
Composite Subset Measures

Lei Chen1, Raghu Ramakrishnan1,2, Paul Barford1, Bee-Chung Chen1, Vinod Yegneswaran1

1 Computer Sciences Department, University of Wisconsin, Madison, WI, USA
 2 Yahoo! Research, Santa Clara, CA, USA

{chenl, pb, beechung, vinod}@cs.wisc.edu ramakris@yahoo-inc.com

ABSTRACT
Measures are numeric summaries of a collection of data records
produced by applying aggregation functions. Summarizing a col-
lection of subsets of a large dataset, by computing a measure for
each subset in the (typically, user-specified) collection is a funda-
mental problem. The multidimensional data model, which treats
records as points in a space defined by dimension attributes, offers
a natural space of data subsets to be considered as summarization
candidates, and traditional SQL and OLAP constructs, such as
GROUP BY and CUBE, allow us to compute measures for subsets
drawn from this space. However, GROUP BY only allows us to
summarize a limited collection of subsets, and CUBE summarizes
all subsets in this space. Further, they restrict the measure used to
summarize a data subset to be a one-step aggregation, using func-
tions such as SUM, of field-values in the data records.
In this paper, we introduce composite subset measures, computed
by aggregating not only data records but also the measures of other
related subsets. We allow summarization of naturally related re-
gions in the multidimensional space, offering more flexibility than
either GROUP BY or CUBE in the choice of what data subsets to
summarize. Thus, our framework allows more meaningful sum-
maries to be computed for a targeted collection of data subsets.
We propose an algebra called AW-RA and an equivalent pictorial
language called aggregation workflows. Aggregation workflows
allow for intuitive expression of composite measure queries, and
the underlying algebra is designed to facilitate efficient multi-scan
execution. We describe an evaluation framework based on multi-
ple passes of sorting and scanning over the original dataset. In
each pass, several measures are evaluated simultaneously, and
dependencies between these measures and containment relation-
ships between the underlying subsets of data are orchestrated to
reduce the memory footprint of the computation. We present a
performance evaluation that demonstrates the benefits of our ap-
proach.

1. INTRODUCTION
In the multidimensional model of data, records in a central fact
table are viewed as points in a multidimensional space. Attributes
are divided into dimension attributes, which are the coordinates of
the data point, and measure attributes, which are values associated
with points. The domain of values for each dimension is organized

into a hierarchy, leading to a very natural notion of multidimen-
sional regions. Each region represents a data subset. Summarizing
the records that belong to a region by applying an aggregate opera-
tor, such as SUM, to a measure attribute (thereby computing a new
measure that is associated with the entire region) is a fundamental
operation in OLAP.
Often, however, more sophisticated analysis can be carried out
based on the computed measures, e.g., identifying regions with
abnormally high measures. For such analyses, it is necessary to
compute the measure for a region by also considering other re-
gions (which are, intuitively, “related” to the given region) and
their measures. In this paper, we introduce composite subset meas-
ures, which differ from the traditional GROUP BY and CUBE
approaches in three ways:
1) The measures for a region can be computed as the summaries

of other “related” regions in a compositional manner. The re-
lationships capture various types of proximity in
multidimensional space.

2) In contrast to the CUBE construct, we do not offer a way to
compute the summary of every region; this is typically over-
kill for the kinds of complex measures we seek to compute.

3) The language and algebra are carefully designed to enable
highly scalable, parallelizable, and distributed evaluation
strategies based on streaming the data in one or more passes,
possibly with interleaved sorts.

This study is motivated by our ongoing work in two different ap-
plication domains: environmental monitoring [18] and analysis of
network traffic data [7]. Similar problems have been faced by
researchers dealing with data at Internet companies such as Google
and Yahoo!, leading them to also develop systems for scalable
aggregation of tabular data [10,17,22]. In contrast to the proposal
in [22], we explore a declarative, query-style approach in the spirit
of OLAP constructs such as [4, 14, 19,20, 26]. Further, the focus
of [10] is a highly parallelizable, distributed evaluation framework
for simple one-step aggregation queries. This is an issue that we
do not tackle in this paper, but such highly distributed computation
has been a strong consideration in the design of our language, and
we intend to address it in future work. In keeping with this goal,
we have avoided implementation choices that require us to assign
unique ids to records or to maintain indexes over (potentially
widely distributed) tables, and focused on evaluation strategies
that orchestrate aggregation steps across one or more scans of data
(partitions).
Consider the following network traffic analysis example. Self-
propagating worm outbreaks have the potential to wreak havoc in
the Internet, and can take place on a variety of time scales. We can
potentially identify new outbreaks based on the escalation of the
traffic into a network from one time period to the next. This kind
of escalation, which is defined on a per-time period and sub-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special per-
mission from the publisher, ACM.
VLDB ‘06, September 12–15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

403

network basis, is a composite measure built on the traffic measures
for two adjacent time periods.
When used to compute composite measures, existing tools, such as
relation algebra or multidimensional query languages, frequently
result in nested expressions that are hard for human analysts to
understand and for the processing system to optimize. Further,
their use requires us to import data into a DBMS, which can itself
be a challenge for very large datasets [10]. Our goal is to develop a
standalone, lightweight yet highly scalable analysis system that
supports composite measure queries.
Our contributions are as follows:
1) We propose a pictorial language (called aggregation work-

flows) and algebra for expressing composite aggregation
queries and representing streaming plans for such queries.

2) We show that any query in our language can be expressed in
our algebra, and present a comprehensive framework for
highly scalable, scan-based evaluation in one or more passes.
We show how to exploit sorting between passes and orches-
tration of dependencies between different aggregation steps.

3) We present an evaluation that demonstrates the potential of
our methods for significant performance gains over tradi-
tional relational approaches.

This work is a first step in our broader research agenda to develop
efficient, streamlined tools for domain specialists to mine large,
complex datasets. The complete, technical report version of this
paper [8] discusses the optimization problem of finding good
multi-pass streaming plans and describes a greedy optimizer.
Beyond that, the approach offers potentially unlimited parallelism
and ability to distribute computation, but our current implementa-
tion does not take advantage of these opportunities.
The rest of the paper is organized as follows. In Section 2, we
describe the dataset for the running example, and define the main
concepts underlying the multidimensional model, including do-
mains, domain hierarchies, and regions. In Section 3, we introduce
composite subset measures and the algebra, AW-RA. In Section 4,
we describe the pictorial language of aggregation workflows and
consider translation into AW-RA. We describe the evaluation
framework in Section 5, and discuss query optimization briefly in
Section 6. Experimental results based on synthetic as well as real
datasets and workloads are presented in Section 7. We discuss
related work in Section 8, and conclude in Section 9.

2. DEFINITIONS AND EXAMPLE DATA
Attacks and intrusions in the Internet are increasing in both vol-
ume and diversity, and represent a significant threat to
government, industry, academia and home users writ large. De-
veloping effective and efficient means for identifying a broad
range of cyber threats is a focus for our work. We will use the
network intrusion logs from Dshield.org [11] as a running example
in this paper. This dataset is collected continuously from over
1,600 networks world wide, and contains normalized records of

attack packets identified in each network. Table 1 lists the attrib-
utes used in our examples.
The schema of a multidimensional dataset with d dimension
attributes has a dimension vector X = (X1, X2,…, Xd), and possibly
additional measure attributes. While there are no explicit measure
attributes in the Dshield dataset, they are typical in multidimen-
sional datasets. Each record r in is denoted as a tuple of
dimension values followed by measure values, if any: r =
(x1,x2,…, xd, m1,…), where xi is the value for dimension attribute
Xi. In the Dshield dataset, X = (Time, Source, Target, TargetPort),
which is abbreviated as X ={t,U,T,P}.

2.1 Domains and Domain Hierarchies
A base domain Dbase(Xi) is associated with each dimension attrib-
ute Xi. For example, the base domain for attributes Source and
Target is 4-byte integers, and the base domain for Time is the
number of seconds since the first second of 1970 (UNIX time).
A base domain can be generalized. For example, we can
generalize the base domain of Source IP into the /24 subnet
domain (256 contiguous IP addresses). Each value in this domain
is a 3-byte integer representing one /24 subset. Given two domains
Di and Dj, Di <D Dj indicates that Dj is a domain generalization of
Di; we also say that Di is more specific than Dj.
All the domains associated with a given dimension attribute form a
domain generalization hierarchy, which is a directed acyclic graph
(DAG). Each node in this graph represents one domain. The rela-
tionship <D defines a partial order in the graph. Di<DDj, if there is
an arc chain from Dj to Di. A domain hierarchy is linear when the
domain hierarchy graph forms a single path. For any dimension
attribute, there is a special domain called DALL with a single value
ALL, which is the generalization of all possible values for the
given dimension. Figure 1 illustrates the domain hierarchies for
the Dshield dataset. The domain hierarchies for TargetPort, Source
and Target are linear, whereas the domain hierarchy for Time is
non-linear since a week might span across two months. To sim-
plify the discussion, in the rest of this paper, we will ignore the
Week domain and treat Time as a linear attribute. In this paper, we
will only use dimension with linear hierarchy domain hierarchy.

The collection of all domains associated with a dimension attribute
Xi is denoted as Hier(Xi) = {DXi

(0),DXi
(1) ,…,DXi

(t)}, where DXi
(0) =

Dbase(Xi) and DXi
(t) = DALL. For example, Hier(Time) = {Second,

Hour, Day, Month, Year, DALL}. The extended domain for a given
dimension attribute is the union of all its associated domains,
which is denoted as EXi = 1 k t DXi

(k). For any value x EXi, the
function (x) returns the domain to which x belongs. For example,
 (2002) = Year (2002-02-14) = Day. To avoid confusion, we

assume that there is no overlap between two different domains
associated with same attribute.

Table 1. The Schema for the Network Log Dataset

Name Description Abbreviation
Timestamp Packet arrival time t
Source The source IP address U
Target The target IP address T
Targetport The target port P

Figure 1. Domain Hierarchies for the Network Log Data

404

For Di <D Dj, we can define a many-to-one value generalization
function Dj that maps value x Di into 'x Dj. For example, /24

subnet (120.322.32.4) =120.322.32. We require the value generaliza-
tion functions to be consistent: given xi Di, xj Dj, xk Dk and Di
<D Dj Dj <D Dk, if Dj(xi)=xj, Dk(xi)=xk, then Dk(xj)=xk.
Using the value generalization function for a given dimension
attribute, we can construct a value hierarchy graph in which each
node represents a value in the extended domain of the dimension
attribute, and arcs represent the value generalization mapping.
Figure 2 illustrates the value hierarchies for the Dshield dataset.
The following observation is used later for query evaluation:
Proposition 1: For a given attribute, if the domain hierarchy is
linear, which means the value hierarchy graph is a tree, then there
is a total order in the extended domain EXi such that for u, v

EXi, u v Du Dv, for all D s.t. (u)<DD and (v)<DD .
(see [8] for proof)
For certain dimension attributes, such as Timestamp, there is a
natural order over domain values that satisfies the above property.
If such an order does not naturally exist, we can encode the values
in the extended domain so as to impose such an ordering over the
encoded domain; when the number of distinct values in the ex-
tended domain is not too large, the encoding/decoding operations
can be carried out very efficiently.

2.2 Cube Space, Regions and Region Sets
The cube space of a dataset denoted as = EX1 EX2 … EXd,
is a d-dimensional space. A region c = (v1,v2,…,vd), vi EXi, is a
hyper-rectangle which covers a data subset. The granularity of the
region is specified by the granularity vector gran(c) = (X1: (v1),
X2: (v2),…, Xd: (vd)), where (vi) Hier(Xi). We use G to repre-
sent the relations between two granularity vectors. For two
granularity vector G1 and G2, G1 <G G2 implies 1 2, . .i iDi G D G D .
To simplify the notation, we often omit attributes for which the
domains are DALL in the granularity vector. So (U:IP) is an equiva-
lent expression to (t:DALL,U:IP,T:DALL,P:DALL).

A region c covers a subset of the original data set, denoted as

coverage(c) = {r | r i, (c.vi) (r.Xi) = c.vi }
A region c1 is the parent of another region c2, denoted as c2 C c1,
if 2 1, . .i D ii c D c D 2 1(.) .i ic X c X .

The region set [X1:D1,…,Xd:Dd] (we use square brackets to denote
region sets and parentheses to denote granularity vectors) is the set
of all regions in cube space with same granularity, i.e., {c |
c gran(c)=(X1:D1,…,Xd:Dd)}. For example, the region set
[U:IP, T:IP] contains all the regions, with each region covers the
data records sharing same source and target IP addresses.

3. COMPOSITE SUBSET MEASURES
In this section, we introduce the concept of composite subset
measures and propose the algebra for computing them.

3.1 Examples of Composite Measures
Composite subset measures are defined on regions in cube space.
For a typical analysis, we want to compute the measures for all
regions with the same granularity (i.e., a region set) and identify
regions with interesting measure values. We illustrate with five
example queries, expressed as intuitive calculus formulas.
Example 1 (Traffic counting): For each hour, compute the outgo-
ing packets from every source IP.

[t : Hour,U : IP]c , c.Count = |coverage(c)|

The measure is computed by aggregating the data records in the
coverage of a region. It can be simply answered via a GROUP BY
aggregation, in which the data table is first partitioned by the time
and source attributes, and the measure for each group is computed
by aggregating the measures for individual records in that group.
Strictly speaking, this measure is not a composite measure.
Example 2 (Busy source count): For each hour, compute the num-
ber of sources which have at least five outgoing packets.

c [t:Hour],
c.sCount=|{c' [t:Hour, U:IP], c.t=c'.t, c'.Count > 5}|
The measure is constructed by composing the measures from the
previous example. For each region c, we first identify all child
regions (c') that satisfy the condition on the number of outgoing
packets, and then count satisfactory child regions.
Example 3 (Busy source traffic): For each hour, compute the traf-
fic generated by those sources with at least five outgoing packets.

c [t:Hour],
c.sTraffic=sum{c'.Count|c' [t:Hour, U:IP], c.t=c'.t, c.Count > 5}
This example is the same as Example 2, except that a different
aggregation function is used.
Example 4 (Busy source count moving average): For every six
hour time window, compute the average of the hourly count for
busy sources.

c [:]t Hour
c.avgCount=average{c'.sCount|c' [t:Hour], c'.t [c.t, c.t+5]}
In this example, the measure avgCount for a region is evaluated
based on the measures of regions that share the same granularity
and are “near” the original region in cube space.
Example 5 (Ratio): For every hour, compute the ratio between the
average of six hour busy source count and the average traffic car-
ried by a busy source in that hour.

c [:]t Hour , c.ratio= .
. / .

c avgCount
c sTraffic c sCount

This example differs from the previous example in that the new
measure does not directly depend on the measures of other re-
gions. Instead, it is computed by combining multiple measures for
the same region.
It is not hard to see that the above examples can be answered by
combining relation algebra operators (e.g., selection and join) and
the aggregation operator. However, using relational algebra to
express composite subset measures has several disadvantages:
Relational algebra, when applied to composite subset measures,
typically results in cumbersome expressions, since almost every
processing step requires at least two operations (join and aggrega-

(a)Targetport (b) Source/Target
Figure 2. Value Hierarchies for Network Data

405

tion). Once the algebra is translated into SQL, the resulting query
often contains multiply nested sub-queries, making it both hard to
understand and difficult to optimize.
On the other hand, multidimensional data query languages, such as
MDX [20], make it easy to write queries that aggregate records in
regions of cube space, but for complex compositional measure the
result expression is still very complicated.

3.2 AW-RA Algebra
We introduce a new algebra called Aggregation Workflow Rela-
tional Algebra (AW-RA) that is designed for expressing composite
subset measure queries. While an AW-RA expression can be re-
written in relational algebra with a GROUP BY aggregation
extension, it allows us to write composite measure queries suc-
cinctly, and exposes opportunities for efficient scan-based
evaluation plans.

Recall that X is the dimension vector for the given cube space. G
= (X1:D1, X2:D2, ..., Xd:Dd) is the vector that is used to indicate the
granularity of a region. The measures for regions having the same
granularity can be stored in a table T. The schema of T is T:<G,
M>, where G is the granularity vector and M is the measure attrib-
ute. T.Di is the domain associated with dimension attribute Xi and
T.Xi is the value of dimension attribute. T.Xi T.Di. .T X is the
abbreviation of <T.X1,...,T.Xd>.
AW-RA expressions produce tables representing composite meas-
ures. Each table represents one measure for regions that share the
same granularity. Let denote the collection of expressions that
can be generated via AW-RA, then can be constructed based
on the following rules:

1. Fact Table. The fact table D is an atomic expression; D .
The schema for the fact table is D=<G0, M0>, with granularity
G0=< 0

1 1:X DX , 0
2 2:X DX ,..., 0:d dX DX >, where all dimension

attributes are defined over their base domains. M0 is the measure
defined over the raw data records.

2. Aggregation operator. If an expression T and there is a
granularity vector G=(X1:D1, X2:D2, ..., Xd:Dd) such that T’s granu-
larity is G G, we can "roll up" table T and produce a higher-level
aggregation. We use the notation , ()G aggg T to represent such an
operation. This is equivalent to the SQL query shown in Table 2,
where G .T X is the abbreviation of < D1 1.T X ,..., Dd . dT X

In Example 1, the measure Count is computed by directly aggre-
gating the fact table; it can be expressed as follows:

(: , :), (*)C t hour U IP countS g D (3.2.1)

In defining the aggregation operator, we assume that the value
mapping function (.)

iD iT X to be an atomic function. In real

world, dimension hierarchy information might be stored in dimen-
sion tables. In order to perform a value mapping between two
different domains, we then need to lookup the dimension table.

However, since a dimension table is typically much smaller than
the fact table and can usually be stored in memory for efficient
lookup, it is reasonable to treat them as inexpensive functions.

3. Selection operator. If an expression T , then a selection
cond (T) . Examples 2 and 3 can be expressed as follows:

(:), (*) 5()S t hour count M CS g S (3.2.2)

(:), (.) 5()
CT t hour count S M M CS g S (3.2.3)

Notice that the expression SC is defined in (3.2.1), which is used
here as the source of the composition.
4. Match join A composite measure is typically generated based
on the measures of other, related, regions. If the related regions are
descendants of the given region, we can use the aggregation opera-
tor. Otherwise, we need a new operator, match join.
We can join two algebra expressions S, T and then group the re-
sults by the dimension attributes of S. We use the notation

,| cond aggS T to indicate the match join operation, which is
equivalent to the SQL query in Table 3.

LEFT OUTER JOIN is part of SQL-92 standard; when there is no
matching tuple in the outer relation for a tuple in the inner, the join
will produce a filler tuple with all outer attributes equal to NULL.
Using match join, we can express Example 4 as follows:

' '
'

(. .), (.)|
S S S

avg S SS t S t avg S MS S S (3.2.4)

We use '
SS as an alias of SS to avoid confusion in the expression.

The join condition cond(S, T) matches rows in S with rows in T.
While the join condition can be arbitrary, in practice some types of
join conditions are common, as we discuss later.
5. Combine Join. If a collection of expressions S, T1, T2,..,Tn
satisfies the following conditions:

 (1) S, T1, T2, ..., Tn
 (2) S.G = T1.G = T2.G = ... = Tn.G
 (3) None of these expressions is D or (D)
We can combine their measures and construct a new composite
measure. This is done by equi-joining these tables on the dimen-
sion attributes. Since none of the Ti is either D or a selection over
D, each unique value combination of the dimension attributes will
appear at most once in the table. We denote this operation
as 1 2(, ,...,)fc nS T T T , where fc is the function used to combined
different measures. The equivalent SQL is shown in Table 4.

Table 2 Equivalent SQL Query for the g operator

SELECT .G T X , agg(T)
FROM T
GROUP BY .G T X

Table 3 Equivalent SQL Query for the | operator

SELECT .S X , agg(T)
FROM S
LEFT OUTER JOIN T ON cond(S, T) = true

GROUP BY .S X

Table 4 Equivalent SQL query for the operator

SELECT .S X , fc(S, T1, T2, ..., Tn)
FROM S
LEFT OUTER JOIN T1 ON .S X = 1.T X
......
LEFT OUTER JOIN Tn ON .S X = .nT X

406

Using combine join, we can express Example 5 as follows:

. /(. / .) (,)
T Savg Savg M S M S M T SS S S (3.2.5)

Table 5 shows the summary of the atomic operators in AW-RA.
Notice that we deliberately exclude projection from the alge-
bra, since a table will not represent region measures if we drop
either the dimension attributes or the measure attribute.

Table 5. Summary of operators in AW-RA

Notation Prerequisite Name
D Raw fact table

()cond T T Selection

, ()G aggg T T , T.G <G G Aggregation

,| cond aggS T S,T S D or ()D Match join

1 2(, ,...,)fc nS T T T S,T1,...,Tn
S.G=T1.G=...=Tn .G
S,Ti D or ()D

Combine Join

Theorem 1. AW-RA has the following properties (proof in [8]):

Property 1:
1 2 1, , ,(()) ()G agg G agg G aggg g T g T if the aggregation

function agg is distributive.

Property 2:
1 2, ,(()) (())cond G agg G agg condg T g T , if the value

of cond1 only depends on the value of dimension attributes, and
cond2(X1,...,Xd) = cond1 (DX1,... , ..., DXd)

Property 3: (|S T) | U S | (T | U)

Property 4:

fcS 1 1,... , ,...,k k nT T T T ' 1 1,... , ,...,k k nfcS T T T T

where fc' is derived from fc and 1 1(,..., , ,...,)k k nfc v v v v
'

1 1(,..., , ,...,)k k nfc v v v v
Property 5:

1 2(, ,...,)fc nS T T T = 1 1((,...,))fc kS T T 1 1(,...,)fc k nT T , if we
can find decomposition functions fc1 and fc2 such that:

1 2(, , ,...,)nfc v v v v 2 1 1 1((, ,...,), ,...,)k k nfc fc v v v v v .

With match join ,| cond aggS T , we can match related regions
with different granularities and use the aggregation of their meas-
ures as a measure for the given region. In practice, four commonly
used join conditions are:

Self Match: : . .selfcond S X T X The source region is the same as
the target region. In such cases, the match join operator is equiva-
lent to a combine join operator.

Parent/Child: : (.) .pccond S X T X This condition is used when
the target region set has finer granularity than the source region
set. For each target region, we include the measure of its ancestor
region in the source region set in the input for the aggregation
function; i.e., the ancestor is the (only) matching region.

Child/Parent: : (.) .cpcond T X S X This condition is used
when S has coarser granularity than T. For each target region, we
include the measures of its descendants in the source region set as
input for aggregation, i.e., all such descendants are matching re-

gions. A match join with condcp is essentially equal to an
aggregation operator.

Sibling: condsb: . (.)T X NEIGHBOR S X The set
NEIGHBOR(.S X) denotes a collection of regions that are adja-
cent to .S X in cube space. The regions in the neighbor set have
the same granularity as .S G . For each target region, we include
the measures of “neighbor” regions as input to the aggregation. A
common example of sibling matches is the moving windows con-
dition: T.Xi [S.Xi-lowi, S.Xi+highi], where lowi and highi give the
boundary of attribute Xi in the neighbor set.

4. AGGREGATION WORKFLOWS
While AW-RA is a rigorous way to define region-centric compos-
ite subset measures, and more natural than relational algebra, it is
still not intuitive for complex queries. In this section, we present a
pictorial interface to address this issue.
An aggregation workflow is a graph that describes one or more
composite subset measures. It contains three types of objects: rec-
tangles that represent region sets; ovals representing measures and
the arcs representing the value dependencies.
Each rectangle in an aggregation workflow represents a region set
in cube space. It is associated with one or more ovals, each of
which stands for one measure table in AW-RA. The name of the
measure is shown inside the oval (with bold type), together with
the formula for aggregation and the optional selection condition.
If a measure is computed by applying the aggregation operator g to
fact table D, there is no computing arc entering that oval; such a
measure is called a basic measure. For example, the aggregation
workflow shown in Figure 3(a) computes a measure Count based
on the following algebra expression:

Count= (U:IP,t:Hour),count(*)g D (4.1)

When a measure is computed using values of other measures, the
value dependencies are reflected in the aggregation workflow as
computational arcs. For a given measure oval, if there is one com-
putational arc leading into it, that measure is then computed
compositely from other measures via aggregation or match join.
For example, the aggregation workflow in Figure 3(b) is equiva-

Figure 3. Examples of Aggregation Workflows

407

lent to the following AW-RA expression:

Count= (: , :), (*)U IP t hour countg D , (:),0base t HourS g D

Savg= (. .), (.)|
basebase Count t S t avg Count MS Count (4.2)

Since the match condition is a child/parent condition, we can also
use the simplified expression:

(:), (.)avg t hour avg Count MS g Count

The aggregation workflow in Figure 3(c) is equivalent to the fol-
lowing AW-RA expression:

Count= (: , :), (*)U IP t hour countg D , (:),0base t HourS g D (4.3)

 Savg= (. [. , . 5]), (.) 5| [()]
base basebase Count t S t S t avg Count M MS Count

In the above two examples, Sbase is an important auxiliary table. It
provides the cells for which the measures need to be computed and
appears in every the join condition associated with the arc.
If there are multiple computational arcs leading into the same oval,
it means that the corresponding measure is computed via combine
join. In this case, all the arcs should come from ovals of the same
rectangle, which represent measures for the same region set as that
for the target measure. For example, the aggregation workflow in
Figure 3(d) is equivalent to the following algebra expression:

MAXT= (:),max()U IP tg D , MINT= (:),min()U IP tg D

Ratio (:),0 (. .)() (,)U IP MAXT M MINT Mg D MINT MAXT (4.4)
Generalizing from these examples, we have the following result:
Theorem 2: Each measure in an aggregation workflow can be
expressed as an AW-RA expression. (Proof in [8].)
An aggregation workflow has the following benefits when used to
express composite subset measures:
1. It can show the complex internal value dependencies in a com-
posite subset measure query. Just like an ER-diagram summarizes
a relational schema, a pictorial diagram captures many complex
dependencies in a more intuitive manner.
2. It allows the analyst to include multiple measures within a sin-
gle workflow diagram.
3. Specific measures are easier to identify since all the measures
that are defined on the same region set are attached in the same
rectangle. Thus, if aggregation workflows were implemented as a
graphical user interface, the user could easily perform various
actions such as show/hide all the measures that are associated with
the same region set, show/hide measures associated with region
sets above/below a certain granularity, and show/hide all the meas-
ures that are involved in the computation of a given measure.

5. EVALUATION FRAMEWORK
Each composite measure query will typically correspond to multi-
ple correlated aggregation queries. There is considerable
opportunity to optimize execution by taking advantage of the con-
nections between them. In this section, we present a systematic
evaluation framework that exploits such connections.

5.1 The Single-Scan Algorithm
We begin with a single-scan algorithm, following [19]. This
method can evaluate all measures, including composite ones, by
scanning the raw dataset only once, but it might require massive
amounts of memory for large datasets.

The basic idea is to build one hash table for each measure, where
each entry in the table corresponds to one region. For a basic
measure, the entry contains the value of the measure. For a com-
posite measure as a result from match join or combine join, the
entry contains the values of source measures. We scan the raw
dataset once and evaluate the values for all the basic measures
simultaneously. If the aggregation functions are either distributive
or algebraic, we can accomplish this by probing the hash table to
update the corresponding entry. After the scan, we have the values
for all basic measures, and we can use these values to compute
dependent composite measures by topologically ordering the de-
pendent measures so that each is evaluated after all the measures it
depends on are finished. Since we don’t allow recursive measure
definitions, such an order always exists and can be obtained by a
topological sort of the aggregation workflow.

5.2 Streaming Aggregation Plans
The single-scan algorithm is effective only when the size of mem-
ory is big enough to hold all hash tables, which is unlikely to be
the case for large datasets, where both the number of hash tables
and the number of entries in each hash table can be very large.
The idea that we can reduce the memory requirement if we can
detect when a hash table entry will no longer be modified is re-
ferred to in [19] as “out-of-core processing” and in [2] as “base-
tuple completion.” But neither paper exploited this idea in any
detail. In this subsection, we study the evaluation graph induced
from an aggregation workflow and summarize a general evalua-
tion strategy.
Given a collection of AW-RA expressions, we can draw an
evaluation graph. Each node in the evaluation graph represents one
AW-RA algebra operator. Each arc in the evaluation graph repre-
sents a data flow, taking data produced by one operator and
feeding it into another operator as input.

Figure 4. Evaluation Graph for Example 5
The evaluation graph is a directed acyclic graph with a single
source. The unique source node represents the fact table D. All the
other nodes are reached from this unique node. Given the large
number of operators in the evaluation graph, if we can perform
certain operations on D which will benefit evaluation of the re-
maining operators, the query performance can be greatly
improved.
On the other hand, it is well known that in RA, a selection, join or
aggregation operator can be evaluated more efficiently if the input
data is sorted appropriately, because the result can be produced
before the end of the operation. Furthermore, when the input is
ordered, the operator can also produce output possibly ordered by
a different key, and the output order can benefit evaluation of sub-
sequent operators. The operators in AW-RA also have these useful

408

properties. So if we can scan the fact table D based on a specific
order, this order will propagate through the whole evaluation
graph and benefit the execution of all the operators.
When there is a data arc from one operator to another, the output
order of the first might lead to a large memory footprint for the
second. We face the choice of either (1) sticking with the original
output order and paying the cost of a large memory footprint, or
(2) caching the output of the first operator and re-sorting it. Fur-
ther, when multiple output streams are combined via match join or
combine join, there is the possibility that different input streams
might not be synchronized. The asynchrony is mainly caused by
the match join operator: if we use a sibling condition in match
join, then the resulting output stream might lag behind the input
stream. For example, when computing a six hour moving average,
the output result will have a six hour delay compared with the
input. In the next subsection, we discuss how to handle such asyn-
chrony by recording the “slack” of the stream.
A streaming aggregation plan sorts the fact table by a given order-
ing vector, and then propagates the ordered data into subsequent
operators, following the arcs in the evaluation graph. For each arc,
its order vector and the synchronization information are computed
before the query is evaluation. Based on this information, the total
memory footprint can be estimated before a plan is executed.
For a given operator, the input and output orders are related, as
explained next. We use order vector, or key,
K =<K1:D1,...,Km:Dm>, Ki {X1,...,Xd} and Di Hier(Ki), to indi-
cate how a data stream is sorted. For example, P=<t:hour, D:IP> is
an order vector which indicates data records is ordered first by the
hour and then by the source IP. An key vector 1K is said to be

more general than another key vector 2K if (1) 1K has fewer

elements than 2K , (2) 1 2i iK K , and 2 1i D iD D .

If the input order keys for an operator are 1 2, ,..., nK K K , then

fmemory(1 2, ,..., nK K K) indicates the minimum memory required for

computing the measure results. The function K out (1 2, ,..., nK K K)
is the most specific ordering vector the result could have, if the
memory usage is bounded by fmemory. In [8], we show that K out

will always be more general than any of the input vectors K i.
Every aggregation workflow has a streaming evaluation plan:
Theorem 3: Given an aggregation workflow and the ordering
vector for the raw fact table, there is a corresponding streaming
aggregation plan (see [8] for proof).
While the above claim gives us the big picture about how an ag-
gregation workflow can be converted into an executable streaming
aggregation plan, here we list several issues to be addressed and
the solutions that we provide in the rest of the paper.

1. How do we capture the asynchronization information for each
individual data stream? (Section 5.3)

2. How do we compute the output order of an operator, given
the order and synchronization of its inputs? (Section 5.3)

3. Given the input stream, what's the evaluation strategy for
each individual operator? (Section 5.3)

4. What happens if the memory budget is not big enough even
for the optimal sorting order? (Section 5.4)

5. How do we identify the sorting order which will result in
minimal memory footprint? (Section 6)

5.3 The One-Pass Sort/Scan Algorithm
Based on the streaming aggregation plan, there is a one-pass algo-
rithm that is capable of handling all composite subset measure
queries, given enough memory. The evaluation consists of first
sorting and scanning the dataset. (The question of how to choose a
good sort order will be deferred until Section 6) Processing a re-
cord requires us to update hash table entries for all basic measures,
as in the single-scan algorithm. In addition, we check for finalized
entries, which are those hash entries that will no longer be updated
in the rest of the scan, and propagate them to compute dependent
measures. The key issues to be addressed are:
1. Determine when a hash table entry is finalized based on the

order of the dataset.
2. Propagating such entries to compute dependent measures.
3. Updating the hash-table entry for a dependent measure upon

receipt of a finalized entry; we must keep the intermediate in-
formation until all finalized entries have been received.

5.3.1 Computation Graph
We begin by constructing an evaluation network based on the
streaming aggregation plan. Each node is associated with a hash
table that stores the intermediate aggregation result. (If the aggre-
gation function is distributive or algebraic, we only need to keep a
constant number of registers to track the intermediate aggregation
state.) Each edge is a computational arc indicating the data flow
between two operators. Each edge also has two labels, order and
slack, which we discuss below. Consider the example in Figure 5.

Conceptually, each node behaves like a stream data processor. Its
input streams are either the scanned data or the output streams of
underlying nodes, and the hash table at the node is updated as we
process records in the input streams. The node produces a result
stream consisting of finalized entries.
Each arc in the computation graph is associated with a stream. For
each stream, we have to determine two important properties—the
order and the slack. We label each edge in the evaluation network
with its order and slack, and identify finalized entries for each
node using these properties for the set of incoming streams.
Order: The order property describes how records are arranged in
a stream. Based on this information, we can make inferences about
the remaining records in the stream. For example, if we know that
a stream is ordered by year and we see a record with year equal to
2000, then all the future records will have time value not less than
year 2000. In general, the dataset can be sorted by the order vector.
For example, if the key is <t:Day, T:IP. U:IP>, the dataset is sorted

Figure 5 Evaluation Network

409

in ascending order of day, with source IP as the first tie breaker
and target IP as the second tie breaker. Consider this example:

(: , : , :), (*)t day T IP U IP countS g D

This query computes the number of packets from a source IP to a
target IP in a given day. Suppose that the underlying dataset is
sorted by key <t:Month, T:IP, U:IP>. We know that all entries in
the hash table are finalized whenever the target IP for the current
scanned data record changes, since for the current source/target
combination, all records scanned subsequently will have a higher
value for month (and thus, also for day). The maximum memory
footprint is 31, which is the maximum number of days in one
month. Further, the finalized hash entries are sorted by the key
<t:Month, T:IP, U:IP>.
On the other hand, if the underlying dataset is sorted by key
<t:Hour, T:IP, U:IP>, then entries in the hash table are only final-
ized when the value of the time attribute for the current record
switches from one day to the next. The maximum memory re-
quired is the number of source IP/target IP combinations for any
one day, and the finalized hash entries are sorted by <t:Day>.
We make an observation about orders that simplifies notation.
Proposition 2: All update streams are ordered by an order vector
in which the attribute vector is identical to the sort key for the
dataset being scanned. Different update streams differ solely in
the granularities at which different attributes appear in their sort
keys. This allows us to specify every stream order in the form
of 1 1 2 2: , : ,..., :n dX D X D X D , where trailing attributes that
don’t influence the sort are simply padded out with the domain
DALL. (See [8] for proof)
Slack: The slack property implies how a specific data stream lags
behind or advances over the actual progress of the scan over fact

table. For example, if the stream is sorted by <t:Year> and the
slack is between -1 to 1 year, then we might see records with time
value equal to 2000 or 2002 when the scan has progressed to re-
cords with time value 2001. The reason why the progress of the
data stream might go ahead of the scan over fact table is the exis-
tence of sibling match join.
The slack information is important for identifying finalized entries
and determining the memory footprint for measures that take mul-
tiple inputs. For each attribute, we need to keep track of the
highest and lowest slack values. For example, in the following
query, suppose we sort the data by key <t:Day>:

1 (:), (*)t Month countS g D , 2 (:), (*)t day countS g D

2 12 , . / . 1|
pcratio cond S M S MS S S

The lowest value of slack is -31 and the highest is 0 for the input
stream Sratio. This is because for a given region in [t:Day], its value
depends on the aggregation of the corresponding month, which
will only be available at the end of the month. In general, the
slack of the stream is caused by computational arcs with par-
ent/child or sibling match conditions.
For a given data stream, its slack can be expressed as the vector of
value pairs <(l1,hi),…(ld,hd)> where li / hi are the lower/upper
bounds of the slack for attribute Xi.
5.3.2 Determining Order and Slack for an Data Stream
We now consider how to identify the order and slack of an update
stream for a given composite measure query, given the sort order
of the dataset, and the order and slack for all the incoming final-
ized entry streams.
The problem can be decomposed into two sub-problems. First, for
a given measure, if we know the orders and the slacks of all update
streams from its source measures, how can we compute the order
and the slack of the finalized entries for this measure? Second,
knowing the order and the slack of the finalized entry stream for
this measure, how can we determine the order and the slack for the
corresponding update stream produced by applying the match
condition? The latter problem requires separate analyses for differ-
ent match conditions and the details are provided in [8].
For the former problem, in general, the order of the finalized en-
tries is the common prefix of the sort orders for all the incoming
update streams. The slack is computed using the bounding box of
slacks for the first attribute that share the same domains but differ-
ent slacks in the orders of all incoming update streams. Table 6
shows the algorithm to identify the order and the slack of a given
composite measure. In this algorithm, the function card(D1, D2)
returns the number of values in domain D1 that can be mapped into
the same value in domain D2. For most datasets, this number is not
fixed. But the precision of this function will only affect the size
estimation, and will not impact the correctness of the evaluation
algorithm.
5.3.3 The One-Pass Algorithm
We now introduce an algorithm that aims at reducing the memory
footprint of the query evaluation. We sort the data before scanning
it, and reduce the memory needed to evaluate a measure by flush-
ing hash table entries as soon as we know that they are finalized.
The algorithm is as follows (see Table 7):

Table 6 Compute the Order and Slack
Input
 The region set [1 1: ,..., :r d rdX D X D]
 The order vectors of input streams
 1 1 1

1 1 2 2 n n<X :D ,X :D ,...,X :D > … m m m
1 1 2 2 n n<X :D ,X :D ,...,X :D >

 The slacks of incoming update streams
 1 1 1 1

1 1(,),...,(,)n dL H L H … 1 1(,),...,(,)m m m m
d dL H L H

Output
The orders of finalized entries <X1:D1,…,Xd:Dd>
The slack of the finalized entries 1 1(,),..., (,)d dL H L H

Algorithm ComputeOrderSlack
 for i = 1 to n
 if (, , u v

i iu v D D)
 , 0i ij i L H , RETURN
 else
 min()k

i iL L , max()k
i iH H

 if (1
i D riD D)

 K.append(:i riX D)
 1/ (,)i i i riL L card D D - 1
 1/ (,)i i i riH H card D D
 , 0i ij i L H , RETURN
 else
 K.append(1:i iX D)
 if (i iL H)
 , 0i ij i L H , RETURN

410

1. (line 1) Identify all the measures involved in a composite
subset measure query. As we described before, each oval in
the aggregation workflow represents one measure. Compute
the order and the slack of their finalized entries.

2. For each measure, create a hash table. The key is the combi-
nation of dimension attributes that appear in the region set of
the measure, and the value is the measure itself (or the inter-
mediate values, for composite measures).

3. (line 2) Sort the dataset on the given sort key.
4. (line 3,4,5) Scan the dataset in sort order, and for each data

record, repeat Steps 4 to 7:
5. (line 6,7) Use the record to probe the hash tables for the basic

measures and update the value of the hash entries using the
corresponding aggregation functions.

6. (line 8) Identify “finalized” entries in the hash table.
7. For each computational arc from the current measure, first

prepare the update collection from the set of finalized entries
by applying the match condition (line 11), then propagate the
“update set” to the dependent measures (recursively). Repeat
this for all outgoing arcs (line 12). After the update is propa-
gated, the finalized entries are flushed to disk (line 13) and
removed from the hash table (line 14).

Most of the steps in Table 7 are quite straightforward. For exam-
ple, consider the following query:

S1= (: , :), (*)t Day U IP countg D , S2= (: , :), (*)t Day T IP countg D

Smax1 1(:), (.) 1t Day MAX S Mg S ,Smax2 2(:), (.) 2t Day MAX S Mg S

Smax= max1S
max1 max 2(. , .) max 2MAX S M S M S

Suppose the dataset is sorted by key <t:Day,T:IP>. Then for meas-
ure Smax2, the hash entries are finalized whenever the value of

target IP switches. These finalized entries will be propagated to
measure Smax. However, measure Smax also depends on the value of
Smax1, which is only available when the day value switches. So the
updates from Smax2 will be cached in the hash table for measure
Smax. When the day values switches, the entries in the hash table
for Smax1 will also be finalized. When the finalized entries are
propagated to measure Smax, they will trigger the finalization of
entries in the hash table for measure Smax.
There are two critical steps that require further discussion. One is
how to convert finalized entries into updates for the target meas-
ure. The other is how to determine whether a hash entry is
finalized.
First, we consider how to apply match conditions to a stream of
finalized entries to convert it into an update stream. For a self-
mapping match condition, there is no need for such a conversion
since each finalized entry can by itself be used as the input for the
target measure. For a child/parent match condition, we need to
find the parent regions for the finalized entries and update the
corresponding measure. The parent/child and the sibling match
conditions require more sophisticated mechanisms to ensure that
the update stream is appropriately ordered; we omit the details due
to space constraints.
Next, we consider how to identify the finalized entries. We need
to maintain an array of key values, called the watermark array.
Each entry in the watermark array represents the progress of one
input stream. When an update comes from a certain source meas-
ure, we convert that update record into a key value, based on the
order key schema computed in Table 6. Since the output order of a
composite measure is always the prefix of the output orders for its
source measures, it is guaranteed that the key value computed
from the new updates is always bigger then the value stored in the
entry corresponding to that source measure. So we use the new
key value to replace the values in the watermark array. If the key
value to be replaced was originally the smallest one in the water-
mark array, then the global watermark for that composite measure
has risen. We then check the hash table and identify those entries
that are below the global watermark.
Sketch of the correctness proof: As the definition of the AW-RA
and the aggregation workflow, we proved that a composite subset
measure query can be converted into relational algebra with group
by extensions. That proof shows us a simple way to evaluate com-
posite subset measure queries by first topologically sorting the

Table 7. One-Pass Sort/Scan Algorithm

Input
 Dataset , sort key K
 Measure set 1{ ,..., }kM M ,
 Base measure set B

(1)
(2)
(3)
(4)
(5)

Algorithm OnePassEvaluation
Compute the orders and slacks based on K
Sort based the sort key K
Scan dataset D

For r and BM
 EvalMeasure({r}, M)
Flush the hash tables of all measures

(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

Algorithm EvalMeasure(updateset, M)
Scan updateset, for each r updateset
 Use r to update Hashtable(M)
FinalSet finalized entries in Hashtable(M)
For each computational arc A from measure M

Mt is the target measure of A
 Generate UpdateSet from FinalSet
 EvalMeasure(UpdateSet, Mt)

Flush the FinalSet to disk
Remove FinalSet from Hashtable(M)

Table 8. Identify Finalized Entries

Input
The precomputed order key K=< 1 1: ,..., :r d rdX D X D >
The source measure sM and the target measure M

 The orders of incoming update streams
 1 1 1

1 1 2 2 n n<X :D ,X :D ,...,X :D > … m m m
1 1 2 2 n n<X :D ,X :D ,...,X :D >

 The watermark array WM
Output
 The collection of finalized entries
Algorihtm FindFinalized(update record r)
 WM(sM)=mapKey(r, K)
 Wmin= min{WM}
 RETURN {v|v Hashtable(M) mapKey(v)<Wmin}
Function mapKey(record r, key schema K)
 RETURN v, . iv x = Di(r.xi)

411

measures based on their dependencies, and evaluating them in this
order. Our algorithm interleaves the evaluation of different meas-
ures. The key for the correctness proof is that once an entry is
labeled as “finalized,” it will not be updated in future. The correct-
ness proof builds on the following proposition, in addition to
Proposition 2, stated earlier:
Proposition 3: The algorithm shown in Table 6 guarantees that
the all the update streams are sorted in the identified order. Hence
that order can be used as the order key for result streams. (see [8]
for proof)
Based on Proposition 3, the algorithm in Table 8 will collect the
data entries such that the key value computed from those entries is
smaller than that for any update stream. This means that these
entries will not receive any future updates from any of the input
update streams; hence they are finalized.

5.3 Multi-Pass Sort/Scan
When the dataset is very large with many dimensions attribute and
the query is complex including measures for different region sets,
it may not be possible to simultaneously fit all the intermediate
results into memory, even if we dynamically flush out finalized
hash entries in an optimal manner. In such case, we have to scan in
multiple passes. Different sorting order can be used for each pass
to maximize the number of measures that can be evaluated. We
call each pass a Sort/Scan (SS) iteration. It is costly to sort and
scan a large dataset, therefore the number of such passes should be
minimized.
Since each pass will only produce a subset of measures, then some
composite measures might depend on measures that are produced
in different passes. In order to compute these composite measures,
we need to first materialize each individual dependent measures
during the SS iteration and resort to traditional join strategies to

combine them together.

6. OPTIMIZATION
The evaluation cost for a composite measure plan is affected by
four factors:
1. The costs of sorting/scanning the raw dataset, Csort and Cscan. In

general, we can assume that both costs do not depend on the
sort key.

2. The cost of updating in-memory data structures within a pass,
Cupdate(K ,). K is a sort order of the dataset and is the
measure to be evaluated.

3. The cost of writing the values of a measure, Cwrite().
4. The cost of evaluating a measure using traditional query

evaluation techniques, assuming that all measures it depends
on have already been evaluated and stored on disk. Crel(m).

In [8], we present an algorithm to estimate the memory footprint
result from an initial sorting order K . Based on that, we can gen-
eralize the optimization problem as a general assignment problem
[24]. Typically, such problem is NP-hard. But in the case when
number of dimensions is small, a brute-force search which tries all
possible sorting order combination still can yield result with rea-
sonable cost.

7. EXPERIMENTAL RESULTS
In this section, we present a preliminary experimental result of the
proposed one pass sort/scan algorithm. For optimization, we used
brute force to search all possible sort orders and identify the one
with the smallest (estimated) minimal memory foot print.
The system is implemented using standard C++ with the STL li-
brary. We run all the experiments on a machine with Windows
Server 2003, Intel dual-3GHz CPU and 1GB physical memory.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

2M 4M 16M 64M

#records

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

DB
SortScan
Scan

(a) Q1:Result for Child/Parent Match

0

500

1000

1500

2000

2500

3000

2M 4M 16M 64M
#records

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

DB(2-chain)
SortScan(2-chain)
DB(7-chain)
SortScan(7-chain)

(b) Q2: Result for Sibling Match

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 3 4 5 6

#dependent child measures

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

DB
SortScan

(c) Increasing Number of Measures for
Child Regoin (|D|=64M)

0

500

1000

1500

2000

2500

3000

2 3 4 5 6 7

Size of the Sibling Chain

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

DB
SortScan

 (d) Increasing Size of Sibling Chains
(|D|=64M)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1(4M) Q1(64M) Q2(4M) Q2(64M)

Test Case

C
os

t r
at

io

Sort

Scan

(e) Cost Breakdown

0

1000

2000

3000

4000

5000

6000

10M 20M 50M
#records

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

) CSM
AF
Join

(f) Performance for Network Data

Figure 6 Experiment Results

412

7.1 Synthetic Dataset
We first used a synthetic dataset to evaluate performance. It con-
tains four dimension attributes that share the same domain
hierarchy. For each attribute, there are four domains in the domain
hierarchy (D1 <D D2 <D D3 <D D3=DALL). Any value in any do-
main will cover 10 distinct values of its sub-domains.
Four datasets were generated, containing 2M (million), 4M, 16M,
and 64M records respectively. The values of each attribute were
generated independently based on uniform distribution. The data-
sets were stored in flat files as the input for our algorithm. They
were also imported into a commercial relational database system
as relational tables for comparison. We configured the RDBMS to
reduce logging activity to a minimum. We ran two distinct types
of queries and compared the execution time between the sort/scan
algorithm, the relational database system, and the single-scan algo-
rithm, which does not sort the dataset before scanning.
The first query contains a measure which is computed by combin-
ing seven aggregations for its child regions. The goal is to
illustrate that the sort-scan algorithm can exploit the relation be-
tween child regions with different granularity and use small size of
memory to hold all the intermediate results. For the relational ap-
proach, we use the aggregation function COUNT(DISTINCT(...))
to generate the aggregation for child regions. No explicit join is
used. Figure 6(a) shows the case when seven child measures are
used. As expected, the single-scan algorithm performs well for
small dataset due to the low maintenance cost. However, its per-
formance slows down significantly due to insufficient memory, so
we only show the number for 2M dataset. For larger dataset, the
sort-scan approach achieves better performance than the relational
approach.
The second query contains a measure which is computed through
multiple levels (up to seven) of nested sliding windows. In the
database system, this is implemented as nested queries with ana-
lytical functions. Figure 6(b) shows the results comparison
between two approaches; the sort-scan approach performs better
than the relational approach. 2-Chain is the case when two level of
nesting is used and 7-Chain is the case when seven levels of nest-
ing are used. The sort-scan algorithm outperforms the relational
approach for all the cases. More importantly, as we increase the
level of nesting, the cost for sort-scan approach almost does not
increase since the result is pipeline through the measures without
writing any additional intermediate result into disk.
In the next experiment, we fixed the size of the dataset, but in-
creased the number of measures to be simultaneously maintained,
to emphasize the benefits of coordination across dependent meas-
ures. Figure 6(c) shows the case when we increase the number of
child measures from two to six. Figure 6(d) shows the case when
we increase the number of sibling chains from two to seven. In
both cases, we see that the cost of sort-scan increases at a much
slower rate than the relational approach.
Figure 6(e) shows the cost breakdown for two queries in both the
small and the dataset. As the graph shows, although the scan step
one pass over the raw data table (compared with two for the sort
step), it is actually much more expensive than the sort phrase. That
effect is more considerable for the first query since that query will
use larger memory. That means the in memory operation account
for significant part in the evaluation cost and requires further work
for optimization.

7.2 Honeynet Data Set
To further demonstrate the capabilities of our techniques, we ex-
perimented with two analysis queries developed to identify
specific types of malicious activity and run over the Lawrence
Berkeley Laboratory (LBL) HoneyNet dataset. The target dataset
was an 8GB log that was collected at LBL using the monitor de-
scribed in [21], and transformed into a format described in Section
2.
The first query (network escalation detection) was developed to
identify instances where attack packet volume grows significantly
from one time period to the next, and contains a measure with
several sibling match joins. The intermediate result for this query
is quite small. In Figure 7(a), we can see that the sort-scan algo-
rithm does not perform particularly well compared with other
methods. The reason is that since the size of intermediate result is
so small, the cost of sorting the raw fact table dominates the over-
all cost. Thus, the simple scan algorithm actually performs the
best. This situation can be addressed by switching to simple scan
when the required memory is smaller than the memory budget.
The second query (multi-recon detection) was developed to iden-
tify instances where attack packets from multiple unique source IP
addresses target a specific destination network over a specific
period of time. This query contains three measures, each of which
based on child/parent match joins. Figure 7(b) shows that the sort-
scan algorithm performs significantly faster than the alternative
database approach. This effect becomes more pronounced when
we combine the two analysis tasks into one query. The result is
shown in Figure 6(f). Since the aggregation workflow is capable of
expressing multiple measures and evaluating them together, the
sort-scan approach, in this case, results in an order of magnitude
performance improvement over the relational database query.

8. RELATED WORK
Various languages have been proposed for constructing composite
measures. The SQL analytical function extension provides partial
support via the PARTITION and ORDER keywords. Our query
language provides more flexibility in terms of the form of the
measures and can define composite measures with more than two
levels. In [26], a new clause is introduced as a SQL extension,
which treats the relation as a multidimensional array and defines
the composite measures via value assignment. It has been inte-
grated with the Oracle DBMS as the MODEL clause. However, in
order to combine measures from different region sets, the pro-
posed language still requires nested subqueries. MDX [20] is a
query language used in Microsoft Analytical Service. It allows the
user to define abstract measures that can be applied to arbitrary
regions and to define a composite measure; it also requires nested
expression for composite measures.

0

50

100

150

200

250

300

350

400

10M 20M 50M
#records

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Sort-Scan
Single-Scan
OLAP
AF
Join

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10M 20M 50M
#records

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

) Sort-Scan
DB

(a) Escalation Detection (b)Multi-Recon Detection
Figure 7. Performance for two queries for real data analysis

413

In [5], a SQL extension is proposed that enables the user to com-
bine multiple aggregations within one GROUP BY query. This
language extension was formalized as a relational operator called
MD-join in [4]. In [23], this idea is generalized to generate cubes
with complex measures.
In [19], the authors expand the idea in [5] and allow the group
variables to be matched with the group variables from nested ag-
gregations. This is similar to our idea of using computational arcs
to express the computational dependencies between measures. So
measures for one group can be used as the input for other related
groups. The single scan algorithm is also proposed in this paper.
The major difference between our work and the work in [19] is
that we impose several carefully chosen restrictions over the com-
putational arcs in a composite measure query, which enables us to
use sort/scan evaluation and flush records early. While the work in
[19] and the follow-up work in [2, 4] all point out the benefit of
flushing finalized entries, they do not provide a detailed mecha-
nism to realize this critical optimization.
The most common evaluation strategies for GROUP BY queries
use sorting and hashing [13]. Several papers [6, 15, 27] have stud-
ied optimization of aggregation queries in relational databases;
they do not consider the multidimensional setting. The CUBE
construct was introduced in [14] and several subsequent papers
investigated efficient evaluation strategies. Two algorithms pro-
posed in [1] first sort the dataset, then scan the sorted result and
evaluate correlated aggregates simultaneously. [16, 25] consider
how to choose a cube subspace to materialize, such that the cost of
subsequent queries over the cube is minimized. The work in [9]
considers optimization of multiple aggregation queries. All these
approaches use the implicit dependencies between grouping sets
(because of hierarchical region containment) to share common
computation. In contrast, the dependencies we seek to exploit are
made explicit as computational arcs in the query, and capture rela-
tionships other than simple hierarchical containment.

9. CONCLUSION
In this paper, we proposed a novel query interface to construct
complex measures over a multidimensional dataset. The measure
for a given subset is computed by aggregating the data records in
that subset, as well as the measures for related subsets in cube
space. We proposed an algebra called AW-RA and developed an
intuitive pictorial query language.
We also presented an evaluation framework in which multiple
related measures are computed in a coordinated fashion. As shown
in the empirical study, this strategy can substantially improve
query efficiency compared to a traditional relational or OLAP
execution engine. We studied optimization in the new framework
and suggested some heuristics for finding good evaluation plans.

10. ACKNOWLEDGEMENT
This work is supported in part of NSF grant numbers ITR IIS-
0326328, IIS-0524671, CNS-0347252, ANI-0335234, and CCR-
0325653. Any opinions, findings conclusions or recommendations
expressed in this material are those of the authors and do not nec-
essarily reflect the views of the NSF. We thank Johannes Ullrich
and Vern Paxson for permission to use Dshield and LBL datasets
respectively.

11. REFERENCES
[1] S. Agarwal, R. Agrawal, et. al., On the Computation of Multi-
dimensional Aggregates, in VLDB'96, 1996, 506-521.
[2] M.O. Akinde and M.H. Böhlen, Efficient Computation of Sub-
queries in Complex OLAP. in ICDE, 2003, 163.
[3] D. Chatziantoniou, Evaluation of Ad Hoc OLAP: In-Place
Computation. in SSDBM, 1999, 34-43.
[4] D. Chatziantoniou, M.O. Akinde, et. al. The MD-join: An Op-
erator for Complex OLAP, in ICDE’01, 2001, 524-533.
[5] D. Chatziantoniou and K.A. Ross, Querying Multiple Features
of Groups in Relational Databases, in VLDB '96, 1996, 295-306. 5
[6] S. Chaudhuri and K. Shim, Optimizing Queries with Aggregate
Views, in EDBT, 1996, 167-182.
[7] B. Chen, V. Yegneswaran, P. Barford and R. Ramakrishnan:
Toward a Query Language for Network Attack Data. ICDE NetDB
Workshops 2006: 28
[8] L. Chen, R. Ramakrishnan et. al. Composite Subset Meausres,
Technical Report 1557, University of Wisconsin - Madison.
http://www.cs.wisc.edu/techreports/
[9] Z. Chen and V. Narasayya, Efficient computation of multiple
group by queries, in SIGMOD '05, 2005, 263-274.
[10]J. Dean and S. Ghemawat, MapReduce: Simplified Data Proc-
essing on Large Clusters, In OSDI'04,2004
[11] DShield Project, http://www.dshield.org
[12] S. Ghemawat, H. Gobioff and S. T. Leung, The Google File
System, in SOSP'03, 2003
[13] G. Graefe, Query evaluation techniques for large data-
bases,ACM Comput.Surv., vol. 25, pp. 73-169, 1993.
[14] J. Gray, S. Chaudhuri, et. al., Data Cube: A Relational Ag-
gregation Operator Generalizing Group-by, Cross-Tab, and Sub
Totals. Data Min.Knowl.Discov., vol. 1, pp. 29-53, 1997.
[15] A. Gupta, V. Harinarayan,et. al., Aggregate-Query Processing
in Data Warehousing Environments, in VLDB '95, 1995, 358-369.
[16] H. Gupta, V. Harinarayan, et. al., Index Selection for OLAP,
in ICDE’97, 1997, 208-219.
[17] Hadoop Project, http://lucene.apache.org/hadoop/
[18] Z. Huang, L. Chen, J. Cai, D. S. Gross, D. R. Musicant, R.
Ramakrishnan, J. J. Schauer, S. J. Wright: Mass Spectrum Label-
ing: Theory and Practice. ICDM 2004: 122-129
[19] T. Johnson and D. Chatziantoniou, Extending complex ad-hoc
OLAP, in CIKM, 1999, 170-179.
[20] Microsoft MDX Specification http:// msdn.microsoft.com/
[21] R. Pang, V. Yegneswaran, et. al. Characteristics of Internet
Background Radiation, In IMC'04, 2004
[22] R. Pike, S. Dorward, R. Griesemer and S. Quinlan, Interpret-
ing the Data: Parallel Analysis with Sawzall, SOSP’03
[23] K.A. Ross, D. Srivastava, et. al., Complex Aggregation at
Multiple Granularities, in EDBT '98, 1998, 263-277.
[24] D.B. Shmoys, Tardos , An approximation algorithm for the
generalized assignment problem,Math.Program., vol. 62
[25] A. Shukla, P. Deshpande, et. al., Materialized View Selection
for Multidimensional Datasets, in VLDB '98, 488-499.
[26] A. Witkowski, S. Bellamkonda, et. al.. Spreadsheets in
RDBMS for OLAP, In SIGMOD '03, 2003, 52-63.
[27] W.P. Yan and P.A. Larson, Eager Aggregation and Lazy Ag-
gregation, in VLDB , 1995, 345-357

414

