Efficient Allocation Algorithms for OLAP o ver Imprecise
Data

Doug Burdick!~ Prasad M. Deshpande?® T.S. Jayram?
Raghu Ramakrishnan* Shivakumar Vaithyanathan?

'University of Wisconsin, Madison 2IBM Almaden Research Center
3IBM India Research Lab, SIRC *Yahoo! Research

ABSTRACT with a set of precise “point” facts representing the possible com-

Recent work proposed extending the OLAP data model to support ple.ti(I)qns OL r. Each p(()jssib:ce com‘ple.tion qus assigpeI:hH;ncat:con d
data ambiguity, specifically imprecision and uncertainty. A process e!9ht and any procedure for assigning these weights is referred to

called allocation was proposed to transform a given imprecise fact as argllocatlpn policy Thg result of applying an allocation policy
table into a form, called the Extended Database, that can be readilytO an imprecise datgbagbls refe rrgql to as aaxtended databag €
used to answer OLAP aggregation queries. _Allpcatlon is motivated ar_1d jl_Jstlfled_lr_l [5] as a mathematically
In this work, we present scalable, efficient algorithms for creat- principled method ,f‘?f handling ImpYECISIOI’l,.WIth a.g.eneral fr.amg-
ing the Extended Database (i.e., performing allocation) for a given work for characte_rlzmg the space of aIIocatlp_n policies detailed in
[6]. However, neither work explored scalability and performance

imprecise fact table. Many allocation policies require multiple iter-) . o . .
ations over the imprecise fact table, and the straightforward evalu- of allocation algorithms. Designing scalable allocation algorithms
is a challenge because of the complex relationships between the

ation approaches introduced earlier can be highly inefficient. Opti- . di <o f h d 1o b idered whil
mizing iterative allocation policies for large datasets presents novel Precis€ and imprecise facts that need to be considered while per-

challenges, and has not been considered previously to the best o{orm_ing a_lloc_ation. Additionglly, several of the allocgtion pol_ic_igs
our knowledge. In addition to developing scalable allocation algo- are |terat|ve_ n nature, maklng the costs of allocation prehibitive
rithms, we present a performance evaluation that demonstrates theilNess specialized algorithms are developed.

efficiency and compares their performance with respect to straight- " this paper, we consider the computational aspects of allocation
foward approaches. policies and present scalable allocation algorithms. Our contribu-

tions can be summarized as follows:

1. INTRODUCTION 1. Abstraction of various allocation policies into a policy tem-
OLAP is based on the multidimensional model of data, in which plate. Scalable algorithms developed for the template are

attributes of facts are of two typedimensionsand measuresand thus applicable to the entire set of allocation policies.

facts can be seen as points in a corresponding multidimensional >

space. If we relax the assumption that all facts are points, and al-

low some facts to be regions (consistent with the domain hierar-

chies associated with dimension attributes), we must deal with the

resulting imprecision when answering queries. For example, we 3. present a set of scalable algorithms that optimize the 1/Os

. Capturing the relationships between the precise and impre-
cise facts in terms of an allocation graph formalism, which
provides a basis for developing allocation algorithms.

can denote that a particular repair took place in the state Wisconsin, and sorts required to perform allocation, including an algo-
without specifying a city. Dealing with such uncertain information rithm that exploits the connected components of the alloca-
is widely recognized to be an important problem and has received tion graph to optimize across iterations. For iterative alloca-
increasing attention recently. tion policies, this turns out to be very important.

In [5], we proposed a possible-worlds interpretation of impre-
cision that leads to a novel allocation-based approach to defining 4. We present an efficient algorithm for maintaining the Ex-
semantics for aggregation queries. Operationallgcationis per- tended Database to reflect updates to the given fact table.

formed by replacing each imprecise “region” facin databaseD . .)
5. An experimental evaluation of the performance and scalabil-

*Work performed while author visiting IBM Almaden Research ity of the proposed algorithms.
Center

The rest of this paper is organized as follows. In Section 2, we re-

view some of the definitions and notations used in [5, 6]. In Section
Permission to copy without fee all or part of this material is granted pro- 3, V,Ve present f"lfram?"_lork that ab,s‘traCts the Commor,‘ element,s of
vided that the copies are not made or distributed for direct commercial ad- Various allocation policies. In Sections 4 - 6, we consider locality
vantage, the VLDB copyright notice and the title of the publication and its issues and present the Independent and Block algorithms. In Sec-
date appear, and notice is given that copying is by permission of the Very tions 7 and 8, we consider issues related to iteration and present
Large Data Base Endowment. To copy otherwise, or to republish, to post the Transitive algorithm. In Section 9, we present an efficient algo-
on servers or to redistribute to lists, requires a fee and/or special permission i m for maintaining the Extended Database when the imprecise

from the publisher, ACM. . . . ;
VLDB ‘06, September 12-15, 2006, Seoul, Korea. fact table is updated. We discuss some related work in Section 10

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09. and present our experimental evaluation in Section 11.

391

2. NOTATION AND BACKGROUND

In this section, our notation is introduced and the problemao-
tivated using a simple example.

2.1 Data Representation

Attributes in the standard OLAP model are of two kindsii—
mensionsand measures Each dimension in OLAP has an asso-
ciated hierarchy, e.g., the location dimension may be sgmed
usingCity andState, with State denoting the generalization Gfty.

In [5], the OLAP model was extended to support imprecision in
dimension values that can be defined in terms of these higestc
This was formalized as follows.

Definition 1 (Hierarchical Domains) A hierarchical domain H
over base domai is a power set o8 such that (1)) ¢ H, (2)
H contains every singleton set (i.e., corresponds to sonmeegie
of B), and (3) for any pair of elements;, ho € H, hi D hg Or
h1 N he = 0. Non-singleton elements df are calledmprecise
values. For simplicity, we assume there is a special impeagilue
ALL such that: C ALL forallh € H.

Each element € H has alevel denoted byLEVEL(h), given
by the number of elements &f (including) on the longest chain
(w.r.t. C) from h to a singleton set. a

Intuitively, an imprecise value is a non-empty set of pdssial-
ues. Hierarchical domains impose a natural restrictionpatiy-
ing this imprecision. For example, we can use the imprecsgev
W sconsi n for the location attribute in a data record if we know
that the sale occurred in the state of Wisconsin but are ershout
the city. Each singleton set in a hierarchical domain is &iiede
in the domain hierarchy and each non-singleton set is a eaih-|
node. For exampleladi son andM | waukee are leaf nodes
whose parenW sconsi n is a non-leaf node. The nodes &f
can be partitioned into level sets based on their level glag.
Madi son belongs to the 1st level where¥$sconsi n belongs
to the 2nd level. The nodes in level 1 correspond to the ledéso
and the elemenALL is the unique element in the highest level.

Definition 2 (Fact Table Schemas and Instances) fact table
schemas <A17Az7 .. .7Ak; L1,L27 .. .,Lk;]\4171\427 .. .7Mn> such
that (i) each dimension attributé;, i € 1. ..k, has an associated
hierarchical domain, denoted by déry), (ii) each level attribute
L;,i € 1...kis associated with the level values of dgf), and
(iii) each measure attribut®/;, j € 1...n, has an associated do-
main don{}/;) that is eithemumericor uncertain

A database instancef this fact table schema is a collection of
factsof the form (a1, az,...,ax; €1, 02,. .. Lp;ma, ma, ..., My)
wherea; € dom(A;) andLEVEL(a;) = ¢;, fori € 1...k, and
m; € dom(M;),j€1...n. O

Definition 3 (Cells and Regions) Consider a fact table schema
with dimension attributesly, ..., Ax. Avector(ci,cz,...,ck) iS
called acell if every ¢; is an element of the base domainAf, i €
1...k. Theregionof a dimension vectofa, az, ..., ax), where
a; € dom(A4;), is defined to be the set of celfgci, ca, ..., ck) |
ci € ai,t € 1...k}. Letreg(r) denote the mapping of a factto
its associated region. O

Since every dimension attribute has a hierarchical doman,
thus have an intuitive interpretation of each fact in theatase
being mapped to a region infadimensional space. If all; are
leaf nodes, the fact igrecise and describes a region consisting of
a single cell. Abusing notation slightly, we say that thecgse fact
is mapped to a cell. If one or moré; are assigned non-leaf nodes,
the fact isimpreciseand describes a largérdimensional region.

392

[FactiD] Loc | Auto] LocL | AutoL | Sales]

pl MA | Civic 1 1 100
p2 MA | Sierra| 1 1 150
p3 NY | F150 1 1 100
p4 CA | Civic 1 1 175
p5 CA | Sierra| 1 1 50

p6 MA | Sedan| 1 2 100
p7 MA | Truck 1 2 120
p8 CA | ALL 1 3 160
P9 East | Truck 2 2 190
pl0 | West| Sedan| 2 2 200
pll | ALL | Civic 3 1 80

pl2 | ALL | F150 3 1 120
pl3 | West| Civic 2 1 70

pld | West| Sierra| 2 1 20

Table 1: Sample data

Each cell inside this region represents a possible conopleti an
imprecise fact, formed by replacing non-leaf nadewith a leaf
node from the subtree rootedat

Example 1. Consider the fact table shown in Table 1. The first
two columns are dimension attributéscation (Loc) and Auto-
mobile (Auto), and take values from their associated hierarchical
domains. The structure of these domains and the regionseof th
facts are shown in Figure 1. The setate andRegion denote the
nodes at levels 1 and 2, respectively, kmcation similarly, Model
and Category denote the level sets fakutomobile The next two
columns contain the level-value attributescation-Level(LocL)
and Automobile-Level (AutoL), corresponding td.ocation and
Automobilerespectively. For example, consider fact p6 for which
Locationis assignedv®, which is in the 1st level, andutomobile
is assignedsedan, which is in the 2nd level. These level values
are the assignments twcation-Leveland Automobile-Leve] re-
spectively.

Precise facts, p1—p5 in Table 1, have leaf nodes assignemttio b
dimension attributes and are mapped to the appropriateindfig-
ure 1. Facts p6—pl4, on the other hand, are imprecise and are
mapped to the appropriate multidimensional region. Fomrexa
ple, fact p6 is imprecise because thatomobile dimension is as-
signed to the non-leaf nodedan and its region contains the cells
(MA, Canry) and(MA, G vi ¢), which represent possible com-
pletions ofp6. |

3. FRAMEWORK FOR ALLOCATION

In this section, we quickly review the basic framework fdoal
cation policies. First, we restate the general templatalfocation
policies presented previously in [6]. Then, we present plyra
based framework to conceptualize the flow of data requirgubte
form allocation.

3.1 Allocation Policies
For completeness we restate the following definition frorr6]5

Definition 4 (Allocation Policy and Extended Data Modell.et
be afact in the fact table, angg(r) the region ofr. For each cell
¢ € reg(r), theallocationof factr to cell ¢, denoted by, -, is a
non-negative quantity denoting the weight of completinig cell
c. Werequirethad_, pe.r = 1. An allocation policyA is a
procedure that takes as its input a fact table consistingnpfécise

Automobile

™ o - ALL ALL |3
c
3] g % Sedan Truck 2
< |2 7 PN PN 1
Civic Camry F150 Sierra
e | 6| L7 &
?
m<
z
z
. 11 9
-
= ——
10
. BT 12 14
[7]
§<
g 8

Figure 1: Multidimensional View of the Data

facts and produces as output the allocations of all the ioigze
facts in the table. The result of applying such a policy totase

D is anextended databas®*. The schema oD*, referred to
as theExtended Data Model(EDMEontains all the columns d?
plus additional columns to keep track of the cells that hawetly
positive allocations. Suppose that fact D has a unique identifier
denoted by IDr). Corresponding to each facte D, we create

a set of fact(s)ID(r),r, ¢, pe,r) in D* for everyc € reg(r) such
thatp.,- > 0and}_ p.,. = 1. Observe, each precise fact has a
single allocation of 1 for the cell to which it maps. ad

3.2 Allocation Policy Template

In [6], we demonstrated how the space of allocation polica@s
sidered in [5] can be mapped to the followialipcation policy tem-
plate, which is presented below. Each allocation policy instetes
this template by selecting a particuldiocation quantitythat will
be used to assign the allocation weights. For example, EMACo
allocation (from [6]) uses fact count as the allocation difgnT he
template is instantiated with*(c) equal to the “count” of facts
which map to celk (i.e., the sum op., values for all facts- with
non-zero allocation to cetl).

The selection of an allocation quantity corresponds to ngkin
assumption about the correlation structure present in e tthat
should be reflected in the assignment of allocations, arallgeire
provided in [6].

Definition 5 (Allocation Policy Template) Assume allocation pol-
icy A has been selected, which determines the associated allocat
quantity. For each celt, let §(c) be the value of the allocation
quantity assigned te. Let A‘(c) be the updated quantity assigned
to ¢ during iterationt to account for all imprecise facts over-
lappingc. Let ™ (r) denote the quantity associated with fact
Then, for an imprecise fact table, the set olupdate equationare
generated from the following template:

r(r) > aYE) (1)
c’: ¢’ ereg(r)
(t-1)
A0 = 0+ Y Tmap @
r: c€reg(r)

For each celt that is a possible completion of factthe alloca-
tion of r to ¢ is given byp. . = A® (¢) /T (r) m

For a given imprecise fact table, the collection of update equa-
tions is specified by instantiating this template with thprapriate

393

quantities for each faet and cellc. Every imprecise fact € D
has an equation far*) (r), and likewise every celt € C has an
equationA® (¢).

Observe the equations generated by this framework ar¢iviera
as denoted by the superscripts. The equations in the above te
plate can be viewed as defining Brpectation Maximization (EM)
framework (see [5, 6] for the details). Expression 1 of tmepkate
encodes the E-step (Expectation) and Expression 2 is theepM-s
(Maximization). In numerical EM, each(c) is evaluated itera-
tively until the values between successive iterations st@nging

(i.e., the value converges). Formally, tet= ‘A(t)(i@—w. If

e < k, wherek is a pre-determined constant, then we say the value
for A(c) hasconverged WhenA(c) for all cellsc have converged,
the iteration stops. At this point, the final allocation weggp.,

are available.

Further details regarding the mathematical justificationthis
space of iterative allocation policies is covered in [5, &}d will
not be revisited in this work. However, we will describe théuk
ition behind such iterative allocation policies. Alloaatipolicies
should take into account interactions between overlappimye-
cise facts. Consider imprecise fagtsl andp6 from the example
in Figure 1. Intuitively, the allocation gf11 should affect the allo-
cation ofp6, and symmetrically, the allocation pb should affect
the allocation ofp11 since these facts overlap. However, it should
be clear that different allocation weights are obtainedliercom-
pletions of fact6 andpl1 in the ED B depending on the relative
order in which the facts are allocated. Iterative allocatolicies
avoid this issue because they will converge to the sameaditot
weights regardless of the order in which the facts are aiéata
Thus, allocation can be considered a set-based operattersifive
allocation policies are used.

3.3 Allocation Graph and Basic Algorithm

The template given above only enumerates the set of altocati
equations, and provides no insight into the operationatetspre-
garding their evaluation. For example, the required acpatierns
of cell dataC and imprecise facté in D are not clear, and such in-
formation is necessary for designing efficient, scalatder@hms.
To address this, we present an operational framework ushig a
partite graph-based formalism, callelibcation graph

Definition 6 (Allocation Graph) Assume allocation policyl has
been selected to handle imprecision in fact tableLet I denote
the set of imprecise facts iP andC denote the set of cells repre-
senting possible completions of factslinas determined by.
Theallocation graphof D (w.r.t. A) is defined as follows: Each
cell c € C corresponds to a node shown on the left side of Figure
2, while each imprecise fact ine I corresponds to a node shown
on the right side. There is an ed@e) in G if and only ifcis a
possible completion aof. (i.e.,c € reg(r)). a

In the above definition, the set of celsdepends on the selected
allocation policyA, and isnot equivalento the set of precise facts
in D. The values of(c) for each entry: may be determined from
the precise facts, but this is not required. For exampleh edlo-
cation policy in [5, 6] used one of the following choices: tet
of cells mapped to by at least one precise fact ffomthe union
of the regions of the imprecise facts, or the cross produtiase
domains for all dimensions (i.e., every possible cell). &dtess
of the choice foilC made byA, the allocation graph formalism can
still be used. The allocation graph for the sample data ineTab
(w.r.t. EM-Count allocation policy) is given in Figure 2.

Notice that the allocation graph is bipartite. We now présen
allocation algorithm templatealled the Basic Algorithm that de-

S1 :<State Category>

C:<State,Model> 0p6 <MA Sedan> 3
R / 0p7 <MATruck> |
1 <MA,Civic> ¢t : L] i

__Spi<State, ALL>_
3<MA Sierra> _”E’?””jq/i/f&'—i”j
‘ S; :<Region,Category>
{ <NY,F150> 0 p9 <East,Truck> |
3 P10 <WestSedan> |
|<CA Civie> __ Sy :<ALLModel>
1 0 p11 <ALLCivic> |
| <CA Sierras 0p12 <AILF150> |

Figure 2: Allocation graph for data in Table 1

scribes how to evaluate the collection of allocation equretigener-
ated byA in terms of processing these edgegiiri.e., processing
terms in the allocation equations). The pseudocode igllisté\l-
gorithm 1.

Theorem 1. For a given imprecise fact tabl® and selected al-
location policy A, let G be the resulting allocation graph fob
(w.rt. A). The processing of edges @ performed by the Basic
Algorithm is equivalent to evaluating the collection ofoaihtion
equations generated by. O

Proof. By construction,G contains an edgéc, r) between celk
and imprecise fact if and only if ¢ is a possible completion of.
In terms of the set of allocation equations, each edge) € G
corresponds to exactly one term in both ﬂh@(r) equation for
factr and theA () (¢) equation for celt. Consider lines 6 — 9 of the
Basic Algorithm. It should be clear these loops visit eaceeith
G exactly once. This is equivalent to evaluating the corradpm
term in al'®™ () equation for each imprecise factexactly once,
which is correct.

Similarly, lines 11 — 14 correspond to evaluating® (c) equa-
tions for all cellsc, with the processing of edges and update in lines
13 — 14 corresponding to evaluating the equation for €é&jener-
ated from allocation template Equation 2). |

Thus, processing edges @ is equivalent to evaluating these
equations. Notice each iteratignrequires two passes over the
edges ofG, and during each pass, each edgeGbfs processed
exactly once. Moreover, these passes cannot be replacediby a
gle pass because the second pass uses values compufét for
the first pass of theurrentiterationt to update the values fak®
in the second pass.

3.4 Scalability of The Basic Algorithm

As presented, the Basic Algorithm has several issues gctdin
large fact tables (i.e., fact tables such thaand I are larger than
main memory). From the pseudocode in Algorithm 1, the nested
loops in lines 6 — 9 require for each imprecise fa@ccess to all
cellsr overlaps. Similarly, the nested loops in lines 11 — 14 rexuir
access to all imprecise factse I overlapping celk for each cell
c. In general, there exists no ordering of eitld@or I providing
the necessary locality Basic requires for either set. \Wer tefthis
problem as théocality issue

394

Algorithm 1 Basic Algorithm

1: Input: Allocation graphG with cells C and imprecise fact$
2: for (each cellc) do

3 A () —8(c)
4: for (each iteratiort until all A()(c) converge)do
5: /I Computet-th step estimate fdr's
6. for (each imprecise faet) do
7 @) —o
8: for (each celle s.t. edge(c,) € G) do
9: IO) — T () + A=) (¢)
10: // Computet-th step estimate foA’s
11: for (each celk) do
12: AWM () — d(c)
13: for (each imprecise faats.t. edggc,r) € G) do
14: A® () — A () + AC=D () /T® (r)

A second orthogonal issue arises from the iterative natitieco
allocation algorithm. Assume a “good” ordering of the celtal”'
and imprecise fact$ addressing the locality issue were available.
Even then, bottC' andI need to be scanned completéty each
iterationto execute the Basic Algorithm. This issue, which we refer
to as thdterative issueis significant in practice, since a non-trivial
number of iterations are required before the allocatiomriigm
completes (i.e., the allocation weights converge)

The approaches presented to address the locality issuecin Se
tion 4 are incorporated into the Independent (Section 5)Bladk
algorithms (Section 6). Section 7 details our solution te itler-
ative issue, which serves as the basis for the Transitiveriign
presented in Section 8.

4. ADDRESSING THE LOCALITY ISSUE

In this section, we present strategies addressing thatpissue
which serve as the basis for creating I/O aware variantseoBesic
Algorithm. In the pseudocode, listed in Algorithm 1, notieach
iteration involves two passes over all edges in allocati@plyG
(i.e., one pass for the nested loops in lines 6 — 9 and a second f
the nested loops in lines 11 — 14.) Addressing the localéiyésin-
volves carefully ordering the computations for each passeidms
of G, this could be considered determining the best order for pro
cessing edges i&'. We first consider whether we can partition the
imprecise facts in some clever manner so that each group-of im
precise facts can be processed separately within eachpefsse
we study what partitions lead to efficient I/O computatioms first
address the correctness of the proposed approach.

Theorem 2(Ordering Of Edges) Suppose the update equation for
A(t)(c) is computed using a operator that is commutative and as-
sociative (e.g., sum). L&t be a partitioning of the edges 6f into
s subgraphdsy, G, ..., Gs.

Then, the final values fat‘t)()y andI"™® (r) are unaffected by:
1) the choice of partitioning?, 2) the order in which subgraphs
are processed or 3) the order in which edges within a subgeaph
processed. |

The above theorem shows that we are free to choose any par-
titioning of the imprecise facts into groups, and can araveéhe
same result. Pseudocode for a variant of the Basic Algorittim
lizing this partitioning concept, calldeartitioned Basicis given in
Algorithm 2. Observe the nested loops in lines 11 — 12 itevats
cells then records. From the result in Theorem 2, this ondeis
permissable as long as each edge in G is visited exactly dtue.
ease of presentation, details regarding initializatiot e update
equation have been omitted.

Corollary 1. From Theorem 1 and Theorem 2, the Partitioned Ba-
sic Algorithm computes the same results as the Basic Algorit
O

Algorithm 2 Partitioned Basic Algorithm
1: Input: Allocation graphG with cells C and imprecise fact$
2: Input: Partitioning Py, P», . . . Ps of the imprecise factg
3: for (each iteratiort until all A(*) (¢) converge)o

4: /| Computet-th step estimate far

5. for (each partition?;) do

6: for (each celk) do

7: for (each record in P; s.t.(c,r) € G;) do
8: I/ Updatel’(*) (r)

9: /I Computet-th step estimate foAA
10: for (each partitionP;) do
11: for (each cellc) do
12: for (each record in P; s.t.(c,r) € G;) do
13: I/ UpdateA(®) (¢)

4.1 Summary Tables

In order to study appropriate partitions of the imprecisasdor
the Partitioned Basic Algorithm, it will be helpful to grotpgether
imprecise facts according to the levels at which the imgieni
occurs. We formalize this notion below.

Definition 7 (Summary Tables)Fix an allocation graplds, and let

I be the set of imprecise facts aftbe the set of cells. Partition
the facts inl by grouping together facts ihthat have an identical
assignment for the vector of level attributes. We refer whesauch
grouping of the imprecise facts asammary tableNote that each
summary table is associated with a distinct assignmentetéetrel
attributes. Since all cells i@’ correspond to the lowest level of the
dimensional hierarchies, for convenience we refef'tas thecell
summary table a

Intuitively, the summary tables are “logical” groupingsialinare
similar to the result of performing a Group-By query on theele
attributes. The main difference is that summary tables oohtain
entries corresponding to either imprecise fact®irr cells inC.
As a consequence, there is a partial ordering between sunezar
bles similar to the one between Group-By views, describgti4h

Definition 8 (Partial Ordering of Summary Tables)). LetS be
the collection of summary tables fdp. The vector of level val-
ues for summary tabls;, referred to atevel-vectoris denoted as
level(S;) (i.e., all facts inS; have level-vectotevel(S;)). Then,
for eachS;, S; € S, S; = S; iff for each positionp in level(S;),
level(S;)p < level(S;), and there does not exist afy € S such
thatS; < Sk < Sj. O

We note that thak is transitive, but not closed sincedoes not
include every possible summary table.

Since each summary table is associated with a unique lewel ve
tor, it is possible to materialize the separate summaresbsing
a single sort. The sorting key is formed by concatenatindeiel
and dimension attributes. This “special sort”, which weerdb as
sorting D into summary table ordecan be thought of as simulta-
neously accomplishing the following: 1) partition the psecand
imprecise facts, 2) process the precise facts to mategiéliti.e.,
determined(c) for eachc € C, and 3) further partition the im-
precise facts into the separate summary tables. In theigésns
of the algorithms that follow, we assume this pre-processiep
has been performed. In terms of I/O operations, it is eqeivato
sorting D.

395

Example 2. Consider the sample data in Table 1, with the EM-
Count allocation policy. For this data set, there are 6 sumpma
tables—the cell summary tabféand 5 imprecise ones, ..., Ss
as indicated by labels for each of the tables in Figure 3. Taki-m
dimensional representation for each summary table is shBach

summary table is labeled by the level-vector associateld thiht

table. For example, the summary talteafe,Category) consists of
all facts whose level-vector equats 1,2 >. Notice the entries in

C arenot precise facts, but corresponddells a
Civic Camry F150 Sierra
< C:<1,1>
= @ @ <State, Model>
; ©)
bl
[
<
5 ©)
S <2,1> Sp:<1,2>
<Region, Model> /\ <State, Category>
Ll {7]
[i3] | [14]
L] [|
S, <3,1> Sy: §2’2> S, <1,3>
<ALL, Model> <Region, Category> <State, ALL>
1] 197
ul he
119
H(m L[1 [3 |

Figure 3: Summary Tables for Example Data (with partial or-
der indicated)

Why are summary tables important in the context of the Parti-
tioned Basic Algorithm? The answer is that computing a singl
pass for each summary takfie can be achieved usimmne scarof
Si; andC, as shown below.

Theorem 3. For every imprecise summary tabfg, there exists a
sort of S; and the cell summary tabl€' such that a single pass
through the edges of the subgraph betwéeand S; can be exe-
cuted using a single scan 6f and S;. m|

The proof of the above theorem relies on the fact that theabov
subgraph has a simple structure: every ed8 overlapped by at
most one imprecise fact iff;. Since the degree of each celis at
most 1 in the subgraph betweéhand.S;, it is possible to order
corresponding entries i and.S; so that for every imprecise fact
r € I, cells overlapped by (i.e., nodes adjacent toin G) form
contiguous blocks, and these blocks are pairwise disjoittss the
imprecise facts. The sort order can be achieved by sortirggkay
formed by concatenating together the level and dimensivitbaite
vectors. The Independent algorithm described in the nesticse
builds on this idea by considering sort orders that are stersi
with multiple summary tables so that bigger groupings ofriecjse
facts are possible.

4.2 Partitions

What happens when the sort ordei®fs not consistent with the
imprecise summary table? In this case, we no longer havevigair
disjoint contiguous blocks. This is easily seen in the atmn
graph in Figure 2. Let the order on the cells be from top to bot-
tom as shown in the figure, and consider summary t&hlevith

imprecise factp11 andp12. The cells adjacent tpl1 arecl and
c4. However, any contiguous block including these two celi®al
contains celk3, which is adjacent t@12, and Thus, it appears we
have to re-sor€' to processss. However, if enough space in mem-
ory were available to simultaneously hold all imprecisedae S4
whose processing has not been finished, it is still possialisé the
current sort order. We now formalize this intuition.

Definition 9 (Partition Size) Let C be a cell summary table sorted
with respect to some sort ordérand letS; be a summary table.
We say that the division of cells i@ into contiguous blocks (i.e.,
respecting the sort order) isgal if for every imprecise fact, all of
its neighbors inG' are within exactly one of the contiguous blocks.
Thepartition sizeof .S; with respect to the sort orddron C'is the
largest number of facts that map to the same contiguous ldbck
cells given the best legal division of cells into contigudaliscks,
i.e., this number must be as small as possible. O

Theorem 4. Let C be a cell summary table sorted with respect
some sort ordet. (i.e., ordering of the values in the level and di-
mension attribute vectors) and 16t be a summary table. Then a

single pass on the subgraph betweégand S; can be executed us-

ing a single scan of” and .S; provided that the memory available

is as large as the partition size 6% with respect to sort ordef. on

C. O

Thus, the partition size of summary tatsigis the largest amount
of memory that needs to be reserved for processinm a single
pass, and depends on the chosen sort order of the dimensions
We make the observation that the partition size for egicban be
computed during the step wher® is sorted into summary table
order as follows.

Consider summary tablg;. During the final “merging step” of
the sort into summary table order, each consecutive paintvies
r1,r2 in the final sortedS; are compared to determine their order-
ing in S;. Before this comparison takes place, for eack S;,
we determine the smallest and largest indexes of entri€ssach
that edge(c,r) € G. These are denoted first andr.last re-
spectively. Observe that a partition boundary $grcan only occur
between consecutive entries r in the final sorted order of; if
ro.first > ri.last.

The inequality condition holding signifies that all edgevéna
been visited forr; before the first edge of; will be visited, and
corresponds to the equatidﬁ”(rl) being completely evaluated
(i.e., all terms in the equations seen) before evaluatidn(@{r)
starts (i.e., first term in the equation is seen).

Example 3. Consider a “pathological” fact table similar to the run-
ning example, but which has every possible fact in each inipee
summary table and generates cell summary tébleontaining a
6(c) entry for all possible cells. Figure 4 shows the multidimen-
sional representation of this new example fact table aftéas
been sorted into summary table order. Assume the sort drder
{Location, Automobil@, and that summary table entries are sorted
in the order indicated by the labels on each entry. The sderaf
the cellsiscl, ..., cl6.

From Theorem 4anyof the.S; can be processed in a single scan
of both.S; andC' if enough memory is available to hold the block of
entries with the “thick” edges for eachy. For exampleS; and.Ss
require 1 entry,S; and Sy require 4 entries, anfls requires 2 en-
tries. This number of required entries is the correspongargjtion
size for eachS; respectively. a

The Block algorithm, described in Section 6, exploits tHisd by
finding a single sort that can be used to process all summblgsta

396

Civic Camry F150 Sierra

C:<1,1>

§ @ @ @ <State, Model>
1 (O®(®)
x @DED
| @) @|@
Ss: <2,1> Sy <1.2>
<Region, Model> /\ <State, Category>
MAEEI= | |
LI 1]
|?| 6 TI|| 8 3 l_G_I
LTI GG
S, <3,1> S5 <2.2> Sy <13>
<ALL, Model> SRegion, Category> <State, ALL>
1] i B s | L !]
1 111 | [B]
2 3 4
oA =
(L] I [A | [)]

Figure 4: lllustrative Example of Determining Partition Si zes

in multiple scans, where each scan involves processing ay ma
summary tables as possible whose total partition size fitinvi
available memory.

5. INDEPENDENT ALGORITHM

In this section we introduce thimdependentlgorithm which
improves upon the Partitioned Basic Algorithm by explaitstruc-
ture of the summary table partial order.

5.1 Summary Table Structure

We now re-consider the partial order between summary tables
noted in Section 4.1. First, we generalize Theorem 3 to graip
summary tables.

Theorem 5. Consider a path through the summary table partial
order, containing in order summary tablés < S; < Sy <--- <

Sk. There exists a sort ordelt over all S; in the path and the cell
summary table” such that all edges in the subgraph@fbetween

the S; and C' can be processed by executing a single simultaneous

scan of theS; andC. O

After performing the step wher® is sorted into summary table
order, we have information about which imprecise summarieta
have entries corresponding to facts frdim and can construct the
summary table partial order. For a given summary table gdaoti
der, the result from [15] can be trivially adapted to providewer
bound on the number of chains in the partial order, and tctifyen
the tables in each chain as well. The lower bound is the leofyth
the longest anti-chain in the summary table partial order,(the
“width” W), which is is the minimum number of sorts required of
C. Given the summary tables in a chain, the results from [16] ca
be used to obtain the required sort order to process the.chain

5.2 Independent Details

The pseudocode for the Independent algorithm is given imAlg
rithm 3. For ease of presentation, the initialization st@gsomit-
ted, since they are identical to those described in the Biegio-
rithm. We assume thdD has been sorted into summary table order
and summary table partial order information is available.

For each summary table in the chain (including the precise su
mary tableC') we only need enough memory to hold a single record.
Since we consider records in page-sized blocks, we actpally
form 1/Os for an entire page of records. However, we refehto t
single current record for each summary table astivamary table
cursor forS;, which can be thought of as a pointer to a specific en-
try in the buffer forS;. The pseudocode contains the step “update
cursor onS; to recordr that could cover.” Details are imple-
mentation specific and involve examining the dimensiorilaite
values ofc andr to find single fact inS; that covers..

Corollary 2 (Correctness of Independent Algorithnffrom Theo-
rems 2 and 4, the Independent Algorithm computes the samlésres
as the Partitioned Basic Algorithm. a

Algorithm 3 Independent Algorithm

1: Input: Cell-level summary tabl€, Imprecise Summary Table Group-
ings S, Sort-Order Listingd,

2: for (each iteration t until alA(*) (¢) converge)o

3: for (each summary-table groufy, € S) do

4 SortC and summary-tables i, into sort-orderL

5: /I Compute t-th step estimate fbr

6.

7

8

for (each celk) do
for (each summary tablg; € Sg) do
: Update cursor o1%; to recordr that could cover
9: if (r # NULL) then

10: T (r) — 7O (r) + At=1 ()

11: /I Compute t-th step estimate for

12: for (each summary table groufy, € S) do

13: for (each celk) do

14: for (each summary tablg; € Sy) do

15: Update cursor oi$; to recordr that could cover:
16: i (rZA NULL) then

17: () — AW (¢) + A=V (c)/T® (1))

Following our convention, we omit the costs of sortihginto
summary table order and the final cost of writing out the Edézh
DatabaseD™, since these are common to all algorithms.

Theorem 6. Let|C| be the size of” in pages and the combined
total size in pages of all imprecise summary tables. ikebe the
length of the longest anti-chain in the summary table padider,
and T the number of iterations. The Independent Algorithm in the
worst case require8T' (W |C| + |I|) I/Os.

In practice, the cost of repeatedly sorting the cell sumnteinie
C is likely to be prohibitive. In general, the number of celts i
C will be much larger than the number of records in the impeecis
summary tables combined. For the common case wiatees not
fit into memory, each sort af’ is equivalent to reading and writing
every page o twice, or 4C| I/Os.

What was the motivation for the repeated sorts used in Imdepe
dent? During any given point of execution, we only need tpkae
memory records of; for which we have seen at least one cell in
C and may see at least one more. Re-sor@ihfipr each summary
table group (i.e., the set of summary tables on a path thrthigh
summary table partial order) reduced this to 1 record fohefc
andC.

Building on the intuition presented in Section 4.2, we obser

that any summary table can be processed using the same sort or-

der if we can hold partition size &, records in memory for each
Si. Conceptually, this is equivalent to increasing the sizéhef
summary table cursor from a single record to a contiguouskixd
records, which we called thgartition of S;. Only a single partition
of summary table5; needs to be held in memory as we sc¢anwe
note the partition size fof' is always 1.

Algorithm 4 Block Algorithm

1. Method: Block Algorithm

2: Input:.Cell-level summary tabl€, Imprecise Summary Table Group-
ingsS, Allocation Policy A

3: for (each iteratiort until all A(*) (¢) converge)Xo

4: for (each summary-table grouy, € S) do
5: for (each cellcin C) do
6: for (each summary tablg; € Sy) do
7: Update cursor oi; to partitionp that could cover
8: Find recordr in p that could covee
9: /Nf p contains such an, perform allocation
10: if (r # NULL) then
11: rOE) — T @)+ A= (c)
12: for (each summary table groufy, € S) do
13: for (each celk in C) do
14: for (each summary tablg; € Sy) do
15: Update cursor oi$; to partitionp that could cover
16: Find recordr in p that could cover
17: Il If p contains such an, perform allocation
18: if (rzé NULL)then
19:) — AB (¢) + A=V (¢)/T®) (1)
6.1 Implementation Details for Block

Proof. We make the standard assumption that external sort requires The complete pseudocode for Block is given in Algorithm 4eTh

two passes over a relation, with each page being read animvrit
during a pass. Each summary tableSp and C' are sorted into
the corresponding sort-order &f,. Then, two passes are required
over each summary table 8y, andC. During the first pass, each
page ofC'is read only, and during the second pass, each page of
is read and written. Thus, the two allocation passes re@@uif@s
per page irC. Similarly, each page in an imprecise summary table
requires 3 1/0s: a read and write for the first pass, and ongad r
for the second pass.

The total number of required 1/Os per iteration is given by th
following expression.zzl[sort C + sort of each imprecise sum-

mary table in summary table group i + 2 scans of C] + [2 scans of

each summary table in group i]

= 4W|C| I/Os +4|I| I/0s +3W|C| I/Os + 3I| I/Os. ltis a
straightforward exercise to simplify this expression @ dme given
in the theorem. |

6. BLOCKALGORITHM

397

partition size for summary tablg; can be exactly determined dur-
ing the step wheré is sorted into summary table order, as de-
scribed in Section 4.2.

We assume the imprecise summary talffeshave been parti-
tioned into a collection of summary table groufssuch that for
each groupS, € S, the sum of the partition sizes féf; € S, is
less than B, the size in pages of memory buffé. Finding the
partitioning of summary tables resulting in the smallesnber of
summary table groups is an NP-complete problem. This pnoble
can trivially be reduced to the 0-1 Bin Packing problem foiickh
several well-known 2-approximation algorithms exist [8].

The step “update cursor o} to partitionp that could cover”
(lines 7 and 15) is implemented in a similar fashion to thd@na
gous step in Independent. Following our convention, we dhgit
costs of sortingD into summary table order and the final cost of
writing out the Extended Databag#&", since these are common to
all algorithms.

Theorem 7. Let |B| be the size of the buffer, ané| is the sum

of the partition sizes for all imprecise summary tables. Tebe
the number of iterations being performed, a& the number of
summary table groups. The total number of 1/Os performedby t
Block algorithm is37(|S||C| + |I]) /Os, where[121] < § <

|B|
2[5 O

Proof. The smallest possible number of summary table gr¢Sps

is (%1 , and the actual value fo§| returned by the 2-approximation
algorithm is at most twice this quantity. For each iteratitie total
number of required 1/0Os per summary table group is given by th
following expressionzi‘1 [2 scans of C] + [2 scans of each sum-
mary table in group i]. Each summary table appears in exactty
summary table group. As explained in the proof for Theorethé,

two scans of each summary table require 3 I/Os per page. O

7. ADDRESSING THE ITERATIVE ISSUE

Both the Independent and Block Algorithms address the {ocal
ity problem, and reduce the number of I/O operations reduime
each iteration. However, for these algorithms, the workgrered
for an iteration is independent of work for subsequent itens.
Specifically, once a cell or imprecise record is read into wym
for an iteration, only work specific to that iteration is pmrhed.
Additionally, for both Block and Independent, each subsedt-
eration involves the same amount of work as the first itematib
the algorithm.

In this section, we consider improving the Block algorithon t
exploit iterative locality, allowing the re-use of an I/O operation
across several iterations. Once an imprecise reconds been
read into memory, we would like to determine the final alloca-
tion weightsp. beforer is written back to disk. More gener-
ally, we consider the following problenis it possible to partition
the allocation graph into subgraphs so that each subgrapi lwa
processed independently for all iterationff?so, we obtain a sig-
nificant improvement because the smaller subgraphs whidh fit
memory can be processed fully without incurring any addélo
1/0 costs for all iterations. The remaining large subgragéus be
handled by reverting to the external Block algorithm ddsentiear-
lier.

To address this problem, we re-examine the Basic Algorithm,
listed in Algorithm 1. For the initial iteration of the algtrm,
consider a fixed imprecise fact Which quantities arelirectly
involved in computing the updated™ (¢) values for cellsc in
reg(r) (i.e., cells representing possible completions cbuld com-
plete to)? In terms of7, using a quantity associated with a node
is equivalent tadouchingthat node. From line 9, we s@&% (r) is
computed usingA”)(¢) values (i.e., the corresponding nodesin
are touched) for all cells adjacent ta- in G. Similarly, in line 14,
the nodes touched to compute® (c) are the celt and imprecise
factsr adjacent ta: in G. More generally, we have the following:

Theorem 8. Fix a set of imprecise facts’ C I. LetC’ = {c |
(c,r) for somer € I'} denote the cells that are the neighbors of
the facts inZ’. Then, the nodes that are touched in an iteratioim
order to compute the valug&®’) (r) for all » € I’ in the first pass
belong tol’ U C’. Similarly, for a set of cell&’, the nodes that
are touched in order to compute the valug§") (c) for all ¢ € C’

in the second pass belong € and the neighbors of” in G, I".
Thus, the set of nodes touched per iteratiof'is) C' U I”. O

Example 4. In the allocation graph for the sample data in Figure
2, assume we initializé’ = p9. Then,C’ = ¢2,c3, andI”
pT,pl2.

O

398

Intuitively, the set of nodes touched for a particulaincreases
in each subsequent iteration, until all nodes reachabla froare
visited. When!” is initialized to a single node in the graph, this
set of nodes is the strongly connected component of theaditot
graphG containingr. Since edges iz are undirected, all con-
nected components are strongly connected as well.

Example 5. In the allocation graph for the sample data in Figure 2,
there are two connected componer@&, = {p1, p4, p5, p6, p8,
p10, p11,p13,p14} andCC> = {p2,p3,p7,p9,p12}, with “thick”
edges in the figure corresponding to edge€'iTh,. a

Theorem 9. Let P be a partitioning of the edges @f into sub-
graphsG1, G, ...,Gs such that each subgraph corresponds to
a connected component 6f. Then, running the Basic Algorithm
with G as the input is equivalent to running the Basic Algorithm on
each componenti, Go, ..., Gs separately across all iterations.
]

Notice the above theorem differs from Theorem 2, which only
describes ordering issu@sthin a single iteration This suggests
that we should consider partitionirtg into the connected compo-
nents, and the next section presents the Transitive Alguoritased
on this idea.

8. TRANSITIVE ALGORITHM

The complete pseudocode for the Transitive algorithmtiedif
Algorithm 5. At the highest level, the Transitive Algorithmas two
parts. The first identifies connected components in the atiloe
graph (steps 1 and 2), while the second processes the cednect
components by performing allocation and creating the EDtBen
for facts in the connected component (step 3).

For ease of explanation, we refer to both celland imprecise
factsr astuples unless they are treated asymmetrically. We in-
troduce for each tuplea connected component idid indicating
which connected componetts assigned to. Notice Transitive as-
signst a ccid only once, based on information available when
is first considered. However, thigid may require modification.
What is actually a single connected component may be ilyitial
identified as several separate components, with tuplescim @a-
correctly) assigned differemtids. These multiple connected com-
ponents need to be “merged” by “implicitly” updating theid of
all tuples to a single value.

This “implicit” merging is accomplished by introducing ama
iliary memory-resident integer arrayid M ap , whereccid M apli]
corresponds to the “truedcid of the component assignettid
i. Our convention is to assign the new “merged” component the
smallest.ccid of anyt. The maximum number of entriesénid M ap
is the smaller of the following: number of cells @ or number im-
precise facts in-, which is comparable to memory-resident data
structures used by existing Transitive Closure algoritfias 2].

The first step (lines 8 — 19) identifies connected components b
assigning acid to every tuplet and updating:cid M ap appropri-
ately. The processing of cells and imprecise facts for tté@p &
identical to a single pass during one iteration of the Blolgoa
rithm. In the second step (lines 21 — 24), all tuples are ddrte®
component ordeby using the sort keycidMap[t.ccid]. Finally,
in step 3 (lines 26 — 34), each connected component is pretess
and the EDB entries for tuples in the component are generated
Connected componensC' smaller than the buffeB are read into
memory, with allocation performed using an in-memory vatriaf
the Block Algorithm, and the EDB entries for tuples @rC' are
written out. If CC is larger thanB, then the external Block algo-
rithm (described in Section 6) is executed, and afterwahdsfinal

Algorithm 5 Transitive Algorithm

1. Method: Transitive Algorithm
2: Input: Allocation Policy A, Cell summary table”, Imprecise Sum-
mary Table Grouping$
3: Let|c| be number of cellslr| number imprecise facts
4: ccidMap — integer array of size mific|, |r|}
5: for (i=1toccidMap.length) do
6. ccidMapli] =i
7: Il Step 1: Assign ccids to all entries
8: for (each summary table group € S) do
9: for (each celk € C) do
10: currSet — {set ofr fromS; € Ss.t.(c,r) € G} U{c}
11: currCcid — {set oft.ccid values fort € currSet}
12: if (currCecid is empty)then
13: set t.ccid to next available ccid for dlle currSet
14: else
15: minCcid < smallest value for ccidMap]t.ccid] whete €
currSet and t.ccid is assigned
16: for (all ¢t € currSet with unassignedccid) do
17: t.ccid «— minClcid
18: for (eachcid € currCecid) do
19: ccidMaplcid] < minCecid
20: /I Step 2: Sort Tuples into Component Order
21: for (i= 1 to ccidMap.lengthylo
22: Assign ccidMap[i] = k where k is smallest reachable ccid from
ccidMapli]
23: LetR=CUI
24: Sorttuplest € R by key ccidMaplt.ccid]
25: /I Step 3: Process connected components
26: for (each connected component Gf2)
27: if (CC| < B) then
28: readC'C into memory
29: evaluateA for tuples inCC
30: write out EDB entries foC'C'
31 else
32: for (each iteration tjlo
33: perform Block Algorithm on tuples i€’'C
34: write out EDB entries foC'C

EDB entries are generated. Following our convention, wet timei
costs of sortingD into summary table order and the final cost of
writing out the EDBD™, since these are common to all algorithms.
Additionally, we assumecid M ap remains in memory at all times
outside bufferB.

Theorem 10. Let|P| be the sum of the partition sizes for all sum-
mary tables andB| be the size of the memory buffer (both given
in pages). Lef” be the number of iterations being performed, and
L be the total number of pages containing large componerss (i.
components whose size is greater that).

The total number of 1/0 operations performed by the Trawsiti
Algorithm for all iterations is2(|S||C| + |I|) + 5(|C| + |I]) +
B|L|(T + 1), where[1] < S < 2[{71]. O
Proof. As with Block, the smallest possible number of summary
table groupgS| is [%1, and the actual value fg§| returned by
the 2-approximation algorithm is at most twice this quantit

For the first step, we are required to sc@rior each of theS|
summary table groups and each imprecise summary Bbdece
to assignccids to all tuples, for a total cost a(|S||C| + |I]).
The second step requires an external sof' @nd all.S; based on
ccid value, for a total oft(|C| + |I|) I/Os. The final step involves
processing the connected components. Components snialer t
|B| are read into memory, all iterations of allocation are extdd.
Only the generated EDB entries are written out, with totait e
(IC| + |I| = |L]) UOs. In contrast, each large component must
be re-sorted again into summary table order (total dokt I/Os

399

for all large components), then external Block algorithmased on
each large component (total caif'|L| I/Os for all components).
Combining these terms together yields the expression ithie-
rem. |

Observe the only term in the cost formula dependent on the num
ber of iterationd” also depends on the total size of the large compo-
nents|L| as well. Thus, if there are no large connected components
in G (i.e., no components with size larger thgg|), the number
of I/O operations would beompletely independent of the number
of iterations Since we have established that using the connected
components for evaluating the allocation equations isectyrall
that remains to be shown is that Transitive correctly ide#tithese
components.

Theorem 11. The Transitive Algorithm correctly identifies the con-
nected components in the allocation gragh m|

9. MAINTAINING THE EXTENDED DATABASE

The algorithms presented for creating the Extended Dagatzas
be viewed as “end-to-end” algorithms. For a given impretist
table D, the entire Extended Databag¥ is created by applying
the selected allocation policyt to D. Thus, we can viewD™ as a
materialized viewover D resulting from this “special” query. An
interesting issue becomes efficiently maintaining the ER@BAD*
to reflect updates t®. At the highest level, an efficientew main-
tenance algorithm for the EDB* performs two steps: 1) Identify
the entries in EDBD* whose allocation weight may change due to
the update and 2) calculate the updated allocation weigtadoh
of these entries. First, we present the following theorem.

Theorem 12(Updating the Extended Databasé)et D be a given
fact table andD™ be the EDB created by applying allocation policy
Ato D. AssumeD is updated by inserting / deleting / updating a
factr with reg(r) (i.e., region covered by faetis reg(r)).

Then, the only entries iff* € D* whose allocation weights
possibly change correspond to facfsin connected components
which overlapreg(r)). O

This theorem indicates identifying the entriesfii' that may
change as a result of the updateldas a non-trivial task, and why
a straightforward application of prior work for materiad view
maintenance is not possible. However, this theorem doegestig
Step 1 of an EDB view maintenance algorithm can be supported
using a spacial index (e.g., R-tree [12]) over the boundiogeb
for the connected components in the allocation graphiidi.e.,
for each connected component in the allocation graph, cterthe
bounding box for all its tuples). Step 2 requires efficiertess to
all facts inD in each connected component (and the corresponding
EDB entries). In other worddg) needs to be sorted by connected
component id (ccid).

These items can be easily obtained from the result of the aomp
nent identification step of the Transitive AlgorithAdter this step
completesD has been sorted into connected component order (i.e.,
all facts in D in the same connected component are adjacent.) The
corresponding EDB entries will be generated in the samed*“cci
order, and can be stored in a separate relation. For eaclectean
component CC, we create the bounding box for the connectad co
ponent, and insert the bounding box for CC into the R-tre¢h wi
the bounding box “pointing” to the corresponding facts/inand
existing entries inD*. This step can be “piggybacked” onto the
component processing step of the Transitive algorithm.

Given this index, maintaining the EDB* is accomplished as
follows: Let g correspond to the region for the updated facfin

1) Query the R-tree with regiog and find all components whose
bounding boxes overlap 2) Fetch all facts fronD in these over-
lapped connected components. If many factBiare in overlapped
connected components, then it may be more efficient to Bcan-
tirely. 3) Run Block algorithm over these facts to generhgeup-
dated EDB entries, and replace the existing EDB entries thith
new entries. 4) Update the R-tree appropriately. If the tgpda
D was an insertion or deletion, then the connected compolirents
the allocation graph may change, and the bounding boxewésr o
lapped bounding boxes in the R-tree may require updatingfieat
this change. This operation is equivalent to several ugdat¢he
R-tree. For simplicity the algorithm is described in termsipdat-
ing a single fact. The generalization to handlipatch updates is
straightforward.

10. RELATED WORK

[5] provides an extensive list of related work for aggreggim-
precise and uncertain data. Although a great deal of recerk w
has considered uncertain data [16, 9, 7], this work has nwide
ered OLAP-style aggregation queries. A great deal of iasjoin
for Independent and Block came from the PipeSort and Overlap
algorithms introduced in [1]. Although the proposed altoris
are similar to the respective existing work, there are ficamt
differences: 1) Both existing algorithms only handle pseciact
tables, and are used to materialize Group-By views in the BLA
cube. 2) These algorithms only require processing in a sidgl
rection, while Independent and Block require iteration athbdi-
rections (i.e., from cells to imprecise facts, and impredacts to
cells). The Transitive Algorithm was inspired by algorithrfor
computing the Direct Transitive Closure, notably [2, 10feTmain
difference between Transitive and existing work is than§iave
exploits optimizations only possible for the class of uadied bi-
partite graphs, which the allocation graghalways is. Although
not explicitly stated in the description, the Transitivegétithm can
easily be modified to handle non-hierarchical data (i.enedision
values have a general lattice structure instead of a “tree”)

Scaling Expectation Maximization [11] to disk residentatasts
was introduced in [4]. That work is based on the observatian t
sufficient statistics for maintaining clusters can easiyheld in

memory, and the E and M updating steps need only be applied to

these statistics as more data records are scanned. Sucpraacp
does not work for EM-based allocation policies, since tlze sif

the required summary statistics that must be held in mensqgryo-
portional to the size of the largest connected componethieiatio-
cation graph. As our experiments show, we cannot assumalthis
ways fits into the memory buffer. The conditions for emergeoic

a large connected component in general random graphs wés stu
ied in [3], but are not directly applicable in our setting@rnthe
allocation graphs for an imprecise fact table are not randdhe
presence or absence of any two edges are not independets even
(i.e., all edges in the graph for a particular imprecise éaeteither
present or absent).

11. EXPERIMENTS

To empirically evaluate the performance of the proposed-alg
rithms, we conducted several experiments using both rebsan-
thetic data. The experiments were carried out on a machimernrg
Windows XP with a single Pentium 2.66 GHz processor, 1GB of
RAM, and a single IDE disk. All algorithms were implemented a
standalone Java applications.

Since existing data warehouses cannot directly suppottidiul
mensional imprecise data, obtaining "real-world” datasetdiffi-

400

[srAREA | BRAND | TIME | LOCATION |

ALL(1)(0%) ALL (1)(0%) ALL (1)(0%) [ALL (1)(0%)
Area(30)(8%) Make(14)(16%) | Quarter(5)(3%) | Region (10)(4%)
Sub-Area(694)(92%)| Model(203)(84%) | Month(15)(9%) | State (51)(21%)
Week(59)(88%)| City (900)(75%)

Table 2: Dimensions of Real Dataset

cult. However, we were able to obtain one such real-worldskit
from an anonymous automotive manufacturer. The fact tadrbe ¢
tains 797,570 facts, of which 557,255 facts were precis40¢815
were imprecise (i.e., 30% of the total facts are imprecigéjere
were 4 dimensions, and the characteristics of each dimemrs®
listed in Table 2. Two of the dimensions (SR-AREA and BRAND)
have 3 level attributes (including ALL), while the other t¢{idME
and LOCATION) have 4.

Each column of Table 2 lists the characteristics of eacH kgve
tribute for the particular dimension, and ordered from tpdttom
in decreasing granularity. Thus, the bottom attribute & dbll-
level attribute for the dimension. The two numbers next tchea
attribute name are, respectively, the number of distinktesathe
attribute can take and the percentage of facts that takeua fr@m
that attribute for the particular dimension. For exampta, the
SR-AREA dimension, 92% of the facts take a value from leaglle
Sub-Areaattribute, while 8% take a value from teeaattribute.

Of the imprecise facts, approximately 67% were imprecisa in
single dimension (160,530 facts), 33% imprecise in 2 dintess
(79,544 facts), 0.01% imprecise in 3 dimensions (241 factsy
none were imprecise in all 4 dimensions. For this dataseimAo
precise fact had the attribute value ALL for any dimension.

For several experiments synthetic data was generated tising
same dimension tables as the real-world data. The procegstie
erating synthetic data was to create a fact table with a Bpecim-
ber of precise and imprecise facts by randomly selectingdsion
attribute values from these 4 dimensions.

The first group of experiments evaluate the performanceeald s
ability of the proposed algorithms, while the second evalsidhe
efficiency of the proposed maintenance algorithm for theeBoted
Database based on the R-tree.

11.1 Algorithm Performance

This set of experiments evaluates the performance of the alg
rithms. All algorithms were implemented as stand-alone dgpli-
cations with memory limited to a restricted buffer poolpaled us
to study disk 1/0 behavior while running experiments smatiggh
to complete in a reasonable amount of time. The importaramar
eter for all of these experiments is the ratio of the input fable
size and the available memory. We set the page size to 4KB, and
each tuple was 40 bytes in size.

The first experiment considers the case where the entireatalet
fits into memory, and is intended to directly compare the CiRlg t
each algorithm requires for in-memory computation. Fos¢hex-
periments, the buffer was set to 40 MB while the fact tablestoch
data set was approximately 32 MB.

The algorithms were evaluated on two datasets. The first was
the real-world Automotive dataset described above. Allrecise
facts in the fact table belong to one of 35 imprecise summeaty t
bles, and the largest connected component had 7,092 tuptes.
second dataset was synthetically generated with the sambetu
of precise and imprecise facts as the Automotive dataseimipue-
cise facts were now allowed to take the value ALL for at most tw
dimensions. For this synthetic data, there were 126 pessiipre-
cise fact tables, and the largest connected component Wa8916

tuples. Both of these items made the synthetic data conipuisdiy
more challenging than the real data.

Each algorithm was executed on both datasets untilAlie)
value for each celt converged, with different values used to de-
fine convergence (refer to explanation in Section 3.2).usiful to
think of each value of as corresponding to a number of iterations.
For example, in the Automotive datayalues of 0.1, 0.05, 0.01,
and 0.005 correspond to 2,3,4 and 6 iterations respectielthe
synthetic data with the large connected component, thespond-
ing numbers of iterations for thesevalues were 3,4,6 and 10 iter-
ations respectively. We emphasize one should be carefdinga
too much into results from a single dataset regarding theired,
number of iterations. For datasets with more facts andfmed:
sions, tens of iterations may be required for the allocatieights
to converge for a giveavalue.

We make two observations regarding the convergence for the
A(t)(c) value assigned to cett: 1) If ¢ is not overlapped by any
imprecise facts, then\(c) never changes from the initial assigned
value (i.e.At(c) = A (¢) = §(c) or all iterationst) and 2) More
generally, as the size of the connected component conggdrim-
creases, the number of iterations required Aoc) to converge
tends to increase as well. Thuscifs in a small connected com-
ponentC'C, fewer iterations over tuples ifiC' are required for the
A(c) to converge than for larger connected components.

All three algorithms can exploit the first observation ascfok:
During the first iteration, identify cells not overlapped by any
imprecise facts and ignore these in subsequent iteratfamsiran-
sitive alone, a further optimization is possible: For eashrected
componentC'C, iterate over entries i6@'C' until A(c) for each cell
c converge. This allows the number of iterations to vary frame
ponent to component, and only the necessary number ofidesat
are performed on any given component. If many connected com-
ponents are small and require few iterations to converge stb-
nificantly reduces the number of allocation equations atalli by
Transitive relative to the other algorithms. Conceptydhgepen-
dent and Block must perform the same number of iterationalfor
cells, which in many cases leads to continued iteration alveady
converged cells and is wasted effoifhese straightforward opti-
mizations were included in the algorithm implementations.

The results for the real Automotive dataset and the symtheti
dataset are shown in Figure 5a and Figure 5b respectivelg Th
reported running times are wall-clock times. Since the Iff@ra-
tions are identical in this setting (each fact table is rednlmemory
once and EDB entries written out), relative differencesunning
time between algorithms can be explained in terms of reduire
memory computation for each algorithm.

Independent always does worse than both Block and Tramsitiv
due to the significant CPU processing required to re-sortétie
summary table multiple times for each iteration. The addai
overhead of component identification for Transitive resiniBlock
outperforming Transitive for a small number of iteratiortdow-
ever, as the number of iterations increases, Transitivateatly
outperforms Block since the savings from detecting earlyeo
gence increases. Note the running time of Transitive is stajle
as well.

For the second experiment, we studied algorithm performanc
as the buffer size varied. The same datasets from the abpes-ex
iment were used here, and have total size of 32 MB with approxi
mately 11 MB of imprecise facts. Thus, the buffer sizes abersd
ranged from holding all imprecise facts (12 MB) to holdingpegx-
imately 5% of the imprecise facts (600K).

Figures 5c — e show results from the Automotive dataset fior va
ious epsilon values (i.e., number of iterations). Resutisfcor-

401

—&— Independent
300 —m-Block

250) +TVV

200
——— 1

150
100
50
0

Time (sec)

terations (until converged)

1 3 5 7

Time (sec)

500 [

—=—Block
—A— Transitive

/

4 5 10
Iterations (until converged)

(a)

(b)

i
£ =0.1 (2 iterations) ridependent

Bloch
800 —— Transitive

——————

600 KB 1MB 2MB

Buffer Size

12MB

(c)
—e— Independent

Time (sec)

—e—Independent
= Biock
—&— Transitive

£=0.05 (4 iterations)
2500

2000 e
1500
1000

500

0

» S n

600 KB

1MB 6MB
Buffer Size

12MB

(d)

—e—Independent
——Block

£=0.1 (3 iterations)
1400 4

—- Block
—a— Transitive - Transitive

£=0.005 (6 iterations)
4000 -
3500 — e

1200 e s .
g 3000 g 1000
:ﬁi 2500 8 g0
@ 2000 2
£ 1500 £ jgg
1000 — .
0] B8 8 ——u 200 T
0 0

600 KB iMB 6MB

Buffer Size

(e)
—e—Indpendent

£=0.05 (6 iterations) e
4000 -

12MB 600KB 1MB 6MB.

Buffer Size

®

£=0.005 (10 iterations)
7000 -

12MB

—e—Independent
-m-Block

Block
—&— Transitive —A— Transitive

3500{ e———e— ¢ 5000
3000 T
5000
§ 2500 T 4000
g 2000 £ 3000
E 1500 2 5000
¥ 1000 E — .
500 — 5 1000 p— —
0 0

1MB 6MB
Buffer Size

(h)

4‘ -m-Block

.\;T?snﬁve

A

600 KB 1MB 6MB 12MB

Buffer Size

12MB

(9)

—a-Block
—a— Transitive

.

7MB 20 MB

Buffer Size

()]

4 MB 10 MB 40 MB 50 MB 50 MB

Buffer Size

(U]

Figure 5: Experimental Results

responding experiments for the synthetic dataset are gjiveig-
ures 5f — h. All reported running times are wall-clock tim&imce
1/0 operations dominate running time for these experimenats
ative performance of the different algorithms can be exgdiin
terms of the required I/O operations for each algorithm.

For the Automotive data, buffer size had negligible impatt o
running time for all algorithms. The amount of memory Indepe
dent requires is independent of buffer size. For Block arah3ir
tive, the total of the partition sizes for the 35 imprecisensuary
tables was 143 pages, which is smaller than even the 600 KB (15
pages) buffer (i.e.[S| = 1). However, for the synthetic data, the
running times for Transitive and Block are impacted by thiesu
size. The total partition cost for the 126 imprecise sumntabjes
is 419 pages (1.7 MB). Thus, in terms of the 1/O analysis given
Section 6 and 8, for a buffer size of 1 MBS| = 2, and for 600
KB, |S| = 3.

From the experiments, Independent performed worse thackBlo
and Transitive, since Independent’s I/O cost is dominatethb
width of the summary table partial order. Block outperfoffinan-
sitive for few iterations. However, as the number of itevas in-
crease, Transitive eventually outperforms Block. For lfattasets,
the number of 1/O’s required for Transitive is more stabléwe-
spect to the number of iterations than Block. In both dagasebst
tuples are in components which fit entirely into the buffed ane
read into and written from the buffer once regardless of tiraler

of iterations.

The third experiment investigates scalability of the alipons
for larger input sizes with proportionately larger memoiyes,
and is otherwise similar to the second experiment. SincekBlo
and Transitive clearly dominate Independent, we did noluofe
Independent in this experiment. We created two synthetizsgds,
each having 5 million tuples (200 MB) with 30% (1.5 milliomh#
precise facts. These datasets were otherwise similar & tfay
the second experiment. The total running times for eactsdafar
e = 0.005 are shown in Figures 5i and 5j respectively. The relative
performance of Block and Transitive is similar to the restdm
the prior experiment for the same reasons.

11.1.1 Summary of Experiments

Two main conclusions that can be drawn from the performance

experiments. First, Independent is a bad idea, due to the €RU

and I/O overhead of repeated sorting. Second, Transitiveiges
very stable performance as the number of iterations inesets

the price of the component identification step. Althougls thier-
head means Block is more efficient for few iterations, Triwesi
eventually outperforms Block as the number of iteratiomséases.
We note that all experimental results are consistent wighlt®
analysis presented along with the algorithm descriptionSeéc-
tions 5, 6, and 8 respectively.

11.2 Extended Database Maintenance

We performed several experiments using the Automotive tata
evaluate the performance of the Extended Database mamntena
algorithm proposed in Section 9. This data has 283,199 tota
nected components, of which 205,874 were precise factsvest o
lapped by any imprecise facts (i.e., a “single” connectehpo-
nent) and 77,325 were connected components with multiple en
tries. Of these, only 1,152 components had more than 20eentri

500 components had more than 100 entries, and 93 components
had between 1000 and 7092 entries. Thus, most of the cowmhecte

components in the real Automotive data have few entries.

For the R-tree, we used an open source implementation of a [4]

disk-based R-tree available from [13]. The Transitive Aition
was modified as follows: After the component identificatioeps
the bounding boxes for each identified connected componerg w
generated by scanning the fabt(which was sorted into compo-
nent order), and bulk loading the R-tree. This process oagda
to be performed once.

For these experiments, we generated the following threetep
sentative “classes” of update workloads of varying sizemn{fbe-
tween .1% to 10% of the total facts in): 1) updates to a certain
percentage of randomly selected precise facts which arevest
lapped by any imprecise facts, 2) randomly selected prédaits
(regardless of whether overlapped by imprecise fact or, natj 3)
randomly selected facts (whether precise or not). For eaelnyq
workload, we recorded the ratio of the time taken to updage th
EDB versus the time taken to recompute the EDB from scratch
using Transitive. A value greater than 1 indicates complat
building would have been more efficient.

The results are shown in Figure 6. Updates to the non-ovezthp
precise facts do not require evaluating any allocation &0,
thus the running time is quite stable for all workload siz€mce
overlapping precise facts are selected, performance diegtpuiickly
beyond a few percent regardless of whether the workloadagmnt
precise or imprecise facts. The main reason for this is thetym
entries in the larger connected components are both pracde
imprecise facts. Once a fact in a large component is seleittisd
irrelevant whether it is precise or not. We note that 2.5%%#bf

402

the total facts corresponds to roughly 20,000 facts andd@0ffcts
respectively. Thus, for a reasonable number of updates:EHg
maintenance algorithm is more efficient than rebuildingehgre
EDB from scratch. We note that for these updates the regudtin-
nected component structure did not change, as we only anesid
updating existing facts.

—#- Random Fact
—&—Non-Overlap Precise

—A— Random Precise

Update Time / Rebuild Time

0.1 1 25 5
Percentage Updated

Figure 6: Update Experiment Results

12. CONCLUSION

We proposed several scalable,efficient algorithms forgpering
allocation. Of the proposed algorithms, the Transitiveoetgm is
the most intriguing. Its performance is very stable as thalmer of
iterations increases, and the connected components tifidercan
be used in an EDB maintenance algorithm we also proposed.
Areas for future work include finding methods for estimating
both the number of required iterations to achieve convergdar
a givene and size of the largest connected component, and further
exploring issues involving EDB maintenance to reflect upslab
the fact table.

13. REFERENCES

[1] AGARWAL, S., AGRAWAL, R., DESHPANDE P., QUPTA, A., NAUGHTON,

J. F., RRMAKRISHNAN, R., AND SARAWAGI, S. On the computation of
multidimensional aggregates. YLDB (1996).

AGRAWAL, R., DAR, S.,AND JAGADISH, H. V. Direct transitive closure
algorithms: Design and performance evaluatioPAGM Transactions on
Database Systen($990), vol. 15.

BoLLoBAS, B. Random GraphsAcademic Press, London, 1985.

BRADLEY, P., AYYAD, U., AND REINA, C. Scaling EM (expectation
maximization) clustering to large databases. Tech. ReRMIR-98-35,
Microsoft Research Report, August 1998.

BURDICK, D., DESHPANDE P. M., AYRAM, T. S., RAMAKRISHNAN, R.,

AND VAITHYANATHAN , S. Olap over uncertain and imprecise datavLiDB
(2005).

BURDICK, D., DESHPANDE, P. M., AYRAM, T. S., RAMAKRISHNAN, R.,

AND VAITHYANATHAN , S. Olap over uncertain and imprecise data. In
Submitted to VLDB JourngR006).

CHENG, R., KALASHNIKOV, D. V., AND PRABHAKAR, S. Evaluating
Probabilistic Queries over Imprecise DataSIGMOD Conferenc€003),

pp. 551-562.

CORMAN, T. H., LEIERSON, C. E.,AND RIVEST, T. L. Introduction to
Algorithms The MIT Press, 2001.

DaLvi, N. N., AND Suciu, D. Efficient Query Evaluation on Probabilistic
Databases. IWLDB (2004), pp. 864—-875.

DAR, S.,AND RAMAKRISHNAN, R. A performance study of transitive closure
algorithms. INSIGMOD(1994), pp. 454—-465.

DEMPSTER A., LAIRD, N., AND RUBIN, D. Maximum Likelihood from
Incomplete Data via the EM Algorithndournal of the Royal Statistical Society
B (1977).

GUTTMAN, A. R-trees: a dynamic index structure for spatial seag:Him
SIGMOD(1984), pp. 47-57.

HADJIELEFTHERIOU, M. Source code for r-tree implementation. R-tree source
code: http://www.dblab.ece.ntua.gr/ mario/rtree/rHsearce.zip.

HARINARAYAN , V., RAJARAMAN, A., AND ULLMAN, J. D. Implementing
data cubes efficiently. IBIGMOD(1996).

Ross K. A., AND SRIVASTAVA, D. Fast computation of sparse datacubes. In
VLDB (1997).

Wipowm, J. Trio: A System for Integrated Management of Data, Accyrand
Lineage. INCIDR (2005), pp. 262-276.

(2]

(3]

[5

6

(7]

8

[0
[20]

[11]

[12]

[13

[14

[15]

[16]

