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ABSTRACT
Scalability in stream processing systems can be achieved by using
a cluster of computing devices. The processing burden can, thus,
be distributed among the nodes by partitioning the query graph.
The specific operator placement plan can have a huge impact on
performance. Previous work has focused on how to move query
operators dynamically in reaction to load changes in order to keep
the load balanced. Operator movement is too expensive to allevi-
ate short-term bursts; moreover, some systems do not support the
ability to move operators dynamically. In this paper, we develop
algorithms for selecting an operator placement plan that is resilient
to changes in load. In other words, we assume that operators can-
not move, therefore, we try to place them in such a way that the
resulting system will be able to withstand the largest set of input
rate combinations. We call this aresilientplacement.

This paper first formalizes the problem for operators that exhibit
linear load characteristics (e.g., filter, aggregate), and introduces
a resilient placement algorithm. We then show how we can extend
our algorithm to take advantage of additional workload information
(such as known minimum input stream rates). We further show how
this approach can be extended to operators that exhibit non-linear
load characteristics (e.g., join). Finally, we present prototype- and
simulation-based experiments that quantify the benefits of our ap-
proach over existing techniques using real network traffic traces.

1. INTRODUCTION
Recently, a new class of applications has emerged in which high-

speed streaming data must be processed with very low latency.
Financial data analysis, network traffic monitoring and intrusion
detection are prime examples of such applications. In these do-
mains, one observes increasing stream rates as more and more data
is captured electronically putting stress on the processing ability of
stream processing systems. At the same time, the utility of results
decays quickly demanding shorter and shorter latencies. Clusters
of inexpensive processors allow us to bring distributed processing
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techniques to bear on these problems, enabling the scalability and
availability that these applications demand [7, 17, 4, 23].

Modern stream processing systems [3, 13, 6] often support a data
flow architecture in which streams of data pass through specialized
operators that process and refine the input to produce results for
waiting applications. These operators are typically modifications
of the familiar operators of the relational algebra (e.g., filter, join,
union). Figure 1 illustrates a typical configuration in which a query
network is distributed across multiple machines (nodes). The spe-
cific operator distribution pattern has an enormous impact on the
performance of the resulting system.

Distributed stream processing systems have two fundamen-
tal characteristics that differentiate them from traditional parallel
database systems. First, stream processing tasks are long-running
continuous queries rather than short-lived one-time queries. In tra-
ditional parallel systems, the optimization goal is often minimizing
the completion time of a finite task. In contrast, a continuous query
has no completion time; therefore, we are more concerned with the
latency of individual results.

Second, the data in stream processing systems is pushed from
external data sources. Load information needed by task allocation
algorithms is often not available in advance or varies significantly
and over all time-scales. Medium and long term variations arise
typically due to application-specific behaviour; e.g., flash-crowds
reacting to breaking news, closing of a stock market at the end of
a business day, temperature dropping during night time, etc. Short-
term variations, on the other hand, happen primarily because of
the event-based aperiodic nature of stream sources as well as the
influence of the network interconnecting data sources. Figure 2
illustrates such variations using three real-world traces [1]: a wide-
area packet traffic trace (PKT), a wide-area TCP connection trace
(TCP), and an HTTP request trace (HTTP). The figure plots the
normalized stream rates as a function of time and indicates their
standard deviation. Note that similar behaviour is observed at other
time-scales due to the self-similar nature of these workloads [9].

A common way to deal with time-varying, unpredictable load
variations in a distributed setting is dynamic load distribution. This
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Figure 1: Distributed Stream Processing.
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Figure 2: Stream rates exhibit significant variation over time.

approach is suitable for medium-to-long term variations since they
persist for relatively long periods of time and are thus rather easy
to capture. Furthermore, the overhead of load redistribution is
amortized over time. Neither of these properties holds in the pres-
ence of short-term load variations. Capturing such transient varia-
tions requires frequent statistics gathering and analysis across dis-
tributed machines. Moreover, reactive load distribution requires
costly operator state migration and multi-node synchronization. In
our stream processing prototype, the base overhead of run-time op-
erator migration is on the order of a few hundred milliseconds.
Operators with large states will have longer migration times de-
pending on the amount of state transferred. Also, some systems
do not provide support for dynamic operator migration. As a re-
sult, dealing with short-term load fluctuations by frequent operator
re-distribution is typically prohibitive.

In this paper, we explore a novel approach to operator distri-
bution, namely that of identifying operator distributions that are
resilient to unpredictable load variations. Informally, a resilient
distribution is one that does not become overloaded easily in the
presence of bursty and fluctuating input rates. Standard load dis-
tribution algorithms optimize system performance with respect to
a single load point, which is typically the load perceived by the
system in some recent time period. The effectiveness of such an
approach can become arbitrarily poor and even infeasible when the
observed load characteristics are different from what the system
was originally optimized for. Resilient distribution, on the other
hand, does not try to optimize for a single load point. Instead, it
enables the system to “tolerate” a large set of load points without
operator migration.

It should be noted that static, resilient operator distribution is
not in conflict with dynamic operator distribution. For a system
that supports dynamic operator migration, the techniques presented
here can be used to place operators with large state size. Lighter-
weight operators can be moved more frequently using a dynamic
algorithm (e.g., the correlation-based scheme that we proposed ear-
lier [23]). Moreover, resilient operator distribution can be used to
provide a good initial plan.

We focus on static operator distribution algorithms. More specif-
ically, we model the load of each operator as a function of the sys-
tem input stream rates. For given input stream rates and a given
operator distribution plan, the system is either feasible (none of the
nodes are overloaded) or overloaded. The set of all feasible input
rate combinations defines afeasible set. Figure 3 illustrates an ex-
ample of a feasible set for two input streams. For unpredictable
workloads, we want to make the system feasible for as many in-
put rate points as possible. Thus, the optimization goal of resilient
operator distribution is to maximize the size of the feasible set.

In general, finding the optimal operator distribution plan requires
comparing the feasible set size of different operator distribution
plans. This problem is intractable for a large number of opera-
tors or a large number of input streams. In this paper, we present
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Figure 3: Feasible set on input stream rate space.

a greedy operator distribution algorithm that can find suboptimal
solutions without actually computing the feasible set size of any
operator distribution plan. The contributions of this work can be
summarized as follows:

1. We formalize the resilient operator distribution problem for
systems with linear load models, where the load of each op-
erator can be expressed as a linear function of system in-
put stream rates. We identify a tight superset of all possible
feasible sets called theideal feasible set. When this set is
achieved, the load from each input stream is perfectly bal-
anced across all nodes (in proportional to the nodes’ CPU
capacity).

2. The ideal feasible set is in general unachievable. We pro-
pose two novel operator distribution heuristics to make the
achieved feasible set as close to the ideal feasible set as pos-
sible. The first heuristic tries to balance the load of each in-
put stream across all nodes. The second heuristic focuses on
the combination of the “impact” of different input streams on
each node to avoid creating bottlenecks. We then present a
resilient operator distribution algorithm that seamlessly com-
bines both heuristics.

3. We present a generalization of our approach that can trans-
form a nonlinear load model into a linear load model. Using
this transformation, our resilient algorithm can be applied to
any system.

4. We present algorithm extensions that take into account the
communications costs and knowledge of specific workload
characteristics (i.e., lower bound on input stream rates) to
optimize system performance.

Our study is based on extensive experiments that evaluate the rel-
ative performance of our algorithm against several other load distri-
bution techniques. We conduct these experiments using both a sim-
ulator and the Borealis distributed stream processing prototype [2]
on real-world network traffic traces. The results demonstrate that
our algorithm is much more robust to unpredictable or bursty work-
loads than traditional load distribution algorithms.

The rest of the paper is organized as follows: In Section 2, we in-
troduce our distributed stream processing model and formalize the
problem. Section 3 presents our optimization approach. We dis-
cuss the operator distribution heuristics in detail in Section 4 and
present the resilient operator distribution algorithm in Section 5.
Section 6 discusses the extensions of this algorithm. Section 7 ex-
amines the performance of our algorithm. We discuss related work
in Section 8 and present concluding remarks in Section 9.

2. MODEL & PROBLEM STATEMENT

2.1 System Model
We assume a computing cluster that consists of loosely coupled,

shared-nothing computers because this is widely recognized as the
most cost-effective, incrementally scalable parallel architecture to-
day. We assume the available CPU cycles on each machine for
stream data processing are fixed and known. We further assume
that the cluster is interconnected by a high-bandwidth local area
network, thus bandwidth is not a bottleneck. For simplicity, we
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Figure 4: Example query graph.

initially assume that the CPU overhead for data communication is
negligible compared to that of data processing. We relax this as-
sumption in Section 6.3.

The tasks to be distributed on the machines are data-flow-style
acyclic query graphs (e.g., in Figure 1), which are commonly used
for stream processing (e.g., [3, 13, 6]). In this paper, we consider
each continuous query operator as the minimum task allocation
unit.

2.2 Load Model
We assume there aren nodes (Ni, i = 1, · · · , n), m operators

(oj , j = 1, · · ·, m), andd input streams (Ik, k = 1, · · ·, d) in the
system. In general, an operator may have multiple input streams
and multiple output streams. Therate of a stream is defined as
the number of data items (tuples) that arrive at the stream per unit
time. We define thecostof an operator (with respect to an input
stream) as the average number of CPU cycles needed to process
an input tuple from that input stream per unit time. Theselectivity
of an operator (with respect to an input and an output stream) is
defined as the ratio of the output stream rate to the input stream rate.
We define theload of an operator per unit time as the CPU cycles
needed by the operator per unit time to process its input tuples. We
can thus write the load of each operator as a function of operator
costs, selectivities and system input stream rates (rk, k = 1, · · ·, d).

Example 1: Consider the simple query graph shown in Figure 4.
Assume the rate of input streamIk is rk for k = 1, 2, and operator
oj has costcj and selectivitysj for j = 1, · · ·, 4. The load of these
operators is then computed as

load(o1) = c1r1

load(o2) = c2s1r1

load(o3) = c3r2

load(o4) = c4s3r2 .

Our operator distribution algorithm is based on alinear load
modelwhere the load of each operator can be written as a linear
function, i.e.

load(oj) = lj1x1 + · · · + ljdxd, j = 1, · · · , m,

wherex1, · · · , xd are variables andljk are constants. For sim-
plicity of exposition, we first assume that the system input stream
rates are variables and the operator costs and selectivities are con-
stant. Under this assumption, all operator load functions are linear
functions of system input stream rates. Assuming stable selectivity,
operators that satisfy this assumption include union, map, aggre-
gate, filter etc. In Section 6.2, we relax this assumption and discuss
systems with operators whose load cannot be written as linear func-
tions of input stream rates (e.g., time-window based joins).

2.3 Definitions and Notations
We now introduce the key notations and definitions that are used

in the remainder of the paper. We also summarize them in Table 1.
We represent the distribution of operators on the nodes of the

system by theoperator allocation matrix:
A = {aij}n×m,

whereaij = 1 if operatoroj is assigned to nodeNi andaij = 0
otherwise.

Given an operator distribution plan, the load of a node is defined
as the aggregate load of the operators allocated at that node. We

Table 1: Notation.

n number of nodes
m number of operators
d number of system input streams

Ni theith node
oj thejth operator
Ik thekth input stream

C = (C1, · · ·, Cn)T available CPU capacity vector
R = (r1, · · · , rd)T system input stream rate vector

ln
ik

load coefficient ofNi for Ik

lo
jk

load coefficient ofoj for Ik

Ln =
˘

ln
ik

¯

n×d
node load coefficient matrix

Lo =
n

lo
jk

o

m×d
operator load coefficient matrix

A = {aij}n×m
operator allocation matrix

D workload set
F (A) feasible set ofA
CT total CPU capacity of all nodes
lk sum of load coefficients ofIk

wik

`

ln
ik

/lk
´

/ (Ci/CT ), weight ofIk onNi

W = {wik}n×d weight matrix

Table 2: Three example operator distribution plans.

Lo Plan A Ln

0

B

@

14 0
6 0
0 9
0 7

1

C

A

(a)

„

1 1 0 0
0 0 1 1

« „

20 0
0 16

«

(b)

„

1 0 1 0
0 1 0 1

« „

14 9
6 7

«

(c)

„

1 0 0 1
0 1 1 0

« „

14 7
6 9

«

express the load functions of the operators and nodes as:

load(oj) = loj1r1 + · · · + lojdrd , j = 1, · · · , m,
load(Ni) = lni1r1 + · · · + lnidrd , i = 1, · · · , n,

wherelojk is theload coefficientof operatoroj for input streamIk

andlnik is the load coefficientof nodeNi for input streamIk. As
shown in Example 1 above, the load coefficients can be computed
using the costs and selectivities of the operators and are assumed to
be constant unless otherwise specified. Putting the load coefficients
together, we get theload coefficient matrices:

Lo =
˘

lojk

¯

m×d
, Ln = {lnik}n×d.

It follows from the definition of the operator allocation matrix
that

Ln = ALo,
n

X

i=1

lnik =
m

X

j=1

lojk , k = 1, · · · d.

Example 2: We now present a simple example of these defini-
tions using the query graph shown in Figure 4. Assume the follow-
ing operator costs and selectivities:c1= 14, c2= 6, c3= 9, c4= 14
ands1= 1, s3= 0.5. Further assume that there are two nodes in the
system,N1 andN2, with capacitiesC1 andC2, respectively. In
Table 2, we show the corresponding operator load coefficient ma-
trix Lo and, for three different operator allocation plans (Plan (a),
Plan (b), and Plan(c)), the resulting operator allocation matrices
and node load coefficient matrices.

Next, we introduce further notations to provide a formal def-
inition for the feasible set of an operator distribution plan. Let
R = (r1, · · · , rd)T be the vector of system input stream rates.
The load of nodeNi can then be written asLn

i R, whereLn
i is the

ith row of matrixLn. Let C = (C1, · · · , Cn)T be the vector of
available CPU cycles (i.e., CPU capacity) of the nodes. ThenNi is
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Figure 5: Feasible sets for various distribution plans.

feasible if and only ifLn
i R ≤ Ci. Therefore, the system is feasi-

ble if and only ifLnR ≤ C. The set of all possible input stream
rate points is called theworkload setand is referred to byD. For
example, if there are no constraints on the input stream rates, then
D = {R : R ≥ 0}.

Feasible Set Definition: Given a CPU capacity vector C, an
operator load coefficient matrixLo, and a workload setD, the fea-
sible set of the system under operator distribution planA (denoted
by F (A)) is defined as the set of all points in the workload setD
for which the system is feasible, i.e.,

F (A) = {R : R ∈ D, ALoR ≤ C} .

In Figure 5, we show the feasible sets (the shaded regions) of the
distribution plans of Example 2. We can see that different operator
distribution plans can result in very different feasible sets.

2.4 Problem Statement
In order to be resilient to time-varying, unpredictable workloads

and maintain quality of service (i.e., consistently produce low la-
tency results), we aim to maximize the size of the feasible set of the
system through intelligent operator distribution. We formally state
the corresponding optimization problem as follows:

The Resilient Operator Distribution (ROD) problem : Given
a CPU capacity vector C, an operator load coefficient matrixLo,
and a workload setD, find an operator allocation matrixA∗ that
achieves the largest feasible set size among all operator allocation
plans, i.e., find

A∗ = arg max
A

Z

· · ·

Z

F (A)

1 dr1 · · · drd.

In the equation above, the multiple integral overF (A) represents
the size of the feasible set ofA. Note thatA∗may not be unique.

ROD is different from the canonical linear programming and
nonlinear programming problems with linear constraints on feasi-
ble sets. The latter two problems aim to maximize or minimize a
(linear or nonlinear) objective function on a fixed feasible set (with
fixed linear constraints) [10, 15], whereas in our problem, we at-
tempt to maximize the size of the feasible set by appropriatelycon-
structingthe linear constraints through operator distribution. To the
best of our knowledge, our work is the first to study this problem in
the context of load distribution.

A straightforward solution to ROD requires enumerating all pos-
sible allocation plans and comparing their feasible set sizes. Unfor-
tunately, the number of different distribution plans isnm/n!. More-
over, even computing the feasible set size of a single plan (i.e., ad
dimensional multiple integral) is expensive since the Monte Carlo
integration method, which is commonly used in high dimensional
integration, requires at leastO(2d) sample points [19]. As a re-
sult, finding the optimal solution for this problem is intractable for

a larged or largem.

3. OPTIMIZATION FUNDAMENTALS
Given the intractability of ROD, we explore a heuristic-driven

strategy. We first explore the characteristics of an “ideal” plan us-
ing a linear algebraic model and its corresponding geometrical in-
terpretation. We then use this insight to derive our solution.

3.1 Feasible Set and Node Hyperplanes
We here examine the relationship between the feasible set

size and the node load coefficient matrix. Initially, we assume
no knowledge about the expected workload and thus letD =
{R : R ≥ 0} (we relax this assumption in Section 6.1). The fea-
sible set that results from the node load coefficient matrixLn is
defined by

F ′(Ln) = {R : R ∈ D, LnR ≤ C} .

This is a convex set in the nonnegative space belown hyperplanes,
where the hyperplanes are defined by

lni1r1 + · · · + lnidrd = Ci, i = 1, · · · , n.

Note that theith hyperplane consists of all points that render
nodeNi fully loaded. In other words, if a point is above this hy-
perplane, thenNi is overloaded at that point. The system is thus
feasible at a point if and only if the point is on or below all of then
hyperplanes defined byLnR = C. We refer to these hyperplanes
asnode hyperplanes.

For instance, in Figure 5, the node hyperplanes correspond to the
lines above the feasible sets. Because the node hyperplanes collec-
tively determine the shape and size of the feasible set, the feasible
set size can be optimized by constructing “good” node hyperplanes
or, equivalently, by constructing a “good” node load coefficient ma-
trix.

3.2 Ideal Node Load Coefficient Matrix
We now present and prove a theorem that characterizes anideal

node load coefficient matrix.

THEOREM 1. Given load coefficient matrixLo =
˘

lojk

¯

m×d

and node capacity vectorC = (C1, · · · , Cn)T , among alln by d
matricesLn = {lnik}n×d that satisfy the constraint

n
X

i=1

lnik =

m
X

j=1

lojk, (1)

the matrixLn∗ = {ln∗

ik }n×d with

ln∗

ik = lk
Ci

CT

, wherelk =

m
X

j=1

lojk, CT =

n
X

i=1

Ci,

achieves the maximum feasible set size, i.e.,

Ln∗ = arg max
Ln

Z

· · ·

Z

F ′(Ln)

1 dr1 · · · drd,

PROOF. All node load coefficient matrices must satisfy con-
straint 1. It is easy to verify thatLn∗ also satisfies this constraint.
Now, it suffices to show thatLn∗ has the largest feasible set size
among allLn that satisfy constraint 1.

FromLnR ≤ C, we have that

(1 · · · 1)

0

B

@

ln11 · · · ln1d

...
. . .

...
lnn1 · · · lnnd

1

C

A

0

B

@

r1

...
rd

1

C

A
≤ (1 · · · 1)

0

B

@

C1

...
Cn

1

C

A
,
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Figure 6: Ideal hyperplanes and feasible sets.

which can be written as

l1r1 + · · · + ldrd ≤ CT . (2)

Thus, any feasible point must belong to the set

F ∗ = {R : R ∈ D, l1r1 + · · · + ldrd ≤ CT } .

In other words,F ∗is the superset of any feasible set. It then suffices
to show thatF ′(Ln∗) = F ∗.

There aren constraints inLn∗R ≤ C (each row is one con-
straint). For theith row, we have that

l1
Ci

CT

r1 + · · · + ld
Ci

CT

rd ≤ Ci ,

which is equivalent to inequality 2. Since alln constraints are the
same, we have thatF ′(Ln∗) = F ∗.

Intuitively, Theorem 1 says that the load coefficient matrix that
balances the load of each streamperfectlyacross all nodes (in pro-
portion to the relative CPU capacity of each node) achieves the
maximum feasible set size. Such a load coefficient matrix may not
be realizable by operator distribution, i.e., there may not exist an
operator allocation matrixA such thatALo = Ln∗ (the reason
why Ln∗ is referred to as “ideal”). Note that the ideal coefficient
matrix is independent of the workload setD.

When the ideal node load coefficient matrix is obtained, all node
hyperplanes overlap with the ideal hyperplane. The largest feasible
set achieved by the ideal load coefficient matrix is called theideal
feasible set(denoted byF ∗). It consists of all points that fall below
the ideal hyperplanedefined by

l1r1 + · · · + ldrd = CT .

We can compute the size of the ideal feasible set as:

V (F ∗) =

Z

· · ·

Z

1

F∗

dr1 · · · drd =
Cd

T

d!
·

d
Y

k=1

1

lk
.

Figure 6 illustrates the ideal hyperplane (represented by the thick
lines) and the feasible sets of Plan (a), (b) and (c) in Example 2. It
is easy to see that none of the shown distribution plans are ideal.
In fact, no distribution plan for Example 2 can achieve the ideal
feasible set.

3.3 Optimization Guidelines
The key high-level guideline that we will rely on to maximize

feasible set size is to make the node hyperplanes as close to the
ideal hyperplane as possible.

To accomplish this, we first normalize the ideal feasible set by
changing the coordinate system. The normalization step is neces-
sary to smooth out high variations in the values of load coefficients
of different input streams, which may adversely bias the optimiza-
tion.

Let xk = lkrk/CT . In the new coordinate system with axisx1

to xk, the corresponding node hyperplanes are defined by

lni1
l1

x1 + · · · +
lnid
ld

xd =
Ci

CT

, i = 1, · · · , n.

The corresponding ideal hyperplane is defined by

x1 + · · · + xd = 1.

By the change of variable theorem for multiple integrals [21],
we have that the size of the original feasible set equals the size
of the normalized feasible set multiplied by a constantc, where

c = Cd
T

.

Qd

k=1 lk . Therefore, the goal of maximizing the original

feasible set size can be achieved by maximizing the normalized
feasible set size.

We now define our goal more formally using our algebraic
model: Let matrix

W = {wik}n×d = {lnik/ln∗

ik }n×d .

wik = (lnik/lk) / (Ci/CT ) is the percentage of the load from
streamIk on nodeNi divided by the normalized CPU capacity of
Ni. Thus, we can viewwik as the “weight” of streamIk on node
Ni and view matrixW as a normalized form of a load distribution
plan. MatrixW is also called theweight matrix.

Note that the equations of the node hyperplanes in the normal-
ized space is equivalent to

wi1x1 + · · · + widxd = 1, i = 1, · · · , n.

Our goal is then to make the normalized node hyperplanes close to
the normalized ideal hyperplane, i.e. make

Wi = (wi1, · · · , wid) close to(1, · · · , 1) ,

for i = 1, · · · , n.
For brevity, in the rest of this paper, we assume that all terms,

such as hyperplane and feasible set, refer to the ones in the normal-
ized space, unless specified otherwise.

4. HEURISTICS
We now present two heuristics that are guided by the formal anal-

ysis presented in the previous section. For simplicity of exposition,
we motivate and describe the heuristics from a geometrical point of
view. We also formally present the pertinent algebraic foundations
as appropriate.

4.1 Heuristic 1: MaxMin Axis Distance
Recall that we aim to make the node hyperplanes converge to the

ideal hyperplane as much as possible. In the first heuristic, we try
to push the intersection points of the node hyperplanes (along each
axis) to the intersection point of the ideal hyperplane as much as
possible. In other words, we would like to make theaxis distance
of each node hyperplane as close to that of the ideal hyperplane as
possible. We define the axis distance of hyperplaneh on axisa as
the distance from the origin to the intersection point ofh anda. For
example, this heuristic prefers the plan in Figure 7(b) to the one in
Figure 7(a).

Note that the axis distance of theith node hyperplane on thekth
axis is1/wik, and the axis distance of the ideal hyperplane is one
on all axes (e.g. Figure 7(a)). Thus, from the algebraic point of
view, this heuristic strives to make each entry ofWi as close to 1
as possible.

Because
P

i lnik is fixed for eachk, the optimization goal of mak-
ing wik close to one for allk is equivalent to balancing the load of
each input stream across the nodes in proportion to the nodes’ CPU
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Figure 7: Illustrating MaxMin Axis Distance.

capacities. This goal can be achieved by maximizing the minimum
axis distance of the node hyperplanes on each axis, i.e., we want to
maximize

min
i

1

wik

, for k = 1, · · · , d.

We therefore refer to this heuristic asMaxMin Axis Distance
(MMAD). The arrows in Figure 7(b) illustrate how MMAD pushes
the intersection points of the node hyperplanes that are closest to
the origin to that of the ideal hyperplane.

It can be proven that when the minimum axis distance is maxi-
mized for axisk, all the node hyperplane intersection points along
axis k converge to that of the ideal hyperplane. In addition, the
achieved feasible set size is bounded by

V (F ∗) ·
d

Y

k=1

min
i

1

wik

from below, whereV (F ∗) is the ideal feasible set size (we omit
the proof for brevity). Therefore, MMAD tries to maximize a lower
bound for feasible set size, and this lower bound is close to the ideal
value when all axis distances are close to 1.

On the downside, the key limitation of MMAD is that it does
not take into consideration how to combine the weights of differ-
ent input streams at each node. This is best illustrated by a sim-
ple example as depicted by Figure 8. Both plans in Figure 8 are
deemed equivalent by MMAD, since their axis intersection points
are exactly the same. They do, however, have significantly differ-
ent feasible sets. Obviously, if the largest weights for each input
stream are placed on the same node (e.g., the one with the lowest
hyperplane in Figure 8(a)), the corresponding node becomes the
bottleneck of the system because it always has more load than the
other node. Next, we will describe another heuristic that addresses
this limitation.

4.2 Heuristic 2: MaxMin Plane Distance
Intuitively, MMAD pushes the intersection points of the node

hyperplanes closer to those of the ideal hyperplane using the axis
distance metric. Our second heuristic, on the other hand, pushes
the node hyperplanes directly towards the ideal hyperplane using
theplane distancemetric. The plane distance of an hyperplaneh is
the distance from the origin toh. Our goal is thus to maximize the
minimum plane distance of all node hyperplanes. We refer to this
heuristic asMaxMin Plane Distance(MMPD).

Another way to think about this heuristic is to imagine a partial
hypersphere that has its center at the origin and its radiusr equal
the minimum plane distance (e.g., Figure 8). Obviously, MMAD
prefers Figure 8(b) to Figure 8(a) because the former has a largerr.
The small arrow in Figure 8(b) illustrates how MMPD pushes the
hyperplane that is the closest to the origin in terms of plane distance
towards the ideal hyperplane.

 (a) (b) 
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Figure 8: Illustrating MaxMin Plane Distance.
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Figure 9: Relationship betweenr and the feasible set size.

The plane distance of theith hyperplane is computed as:

1
p

w2
i1 + · · · + w2

id

=
1

‖Wi‖ ,

where‖Wi‖ denotes the second norm of theith row vector ofW .
Thus, the value we would like maximize is:

r = min
i

1

‖Wi‖
.

By maximizing r, we maximize the size of the partial hyper-
sphere, which is a lower bound on the feasible set size. To further
examine the relationship betweenr and the feasible set size, we
generated random node load coefficient matrices and plotted the
ratios of their feasible-set-size / ideal-feasible-set-size vs. the ratio
of r/ r∗ (r∗is the distance from the origin to the ideal hyperplane).
Figure 9 shows the results of 10000 random load coefficient matri-
ces with 10 nodes and 3 input streams. We see a trend that both the
upper bound and lower bound of the feasible-set-size ratio increase
whenr/ r∗ increases. The curve in the graph is the computed lower
bound using the volume function of hyperspheres, which is a con-
stant timesrd [22]. For differentn andd, the upper bound and
lower bound differs from each other; however, the trend remains
intact. This trend is an important ground for the effectiveness of
MMPD.

Intuitively, by maximizingr, i.e., minimizing the largest weight
vector norm of the nodes, we avoid having nodes with large weights
arising from multiple input streams. Nodes with relatively larger
weights often have larger load/capacity ratios than other nodes at
many stream rate points. Therefore, MMPD can also be said to
balance the load of the nodes (in proportion to the nodes’ capacity)
for multiple workload points. Notice that this approach sharply
contrasts with traditional load balancing schemes that optimize for
single workload points.

5. THE ROD ALGORITHM
We now present a greedy operator distribution algorithm that

seamlessly combines the heuristics discussed in the previous sec-
tion. The algorithm consists of two phases: the first phase orders
the operators and the second one greedily places them on the avail-
able nodes. The pseudocode of the algorithm is shown in Figure 10.
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Initialization
CT ← C1 + · · ·+ Cn

for k = 1, · · ·, d, lk ← lo1k
+ · · ·+ lo

mk
for i = 1, · · ·, n, j = 1, · · ·, m, aij ← 0
for i = 1, · · ·, n, k = 1, · · ·, d, ln

ik
← 0

Operator Ordering

Sort operators by
q

loj1
2+, · · · , +lo

jd
2 in descending

order (leth1, · · ·, hm be the sorted operator indices)
Operator Assignment

for j = h1, · · ·, hm (assign operatoroj)
class I nodes← φ, class II nodes← φ
for i = 1, · · ·, n (classify nodes)

for k = 1, · · ·, d, w′

ik
←

““

ln
ik

+ lo
jk

”

/lk

”

/ (Ci/CT )

if w′

ik
≤ 1 for all k = 1, · · ·, d

addNi to class I nodes
else

addNi to class II nodes
if class I is not empty

select a destination node from class I
else

select the node withmin
i

1

ffi
q

w
′

i1
2

+ · · ·+ w
′

id

2

(AssumeNs is the selected node. Assignoj to Ns )
asj ← 1;
for k = 1, · · · , d, ln

sk
← 1n

sk
+ lo

jk

Figure 10: The ROD algorithm pseudocode.

5.1 Phase 1: Operator Ordering
This phase sorts the operators in descending order based on the

second norm of their load coefficient vectors. The reason for this
sorting order is to enable the second phase to place “high impact”
operators (i.e., those with large norms) early on in the process, since
dealing with such operators late may cause the system to signifi-
cantly deviate from the optimal results. Similar sorting orders are
commonly used in greedy load balancing and bin packing algo-
rithms [8].

5.2 Phase 2: Operator Assignment
The second phase goes through the ordered list of operators and

iteratively assigns each to one of then candidate nodes. Our basic
destination node selection policy is greedy: at each step, the oper-
ator assignment thatminimallyreduces the final feasible set size is
chosen.

At each step, we separate nodes into two classes. Class I nodes
consist of those that, if chosen for assignment, will not lead to a
reduction in the final feasible set. Class II nodes are the remaining
ones. If Class I nodes exist, one of them is chosen as the destina-
tion node using a goodness function (more on this choice below).
Otherwise, the operator is assigned to the Class II node with the
maximumcandidateplane distance (i.e., the distance after the as-
signment).

Let us now describe the algorithm in more detail while providing
geometrical intuition. Initially, all the nodes are empty. Thus, all
the node hyperplanes are at infinity. The node hyperplanes move
closer to the origin as operators get assigned. The feasible set size
at each step is given by the space that is below all the node hyper-
planes. Class I nodes are those whose candidate hyperplanes are
above the ideal hyperplane, whereas the candidate hyperplanes of
Class II nodes are either entirely below, or intersect with, the ideal
hyperplane. Figure 11(a) and 11(b) show, respectively, the cur-
rent and candidate hyperplanes of three nodes, as well as the ideal
hyperplane.

Since we know that the feasible set size is bounded by the ideal
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Figure 11: Node selection policy example.

hyperplane, at a given step, choosing a node in Class I will not
reduce the possible space for the final feasible set. Figure 11(c)
shows an example of the hyperplanes of a Class I node. Notice that
as we assign operators to Class I nodes, we push the axis intersec-
tion points closer to those of the ideal hyperplane, thus follow the
MMAD heuristic. If no Class I nodes exist, then we have to use
a Class II node and, as a result, we inevitably reduce the feasible
set. An example of two Class II nodes and the resulting decrease
in the feasible set size are shown in Figure 11(d). In this case, we
follow the MMPD heuristic and use the plane distance to make our
decision by selecting the node that has the largest candidate plane
distance.

As described above, choosing any node from Class I does not
affect the final feasible set size in this step. Therefore, a random
node can be selected or we can choose the destination node using
some other criteria. For example, we can choose the node that re-
sults in the minimum number of inter-node streams to reduce data
communication overheads for scenarios where this is a concern.

6. ALGORITHM EXTENSIONS

6.1 General Lower Bounds on Input Rates
We have so far leveraged no knowledge about the expected work-

load, assumingD = {R : R ≥ 0}. We now present an extension
where we allow more general, non-zero lower bound values for the
stream rates, assuming:

D = {R : R ≥ B, B = (b1, · · · , bd)T , bk ≥ 0 for k = 1, · · · , d}.

This general lower bound extension is useful in cases where it
is known that the input stream rates are strictly, or likely, larger
than a workload pointB. Using pointB as the lower bound is
equivalent to ignoring those workload points that never or seldom
happen; i.e., we optimize the system for workloads that are more
likely to happen.

The operator distribution algorithm for the general lower bound
is similar to the base algorithm discussed before. Recall that the
ideal node load coefficient matrix does not depend onD. There-
fore, our first heuristic, MMAD, remains the same. In the second
heuristic, MMPD, because the lower bound of the feasible set size
changes, the center of the partial hypersphere should also change.
In the normalized space, the lower bound corresponds to the point
B′ = (b1l1/CT , · · · , bdld/CT )T . In this case, we want to maxi-
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Figure 12: Feasible set with lower boundB′.

mize the radius of the partial hypersphere centered atB′ within the
normalized feasible set (e.g., Figure 12). The formula of its radius
r is

r = min
i

1 − WiB
′

‖Wi‖
.

In the ROD algorithm, we simply replace the distance from the
origin to the node hyperplanes with the distance from the lower
bound to the node hyperplanes.

6.2 Nonlinear Load Models
Our discussion so far has assumed linear systems. In this section,

we generalize our discussion to deal with nonlinear systems.
Our key technique is to introduce new variables such that the

load functions of all operators can be expressed as linear functions
of the actual system input stream rates as well as the newly intro-
duced variables. Our linearization technique is best illustrated with
a simple example.

Example 3: Consider the query graph in Figure 13. Assume that
the selectivities of all operators excepto1 are constant. Because
of this, the load function ofo2 is not a linear function ofr1. So
we introduce the output stream rate ofo1 as a new variabler3.
Thereby, the load functions ofo1 to o4 are all linear with respect to
r1 to r3.

Assume operatoro5 is a time-window-based join operator that
joins tuples whose timestamps are within a give time windoww [1].
Let o5’s input stream rates beru andrv, its selectivity (per tuple
pair) bes5, and its processing cost bec5 CPU cycles per tuple pair.
The number of tuple pairs to be processed in unit time iswrurv.
The load ofo5 is thusc5wrurv and the output stream rate of this
operator iss5wrurv. As a result, it is easy to see that the load
function ofo5 cannot be expressed as a linear function ofr1 to r3.
In addition, the input too6 cannot be expressed as a linear function
of r1 to r3 either. The solution is to introduce the output stream
rate of operatoro5 as a new variabler4. It is easy to see that the
load of operatoro6 can be written as a linear function ofr4. Less
apparent is the fact that the load of operatoro5 can also be written
as (c5/s5)r4, which is a linear function ofr4 (assumingc5 and
s5 are constant). Therefore, the load functions of the entire query
graph can be expressed as linear functions of four variablesr1 to
r4. This approach can also be considered as “cutting” a nonlinear
query graph into linear pieces (as in Figure 13).

This linearization technique is general; i.e., it can transform any
nonlinear load model into a linear load model by introducing addi-
tional input variables. Once the system is linear, the analysis and
techniques presented earlier apply. However, because the perfor-
mance of ROD depends on whether theweightsof each variable
can be well balanced across the nodes, we aim to introduce as few
additional variables as possible.

6.3 Operator Clustering
So far, we have ignored the CPU cost of communication. We

now address this issue by introducingoperator clusteringas a pre-
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Figure 13: Linear cut of a non-linear query graph.

processing step to be applied before ROD. The key idea is to iden-
tify costly arcs and ensure that they do not cross the network by
placing the end operators on the same machine.

We studied two greedy clustering approaches. The first approach
(i) computes aclustering ratio(i.e., the ratio of the per-tuple data
transfer overhead of the arc over the minimum data processing
overhead of the two end-operators) for each arc; (ii) clusters the
end-operators of the arc with the largest clustering ratio; and (iii)
repeats the previous step until the clustering ratios of all arcs are
less than a given clustering threshold. A potential problem with
this method is that it may create operator clusters with very large
weights. A second approach is, thus, to choose the two connected
operators with the minimum total weight in step (ii) of the approach
above. In both cases, we set an upper bound on the maximum
weight of the resulting clusters. It is easy to see that varying cluster-
ing thresholds and weight upper bounds leads to different clustering
plans.

Our experimental analysis of these approaches did not yield a
clear winner when considering various query graphs. Our current
practical solution is to generate a small number of clustering plans
for each of these approaches by systematically varying the thresh-
old values, obtain the resulting operator distribution plans using
ROD, and pick the one with the maximum plane distance.

7. PERFORMANCE STUDY
In this section, we study the performance of ROD by comparing

it with several alternative schemes using the Borealis distributed
stream processing system [2] and a custom-built simulator. We use
real network traffic data and an aggregation-heavy traffic monitor-
ing workload, and report results on feasible set size as well as pro-
cessing latencies.

7.1 Experimental Setup
Unless otherwise stated, we assume the system has 10 homoge-

neous nodes. In addition to the aggregation-based traffic monitor-
ing queries, we used random query graphs generated as a collection
of operator trees rooted at input operators. We randomly generate
with equal probability from one to three downstream operators for
each node of the tree. Because the maximum achievable feasible set
size is determined by how well the weight of each input stream can
be balanced, we let each operator tree consists of the same num-
ber of operators and vary this number in the experiments. For ease
of experimentation, we also implemented a “delay” operator whose
per-tuple processing cost and selectivity can be adjusted. The delay
times of the operators are uniformly distributed between 0.1 ms to
1 ms. Half of these operators are randomly selected and assigned a
selectivity of one. The selectivities of other operators are uniformly
distributed from 0.5 to 1. To measure the operator costs and selec-
tivities in the prototype implementation, we randomly distribute the
operators and run the system for a sufficiently long time to gather
stable statistics.

In Borealis, we compute the feasible set size by randomly gen-
erating 100 workload points, all within the ideal feasible set. We
compute the ideal feasible set based on operator cost and selectivity
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Figure 14: Base resiliency results.

statistics collected from trial runs. For each workload point, we run
the system for a sufficiently long period and monitor the CPU uti-
lization of all the nodes. The system is deemed feasible if none of
the nodes experience 100% utilization. The ratio of the number of
feasible points to the number of runs is the ratio of the achievable
feasible set size to the ideal one.

In the simulator, the feasible set sizes of the load distribution
plans are computed using Quasi Monte Carlo integration [14]. Due
to the computational complexity of computing multiple integrals,
most of our experiments are based on query graphs with five in-
put streams (unless otherwise specified). However, the observable
trends in experiments with different numbers of input streams sug-
gest that our conclusions are general.

7.2 Algorithms Studied
We compared ROD with four alternative load distribution ap-

proaches. Three of these algorithms attempt to balance the load
while the fourth produces a random placement while maintaining
an equal number of operators on each node. Each of the three
load balancing techniques tries to balance the load of the nodes
according to the average input stream rates. The first one, called
Largest-Load First (LLF) Load Balancing, orders the operators by
their average load-level and assigns operators in descending order
to the currently least loaded node. The second algorithm, called
Connected-Load-Balancing, prefers to put connected operators on
the same node to minimize data communication overhead. It as-
signs operators in three steps: (1) Assign the most loaded candidate
operator to the currently least loaded node (denoted byNs). (2) As-
sign operators that are connected to operators already onNs to Ns

as long as the load ofNs (after assignment) is less than the average
load of all operators. (3) Repeat step (1) and (2) until all operators
are assigned. The third algorithm, called Correlation-based Load
Balancing, assigns operators to nodes such that operators with high
load correlation are separated onto different nodes. This algorithm
was designed in our previous work [23] for dynamic operator dis-
tribution.

7.3 Experimental Results

7.3.1 Resiliency Results
First, we compare the feasible set size achieved by different oper-

ator distribution algorithms in Borealis. We repeat each algorithm
except ROD ten times. For the Random algorithm, we use different
random seeds for each run. For the load balancing algorithms, we
use random input stream rates, and for the Correlation-based algo-
rithm, we generate random stream-rate time series. ROD does not
need to be repeated because it does not depend on the input stream
rates and produces only one operator distribution plan. Figure 14(a)
shows the average feasible set size achieved by each algorithm di-
vided by the ideal feasible set size on query graphs with different
numbers of operators.
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Figure 15: Impact of number of input streams.

It is obvious that the performance of ROD is significantly better
than the average performance of all other algorithms. The Con-
nected algorithm fares the worst because it tries to keep all con-
nected operators on the same node. This is a bad choice because a
spike in an input rate cannot be shared (i.e., collectively absorbed)
among multiple processors. The Correlation-Based algorithm does
fairly well compared to the other load balancing algorithms, be-
cause it tends to do the opposite of the Connected algorithm. That
is, operators that are downstream from a given input have high load
correlation and thus tend to be separated onto different nodes. The
Random algorithm and the LLF Load Balancing algorithm lie be-
tween the previous two algorithms because, although they do not
explicitly try to separate operators from the same input stream, the
inherent randomness in these algorithms tends to spread operators
out to some extent. ROD is superior because it not only separates
operators from each input stream, but also tries to avoid placing
“heavy” operators from different input streams on the same node,
thus avoiding bottlenecks.

As the number of operators increases, ROD approaches the ideal
case and most of the other algorithms improve because there is a
greater chance that the load of a given input stream will be spread
across multiple nodes. On the other hand, even for fewer operators,
our method retains roughly the same relative performance improve-
ment (Figure 14(b)).

Notice that the two hundred operators case is not unrealistic.
In our experience with the financial services domain, applications
often consist of related queries with common sub-expressions, so
query graphs tend to get very wide (but not necessarily as deep).
For example, a real-time proof-of-concept compliance application
we built for 3 compliance rules required 25 operators. A full-blown
compliance application might have hundreds of rules, thus requir-
ing very large query graphs. Even in cases where the user-specified
query graph is rather small, parallelization techniques (e.g., range-
based data partitioning) significantly increase the number of oper-
ator instances, thus creating much wider, larger graphs.

We also ran the same experiments in our distributed stream-
processing simulator. We observed that the simulator results
tracked the results in Borealis very closely, thus allowing us to trust
the simulator for experiments in which the total running time in Bo-
realis would be prohibitive.

In the simulator, we compared the feasible set size of ROD with
the optimal solution on small query graphs (no more than 20 oper-
ators and 2 to 5 input streams) on two nodes. The average feasible
set size ratio of ROD to the optimal is 0.95 and the minimum ratio
is 0.82. Thus, for cases that are computationally tractable, we can
see that ROD’s performance is quite close to the optimal.

7.3.2 Varying the Number of Inputs
Our previous results are based on a fixed number of input streams

(i.e., dimensions). We now examine the relative performance of
different algorithms for different numbers of dimensions using the
simulator.
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Figure 16: (a) Penalty for not using the lower bound. (b)
Penalty for using a wrong lower bound.

Table 3: Average penalty

number of operators 25 50 100 200
origin as the lower bound 0.90 0.79 0.56 0.35
Zi as the lower bound 0.89 0.83 0.55 0.32

Figure 15 shows the ratio of the feasible set size of the compet-
ing approaches to that of ROD, averaged over multiple independent
runs. We observe that as additional inputs are used, the relative per-
formance of ROD gets increasingly better. In fact, each additional
dimension seems to bring to ROD a constant relative percentage
improvement, as implied by the linearity of the tails of the curves.
Notice that the case with two inputs exhibits a higher ratio than that
estimated by the tail, as the relatively few operators per node in
this case significantly limits the possible load distribution choices.
As a result, all approaches make more or less the same distribu-
tion decisions. For example, when the number of operators equals
the number of nodes, all algorithms produce practically equivalent
operator distribution plans.

7.3.3 Using a Known Lower-bound
As discussed in Section 6, having knowledge of a lower bound

on one or more input rates can produce results that are closer to the
ideal. We verify this analysis in this next set of experiments in the
simulator.

We generate random pointsBi in the ideal feasible space an-
chored at the origin to use as the lower bounds of each experiment.
For eachBi, we generate two operator distribution plans, one that
usesBi as the lower bound and one that uses the origin. We then
compute the feasible set size for these two plans relative toBi. Let
us call the feasible set size for the former plan FFS(Bi) and the
feasible set size for the later FSS(O). We compute the penalty for
not knowing the lower bound as(FFS(Bi) − FSS(O)) /FSS(Bi)

We now run our experiment on a network of 50 operators. We
plot the penalty in Figure 16(a) with the x-axis as the ratio of the
distance fromBi to the ideal hyperplane to the distance from the
origin to the ideal hyperplane. Notice that when this ratio is small
(Bi is very close to the ideal hyperplane), the penalty is large be-
cause without knowing the lower bound it is likely that we will sac-
rifice the small actual feasible set in order to satisfy points that will
not occur. AsBi approaches the origin (i.e., the ratio gets bigger),
the penalty drops off as expected.

The next experiment quantifies the impact of inaccurate knowl-
edge of the lower bound values. In Figure 16(b), we run
the same experiment as above except that, instead of using the
origin as the assumed lower bound, we use another randomly
generated point. As in the above experiment, we compute a
penalty for being wrong. In this case, the penalty is computed
as (FFS(Bi) − FSS(Zi)) /FSS(Bi) where Bi is the real lower
bound, as before, andZi is the assumed lower bound. The x axis
is the distance betweenBi andZi in the normalized space. As
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Figure 17: Performance with operator clustering.

one might expect, when the real and the assumed lower bounds are
close to each other, the penalty is low. As the distance increases,
the penalty also increases (Figure 16(b)).

The penalty is also dependent on the number of operators in our
query network. We redo our experiments for different networks
with 25 to 200 operators. Looking at Table 3, we see that the aver-
age penalty drops as we increase the number of operators. For very
large numbers of operators, the penalty will converge to zero since,
at that point, all the hyperplanes can be very close to the ideal case
given the greater opportunity for load balancing.

7.3.4 Operator Clustering
In this section, we address data communication overheads and

study the impact of operator clustering. For simplicity, we let each
arc have the same per-tuple data communication cost and each op-
erator have the same per tuple data processing cost. We vary the
ratio of data communication cost over data processing cost (from
0 to 1) and compare ROD with and without operator clustering.
The results shown in Figure 17(a) are consistent with the intuition
that operator clustering becomes more important when the relative
communication cost increases.

We also compare the performance of clustered ROD with Con-
nected Load Balancing in Figure 17(b). Our first observation is that
clustered ROD consistently performs better than Connected Load
Balancing regardless of the data communication overhead. Sec-
ondly, we observe that clustered ROD can do increasingly better
as the number of operators per input stream increases—more op-
erators means more clustering alternatives and more flexibility in
balancing the weight of each input stream across machines.

7.3.5 Latency Results
While the abstract optimization goal of this paper is to maximize

the feasible set size (or minimize the probability of an overload
situation), stream processing systems must, in general, produce low
latency results. In this section, we evaluate the latency performance
of ROD against the alternative approaches. The results are based
on the Borealis prototype with five machines for aggregation-based
network traffic monitoring queries on real-world network traces.

As input streams, we use an hour’s worth of TCP packet traces
(obtained from the Internet Traffic Archive [5]). For query graph,
we use 16 aggregation operators that compute the number of pack-
ets and the average packet size for each second and each minute
(using non-overlapping time windows), and for the most recent
10 seconds and most recent one minute (using overlapping sliding
windows), grouped by the source IP address or source-destination
address pairs. Such multi-resolution aggregation queries are com-
monly used for various network monitoring tasks including denial
of service (DoS) attack detection.

To give more flexibility to the load distributor and enable higher
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Figure 18: Latency results (prototype based).

data parallelism, we partition the input traces into 10 sub-streams
based on the IP addresses, with each sub-stream having roughly
one tenth of the source IP addresses. We then apply the aggregation
operators to each sub-stream and thus end up with 160 “physical”
operators. Note that this approach does not yield perfectly uni-
form parallelism, as the rates of the sub-streams are non-uniform
and independent. It is therefore not possible to assign equal num-
bers of sub-streams along with their corresponding query graphs to
different nodes and expect to have load balanced across the nodes
(i.e. expect that the ideal feasible set can be achieved by pure data-
partitioning based parallelism).

In addition to the algorithms described earlier, we introduce yet
another alternative, Max-Rate-Load-Balancing, that operates simi-
lar to LLF-Load-Balancing, but differs from it in that the new algo-
rithm balances the maximum load of the nodes using the maximum
stream rate (as observed during the statistics collection period).

In order to test the algorithms with different stream rates, we
scale the rate of the inputs by a constant. Figure 18 shows the
average end-to-end latency and the maximum end-to-end latency
results for the algorithms when the input rate multiplier is 1, 2, 3,
and 3.5, respectively. These multipliers correspond to 26%, 48%,
69% and 79% average CPU utilization for ROD. Overall, ROD per-
forms better than all others not only because it produces the largest
feasible set size (i.e., it is the least likely to be overloaded), but
also because it tends to balance the load of the nodes under mul-
tiple input rate combinations. When we further increase the input
rate multiplier to 4, all approaches except ROD fail due to overload
(i.e., the machines run out of memory as input tuples queue up and
overflow the system memory). At this point, ROD operates with
approximately 91% average CPU utilization.

The results demonstrate that, for a representative workload and
data set, ROD (1) sustains longer and is more resilient than the
alternatives, and (2) despite its high resiliency, it does not sacrifice
latency performance.

7.3.6 Sensitivity to Statistics Errors
In the following experiments, we test, in the simulator, how sen-

sitive ROD is to the accuracy of the cost and selectivity statistics.
Suppose that the true value of a statistic isv. We generate a random
error factorf uniformly distributed in the interval[1 − e, 1 + e].
The measured value ofv is then set asf × v. We calle theerror
level. In each experiment, we generate all measured costs and se-
lectivities according to a fixede. Figure 19 shows the performance
of different algorithms with different error levels on a query graph
of 100 operators. The feasible set size of all algorithms, except
for Random, decreases when the error level increases. The feasible
set size of ROD does not change much when the error level is10%.
ROD’s performance remains much better than the others even when
the error level is as large as50%.
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Figure 19: Sensitivity to statistics errors.

8. RELATED WORK
Task allocation algorithms have been widely studied for tradi-

tional distributed and parallel computing systems [11, 18]. In prin-
ciple, these algorithms are categorized into static algorithms and
dynamic algorithms. In static task allocation algorithms, the dis-
tribution of a task graph is performed only once before the tasks
are executed on the processing nodes. Because those tasks can be
finished in a relatively short time, these algorithms do not consider
time-varying workload as we did.

In this paper, we try to balance the load of each input stream for
bursty and unpredictable workloads. Our work is different from the
work on multi-dimensional resource scheduling [12]. This work
considers each resource (e.g. CPU, memory) as a single dimen-
sion, while we balance the load of different input streams that share
the same resource (CPU). Moreover, balancing the load of different
input streams is only part of our contribution. Our final optimiza-
tion goal is to maximize the feasible set size, which is substantially
different from previous work.

Dynamic task migration received attention for systems with long
running tasks, such as large scientific computations or stream data
processing. Dynamic graph partitioning is a good example [16,
20]. This problem involves partitioning a connected task graph into
uniformly loaded subgraphs, while minimizing the total “weight”
(often the data communication cost) of the cutting edges among
the subgraphs. If changes in load lead to unbalanced subgraphs,
the boundary vertices of the subgraphs are moved to re-balance
the overall system load. Our work differs in that we aim to keep
the system feasible under unpredictable workloads without opera-
tor migration.

Our work is done in the context of distributed stream processing.
Early work on stream processing (e.g., Aurora [3] , STREAM [13],
and TelegraphCQ [6]) focused on efficiently running queries over
continuous data streams on a single machine. The requirement
for scalable and highly-available stream processing services led to
the research on distributed stream processing systems [7]. Load
management in these systems has recently started to receive atten-
tion [4, 17, 23].

Shahet al. presented a dynamic load distribution approach
for a parallel continuous query processing system, called Flux,
where multiple shared-nothing servers cooperatively process a sin-
gle continuous query operator [17]. Flux performs dynamic “intra-
operator” load balancing in which the input streams to a single op-
erator are partitioned into sub-streams and the assignment of the
sub-streams to servers is determined on the fly. Our work is or-
thogonal to Flux, as we address the “inter-operator” load distribu-
tion problem.

Medusa [4] explores dynamic load management in a federated
environment. Medusa relies on an economical model based on
pair-wise contracts to incrementally converge to a balanced con-
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figuration. Medusa is an interesting example of load balancing, as
it focuses on a decentralized dynamic approach, whereas our work
attempts to keep the system feasiblewithout relying on dynamic
load distribution.

Our previous work [23] presented another dynamic load balanc-
ing approach for distributed stream processing. This approach con-
tinually tracks load variances and correlations among nodes (cap-
tured based on a short recent time window) and dynamically dis-
tributes load to minimize the former metric and maximize the latter
across all node pairs. Among other differences, our work is differ-
ent in that it does not rely on history information and is thus more
resilient to unpredictable load variations that are not captured in the
recent past.

9. CONCLUSIONS
We have demonstrated that significant benefit can be derived by

carefully considering the initial operator placement in a distributed
stream processing system. We have introduced the notion of a re-
silient operator placement plan that optimizes the size of the input
workload space that will not overload the system. In this way, the
system will be able to better withstand short input bursts.

Our model is based on reducing the query processing graph to
segments that are linear in the sense that the load functions can be
expressed as a set of linear constraints. In this context, we present
a resilient load distribution algorithm that places operators based
on two heuristics. The first balances the load of each input stream
across all nodes, and the second tries to keep the load on each node
evenly distributed.

We have shown experimentally that there is much to be gained
with this approach. It is possible to increase the size of the allow-
able input set over standard approaches. We also show that the av-
erage latency of our resilient distribution plans is reasonable. Thus,
this technique is well-suited to any modern distributed stream pro-
cessor. Initial operator placement is useful whether or not dynamic
operator movement is available. Even if operator movement is sup-
ported, this technique can be thought of as a way to minimize its
use.

An open issue of resilient operator distribution is how to use ex-
tra information, such as upper bounds on input stream rates, varia-
tions of input stream rates, or input stream rate distributions, to fur-
ther optimize the operator distribution plan. Due to the complexity
of computing multiple integrals and the large number of possible
operator distribution plans, incorporating extra information in the
operator distribution algorithm is not trivial. For each kind of new
information, new heuristics need to be explored and integrated into
the operator distribution algorithm.

Recall that we deal with systems with non-linear operators by
transforming their load models into linear ones. We would like to
investigate alternatives to this that would not ignore the relation-
ships between the contiguous linear pieces. We believe that in so
doing, we would end up with a larger feasible region.
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