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ABSTRACT 

Massive datasets are becoming commonplace in a wide range of 

domains, and mining them is recognized as a challenging problem 

with great potential value. Motivated by this challenge, much 

effort has been concentrated on developing scalable versions of 

machine learning algorithms. An often overlooked issue is that 

large datasets are rarely labeled with the outputs that we wish to 

learn to predict, due to the human labor required. We make the 

key observation that analysts can often use queries to define labels 

for cases, which leads to the problem of learning to predict such 

query-produced labels. Of course, if a dataset is available in its 

entirety, we can simply run the query again to compute labels. The 

interesting scenarios are those where, after the predictive model is 

trained, new data is gathered at significant incremental cost and, 

perhaps, over time. The challenge is to accurately predict the 

query-labels for the projected completion of new datasets, based 

only on certain cost-effective subsets, which we call bellwethers. 

1. INTRODUCTION 
Mining large datasets is recognized as a challenging problem with 
great potential value, and much effort has been concentrated on 
developing scalable versions of machine learning algorithms. 
However, large datasets are rarely labeled with the outputs that we 
wish to learn to predict, due to the human labor that is typically 
required. This severely limits our ability to apply supervised 
learning techniques. 

We make the key observation that for a large class of practically 
motivated problems, conventional database queries can be used to 
“tag” cases with the attribute values that we wish to predict, 
thereby mitigating the labeling difficulty. The “cases” are 
themselves the result of aggregating many database records.  
Consider a company that wants to predict the 1st year worldwide 
profit of a new item. After selling this item worldwide for one 
year, the company will know the exact profit. However, if the 
company can accurately predict the annual worldwide profit using 
features (e.g., regional profit, etc.) collected in a much shorter 
time (e.g., 1st week sales) and a much smaller area (e.g., only sales 
in Wisconsin), it has gained valuable business insight.  

In this example, each item for which we have historical data is a 
case, and the information relating to this item is dispersed across 

all sales records for the item.  We can create additional per-item 
features, and compute the desired label (worldwide annual profit 
for the item), by using conventional OLAP-style queries.  In fact 
we can create training datasets by summarizing historical per-item 
sales for each region of interest (e.g., by state and month, or by 
county and week).  We can then use each per-region training 
dataset to train a predictive data model.  When a new item is 
introduced, if we collect sales data for a given region and 
aggregate this as before to create a case for the new item, the 
predictive model for the region can be used to estimate the desired 
label, which, in our example, is worldwide annual profit. 

The question, then, is what is the best region on which to base 
such a predictive model, and whether a good region exists at all. 
Intuitively, gathering sales data for a new item in the region must 
be within an acceptable cost; cost could reflect real-world 
marketing expenses, for example. Further, the predictive model 
for the region must have high accuracy and low variance. We call 
such regions bellwethers, and the problem considered in this 
paper is how to identify bellwether regions. 

In this paper, we make the following contributions: (1) We 
introduce bellwether analysis, a novel framework that allows us to 
apply predictive models to massive datasets without human labor 
for labeling the training examples. (2) We formalize many 
challenges raised by this framework, showing the richness of the 
problem and many opportunities for future research. (3) We 
develop several efficient, scalable algorithms to find bellwether 
regions, and evaluate their performance. (4) Using real-life 
datasets, we demonstrate the value of bellwether analysis.  

The rest of this paper is organized as follows.  After reviewing 
predictive models in Section 2, we introduce bellwether analysis 
in Section 3.  We define the basic bellwether analysis problem, 
and an important variation, finding item-centric bellwethers. 
Intuitively, the basic approach finds a single region to serve as 
bellwether for all items, while the latter recognizes that different 
regions may be appropriate for different items or types of items. 
We present a scalable algorithm for basic bellwether analysis in 
Section 4, and two algorithms for item-centric bellwethers in 
Sections 5 and 6.  In Section 7, we present a detailed experimental 
evaluation using both real and synthetic datasets, measuring both 
the quality of the bellwethers found and the efficiency of our 
algorithms. We discuss related work and conclude in Section 8. 

2. BACKGROUND 
Before formally introducing bellwether analysis, we first review 
some basics of predictive models [13]. Let D be a data table with 
attributes X1, …, Xp, Y, where X1, …, Xp are called features, Y is 
called the target, and each row in the table is called an example. A 
predictive model learns the relationship between X1, …, Xp and Y 
from D and predicts the value of Y given a new example based on 
its X1, …, Xp values. D is called the training set. We use h to 
denote a predictive model, and h(x) returns the target value of 
example x. If the target Y is a numeric value, h is called a 

 

Permission to copy without fee all or part of this material is granted 

provided that the copies are not made or distributed for direct commercial 

advantage, the VLDB copyright notice and the title of the publication and 

its date appear, and notice is given that copying is by permission of the 

Very Large Data Base Endowment. To copy otherwise, or to republish, to 

post on servers or to redistribute to lists, requires a fee and/or special 

permission from the publisher, ACM. 

VLDB ‘06, September 12–15, 2006, Seoul, Korea. 

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09 

655



regression model. If Y is a categorical value, h is called a 
classification model. Decision trees, support vector machines, 
neural networks and linear regression models are examples of 
predictive models. 

The quality of a predictive model is usually measured by the error 
(or equivalently, accuracy) of the model, which is the expected 
discrepancy between the true target value and the predicted value 
for a new example. For classification models, the misclassification 
rate (i.e., the expectation of making an incorrect prediction) is a 
commonly used error measure, while for regression models, the 
mean squared error (MSE) and root mean squared error (RMSE) 
are commonly used. MSE is the expected value of the squared 
difference between the true Y value and the predicted one, and 
RMSE is the square root of MSE. However, in reality, the true 
distribution of X1, …, Xp, Y is generally unknown. Thus, the error 
of a model cannot be computed exactly, but needs to be estimated 
from the given data D. We consider two commonly used error 
estimates: cross-validation error and training-set error. 

Cross-validation error: To compute cross-validation error, we 
first partition D into n non-overlapping subsets of examples: 
D1, …, Dn. For i from 1 to n, we train a model on ∪j≠i Dj and test 
the model on Di to obtain an error value. Then, the cross-
validation error is the mean of the n error values. Based on some 
distribution assumptions, the confidence interval of the cross-
validation error can be obtained based on the variance of the n 
error values. A commonly used n is 10. 

Training-set error: Another way to estimate the error of a model 
is to train the model on D, and then test it also on D to obtain the 
error value, which is called the training-set error. Usually training-
set error is overly optimistic. However, for simple models, e.g., 
linear regression models, training-set error can approximate the 
true error. Note that the overhead of computing cross-validation 
error is approximately n times that of computing training-set error. 

3. PROBLEM DEFINITION 
We first introduce a motivating example, and then formally define 
the problem of bellwether analysis. Intuitively, we want to use 
historical data to find a region (e.g., [1st week, Wisconsin]) with a 
small cost such that we can accurately predict the target value 
(e.g., the 1st year worldwide sales) of an item (e.g., a product) 
based on the features (e.g., the 1st week sales in Wisconsin) of 
that item collected from that region. As will be seen, this problem 
is significantly different from ordinary machine-learning problems 
in that both features and target values are generated by queries 
over the historical database. 

3.1 Motivating Example 
Consider a company that wants to predict the 1st year worldwide 
profit of a new item. After selling this item worldwide for one 
year, the company will know the exact profit. However, if the 
company can accurately predict this target value using features 

(e.g., regional profit, etc.) collected in a much shorter time (e.g., 
1st week) and a much smaller area (e.g., only focus on Wisconsin), 
then it can quickly adapt its business strategy to minimize the loss 
or even maximize the profit. [1st week, Wisconsin] is an example 
of such a bellwether region. Our goal is to find such regions. Note 
that, in this example, we denote a region by a pair of time interval 
and location values. 

To find such a bellwether region, the company can exploit its 
historical sales database, which contains three tables as shown in 
Figure 1. Each record in OrderTable represents a transaction of an 
item (identified by ItemID) at a specific time and location, which 
includes the quantity and the profit earned from that transaction. 
Item information is stored in ItemTable, which records the 
category and R&D expense for each item. Advertisement 
information is stored in AdTable, which contains the size and 
number of colors for each advertisement (identified by AdNo). 
Using the foreign keys, we can obtain the item and advertisement 
information for each transaction. 

Let us first consider a straightforward data-mining approach. We 
can aggregate OrderTable to obtain the target value (i.e., the 1st 
year worldwide profit) for each historical item. Thus, a training 
set can be created by associating the features (Category and 
RDexpense) of each item, called the item-table features, with its 
target value. Then, we can train a predictive model (e.g., a linear 
regression model) on the training set, and use the model to predict 
the target value of a new item based on its features. If this model 
is very accurate, then no bellwether analysis is needed. However, 
since the item-table features are usually not sufficiently predictive, 
the accuracy of the model is usually not acceptable. 

To improve the accuracy of the predictive model, adding more 
informative features is necessary. Note that we have not yet used 
the information provided by OrderTable and AdTable as features 
to help predict the target value. However, collecting such features 
for a new item incurs a cost. At one extreme, if we sell the new 
item worldwide for a year, we know the worldwide profit exactly. 
There is no need for prediction, but this incurs a very high cost. 
At another extreme, if we are not willing to pay anything, then we 
only have the item table information and no other features can be 
used. The goal of bellwether analysis is to find a cost-effective 
“region,” such that using new features collected from that region 
can best improve the accuracy of the model. 

In this example, a time interval and a location together define a 
region for data acquisition. Figure 2 shows the dimension 
structures. Any combination of an interval in the time dimension 
and a place in the location dimension is a candidate region. E.g., 
[1-1, WI], [1-2, US], and [1-52, All] are regions at different levels. 
Based on the company’s experience, the cost of collecting data for 
each region can be defined. 

For a given region [1-t, loc], new features of item i can be 
generated by queries over the database, such as: 

                                 

OrderTable

  Time

  Location

  ItemID

  AdNo

  Quantity

  Profit

ItemTable

  ItemID

  Category

  RDExpense

AdTable

  AdNo

  AdSize

  NumColors
                                                 

All

CA US KR

AL WI

All

Country

State

Dimension: LocationDimension: Time

Week 1-1

Week 1-2

Week 1-52

(i.e., 1
st
 year)

 

        Figure 1. Data schema of the motivating example                                     Figure 2. Dimensions of the motivating example 
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