aver-
age matches per query is 8.98 for WAH and 9.85 for AB. For HEP
and queries of 10K rows, WAH retrieved 3861 and AB retrieved
4039 tuples, and for queries of 100 rows, the average number of
results is 42 for WAH and 44 for AB.

6.3 Execution Time

Figure 12 shows the CPU clock time in milliseconds (msec) for
different . As « increases the execution time decreases because
the false positive rate gets smaller. Execution time is the same for
all the data sets being proportional to the number of tuples returned
that match the query.

Figure 13 shows the CPU clock time in msec as a function of the
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number of hash functions (k). As k increases the execution time
increases linearly. That is because the time for iterations of the
utilized hash functions are close, and the total consumed time is
the addition of them.

Figure 14 depicts the CPU clock time by varying the number of
rows queried. The reason for the execution time of HEP data being
longer than the other data sets, in Figure 14(a), is that the number
of tuples that match the query for HEP data is higher than the others
(as given in the last part of the previous section). For WAH, only
the time it takes to execute the query without any row filtering is
measured. This is the reason why the WAH execution time is con-
stant for any number of rows. The final answer can be computed
by performing an extra bitmap operation or by locating the relevant
rows in the compressed bitmap. On the other hand, AB execution
time is linear in the number of rows queried. In Figure 14(b), for a
query targeting 10K rows of the uniform data, AB execution time
is 76.09 msec, which is two thirds of WAH execution time. In Fig-
ure 14(c), AB time is one fourth of WAH time for the same number
of rows. In Figure 14(c), AB time is one tenth of WAH for the
10K rows. In addition, for lower number of rows, the AB execu-
tion time improvement over WAH is in 2 orders of magnitude for
uniform and landsat data sets, and 3 orders of magnitude for HEP
data set. Experiments show that, for all the data sets, executing a
query that selects up to around 15% of the rows by using AB is still
faster than using WAH-compressed bitmaps.
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6.4 Single Hash Function vs.
Hash Functions

In terms of precision, SHA-1 results are very similar to the results
obtained by using the independent hash functions. However, as
the main purpose of SHA-1 is to have a secure hash function, the
computation cost is very expensive and thus SHA-1 is slower than
the other hash functions used in this work. Furthermore, the per-
formance of SHA-1 can be enhanced by incorporating hardware
support, which is out of the scope of this paper.

Independent

7. CONCLUSION

We addressed the problem of efficiently executing queries with no
overhead over compressed bitmaps. Our scheme generates an Ap-
proximate Bitmap (AB) and stores only the set bits of the exact
bitmaps using multiple hash functions. Data is compressed and di-
rectly accessed by the hash function values. The scheme is shown
to be especially effective when the query retrieves a subset of rows.

The Approximate Bitmap (AB) encoding can be applied at three
different levels one AB per data set, one AB per attribute, and one
AB per column. Precision of the AB is expressed in terms of a.. For
the same «;, the precision is the same for all levels. The size of the
AB depends on the number of set bits and «.. Skewed and uniform
distributions in the bitmaps would benefit from constructing one
AB per attribute and one AB per column, respectively. For high
dimensional databases and high cardinality attributes one AB per
data set offers the best size. In all cases, allocating more bits to
the AB increases the precision of the results since the number of
collisions will be less in a larger size AB. In general, precision
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increases with higher number of utilized hash functions, however,
after an optimal point the precision starts to degrade. That point
can be driven using the theoretical analysis provided in the paper.
Another advantage of AB is that the precision is not affected by the
number of rows queried.

We compared our approach with WAH, the state-of-the-art in bitmap
compression for fast querying. The size parameter of AB, for the
experiments, is chosen in such a way that the total space used by
our technique remains less than or comparable with the space used
by WAH. AB achieves accurate results (90%-100%) and improves
the speed of query processing from 1 to 3 orders of magnitude com-
pared to WAH. The performance can be further improved by incor-
porating hardware support for hashing.
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