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ABSTRACT

Perhaps the most flexible synopsis of a database is a ran-
dom sample of the data; such samples are widely used to
speed up processing of analytic queries and data-mining
tasks, enhance query optimization, and facilitate informa-
tion integration. In this paper, we study methods for in-
crementally maintaining a uniform random sample of the
items in a dataset in the presence of an arbitrary sequence
of insertions and deletions. For “stable” datasets whose size
remains roughly constant over time, we provide a novel sam-
pling scheme, called “random pairing” (RP) which main-
tains a bounded-size uniform sample by using newly inserted
data items to compensate for previous deletions. The RP
algorithm is the first extension of the almost 40-year-old
reservoir sampling algorithm to handle deletions. Experi-
ments show that, when dataset-size fluctuations over time
are not too extreme, RP is the algorithm of choice with
respect to speed and sample-size stability. For “growing”
datasets, we consider algorithms for periodically “resizing”
a bounded-size random sample upwards. We prove that any
such algorithm cannot avoid accessing the base data, and
provide a novel resizing algorithm that minimizes the time
needed to increase the sample size.

1. INTRODUCTION

Because of its flexibility, sampling is widely used for quick
approximate query answering [1, 5, 10, 9, 12, 24], statis-
tics estimation [11, 26], data stream processing [13, 17, 27],
data mining [3, 16, 18, 20], and data integration [2, 14, 15,
22]. Uniform random sampling, in which all samples of the
same size are equally likely, is the most fundamental of the
available database sampling schemes. Uniform sampling is
ubiquitous in applications: most statistical estimators—as
well as the confidence-bound formulas for these estimators—
assume an underlying uniform sample. Thus uniformity is
a must if it is not known in advance how the sample will
be used. Uniform sampling is also a building block for
more complex sampling schemes, such as stratified sampling.
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Methods for producing uniform samples are therefore key to
modern database systems.

In the simplest setting, the basic task is to compute a uni-
form sample from a dataset that is stored on disk, such as a
table in a relational database management system (RDBMS)
or a repository of XML documents. In general, there are two
alternative approaches to computing such a sample. First,
the sample may be materialized on the fly as it is needed.
In the setting of commercial RDBMS, Haas and Kénig [12]
have shown that there is a trade-off between the uniformity
of a sampling scheme and the cost of computing it. Even
if some degree of non-uniformity is acceptable, online sam-
ple materialization can still be too expensive. Moreover,
it is often quite acceptable to use the same sample several
times, in order to answer a set of queries or perform multiple
analysis tasks. Taking advantage of this fact, an alternative
approach [4, 8, 10, 11, 17] amortizes the cost of sampling
over multiple uses by initially materializing a sample from
a dataset and then incrementally maintaining the “sample
synopsis” over time.

Incremental sample maintenance is a very powerful tech-
nique, because the abstract notion of the underlying “data-
set” can be interpreted very broadly in applications. Indeed,
the dataset can actually be an arbitrary view, e.g., over the
result of an arbitrary SQL query. Samples over views are
particularly good candidates for incremental maintenance,
because producing such samples on the fly can require very
expensive base-data accesses. For example, most relational
operators are not interchangeable with sampling [5, 24], so
that in most cases the sampling operator cannot be moved
to the leaves of the query tree. Olken and Rotem [24, 25]
pioneered methods for incremental maintenance of sample
views in relational databases; these methods synthesize tra-
ditional view-maintenance techniques with database sam-
pling algorithms. The idea is to, in effect, compute the
“delta” (set of insertions, updates, and deletions) to the view
as the underlying tables are updated and then apply gen-
eral sample-maintenance methods to the resulting sequence
of view modifications. Although computation of the deltas
requires access to the base data, this expense is smoothly
spread out over time, providing for fast query response. Also
observe that the full view need never be materialized if only
the sample is of interest, thereby saving space as well as time.
The main deficiency of existing techniques for maintaining
sample views is that they require expensive base-data ac-
cesses over and above those needed to compute the deltas.

This paper provides new methods for incrementally main-
taining a uniform random sample of an evolving dataset. We



assume that the sample-maintenance component intercepts
data insertion and deletion requests' on their way to the
dataset, and maintains the sample locally. In this setting,
the main challenges in sample maintenance are (1) to enforce
statistical uniformity in the presence of arbitrary insertions
and deletions, (2) to avoid accesses to the base data to the
extent possible, because such accesses are typically expen-
sive, and (3) to keep the sample size as stable as possible,
avoiding oversized or undersized samples.

We distinguish between “stable” datasets whose size (but
not necessarily composition) remains roughly constant over
time and “growing” datasets in which insertions occur more
frequently than deletions over the long run. The former set-
ting is typical of transactional database systems and data-
bases of moving objects; the latter setting is typical of data
warehouses in which historical data accumulates. For sta-
ble datasets, it is highly desirable from a systems point of
view to ensure that the sample size stays below a speci-
fied upper bound, so that memory for the sample can be
allocated initially, with no unexpected memory overruns oc-
curring later on. Moreover, once memory has been allocated
for the sample, the sample size should be kept as close to the
upper bound as possible in order to maximize the statistical
precision of applications that use the sample. That is, we
want to use the allotted space efficiently. For growing data
sets, maintaining a bounded sample is of limited practical
interest. Over time, such a sample represents an increas-
ingly small fraction of the dataset. Although a diminishing
sampling fraction may not be a problem for tasks such as
estimating a population sum, many other tasks—such as es-
timating the number of distinct values of a specified popula-
tion attribute—require the sampling fraction to be bounded
from below. The goal for a growing data set is therefore to
grow the sample in a stable and efficient manner, guaran-
teeing an upper bound on the sample size at all times and
using the allotted space efficiently.

The best known method for incrementally maintaining
a sample in the presence of a stream of insertions to the
dataset is the classical “reservoir sampling” algorithm [21,
23], which maintains a simple random sample of a specified
size. One deficiency of this method is that it cannot handle
deletions, and the most obvious modifications for handling
deletions either yield procedures for which the sample size
systematically shrinks to 0 over time or which require expen-
sive base-data accesses.?2 The other main deficiency is that
the class of pure insertion streams—for which reservoir sam-
pling is designed—results in growing datasets as discussed
above; thus the usefulness of the bounded reservoir sample
tends to diminish over time. Surprisingly, although reservoir
sampling has been around for almost 40 years, the algorithm
apparently has never been extended to deal with either dele-
tions or growing datasets. In this paper we provide the first
such extensions of reservoir sampling.

In more detail, we address the challenges of incremental
sample maintenance as follows.

1. For stable datasets, we provide a new sampling scheme,
called “random pairing” (RP), that maintains a bound-

"We do not consider updates explicitly, since an update to
the dataset can be trivially handled by updating the value
of the corresponding sample element, if present.

2A common approach is to periodically recompute the sam-
ple from scratch [11].
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ed uniform sample in the presence of arbitrary inser-
tions and deletions, without requiring expensive base-
data accesses. RP can be viewed as a generalization
of both classical reservoir sampling and the ”passive”
stream-sampling algorithm of Babcock, et al. [1]. RP
is as least as fast as any other known uniform sam-
pling scheme, and strictly faster than any scheme that
accesses the base data. The sample sizes produced by
RP are more stable than those produced by any other
algorithm that does not access base data and, pro-
vided that fluctuations in the dataset size are not too
extreme, are as stable as those produced by expensive
algorithms that require base-data accesses. Thus, if
the dataset size is reasonably stable over time, RP is
the algorithm of choice for incrementally maintaining
a bounded uniform sample.

2. For growing datasets, we initiate the study of algo-
rithms for periodically “resizing” a bounded-size ran-
dom sample upwards, thereby allowing an ever-increas-
ing sample size while at all times avoiding uncontrol-
lably large samples. We prove that any such algo-
rithm cannot avoid accessing the base data, and pro-
vide a novel resizing algorithm that permits the sam-
ple to grow over time while always enforcing a user-
controlled upper bound on the sample size. We show
how to set the algorithm parameters to optimally bal-
ance the time required to access the base data and the
time needed to subsequently enlarge the sample using
newly inserted data.

The remainder of this paper is organized as follows. In
Section 2, we review existing algorithms that are pertinent
to incremental sample maintenance, and relate them to our
new techniques. Section 3 contains a description and cor-
rectness proof of the RP algorithm. Section 4 describes our
resizing algorithm, and develops approximate cost formulas
for this algorithm that can be used to tune the key algo-
rithm parameter. In Section 5, we report results from an
empirical performance study of the new and existing sample-
maintenance algorithms; we also assess the accuracy of our
approximate cost model for the resizing algorithm. We con-
clude in Section 6.

2. UNIFORM SAMPLING SCHEMES

In this section, we describe the sampling problem more
precisely and give an overview of various new and existing
sampling schemes. Following [4], call a sampling scheme uni-
form if the probability &2(S; R) that the scheme produces
sample S when applied to dataset R satisfies &(S;R) =
P(S'; R) whenever |S| = |S’|. That is, all samples of the
same size are equally likely to be produced. We say that S
“is a uniform sample from R” if S is produced from R using a
uniform sampling scheme. We restrict attention throughout
to sampling without replacement.

We consider a (possibly infinite) set 7 = {ti,t2,...}
of unique, distinguishable items that are inserted into and
deleted from the dataset R over time; for example, 7 might
correspond to a finite set of IP addresses, an infinite se-
quence of text documents, or an infinite sequence of sales
transactions over an evolving selection of products. In gen-
eral, items that are deleted may be subsequently re-inserted.
Without loss of generality, we assume throughout that R is
initially empty. Thus we consider an infinite sequence of



transactions v = (v1,72,...), where each transaction -; is
either of the form +¢x, which corresponds to the insertion
of item ¢ into R, or of the form —t,, which corresponds
to the deletion of item ¢, from R. We restrict attention to
“feasible” sequences such that (i) at any time point, an item
appears at most once in the dataset (so that the dataset is
a true set and not a bag) and (ii) v, = —tx only if item
tr is in the dataset just prior to the processing of the nth
transaction. Our goal is to ensure that, after each transac-
tion is processed, S is a uniform sample from R. We assume
throughout that, as is usual in practice, the sequence ~y of
insertions and deletions to the data is oblivious to the be-
havior of the sampling algorithm.

We first discuss two classical uniform schemes, Bernoulli
sampling and reservoir sampling, that underlie all of the
other sampling methods. We then discuss schemes that are
appropriate for stable datasets and growing datasets. Fi-
nally, we discuss the relationship of these schemes to some
recent work on “distinct-value” (DV) sampling.

2.1 Two Classical Schemes

Bernoulli Sampling: In the Bernoulli sampling scheme
with sampling rate ¢, denoted BERN(q), each inserted item
is included in the sample with probability ¢ and excluded
with probability 1 — ¢, independent of the other items. For a
dataset R, the sample size follows the binomial distribution
BINOM(|R|,q), so that P{|S| =k} = (})q*(1 — )" =*
for k = 0,1,...,|R|. Although the sample size is random,
samples having the same size are equally likely, so that the
scheme is indeed uniform, as defined previously. The main
advantages of Bernoulli sampling are simplicity and ease of
parallelization; the main disadvantage is the uncontrollable
variability of the sample size. Indeed, the sample can be as
large as |R|, so there is no effective upper bound.

Reservoir Sampling (RS): This uniform scheme main-
tains a random sample of fixed size M, given a sequence
of insertions. The procedure, as described in McLeod et
al. [23], is as follows. Include the first M items into the sam-
ple. For each successive insertion into the dataset, include
the inserted item into the sample with probability M/|R|,
where |R)| is the size of the dataset just after the insertion;
an included item replaces a randomly selected item in the
sample. Vitter [28] significantly reduced the computational
costs of RS by devising a method to directly generate the
(random) number of arriving items to skip between consec-
utive sample inclusions, thereby avoiding the need to “flip a
coin” for each item. Efficient reservoir schemes that handle
very large disk-based samples are provided in [8, 17].

2.2 Schemes for Stable Datasets

Stream-sampling methods: Babcock et al. [1] have
proposed several sampling schemes for obtaining a fixed-size
uniform random sample from a moving window over a data
stream. This setting corresponds to the special case in which
each deletion from the dataset is immediately followed by an
insertion, and these algorithms do not directly generalize to
arbitrary sequences of insertions and deletions. The most
pertinent of the algorithms in [1] is the “passive” algorithm.
This algorithm first obtains a uniform sample from the ini-
tial window. Whenever an item in the sample is deleted
from the window, the corresponding newly inserted item
takes the place of the deleted item in the sample. Brown
and Haas [4] provide “approximate” stream-sampling algo-
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rithms for a warehouse in which “data partitions” are rolled
in and out. The idea is to create samples of the data parti-
tions that “shadow” the full partitions as they move through
the warehouse. Again, these algorithms do not generalize to
arbitrary, item-wise insertions and deletions, but the “merg-
ing” algorithms in [4] can potentially be used to parallelize
the new algorithms in the current paper.

Correlated acceptance-rejection (CAR): By adapt-
ing the CAR algorithm of Olken and Rotem [25] to our set-
ting, we obtain a method for maintaining uniform random
samples in the presence of arbitrary insertions and deletions;
this method requires access to the base data, however. Our
version of CAR actually maintains a uniform sample with
replacement, i.e., each item in the dataset may appear more
than once in the sample. Whenever an item is inserted
into the dataset, CAR generates a random number N from
the binomial distribution BINOM(M, 1/|R|) and replaces N
random items of the current sample by N copies of the new
item. Whenever an item is deleted from the dataset, CAR
replaces each occurrence of this item by a random item
drawn from the population. We obtain the final uniform
sample without replacement by removing duplicates; thus
the gross sample size must be larger than M to compensate
for duplicate removal, and there is no effective lower bound
on the sample size.

Correlated acceptance-rejection without replace-
ment (CARWOR): This simple variant of the CAR algo-
rithm executes standard RS at each insertion. Whenever an
item is deleted from the sample S, CARWOR replaces it by
a random item from R\ S. Although CARWOR maintains
the sample size at its largest possible value, the algorithm
relies on frequent, expensive accesses to base data.

Reservoir sampling with recomputation (RSR): As
mentioned previously, RS is designed to deal only with inser-
tions. The simplest modification is to execute RS as usual
at each insertion. At each deletion from the dataset, we
check whether the item is in the sample; if so, we remove
it and continue RS with a smaller sample size. The ob-
vious problem with this approach is that the sample size
decreases monotonically to zero. We therefore modify this
approach using a device as in Gibbons et al. [11]: as soon as
the sample size falls below a prespecified lower bound, re-
compute it from scratch using, for example, sequential sam-
pling [29]. Clearly, this approach (also called the “backing
sample” method) does not yield a stable sample size, and it
requires repeated access to the base data. In spite of these
deficiencies, RSR has been the sampling scheme of choice
for bounded-size uniform sampling.

Bernoulli sampling with purging (BSP): This tech-
nique combines Bernoulli sampling with an idea proposed by
Gibbons et al. [10], and can handle insertions and deletions
without accessing base data.® The idea is to use BERN(q)
sampling—allowing deletions, as in the MBERN(q) scheme
described in Section 2.3 below—and to purge the sample ev-
ery time it exceeds the upper bound. Starting with ¢ = 1,
we decrease q at every purge step. With ¢’ being the new
value of g, the sample is subsampled using BERN(q'/q) sam-
pling. This procedure is repeated until the sample size has
fallen below M. The choice of ¢’ is challenging: on the one
hand, if ¢’ is chosen small with respect to ¢, the sample
size drops significantly below the upper bound in expecta-

3We note that the specific sampling algorithms given in [10]
do not produce uniform samples; see [4].



tion. On the other hand, a high value of ¢’ leads to frequent
purges, thereby reducing performance. Note that BSP does
not maintain a true BERN(q) sample, because the sample
size is bounded. Due to the difficulty of choosing ¢ and, as
discussed in the sequel, instability in the sample sizes, this
algorithm can be difficult to use in practice.

Random pairing (RP): Our new RP algorithm, de-
scribed in Section 3, maintains a bounded-size uniform sam-
ple in the presence of arbitrary insertions and deletions with-
out requiring access to the base data. As shown in our ex-
periments, the RP algorithm produces samples that are sig-
nificantly larger (i.e., more space efficient) and more stable
than those produced by BSP, at lower cost.

2.3 Schemes for Growing Datasets

Modified Bernoulli Sampling: This uniform sampling
scheme, denoted MBERN(g), is the simplest scheme for
dealing with a growing data set. The MBERN(q) scheme
treats each insertion identically to the ordinary BERN(q)
scheme. Whenever an item is removed from the dataset, it is
also removed from the sample, if present. As with BERN(q),
the sample size is binomially distributed, and is 100¢% of
the dataset size on average. Note that we do not consider
the use of MBERN(q) for stable datasets because it cannot
guarantee an upper bound on the sample size (nor can it
guarantee a lower bound).

Resizing: Our novel resizing method can be used with
any stable-dataset sampling scheme. In this way we can
grow the sample as the dataset grows, while guaranteeing an
upper bound on the sample size at each time point. Resizing
can even be used in conjunction with MBERN(g) sampling
to increase the sampling rate q; see Section 4.2.

2.4 Distinct-Value Sampling

To our knowledge, the only other sampling methods that
handle arbitrary sequences of insertions and deletions are
the two DV-sampling algorithms recently proposed in [6, 7].
These two algorithms were designed for datasets in which
items can appear multiple times; i.e., datasets that are bags,
not sets. The algorithms sample uniformly from the set of
distinct items of a dataset, and also provide the number
of occurrences for each sampled value (or a high-accuracy
approximation thereof). In our setting, where each item in
the dataset occurs only once, random sampling and DV-
sampling coincide, so we could attempt to adapt the DV-
sampling algorithms to our purpose.

Both DV-sampling algorithms make use of a data struc-
ture which—with some success probability p—maintains a
single item chosen randomly from the set of distinct items.
To maintain multi-item samples, multiple instances of the
data structure are stored, so that sampling is with replace-
ment. The two schemes [6, 7] coincide when adapted to
our setting: each data structure consists of the sum of the
items (treated as integers) inserted into it, and a counter
of the number of inserted items. The basic idea is that
only a random fraction of the items added into or deleted
from the dataset affect a data structure. In more detail, the
adapted DV-sampling algorithm (call it DVS) would make
use of a set of independent random hash functions, one for
each instance of the data structure. The range of each hash
function is {0,...,D — 1}, where D is the average size of
the dataset. An item ¢ affects a data structure only if the
corresponding hash function satisfies h(t) = 0. If a data
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structure contains exactly one item, then it “succeeds,” and
returns this item as a random sample of size 1; otherwise, it
fails.

The probability p of a success is approximately equal to
e~ ! when D is large, so that DVS would exploit only 1/3
of the available memory, at best. Not only is the space effi-
ciency low, but the computational costs are also extremely
high. For example, with 1 million copies of the data struc-
ture, DVS requires 10 trillion hash operations to insert 10
million tuples into the sample, which takes hours even with
the fastest available hash functions. Schemes such as RP,
which are tailored for unique-item sampling, can perform
such an insertion in a matter of minutes. For these reasons,
we focus on the uniform sampling schemes outlined in the
previous sections.

3. RANDOM PAIRING

To motivate the idea behind the random-pairing scheme,
we first consider an “obvious” passive algorithm for main-
taining a bounded uniform sample S of a dataset R. The
algorithm avoids accessing base data by making use of new
insertions to “compensate” for previous deletions. When-
ever an item is deleted from the data set, it is also deleted
from the sample, if present. Whenever the sample size lies at
its upper bound M, the algorithm handles insertions identi-
cally to RS; whenever the sample size lies below the upper
bound and an item is inserted into the dataset, the item is
also inserted into the sample. Although simple, this algo-
rithm is unfortunately incorrect, because it fails to guaran-
tee uniformity. To see this, suppose that, at some stage,
|S| = M < |R| = N. Also suppose that an item ¢~ is then
deleted from the dataset R, directly followed by an insertion
of tT. Denote by S’ the sample after these two operations.
If the sample is to be truly uniform, then the probability
that tT € S’ should equal M/N, conditional on |S| = M.
Since ¢t~ € S with probability M/N, it follows that

pP{ttes}

=P { t~es, th included} + P { "8, th included}

M M M M

_N'1+(1 N)'N N’ @
conditional on |S| = M. Thus an item inserted just after
a deletion has an overly high probability of being included
in the sample. The basic idea behind RP is to avoid the
foregoing problem by including an inserted item into the
sample with a probability less than 1 when the sample size
lies below the upper bound. The key question is how to
select the inclusion probability to ensure uniformity.

3.1 Algorithm Description

In the RP scheme, every deletion from the dataset is even-
tually compensated by a subsequent insertion. At any given
time, there are 0 or more “uncompensated” deletions; the
number of uncompensated deletions is simply the difference
between the cumulative number of insertions and the cumu-
lative number of deletions. The RP algorithm maintains a
counter ¢; that records the number of uncompensated dele-
tions in which the deleted item was in the sample (so that
the deletion also decremented the sample size by 1). The RP
algorithm also maintains a counter c2 that records the num-
ber of uncompensated deletions in which the deleted item
was not in the sample (so that the deletion did not affect



Algorithm 1 Random pairing

c1: no. of deletions which have been in the sample

c2: no. of deletions which have not been in the sample

k: skip counter for reservoir sampling (initialized to 1)

M: upper bound on sample size

R, S: dataset and sample, respectively

SKIP(): reservoir-sampling skip function as in [28]
[Skip(m,r) =0 if r < m)]

INSERT(t):
. if ¢; + ¢c2 = 0 then
k—k—1
if k =0 then
if |S| < M then
insert ¢ into S
else
overwrite a randomly selected element of S with ¢
end if
k — Skip(M, |R|) + 1
end if
: else
if RanpoM() <
cp+—c—1
insert ¢ into S
else
co «—cg—1
end if
: end if

// execute plain reservoir sampling

// execute random-pairing step
then

c1

c1+e2

: DELETE(?):

:if t € S then
c1+—c1+1
remove t from S
: else

cog +—co+1

: end if

OWWWWWNNNNMNNNNDN NN e
TRERNCFOOXTOUEWN PO0OTDU R WNROL RPN W

the sample). Clearly, d = ¢1 + c2 is the total number of
uncompensated deletions.

The algorithm works as follows. Deletion of an item is
handled by removing the item from the sample, if present,
and by incrementing the value of ¢; or cg, as appropriate.
If d = 0, i.e., there are no uncompensated deletions, then
insertions are processed as in standard RS, using Vitter’s
optimizations [28]. If d > 0, then we flip a coin at each
insertion step, and include the incoming insertion into the
sample with probability ci/(c1 + c2); otherwise, we exclude
the item from the sample. We then decrease either c¢; or
c2, depending on whether the insertion has been included
into the sample or not. The complete algorithm is given as
Algorithm 1.

Conceptually, whenever an item is inserted and d > 0,
the item is paired with a randomly selected uncompensated
deletion, called the “partner” deletion. The inserted item is
included into the sample if its partner was in the sample at
the time of its deletion, and excluded otherwise. The proba-
bility that the partner was in the sample is ¢1/(c1 +¢2). For
the purpose of the algorithm, it is not necessary to keep track
of the identity of the random partner; it suffices to maintain
the counters c¢; and ca. Note that if we repeat the calculation
in (1) using RP, we now have P { t— g8, th included} =0,
and we obtain the desired result P { tteys } = M/N.

3.2 An Example

The RP algorithm with M = 2 is illustrated in Figure 1.
The figure shows all possible states of the sample, along
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Figure 1:
probability)

Random pairing (possible outcomes &

with the probabilities of the various state transitions. The
example starts after ¢ = 2 items have been inserted into an
empty dataset, i.e., the sample coincides with R. The inser-
tion of item t3 leads to the execution of a standard RS step
since there are no uncompensated deletions. This step has
three possible outcomes, each equally likely. Next, we re-
move items t2 and t3 from both the dataset and the sample.
Thus, at ¢ = 5, there are two uncompensated deletions. The
insertion of t4 triggers the execution of a pairing step. Item
ts is conceptually paired with either t3 or to—these scenar-
ios are denoted by a) and b) respectively—and each of these
pairings is equally likely. Thus ¢4 compensates its partner,
and is included in the sample if and only if the partner was in
the sample prior to its deletion. This pairing step amounts
to including ¢4 with probability ¢1/(c1 + ¢2) and excluding
t4 with probability c2/(c1 + c2), where the values of ¢; and
c2 depend on which path is taken through the tree of pos-
sibilities. A pairing step is also executed at the insertion of
ts, but this time there is only one uncompensated deletion
left: t2 in scenario a) or t3 in scenario b). The probability of
seeing a given sample at a given time point is computed by
multiplying the probabilities along the path from the “root”
at the far left to the node that represents the sample. Ob-
serve that the sampling scheme is indeed uniform: at each
time point, all samples of the same size are equally likely to
have been materialized.

3.3 Correctness and Sample-Size Properties

In this section we formally establish the uniformity prop-
erty of the RP scheme with upper bound M (> 1) and also
derive formulas for the mean and variance of the sample
size. To establish uniformity, we actually prove a slightly
stronger result that implies uniformity. Denote by R, the
dataset and by .5, sample after the nth processing step, i.e.,
after processing transaction ~,. Also denote by c¢i,, and
c2,n the value of the counters c; and co after the nth step,
and set dn, = c1,n + c2,n. Finally, set u, = min(M,|Rx|),
vp = min(M, maxi<j<n|R;|) = min(M,|R,| + dn), and
ln = max(0,un — dy); in light of (4) below, it can be seen
that u, and [,, are the largest and smallest possible sample
sizes after the nth step, and v,, is the largest possible sample



size so far (thus u, < v,). Without loss of generality, we
restrict attention to sequences that start with an insertion
into an empty dataset.

THEOREM 1. For any feasible sequence ~ of insertions
and deletions, there exist numbers {pn(k): n > 1 and k >
0}, depending on vy, such that

P{S.=A}=pa(4])
for AC Ry, andn > 1. Moreover,

pn(k) vn—k+1
pn(k—1)  dp—vn+Ek

forn>1landk e {l,+1,ln+2,...

(2)

(3)
 Un }

It follows from (2) that, at each step, any two samples of
the same size are equally likely to be produced, so that the
RP algorithm is indeed a uniform sampling scheme.

PRrOOF. Clearly, we can take pn(k) = 0 for n > 1 and
k& {l.ln+1,...,u, }. Fix a sequence of insertions and
deletions, and observe that the sample size decreases when-
ever ¢ increases, and increases whenever ¢; decreases (sub-
ject to the constraint |S| < M.) It follows directly that

(4)

for n > 1. The proof now proceeds by induction on n. The
assertions of the theorem clearly hold for n = 1, so suppose
for induction that the assertions hold for values 1,2,...,n—
1. There are two cases to consider. First, suppose that
step n corresponds to the insertion of an item ¢, and consider
a subset A C R, with |A| = k, where I, < k < up. If
dn—1 = 0, then d, = 0 and I, = wuy,, so that (3) holds
vacuously, and the correctness proof for standard reservoir
sampling—see, e.g., [13]—establishes the assertion in (2).
So assume in the following that d,—1 > 0. If t € A, then,
using (4), we have

P{S,=A}=P{S,-1 =A—{t}, tincluded}
Un—1 — k + 1
dnfl '

Cl,n = Un — |Sn|

= pnoa(k =15

= pn—l(k - 1)
Ift € A, then
P{S,=A}=P{S,-1 = A, tignored}

dn_1 — Un_1+Ek
=pn71(k)%,

()

so that, if A # 0, then

Un_1—k+1

P(Sy = A} =pnoa (b= )12

(6)
Here (6) follows from (5) and an inductive application of
(3). This establishes the first assertion of the theorem with
Vp—1—k+1
Pn-1 (IC ; 1)%
pn—l(O) n—1"Yn—1

dpn—1

if max(ln,1) <k < up;
if k=1, =0;
0 otherwise.

(7)
To establish the second assertion of the theorem, apply (7)
and then inductively apply (3), making use of the fact that—
since dn,—1 > 0 and an item is inserted at step n—we have
dn = dp—1 — 1 and v, = v,—1. Now suppose that step n
corresponds to the deletion of an item ¢, and again consider a
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subset A C R,, with |[A| =k € {ln,ln+1,...,un }. Observe
that
P{S,=A}=P{Sn-1=A}+P{Sn-1=AU{t}}
= pn-1(k) + pr-1(k + 1),
which establishes the first assertion of the theorem with
pn(k) = pn-1(k) + pn-1(k + 1) for I, < k < u,. Since
dn =dn-1+1 and v, = v,—1, we then have
pu(k) _ pucr () +poo(k+ 1)
pn(k—1)  pno1(k—1)+pn_i(k)
_ (Pn-1(k)/pn-1(k — 1))+ (pn-1(k + 1)/pn-1(k — 1))
1+ (pn—1(k) /pn—1(k — 1))
Un—1—k+1 _vn—k+1
dnflffunfl‘i’k‘i’l B dn*'l}n‘i’k

for l,, < k < un, where we have again inductively used (3).
Thus the second assertion of the theorem holds and the proof
is complete. [

Observe that the RP scheme reduces to the “passive” algo-
rithm of [1] if applied to a fixed-width moving window over
a data stream. If there are no deletions, the RP scheme
reduces to standard RS.

The following result gives some basic statistical properties
of the sample size at any given time point.

THEOREM 2. Let d be the number of uncompensated dele-
tions. Then the expected value and variance of the sample
size |S| are given by E[|S|] = v|R|/(|R| + d) and

dv(|R| +d —v)|R|
(IRl + d)*(|R| +d —1)

where v = min(M, |R| + d).

Var[|S|] =

For example, suppose we sample 100,000 items from a
dataset consisting of 10,000,000 items (1%). If we delete
100, 000 items, the sample size is 99,000 in expectation and
has a standard deviation of 31.31 items, thus 98,968 < |S| <
99,032 with high probability.

Observe that if d = 0, so that there are no uncompensated
deletions, or if |R|4+d < M, so that the sample coincides with
the population, then E[|S|] = min(M, |R|) and Var[|S|] = 0,
i.e., the sample size is deterministic.

Proor. First suppose that d = 0. Because compensated
deletions do not affect the sample size, it follows that the
sample size is the same as if there never had been any dele-
tions, that is, min(M, |R|). Now suppose that d > 0. With-
out loss of generality, we can assume that the last d op-
erations have all been deletions from the dataset. Clearly,
the sample size prior to the first of the d deletions is v =
min(M, |R| + d). Let X be the number of the d deleted
items that were sample items. Then X has a hypergeomet-
ric distribution, i.e., P{X =k} = (}) (‘R!itdk_”)/(m!jd) for
k = 0,1,...,min(d,v), where we use the convention that
() =1 and () = 0 for k > 0. Note that P{X =d} =1
when |R| +d < M. The mean and variance of the sample
size correspond to Efv — X] = v — E[X] and Var[v — X]
Var[X], respectively, and the desired result now follows di-
rectly from well known properties of the hypergeometric dis-
tribution [19, p. 238]. O



4. RESIZING SAMPLES

The discussion so far has focused on stable datasets, and
therefore on sampling algorithms that guarantee a fixed up-
per bound on the sample size. We now shift attention to
growing datasets. As mentioned previously, modified Ber-
noulli sampling can be used to maintain a sample whose size
grows with the dataset, but such a sampling scheme cannot
control the maximum sample size. We therefore consider
the problem of maintaining a sample with an upper bound
that is periodically increased.

4.1 A Negative Result

The RP algorithm can maintain a bounded sample with-
out needing to access the base data. One might hope that
there exist algorithms for resizing a sample that similarly do
not need to access the base data. Theorem 3 below shows
that such algorithms cannot exist.

In general, we consider algorithms that start with a uni-
form sample S of size at most M from a dataset R and—
after some finite (possibly zero) number of arbitrary inser-
tion/deletion transactions on R—produce a uniform sample
S’ of size M’ from the resulting modified dataset R’, where
M < M’ < |R|. In general, we also allow the algorithm
to access the base dataset R. For example, a trivial resiz-
ing scheme ignores the transactions altogether, immediately
discards S, and creates a fresh sample S’ by resampling R.

THEOREM 3. There exists no resizing algorithm that can
avoid accessing the base dataset R.

PROOF. Suppose to the contrary that such an algorithm
exists, and consider the case in which the transactions on
R consist entirely of insertions. Fix a set A C R’ such that
|A| = M’ and A contains M + 1 elements of R; such a set
can always be constructed under our assumptions. Because
the hypothesized algorithm produces uniform samples of size
M’ from R', we must have P{S" = A} > 0. But clearly
P{S"=A} = 0, since |S| < M and, by assumption, no
further elements of R have been added to the sample. Thus
we have a contradiction, and the result follows. [

4.2 A Resizing Algorithm

‘We now provide a method for resizing a bounded-size sam-
ple; this method is given as Algorithm 2.

Suppose that the initial sample size is |S| = M and the
target sample size is M’ > M, where M, M’ < |R|. The
basic idea is as follows. In phase 1, the algorithm converts
the sample to a BERN(q) sample, possibly accessing base
data in the process; we discuss the choice of ¢ in the follow-
ing section. In phase 2, the algorithm uses Bernoulli sam-
pling (with deletions allowed) to increase the sample size
to the target value M’. At this point, bounded-size sam-
pling resumes, using the new upper bound M’. In more
detail, the algorithm generates a random variable U having
a BINOM(|R|,q) distribution, which represents the initial
Bernoulli sample size. The algorithm uses as many items
from S as possible to make up the Bernoulli sample, access-
ing base data only if U > |S|. If the initial sample size U
exceeds the target size M’, then the algorithm simply mate-
rializes a sample of size M’ from R and terminates, in effect
taking an immediate subsample of size M’ from a Bernoulli
sample of size U. In phase 2, the algorithm increases the
sample to the desired size by using MBERN(q) sampling.
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Algorithm 2 Sample Resizing

: M: initial sample size

: M': target sample size (M’ > M)
: ¢: Bernoulli sampling parameter
: R: initial dataset

: S: initial sample with |S| = M

1
2
3
4
5
6:
7: PHASE 1:

8: generate U from BINOM(|R|, q) distribution

9: if U < M then

10 S « uniform subsample of size U from S

11 go to Phase 2

12: else if M < U < M’ then

13:  V « uniform sample of size U — M from R\ S
14 S—SuvVv

15 go to Phase 2

16: else if U > M’ then

17: V< uniform sample of size M’ — M from R\ S
18 S—SuUuvVv

19:  return S

20: end if

21

22: PHASE 2:

23: while |S| < M’ do

24 wait for request

25 if request = “insert item” then

26 insert item into S with probability g
27 else

28 remove item from S if present

29 end if

30: end while

31: return S

// insert or delete

More formally, denote by S* the effective sample at the
end of phase 1. Also denote by Sx and Ry (k > 0) the
elements in the sample and the dataset after k insertion/de-
letion transactions have occurred in phase 2. Note that So =
S*if U < M’ and Sy is a size-M’ uniform subsample from S*
if U > M'. Finally, denote by L (> 0) the random number
of transactions that occur during phase 2. The following
theorem asserts the correctness of the resizing algorithm.

THEOREM 4. Given that k < L, where k > 0, the set Sk
is a uniform sample from Ry.

PROOF. (Sketch) As mentioned previously, the distribu-
tion of U in phase 1 is identical to the distribution of the
sample size of a BERN(q) sample of R. The subsampling
step (U < M) and the union step (otherwise) both maintain
the uniformity of S, so that S* is a BERN(q) sample from R.
Using this fact, it can then be shown that every probability
of the form P{ S, = A| k < L} with A C Ry, depends on A
only through |A|, and the desired result follows. For exam-
ple, when k > 1 and all phase 2 transactions are insertions,
fix a set A C Ry, comprising exactly i elements of Ry and j
elements of Ry \ Ro, where i + j < M’ and j < k. Then

P{Si=Ak<L}=P{Si=A}
=q'(1-9"" g (1 - =g (1 - g,

and P{Sy=A|k<L}=P{Si=Ak<L}/P{k<L}
depends on A only through |A|. O

We assume that the dataset is “locked” during phase 1, so
that the process of incoming insertion and deletion requests
is temporarily suspended. The value of the parameter ¢
therefore determines both the amount of time required to
access the base data in phase 1, and the amount of time



required to finish growing the sample (using new insertions)
in phase 2.

As a final observation, if we are using an MBERN(q) sam-
pling scheme to deal with a growing dataset, then we can
execute phase 1 with parameter ¢’ > ¢ to transition from
MBERN(q) sampling to MBERN(¢') sampling. In the fol-
lowing sections, however, we focus on the use of the resizing
algorithm with algorithms that produce bounded-size sam-
ples.

4.3 Performance Analysis: Choosing g

To provide guidance in choosing the value of g, we have
developed exact and approximate cost models of the resizing
process. Due to lack of space, we describe only the approxi-
mate cost model and resulting choice of ¢: the approximate
procedure is much easier to implement and, as shown by
our experiments (Section 5), highly accurate. We also focus
primarily on the case in which there are no deletions; the
general case is discussed briefly at the end of the section.

We separately analyze the costs (in units of elapsed time)
for phase 1 and phase 2. During phase 1, the algorithm ob-
tains N(U) items from R\ S, where N(u) = (min(u, M") —
M)" for uw > 0, with 27 = max(z,0). These N(U) items
are obtained using repeated simple random sampling from
R with replacement, with an acceptance-rejection step to
ensure that each newly sampled item is not an element of S
and is distinct from all of the items sampled so far. Because
of the acceptance-rejection step, the (random) number B; of
base-data accesses required to obtain the ith item has a geo-
metric distribution with failure probability (M +i—1)/|R]|,
from which it follows [19, p. 201] that E[B;] = |R|/(|R| —
M — i+ 1). As our first approximation, we assume that
U = uq with probability 1, where uq is the closest integer to
|R|q = E[U]; our motivation is that the coefficient of vari-
ation (Var[U]/E?[U])*/? is of order O(|R|~'/?), and |R| is
typically very large. Thus the total number of base accesses
during phase 1 is approximately B = Bi+ B2+ -+ BN (u,)>
and E[B] = |R|H(|R| — M — N(uq) + 1,|R| — M), where
H(n,m) = Y. 1/i. Using the standard approximation
H(n,m) = In(m/n) for large m,n and supposing that each
base access takes t, time units, we find that the expected
time to execute phase 1 is approximately given by Ty (¢) =
ta| R n[(|R| — M)/(IR] — M — N(|R|q))].

In phase 2, the resizing algorithm executes a random num-
ber L of Bernoulli trials until the sample size reaches the tar-
get value M’. Specifically, given that U = u, we have L =0
if u > M’, since phase 2 is not actually executed in this case;
ifu < M’, then L — (M’ —u), the number of Bernoulli rejec-
tions before the sample size reaches M’, has a negative bi-
nomial distribution. Again assuming that P{U =uq } =1
and appealing to [19, p. 199], we have E[L] ~ (M’ —ug)" /q.
Suppose that the average time from the completion of a
Bernoulli trial to the completion of the next Bernoulli trial is
tp; this quantity primarily reflects the time between succes-
sive insertion/deletion requests and is assumed to be essen-
tially constant. Then the expected time to execute phase 2 is
approximately T5(q) = t,(M' — |R|q)™ /q, and the expected
total time required to resize a sample is approximately equal
to T'(q) = T (q) + T2(q)- R

We now choose ¢ = ¢*, where ¢* minimizes the function 7.
To compute ¢*, first compute the value qo € (|R|/M, |R|/M")
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such that 7”(go) = 0, which is easily seen to be

(1+40)Y2 -1
By R (8)

where 0 = (t./tp)(|R|/M"). Then ¢* is equal to either qo,
M/|R|, or M'/|R|, depending upon which of the quantities
T(qo0), T(M/|R]), or T(M'/|R]) is the smallest.

It is possible to modify the above cost formulas to deal
with different systems and applications not covered by our
analysis. For example, suppose that the dataset is stored
and retrieved in blocks of b > 1 items, as is typical for re-
lational tables in commercial RDBMS. Then we can modify
our analysis of the phase 1 cost as follows. Let ¢, now de-
note the cost of retrieving a block of items. When |R| > |S],
so that the probability of an accessed item being rejected
during phase 1 sampling is negligible, a Cardenas-type ar-
gument shows that the approximate cost of phase 1 is

a ta‘R‘ (]l\?(uqlg)>
Ti(g) = 2 (1 - .
YT ( ()

The foregoing method for choosing ¢ assumes that inser-
tions are the only operations performed on the dataset. The
analysis becomes much more complicated in the presence of
deletions. Due to space limitations, we leave a detailed study
of this topic for future work, and content ourselves here with
outlining a simple approach that appears to be promising.
We assume that requests arrive every t; time units as before,
and that with probability p > 1/2 the request is an insertion
and with probability (1 — p) the request is a deletion—p can
be estimated from observations of the transaction stream
~. In phase 2, the expected change in the dataset size at
each stepis p- 1+ (1 —p) - (—=1) = 2p — 1, so that the ex-
pected number of steps to increase the dataset size by 1 is
roughly equal to 1/(2p — 1). Recall that, in the insertion-
only case, the number of Bernoulli trials in phase 2 equals
the number of items added to the dataset. Thus, roughly
1/(2p — 1) times as many steps are required, on average,
to finish phase 2 in the presence of deletions. We therefore
replace Th(q) by 15 (q) = Ta(q)/(2p — 1) and proceed as
above.

do =

5. EXPERIMENTS

We conducted an experimental study to evaluate the sta-
bility and performance of the RP scheme with respect to the
various algorithms mentioned in Section 2. Furthermore, we
measured the quality of the estimation method for ¢* used
for resizing. In summary, we found that RP has the follow-
ing desirable properties:

e RP produces more stable sample sizes than any other
algorithm that does not access base data.

e When the fluctuations of the dataset size over time
are not too large, RP produces sample sizes that are
as stable as those produced by slower algorithms that
access the base data.

e RP is as least as fast as any other sampling scheme,
and clearly outperforms any sampling scheme that re-
quires access to the base data.

For the resizing algorithm, we found that



e The cost function T(q) is almost indistinguishable from
the “exact” cost function T'(¢) that is derived without
using the approximation P { U = u4 } = 1 and without
approximating the function H. Thus the value q* that
is obtained by minimizing 7T is essentially identical to
the exact value ¢* that is obtained by minimizing T;
computation of ¢* requires numerical optimization al-
gorithms, so that computation of ¢* is both faster and
easier to implement.

e The time needed for resizing has low variance, so that
the algorithm has stable performance.

5.1 Experimental Setup

We implemented the new RP algorithm, as well as the
CAR, CARWOR, BSP, and RSR schemes, using Java 1.5.
We employed an indexed in-memory array to efficiently sup-
port the deletion of items—such an index is mandatory for
any serious implementation of sampling schemes subject to
deletions.

All of the experiments used synthetic data; since our focus
is on uniform sampling of unique data items, the actual data
values are irrelevant. We ran our experiments on a variety
of systems, and measured the number of operations instead
of actual processing times in order to facilitate meaningful
comparisons. Because the sampling algorithms in this pa-
per can potentially be used in a wide range of application
scenarios, our approach has the advantage that the results
reported here can be customized to any specific scenario by
appropriately costing the various operations. For example,
if the base data corresponds to a single relational table, then
access to this data can be costed more cheaply than if the
base data is, say, a view over a join query. Unless otherwise
stated, a reported result represents an average over at least
100 runs.

We assumed that the deletions and insertions are clustered
into chunks of b operations, and simulated the sequence of
dataset operations by randomly deciding whether the next
b operations are insertions or deletions. Our default value
was b = 1, but we also ran experiments in which we sys-
tematically varied the value of b to investigate the effect of
different insertion/deletion patterns.

5.2 Sample Size

We evaluated the stability of the sample sizes for the vari-
ous algorithms by executing a randomly generated sequence
of 5,000,000 operations while incrementally maintaining a
sample with a target size (and upper bound) of 100,000
items. To create a scenario in which the dataset of interest
is reasonably large, we restricted the first 1,000,000 opera-
tions to be insertions only. We used a lower bound of 80,000
tuples for the RSR algorithm, and an adjustment formula of
q' = 0.8q for the purge step of the BSP algorithm. The goal
of this experiment is to illustrate the qualitative behavior
of the algorithms, and so we did not average over multiple
runs. For each algorithm, we plotted the sample size as it
evolved over time.? The upper part of Fig. 2 displays results
for all sampling schemes that access the base data, and the
lower part displays results for algorithms that do not require
base-data accesses.

As can be seen, CAR and CARWOR are optimal, since
they are able to maintain the sample at its upper bound.

"We use “time” and “number of operations” synonymously.
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Figure 2: Evolution of sample size over time

These algorithms, however, need to access the base data.
RSR also needs to access the base data, but the sample size
is less stable than that of CAR or CARWOR. Comparing
algorithms BSP and RP, which do not need to access the
base data, we see that the sample sizes produced by RP are
almost indistinguishable from those of CAR and CARWOR.
Interestingly, the sample sizes produced by BSP fluctuate in
roughly the range [0.8M, M] during the startup period (of
insertions only), and stabilize at a value strictly less than M
thereafter. Indeed, it turns out that BSP does not alter the
sampling fraction once the startup period is finished, as long
as the sample size does not exceed M. If we were to increase
the constant in the adjustment formula ¢’ = cq to ¢ > 0.8,
the sample sizes would be larger, but then the frequency of
sample purges would increase, also. Finally, observe that
the curves for RSR and BSP have opposite shapes due to
the nature of the underlying algorithms.

We next measured the time-average sample size for a range
of dataset sizes, providing further insight into the impact of
deletions. For each dataset size, we used a sequence of in-
sertions to create both the dataset and the initial sample,
and then measured changes in the sample size over time as
we inserted and deleted 10,000,000 items at random. The
results are shown in Fig. 3. Again, RP performs comparably
to CAR and CARWOR, in that it maintains a sample size
close to the upper bound M. In contrast, the time-average
sample sizes for BSP and RSR are smaller than those of
the other algorithms. The reason for this behavior is that
whereas the reservoir-based approaches continually adjust
the sampling fraction, the value of ¢ used by BSP is ad-
justed at only at certain points of time, i.e., during the purge
step. As indicated in Fig. 2, the frequency of such purges
is low if the fluctuations in the dataset size over time are
not too large (see also the discussion below). Much of the
time, therefore, the sample size produced by BSP passively
tracks the dataset size, and consequently fluctuates more
than algorithms that continually adjust the sample size in
an active manner. As a result of this behavior, the sampling
rate of BSP is often smaller than the optimal value M/|R)|.
Similarly, the RSR algorithm actively adjusts the sample



100
.
)
) i A . )
7 A A
[ I i H il ! A
E oo o il i I
g9 g 4 b il i i i
bodi P i i
0 i \g P I i / /o
3 Vgt [T i F
15 O S T I A A Y A R b !
= [ B i i /] i
E g b nbhgip L ST N O S S B i
H “,‘.,11” fhef 1 . el P 17 i T 1 /
g I U T R T i i
= A T O N R R A B i i /
A et b ! i/ [
[} [ N A WA i i . [
—~ ij i P [ i (i
= 85 [N }’ [Tl "’ i i ! //
g i i [T i i/ i !
| i i i i / /
) [ [ A il I i/ L
n | { i ! y i !
» 80 ‘ g
0 RP —— RSR -~
z CAR BSP -
75 . . . . ,
0 2 4 6 8 10

Dataset Size (millions)

Figure 3: Dataset Size and avg. sample size

100
>
<
=]
g 9
Qo
=
= e
S
7 90 =Y
9
= RP ——
g CAR — .
0 85! CARWOR ------- \
& RSR X
Z BSP ———- \
RPR \
80 -

20 . 2‘2 . 24 2‘6 . 2‘8 . 2i0 . 2i2 . 2i4 . 2i6 . 2i8 . 2é0
Cluster Size

Figure 4: Cluster size and avg. sample size

size only periodically, but in contrast to BSP, the average
sample size is independent of the dataset size.

The foregoing experiments use a cluster size of b = 1,
which means that the fluctuations in the dataset size are
relatively small. We expect that, when the dataset size fluc-
tuates heavily, so does the sample size when base-data access
is disallowed. For example, the sample size produced by RP
depends on the number of uncompensated deletions, which
in turn is determined as the difference between the current
dataset size and the maximum dataset size seen so far. To
study this effect experimentally, we varied the magnitude of
the fluctuations by varying the cluster size b. We started
with a dataset consisting of 10,000,000 items and a sample
size of 100,000. We then performed 22% operations and av-
eraged the sample size after every b operations. The results
for different values of b are shown in Fig. 4.

As can be seen, the sample sizes produced by algorithms
that access base data are independent of the cluster size,
whereas those produced by algorithms that avoid base-data
accesses depend on the cluster size. For these latter algo-
rithms, the higher the variance of dataset size, the lower the
average sample size. RP performs better than BSP, because
RP continuously adjusts the sampling fraction. However,
due to high peaks in dataset size, RP as well as BSP may
fail to maintain a sufficiently large sample if the cluster size
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Figure 5: Cluster size and relative cost

is large with respect to the dataset size. In this extreme case,
base-data access is required in order to enlarge the sample.
A combination of RP and resizing (RPR) can handle even
this situation while minimizing accesses to the base data.’
Note that RPR guarantees a lower bound on the sample size,
whereas BSP and RP do not.

In a final experiment, we measured the overall cost of the
various sampling schemes relative to the average sample size
produced by them, for various cluster sizes. (Our cost model
is described in the next section.) The results are shown in
Fig. 5. RSR performs worst since it is expensive and pro-
duces a non-optimal sample size; both CAR and CARWOR
are more stable and less expensive. Overall, the sampling
schemes that do not access base data are clearly superior.
Though RP and BSP have approximately the same relative
cost, RP produces larger samples. As indicated above, RPR
performs comparably to RP when the cluster sizes are rea-
sonably large. The extra cost of RPR come into play when
the database size fluctuates very strongly. Indeed, when the
cluster size exceeds 2%°, the sample is refilled after almost
every deletion block, and RPR reduces to CARWOR.

5.3 Performance

To evaluate the relative cost of the sampling algorithms,
we ran them using different dataset sizes while counting the
number of dataset reads and sample writes. These two fac-
tors strongly influence the performance of the algorithms.
Again, we created a sequence of 10,000,000 insertions and
deletions and averaged the results over various independent
runs.

Fig. 6 depicts the number of accesses to base data for
the different algorithms. Because it must periodically re-
compute the entire sample, RSR requires more base-data
accesses than any other sampling scheme. Both CAR and
CARWOR perform better than RSR, with CARWOR in-
curring more base-data accesses than CAR due to dupli-
cate removal. All of these algorithms require fewer accesses
to a larger dataset than to a smaller one because, for a
bounded-size sample, the effective sampling fraction drops
with increasing dataset size, so that frequency of deletions

Tt is not meaningful to extend BSP with resizing since—
with high probability—BSP purges the sample immediately,
thereby undoing the sample enlargement.
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from the sample drops as well. Note, however, that if large
datasets are subject to modifications more often than small
ones, then this effect may vanish. Finally, observe that, be-
cause neither RP nor BSP ever requires access to the base
data, their cost curves are indistinguishable from the z-axis.

Fig. 7 shows the number of write accesses to the sample
for the different sampling schemes. Again, RSR is the least
efficient algorithm, because every recomputation completely
flushes the current sample and refills it using base data.
The other algorithms perform comparably, with BSP being
slightly more efficient.®

Fig. 8 shows the combined cost of sample and popula-
tion accesses, assuming that the latter type of access is ten
times as expensive as the former. (In many applications, the
relative cost of population accesses might be significantly
higher.) Again, BSP is the only competitor to RP, but as
already shown, RP yields more stable sample sizes. If the
sample size of BSP were increased to compensate for this
effect, then RP would be more efficient.

5.4 Resizing

We next evaluated the error incurred by approximating
the cost function T'(q) by the more tractable function T'(q),

5The curves for CAR, CARWOR, and RP coincide.

605

100

RP ——
! CAR --------
o CARWOR ---------
@ RSR
g % BSP —---
= 10 %
;é/
2
Q
O
= 1 e
b T
=
0.1 . . e .
0 2 4 6 8 10
Dataset Size (millions)
Figure 8: Combined cost
1200 |, ‘ N o !
q = % @ =qo = %
1000
o
<
g 800
O
?
¥ 600
i
=
= 400
S
B i
200 i Approximate
1 Exact --------
Real --------
0 ‘ ‘
0 0.5 1 1.5 2 2.5 3

Dataset Size (millions)

Figure 9: Cost for resizing

assuming that both ¢, and ¢, are known exactly and that all
operations are insertions. We used initial and final sample
sizes of M = 100,000 and M’ = 200,000, respectively, and
set to = 10ms and ¢, = 1ms. Besides computing T'(¢) and
T(q)7 we computed the “real” cost based on the above values
of t, and t; and the actual number of insertions required to
complete phase 2 of the resizing algorithm. Fig. 9 depicts the
expected cost, its approximation, and the average real cost
over 100 independent experiments, along with the variance,
all for a range of different dataset sizes. We used the value
of ¢* as the input parameter for the resizing algorithm. As
indicated by the figure, the cost of resizing has low variance;
indeed, the error bars are too small to be visible. It can also
be seen that T'(q) and T'(¢q) are almost indistinguishable.
The interpretation of the vertical dashed lines in Fig. 9
is as follows. For dataset sizes below the lower threshold,
the resizing algorithm sets ¢* = M/|R| and initializes the
Bernoulli sample as approximately equal to the current sam-
ple S, thereby avoiding base-data accesses and shifting the
sampling work to phase 2. The total resizing cost for dataset
sizes in this region is approximately t, ((M'/M) —1)|R|. As
the dataset size increases, the algorithm sets ¢* = ¢o as in
(8), and thereby shifts an increasing share of the work to
phase 1. When the dataset size exceeds the upper thresh-
old, the resizing algorithm sets ¢* = M'/|R| and simply



fills up the sample by drawing items from R \ S, in which
case the total cost for resizing is approximately ¢, (M’ — M).
As can be seen, this algorithmic behavior implies that the
cost of the resizing algorithm is, to a good approximation,
a nondecreasing function of |R| that levels off at the value
to(M' — M).

6. SUMMARY AND CONCLUSIONS

Techniques for incrementally maintaining samples over
“datasets”—whether relational tables, views, XML repos-
itories, or other data collections—are crucial for unlock-
ing the full power of database sampling techniques. We
have systematically studied algorithms for maintaining a
random sample under arbitrary insertions and deletions to
the dataset. For stable datasets in which the dataset size
does not undergo extreme fluctuations, our new RP algo-
rithm, which generalizes both reservoir sampling and “pas-
sive” stream sampling, is the algorithm of choice with re-
spect to speed and sample-size stability. In the presence of
severe fluctuations in the dataset size, RP can be combined
with resizing or resampling algorithms to achieve acceptable
sample sizes while minimizing expensive base-data accesses.
For growing datasets, our new resizing algorithm permits the
sample size to grow in a controlled manner. For insert-only
environments, we have developed effective methods for op-
timally tuning the algorithm to minimize the time required
for resizing. In future work, we plan to extend these tun-
ing techniques to the general setting. We also plan to look
at methods for parallelizing our sampling technique and for
handling large disk-based samples, perhaps by combining
the current algorithms with those in [4], [8] and [17].
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