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ABSTRACT
Attribute-level schema matching has proven to be an important
first step in developing mappings for data exchange, integration,
restructuring and schema evolution. In this paper we investigate
contextual schema matching, in which selection conditions are as-
sociated with matches by the schema matching process in order
to improve overall match quality. We define a general space of
matching techniques, and within this framework we identify a vari-
ety of novel, concrete algorithms for contextual schema matching.
Furthermore, we show how common schema mapping techniques
can be generalized to take more effective advantage of contextual
matches, enabling automatic construction of mappings across cer-
tain forms of schema heterogeneity. An experimental study exam-
ines a wide variety of quality and performance issues. In addition, it
demonstrates that contextual schema matching is an effective and
practical technique to further automate the definition of complex
data transformations.

1. INTRODUCTION
A schema mapping is a data transformation that, given an in-

stance of a source schema, will produce an instance that conforms
to a target schema while preserving the appropriate information
content of the source. Finding schema mappings is a common
task in a wide variety of data exchange and integration scenar-
ios. A schema matching is a pairing of attributes (or groups of at-
tributes) from the source schema and attributes of the target schema
such that pairs are likely to be semantically related. In many sys-
tems finding such a schema matching is an early step in building a
schema mapping. Even with some availability of domain expertise,
the computation of a schema matching may not be easy since the
task itself may be large, involving dozens of tables and thousands
of attributes. The combined effort of understanding an unfamiliar
schema and matching it to another is a substantial burden.

As a result, automated support for schema matching has received
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RS.inv
id name type instock code descr
0 leaves of grass 1 Y 0195128 hardcover
1 the white album 2 Y B002UAX audio cd
2 heart of darkness 1 N 0486611 paperback
3 wasteland 1 Y 0393995 paperback
4 hotel california 2 N B002GVO elektra cd

(a) Instance of source inventory table

RT .book
id title isbn price format
50 the historian 0316011770 15.57 hardcover
51 lance armstrong’s war 0486400611 15.95 hardcover
52 . . .

(b) Instance of target book table

RT .music
id title asin price sale label
80 x&y B0006L16N8 13.29 12.50 capitol
81 moonlight B0009PLM4Y 13.49 9.99 sony
82 . . .

(c) Instance of target music table

Figure 1: Example source and target instances

a great deal of attention in the research community (see [29] for
a recent survey). In state-of-the-art schema matching systems,
schema matches are discovered by considering a wide variety of ev-
idence that may indicate a match, including similarity of data, sim-
ilarity of schema and metadata information, preservation of con-
straints, and transitive similarity based on other known mappings
(see [11, 20] for example). Once verified by the user, matches dis-
covered by the schema matching process constitute a key input to
the creation of schema mappings. In particular, the matches form
the basis of constraints that should be upheld by a mapping – a
valid mapping from source to target instances ensures that these
constraints are enforced (see, for example, [24, 28]).

While schema matching, as described, may be challenging in
itself, there are many cases where such matchings fail to capture
information critical to the construction of a schema mapping. We
illustrate this with an example.
Example 1.1: Consider the problem of finding a mapping between
schemas RS and RT for the retail inventory tables shown in Fig-
ure 1. In the source table, RS.inv, information about books and
CDs being sold by “Company S” is provided, and a type field indi-
cates whether the object is a book or music. In the target schema,
for “Company T”, information about books and music are stored in
separate tables.
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Rt.book

format   string

price    float

title  string

isbn  stringRs.inv

id  integer

name   string

type    integer

instock   boolean

code   string

descr   string

arrival  date

1

2

3

4

5

6

Rt.music

title  string

asin   string

price  float

sale  float

label string

Figure 2: A traditional schema match for inv, books and music.

A traditional schema matching system might give (some subset
of) the matches (numbered 1-6) between RS and RT shown in Fig-
ure 2. While this set of matches can form the basis of a schema
mapping, it is ambiguous and clearly does not help the user dis-
cover the semantic distinction between the two target tables. 2

In this paper, we introduce the notion of a contextual schema
match, in which each match is annotated with a logical condition
providing the context in which the match should apply. In this ex-
ample, matches 1-3 might be annotated with the condition type= 1,
while 4-6 should hold where type= 2. Equivalently, one might
think of views being introduced into the source or target schema
to reflect a common context for several attribute matches, as shown
in Figure 3.

Whenever one or more inheritance relationships are implicit in
data, a database designer must choose, based on application needs,
between placing the sub-types in separate tables or in a common
table. This is a common-form of schema heterogeneity [29]. Ex-
ample 1.1 shows one case of this since “books” and “CDs” are
sub-types of “inventory items”, but other examples abound: in one
school’s database both faculty and teaching assistants may appear
in a single employee table, while in another school’s database sep-
arate tables may be used, and similarly for conference and jour-
nal papers in a bibliography, apartments and houses in a real-estate
database, etc. Clearly, contextual schema matches directly eases
the task of overcoming this form of schema heterogeneity.

Another important case where contextual matches are needed is
that of “attribute normalization” in which separate rows of one table
correspond to different attributes in the same row of another table,
as illustrated below.
Example 1.2: Consider supplementing RS shown in Figure 1 with
the RS.price table appearing in Figure 4. A standard schema
matching tool might find only the matching : (RS.price.price →
RT .music.price). However, a contextual match is more helpful, in
which this match is conditioned on (RS.price.prcode = “reg”). Ide-
ally, a second match (RS.price.price → RT .music.sale) would be
discovered based on the context (RS.price.prcode = “sale”). 2

From these examples, it is clear that semantically correct condi-
tions associated with matches increase the value of those matches
to the user. The additional information helps the user construct a
semantically correct mapping between RS and RT .

Contributions. The identification of contextual matching as an im-
portant extension of schema matching is our first contribution. The
second contribution is to define a general framework for finding
good contextual matches. A salient feature of this framework is
that it treats schema matching largely as a black box, and thus can

schema matching system.
New views inferred by contexutal

Rt.book

format   string

price    float

title  string

isbn  string

Rs.V1 = 
select id,name,code,
descr from Rs.inv
where type = 1

id  integer

name   string

code   string

descr   string

Rs.V2 = 
select id,name,code,
descr from Rs.inv
where type = 2

id  integer

name   string

code   string

descr   string

1

2

3

5

4

6

Rt.music

title  string

asin   string

price  float

sale  float

label string

Figure 3: A contextual schema match for inv, books and music.

RS.Price
id prcode price
0 reg 14.95
1 reg 27.99
1 sale 24.99
2 reg 8.95
2 sale 8.45
3 reg 11.40
4 sale 12.25
4 reg 14.95

Figure 4: Price Table

be used with any (instance-based) schema matching technique.
Our third contribution is the development of techniques for iden-

tifying good candidate conditions. One technique, TgtClassInfer,
uses a classifier built on target attribute values while a second,
SrcClassInfer depends only on internal features of a source table
to identify promising conditions by rating some attributes on their
ability to classify values of other attributes.

Our fourth contribution is the definition of filtering criteria for
contextual match conditions. These filtering criteria are important
since there are many possible contextual matches, and it is critical
that, in addition to finding semantically correct contextual matches,
a contextual matching algorithm does not confuse the user with too
many false positives.

We next consider what happens when contextual matches are
presented to an automated mapping generation algorithm like that
of Clio [28, 14], in which the presence of contextual matches
equates to the presence of views on the source or target table. In
many cases, these views will be handled correctly by a Clio-style
algorithm, but in general the joins necessary to construct the cor-
rect mapping for attribute normalization cannot be found with the
standard rules.

Our fifth contribution is to extend the definition of the key-
foreign key relationship so that contextual key-foreign key con-
straints are well-defined between views and either other views or
base-tables. We also introduce rules for inferring some of these
constraints based on the nature of the view.

Our sixth contribution is the definition of new join rules that,
when added to Clio, allow automatic generation of a variety of
mappings involving attribute normalization. We note that this ex-
tended framework would also allow Clio to better cope with a stan-
dard schema match in which views were intentionally included by
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the user rather than inferred by a contextual schema matcher.
Our seventh and final contribution is an experimental study of

contextual schema matching. Our study addresses both the qual-
ity of matches found and the performance of the different algo-
rithms. We find that TgtClassInfer is somewhat more accurate than
SrcClassInfer, but that for scaling to large schemas with dozens of
attributes, SrcClassInfer performs better. We also investigate the
ability of contextual schema matching to accomplish attribute nor-
malization.

Some recent work has considered overcoming a variety of forms
of schema heterogeneity automatically [13], but takes a different
search approach that requires common data instances to be repre-
sented in both schemas. In contrast, contextual schema matching
is a direct extension of existing schema match technology. While
contextual schema matching is a natural idea, we are not aware of
previous work addressing this topic. Much recent work has focused
on matching in different data models, improving match quality by
considering more fully the available information (e.g., [11, 20, 8,
16]) and maintaining mappings over time [22, 31]. In contrast, this
work, like the inference of multi-attribute matches [29], expands
the scope of schema matching in a way that allows greater automa-
tion of schema mapping than existing techniques.

Organization. In Section 2, we introduce our data model and re-
view our standard (non-contextual) matching system. In Section 3,
we introduce contextual schema matching and develop a design
space of matching algorithms. In Section 4, we extend Clio-style
schema mapping to better handle the conditions output by a con-
textual match. In Section 5, we present our experimental study on
algorithms for contextual schema matching. In Section 6, we dis-
cuss the relationship to related work, and in Section 7 we conclude
and discuss future work.

2. BACKGROUND
In this section we first present our data model and basic termi-

nology used in the paper. We then briefly review the infrastructure
for standard schema matching, which our algorithms extend.

2.1 Data and Match Model
We focus on the main idea of contextual schema matching, and

illustrate it in the relational model, leaving other models, as well as
inter-model matching, for future work.

Data Model. In our notation, a schema (for example, RS or RT )
is a collection of tables and views ranged over by the capital letter
R (e.g. RS, RT ). A table or view R has a set of attributes, att(R),
represented by lower case letters a,s,t, l or h, or with the font At-
tributeName. An attribute has a type, type(a), drawn from (string,
int, real, etc). Views considered in this paper are single-table se-
lection views of the form Vc = “select * from R where c”, with
selection condition c. Given an instance of R (a sample input), we
use v(R.a) to denote the bag of values associated with attribute a in
the instance, a shorthand for “select a from R”.

Matches. A match is a triple (RS.s,RT .t,c), where RS ∈ RS,
RT ∈ RT , and c is a Boolean condition. Intuitively, it says that the
pairing between attributes RS.s,RT .t makes sense if the condition c
holds. A match is referred to as a standard match if c is a constant
expression “true” and RS and RT are base tables; otherwise it is a
context match. Thus a standard match is a special case of context
match. Some prior work considers “complex matches” [29] in
which multiple attributes are involved in a single match, but these
are largely orthogonal to the issues in this paper, and we omit con-
sideration of such matches to simplify our presentation.

A list of “accepted” matches is referred to as L; usually these
are matches with a sufficiently high confidence. Note that L is an
extension of what is referred to as a value correspondences in the
literature [14, 24, 28] to include matches to and from views.

Categorical Attributes. Informally, an attribute a is categorical if
many of the values it takes are (intended to be) associated with sev-
eral tuples in a full data set. In some cases, categorical attributes
may be indicated by the schema, for example by a constraint limit-
ing the value to a fixed set of choices. However, in the absence of
such information and if only a sample of the data is available, the
intent of attributes may be hard to discern. In this case, we consider
an attribute, a, to be categorical if more than 10% of the values of
a are associated with more than 1% of the tuples in our sample. In
the case of small samples, at least two values must be associated
with at least two tuples.

2.2 Context Complexity
The complexity of the conditions that can be associated with

each view has a large effect on the difficulty of finding contextual
matches. In developing matching schemes, it is useful to classify
the complexity of the contextual match by the number of attributes
mentioned in its condition: a k-condition on relation R mentions
exactly k attributes of R. A “simple” where condition is of the
form a = v where a is an attribute and v is a constant, and is thus
a 1-condition. Disjunctive, conjunctive, and general k-conditions
generalize simple conditions in the usual way. The term “simple,
disjunctive” refers to disjunctive 1-conditions, and can be written
as a ∈ {v1,v2, . . . ,vk}.

2.3 Standard Schema Matching
We now give an overview of our standard schema matching pro-

cess. In fact, the approach we describe for contextual schema
matching is independent of the standard matching technology used,
but a full understanding of our algorithms’ performance requires
reference to the base matching algorithm’s behavior. Like the sys-
tems described in, for example, [20, 11, 8], our base schema match-
ing system employs a variety of matching algorithms, referred to
as matchers, to compute similarity scores between a pair of at-
tributes. These scores are weighted [8] and for a single matcher
m and source attribute a, the distribution of scores to all target at-
tributes are treated as samples of a normal distribution, allowing
the raw scores given by m for a to be converted into confidence
scores using standard statistical techniques. For a particular pair of
attributes a and b, the confidences of all matchers are combined to
compute the confidence of the match.

3. FINDING CONTEXTUAL MATCHES
In this section we describe issues that arise with determining

contextual matches, as well as a space of approaches to the prob-
lem. For simplicity, we consider source contextual matches in the
remainder of the paper, although it is generally straightforward to
reverse the role of source and target tables to discover matches in-
volving conditions on the target table.

A Strawman Approach. We introduce a number of issues that
arise in contextual matching in terms of the following “strawman”
approach to the problem: Consider a source relation RS and a tar-
get relation RT , and assume that a run of a standard match al-
gorithm returned L = [M1, . . . ,Mn] as the accepted matches be-
tween these relations. Let the average matcher score for Mi be si,
and the confidence assigned to that score be fi. For some match
Mi = (RS.s,RT .t,true) and some condition c, we want to know
whether or not (RS.s,RT .t,c) will improve Mi. To determine the
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impact of adding the condition c, we restrict the sample of RS based
on c, and re-evaluate the quality of the match between this modi-
fied sample and RT .t. Let fc be the confidence of this new match,
which can be estimated using the new score s′i and the distribution
of scores seen for RS.s across the sample. We refer to δc = fc − fi
as the improvement in Mi for condition c. Now, given a space C of
conditions on RS (e.g. the simple equality conditions on categorical
attributes of RS), let c+

i be the condition, if any, that maximizes δc

subject to δc > 0. If c+
i exists, then it is likely that (RS.s,RT .t,c+

i )

does better than Mi, and we use (RS.s,RT .t,c+
i ) in place of Mi.

Significance. Unfortunately, the strawman approach will almost
always find some condition which improves the match confidence,
even when the original, unconditioned match is semantically cor-
rect but the new match is not. To see why, consider taking random
subsets of the sample associated with RS.s, and scoring the match
(normalized for the size of the subset) with RT .t. It is clear that
there will always be a random subset that yields an above average
score (unless all scores are equal). Thus, even if there are no seman-
tically valid contextual matches between RS and RT , the strawman
is still likely to find meaningless conditions for each match, and the
output will be confusing to the user rather than helpful.

False Negatives. A secondary issue with the strawman approach is
the potential for false negatives, i.e., semantically valid contextual
matches that do not correspond to any of the matches M1 . . .Mn
returned by the original match algorithm. The potential for false
negatives was illustrated by the sale attribute in Example 1.2.

Conditions as Views. Our first step to avoid insignificant matches
is to set an improvement threshold for accepting a condition, so that
just being above average is not sufficient. Unfortunately, setting a
threshold for a single match condition is problematic. Even for
a threshold that will only be crossed by a random attribute pair a
small percent of the time, if enough random conditions are tried,
there is still a significant chance that some will pass the threshold.
On the other hand, it is also possible that a semantically correct
condition will not pass the threshold, and hence be overlooked.

A better approach is to require that a single condition c be found
for the whole table RS, and count the total improvement across all
of the individual matches. Based on the assumption that seman-
tically valid conditions will improve several matches, it is more
likely for a valid improvement to surpass a given threshold. For
semantically invalid conditions, however, the improvement in dif-
ferent matches is less likely to be correlated, and hence the total
improvement should be small.

Since the quality of a condition c needs to be evaluated across
multiple attributes, it makes sense to think of conditions at the table
level rather than at the attribute level. Accordingly, it is natural to
think of each candidate condition c on table RS as defining a ’select-
only’ view, Vc, on RS. This terminology is convenient, as we can
now talk about the quality of the match between Vc and some target
table. Since some schemes consider a large number of candidate
conditions, it is important to emphasize that views are not created
in the DBMS storing RS or RT during the search process.

3.1 Finding Contextual Matches
Our overall approach to finding contextual matches is shown as

the algorithm ContextMatch in Figure 5. We now walk through
this algorithm and discuss how the issues identified above are
handled. Alternative implementations of the functions called by
ContextMatch are developed in the remainder of this section.

The goal of the algorithm is to assemble in M a collection of
high quality source contextual matches. To accomplish this, algo-

Algorithm ContextMatch (RS,RT )
Input: Source and target schemas RS,RT with associated sample data.
Constants: a confidence threshold τ, improvement threshold ω,

and boolean control parameter, EarlyDisjuncts
Output: A set of contextual matches M
1. M = /0;
2. for RS ∈ RS do
3. RL := /0; // candidate matches for RS
4. M := StandardMatch(RS,RT ,τ);
5. C := InferCandidateViews(RS,M,EarlyDisjuncts);
6. for c ∈C do
7. Vc := RS where c;
8. for m ∈ M s.t. m is from RS do
9. m′ := m with RS replaced by Vc;
10. s := ScoreMatch(m′);
11. RL := RL∪{(m′,s)};
12. M := SelectContextualMatches(M ,RL,ω,EarlyDisjuncts);
13. return M ;

Figure 5: Algorithm ContextMatch

rithm ContextMatch considers each source table RS in turn at line
2, and generates a list of prototype matches between RS and ta-
bles in the target schema by taking the output of a standard schema
match algorithm, StandardMatch. In this call, the quality thresh-
old imposed by StandardMatch on returned matches is shown as
a parameter τ. Note that by reducing τ, we can reduce the risk of
false negatives at the cost of greater time spent in ContextMatch.

Next, based on some underlying space of contextual con-
ditions (usually the 1-conditions of the source tables), a set
of candidate view conditions, C, is generated by the function
InferCandidateViews. We consider a variety of possible imple-
mentations for InferCandidateViews in Section 3.2 below. Fur-
ther, the behavior of InferCandidateViews with regard to disjunc-
tive conditions is controlled by EarlyDisjuncts, as described in Sec-
tion 3.3. Note that no conditions will be returned if M is empty.

In lines 8-11, the algorithm evaluates contextual matches based
on each of the conditions in C. The routine ScoreMatch evaluates
the quality of each match m′ between Vc and RT . This function
is provided by a standard instance-based schema matching sys-
tem, but considers only the subset of sample data for RS meet-
ing c. Note that a match is scored only if it is a conditional ver-
sion of one of the matches returned by StandardMatch. Finally,
SelectContextualMatches is called to determine the matches (and
thus the conditions) to return to the user as the output of the schema
matching process. This is described in more detail in Section 3.4.

3.2 Selecting Views to Evaluate
We next describe our condition pruning policy as defined by our

implementation of InferCandidateViews. We begin by introducing
a naive approach, and then present three novel techniques designed
to filter out conditions that are unlikely to improve match scores.
The key idea behind all three techniques is that a family of views
should be created whenever the data values of some non-categorical
attributes are well-classified by a categorical attribute.

3.2.1 A Naive Approach
The NaiveInfer approach infers views on a schema as follows:

for every table R, and every categorical attribute l ∈ Cat(R), a set
of views is created. For simple context, a view Vi = “select * from R
where l = vi” is added to the set of returned views for every value vi
of l in the sample data. If simple-disjunctive views are considered,
a set of views is created for every partitioning of the vi values. This
approach may work reasonably well for simple context if there are
relatively few categorical attributes.
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Algorithm ClusteredViewGen (R, trainingData, testingData)
Input: Mutually exclusive sets of tuples from table R
Output: A set of well-clustered view families
1. for each h ∈ NonCat(R), l ∈ Cat(R)
2. (Ch, apriori) :=doTraining (h, l,trainingData );
3. c := doTesting(testingData,h, l,Ch );
4. (µ,σ) := CNaive(apriori);
5. if Φ( c−µ

σ ) > T

6. add new ViewFamily(l) to M ;
7. return M ;

Figure 6: Algorithm ClusteredViewGen

3.2.2 Well-Clustered View Families
We define a view family F = (R, l,{Vi}), as a set of select-only

views {Vi}, based on mutually exclusive boolean conditions over
only one attribute, l. A view family F effectively partitions the tu-
ples of a table R into a set of views based on values of a categorical
attribute l. For example, in Figure 1(a), a view family on the at-
tribute type would consist of two views, dividing the tuples based
on whether type= 1 or type= 2. Intuitively, F is of higher quality
if the tuples are well-clustered, that is, if for some other attribute h,
the t.h values are more similar within a view than between views.
In our example, this means that other attributes, like code or descr,
are more similar for tuples with the same value for type than for
tuples with different values.

We formalize this intuitive quality into a metric based on
machine-learning techniques for categorization (see, for exam-
ple, [30]), and illustrate how it is applied to find good candidate
conditions in Algorithm ClusteredViewGen of Figure 6. On line
1, the algorithm considers a non-categorical attribute h, and a cate-
gorical attribute l, taking on values v1,v2, . . .vγ in the sample data.
The idea of the algorithm is to consider the values taken by h to be
“documents” to be classified, the vi values in our sample data to be
classification labels, and the tuples to be the “expert assignment” of
labels to documents. Two subsets of the sample tuples of R are then
considered, one for training and one for testing. In doTraining at
line 2, a single-label classification function Ch is developed based
only on the training data. (The implementation of Ch differs, but
one might think of a Naive Bayes classifier on tokens or Q-grams.)

Next, in doTesting, the function Ch is presented with unseen
testing data, and the quality of Ch is assessed in a standard way
as the combined, micro-averaged, precision and recall of Ch ac-
cording to the standard Fβ function [30, 18] with β = 1. If the
quality is good enough, as described below, we consider the family
of views {Vi | i ∈ [1,γ]} (where Vi is conditioned on l = vi) to be
well-clustered, and add it to the return list at line 6.

Score Significance. Precision and recall are traditionally used as
a quality metric for the classifier Ch, compared to other classifiers,
but we instead score the extent to which h is correctly classified by
l. We need to determine not only if Ch classifies the testing data
correctly, but also if the number of correct classifications are sig-
nificant. Accordingly, we consider the null hypothesis that there
is in fact no correlation between h and l, and instead values of l
are just chosen randomly, proportional to their frequencies in the
training data. We then compare Ch to a naive classifier, CNaive,
which always chooses the most common value of l, denoted by v∗,
as the label, regardless of h. The number of correct classifications
by CNaiveunder the null hypothesis is a binomial distribution, with
p = |v∗|

ntrain
. Its expected score µ is ntest p, and its standard devia-

tion σ is
√

ntest p(1− p) (where ntrain and ntest are the training and
testing sizes, respectively). The likelihood of the null hypothesis

Algorithm createTargetClassifier (D,RT )
Input: Domain D (“int”, “string”, “text”, . . .)
Output: A classifier C D

T based on target attributes
1. C D

T := new classifier over D
2. for each RT ∈ RT ,a ∈ att(RT )
3. if type(a) compatible with D
4. for each tuple t ∈ RT

5. C D
T .teach(t.a,“RT .a”);

6. return C D
T ;

Figure 7: Algorithm createTargetClassifier

is therefore 1−Φ( c−µ
σ ) (where Φ is the normal Cumulative Distri-

bution Function, CDF). If the inverse of this likelihood is above a
threshold T (typically 95%), we accept the alternative hypothesis
that l can be predicted by h, and include simple conditions on l as
candidate matches.

We next present two ways to define Ch, leading to two algo-
rithms for inferring well-clustered view families: SrcClassInfer,
and TgtClassInfer. (A third technique based on clustering was also
evaluated, but its performance was similar to SrcClassInfer and we
omit it for brevity.)

3.2.3 Inferring Candidate Views with SrcClassInfer

Our first approach is the simplest one naturally suggested by the
previous discussion: namely, train a classifier Ch on the values of h
in the source table. Specifically, for each tuple t in the training data,
Ch is trained on t.h → t.l. If h is a text attribute, a standard Naive
Bayesian classifier is used, with the values tokenized into 3-grams.
If h is a numeric attribute, a statistical classifier is used instead.

3.2.4 Inferring Views with TgtClassInfer

Unlike SrcClassInfer, TgtClassInfer attempts to classify ele-
ments of h based on information gleaned from the target tables. It
tags individual data values in RS based on attributes of RT to which
it is most similar. For example, assume it recognizes that some ti-
tles in RS.inv are most similar to titles in RT .book. It will tag
those tuples with Book.Title. Furthermore, assume it recognizes
that other elements of the same column are most similar to titles in
RT .music. It will tag those tuples with Music.Title. doTraining

will then attempt to learn an association between these tags and the
categorical attributes in l. While we only consider inferring views
on source relations, this approach can be used to infer views on
target relations by simply reversing the roles of RS and RT .

TgtClassInfer maintains separate classifiers C D
T for every basic

type D (e.g., “int”, “string”, etc.). These classifiers are created
by the procedure createTargetClassifier (D,RT ) (Figure 7), which
also trains them on the data in the target schemas. (Note that this
is different from the training that occurs in ClusteredViewGen.)
These classifiers essentially attempt to guess the column that any
given sample should appear in. For example, if the target schema
contained the tables Book and Music, each having only a single at-
tribute Title, then a classifer CString

T would be created which, when
given a String, would return either Book.Title or Music.Title.

The next step is to apply these classifiers to the source table. In
doTraining in ClusteredViewGen, TBag(RS.h,RS.l) is created by
collecting the bag of pairs (g,v) for each tuple t in trainingData,
s.t. g is the tag C D

T .classify(t.h), and v = t.l. In other words,
given a tuple t, doTraining attempts to learn an association be-
tween t.l and C D

T .classify(t.h). For example, if we consider tuple
2 in RS.inv with type= 1 and name= “lance armstrong’s war”, and
C D

T .classify( “lance armstrong’s war” ) returns Book.Title, then the
pair (Book.Title, 2) will be included in TBag(Rs.name,Rs.type).
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In doTesting, TgtClassInfer must return a category vi for every
t.h provided to it. It accomplishes this in the following manner.
Given TBag, we define accuracy and precision in the usual way
between g and v, by treating each (g,v) pair as an occurrence and
computing acc(g,v) = P(g|v) and prec(g,v) = P(v|g). We com-
bine these two to produce score(g,v) = acc(g,v) · prec(g,v). We
then compute the “best” categorical attribute value, bestCAT(g),
as the value v that maximizes score(g,v). Ties are broken in favor
of the value v that is more common. In the case of a continued
tie (or when g was never encountered during training), an arbitrary
categorical value is selected for g and returned. Given this infras-
tructure, during doTesting, the overall TgtClassInfer classifier will
return:

vi = bestCAT(C D
T .classify(t.h))

3.3 Handling Disjunctive Context
Another dimension to finding matching conditions is the treat-

ment of disjunction. The simplest approach is to exclude disjunc-
tive conditions from condition selection, and then to union together
the high-scoring conjunctive views. An alternative approach is to
allow conditions with disjunctions in C, and attempt to find the sin-
gle best condition. This alternative approach is early disjunction
handling, and is taken when EarlyDisjuncts = true. Because the
number of disjunctive conditions grows exponentially in the cardi-
nality of the categorical data, it is critical to prune the disjunctive
conditions that are considered.

We now describe our techniques for extending SrcClassInfer

and TgtClassInfer for EarlyDisjuncts to infer well-clustered views
on disjunctive simple conditions; that is, conditions of the form
S.l ∈ {v1,v2, . . . ,vk}. Our algorithm is a simple extension of
ClusteredViewGen based on errors in classification, and is not
shown. Errors take the form (v,v′) where for some tuple t, t.l = v,
but the classifier returned v′ when presented with t.h. False posi-
tives and false negatives are not distinguished, so (v′,v) is grouped
together with (v,v′). To build disjunctive conditions, we simply
note the pair (v,v′) that appears most often as an error during testing
(after normalizing for the frequency of v and v′). We then consider
merging v and v′; that is, we replace all occurrences of either value
in S.l with a new token pair (v,v′). We then repeat the training
and testing process, and if the new view family containing the view
t.l = v or t.l = v′ has high quality, it is added to the return list. Re-
gardless of whether a new view family is successfully formed, this
process is repeated until either there are no errors during testing,
or there are no more categorical values to merge. While it may be
worthwhile to consider other techniques, this approach works well
and is quite efficient.

3.4 Selecting Contextual Matches
The set of contextual matches M returned from ContextMatch

will likely be large. There may be many matches returned from
StandardMatch (depending on the value of τ), and then the
number of those matches are then multiplied by the number of
views created by InferCandidateViews. In order to avoid over-
whelming the user with possible match candidates, we implement
SelectContextualMatches to attempt to find a small, coherent sub-
set for presentation to the user.

We consider two techniques for SelectContextualMatches. The
simplest technique is to find the single match with highest confi-
dence for every target attribute. Note that this technique will allow
a target table to have matches from many different source tables.
We call this technique MultiTable.

Instead of selecting the best matches on a per-attribute basis, a
second approach is to select the best matches on a per-table basis.

This technique, called QualTable, considers each target table RT in
turn. It selects the source table RS which maximizes the total con-
fidences of all matches in M that are between RS and RT . It then
considers each candidate view Vc of RS. If the total confidences in
the matches between Vc and RT improves the base confidence be-
tween RS and RT by at least an improvement threshold ω, then Vc
is used instead of RS. If multiple candidate views improve the base
confidence by at least ω, then the set of views selected is based
on EarlyDisjuncts. Selecting multiple candidate views is analo-
gous to disjuncting over those views. If EarlyDisjuncts = true,
disjunctive conditions are allowed in the view, and so only the sin-
gle best candidate view is selected. If EarlyDisjuncts = false (also
referred to as LateDisjuncts), then all candidate views that exceed
ω are selected. (Note that while ω affects both EarlyDisjuncts and
LateDisjuncts, it has a much larger role for LateDisjuncts.) Fi-
nally, the matches between the selected views and the target tables
are returned.

Strawman Revisited. We note that the strawman approach to
contextual matching described previously can be obtained in this
framework by using NaiveInfer for InferCandidateViews, and
MultiTable for SelectContextualMatches.

3.5 Handling Conjunctive Conditions
The algorithms so far have handled simple conditions and dis-

junctive conditions. However, conjunctive conditions might also
be involved in contextual matches. For example, the Books tar-
get table might instead be semantically Non-fiction-Books, and the
correct match from the inventory table might require a condition of
the form “type=1 and fiction=0”. The algorithms as given so far
cannot find this condition. Handling conjunctive conditions is po-
tentially a problem, due to the obvious exponential explosion in the
number of conditions that must be considered.

To deal with this, we do not attempt a NaiveInfer that enumer-
ates conjunctive conditions. Rather, we take a heuristic approach
that assumes that a high-quality k-condition has at least one high-
quality k− 1-sub-condition. The idea is to run ContextMatch re-
peatedly. At stage i, the algorithm will have found views involv-
ing i-conditions. At stage i + 1, we restrict InferCandidateViews

so that (a) only views created during the i’th run are considered
as base tables that might need partitioning, and (b) when generat-
ing candidate subsets of a “base table” Vc, only attributes not in c
are allowed to participate in the partitioning. In the example given
above, the correct condition can be found in the second iteration as
long as one of the sub-conditions, either “type=1” or “fiction=0” is
found in the first iteration. While this algorithm can potentially find
k-conditions for any k, we strongly hypothesize that very few, say
2 or 3, iterations will be practically useful.

4. EXTENDING SCHEMA MAPPING FOR
VIEWS

In this section, we address the challenges to standard schema
mapping raised by the presence of contextual matches in L , the out-
put of the schema matcher. We treat such matches as introducing
select-only views into the schema mapping process. To this end we
extend the schema mapping approach of Clio [14, 24, 28] to accom-
modate contextual conditions (views). Since a fundamental con-
cept in Clio is the formation of logical tables based on key-foreign
key relationships, the definition of these relationships and rules for
building logical tables must be extended to handle views. In Sec-
tion 4.2, we propose a form of foreign keys to capture semantic
connection between views and base tables. We provide inference
rules for constraint propagation analysis. In Section 4.3, we pro-
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pose new rules for joining semantically related attributes in views
and base tables. As a result of these rules, we are able to correctly
infer mapping queries involving attribute normalization, demon-
strating an important synergy between contextual schema matching
and the subsequent schema mapping process.

4.1 Standard Schema Mapping (Clio)
Schema mapping is concerned with turning value correspon-

dences (matches) into mapping queries from source tables to tar-
get tables. Formally, the schema mapping problem can be stated as
follows: Given a collection L of matches (RS.a,RT .b,conf), source
schema RS and target schema RT , find a mapping map : RS → RT
such that for any instance I of RS, map(I) is an instance of RT .

In the absence of contextual conditions, the problem of finding
schema mapping based on value correspondences has been well
studied. In particular, it constitutes one of the key modules of Clio
(see, e.g., [14, 24, 28]). Central to generating a schema mapping
is how to join tables together based on schema matches found and
their semantic associations, such that semantically related attributes
can be mapped from source to target in groups to preserve their
logical connections. Previous approaches depend on foreign keys
to guide the semantic associations (joins).

Although Clio handles a more powerful nested relational
model [28], we refer to a restriction of this method to relational data
as “the Clio approach”, which we now summarize. In a nutshell, a
mapping map() in (relational) Clio is the collection of individual
map(RS,RT )() queries for each target table RT ∈RT . For a particular
RT , map(RS,RT )() is constructed as a union of logical tables as fol-
lows: (a) With respect to a target table RT and a source table RS, a
logical table RS,T is formed as RS plus a set of other tables that also
have matches to RT and that are reachable from RS in RS using a
pattern of joins defined by certain semantic association rules. (b) It
interprets value correspondences as inter-schema inclusion depen-
dencies from the source to the target. (c) For each logical table
RS,T it defines a query map(RS,RT )() that, given any instance tuple
tS of RS, generates a tuple tT of RT by mapping the value of the at-
tributes in RS to the value of the corresponding attributes in RT via
the related inclusion dependencies. For those attributes in tT that
are not related to any attributes in tS via the inclusion dependencies
(i.e., these values in the target are not represented in the source),
Skolem functions are used to generate non-null values based on the
known values of tT mapped from tS. For those attributes in tS that
are not mapped to any attributes in tT (i.e., these source values are
not represented in the target) their values are omitted. (d) Finally,
map(RS,RT )() is defined as the union over all logical tables RS,T of
source attributes with value correspondences targeting RT .

Clio adopts two semantic association rules to group attributes
together: (a) attributes from the same table are associated with each
other; and (b) attributes from different tables are associated using
foreign keys, i.e., if table R1 is in a logical table, and if there is
a foreign key in a table R1 referencing another table R2, then R2
can be added with an an outer-join between the foreign key and
the key is conducted to group attributes in R1 and R2 together. The
constraints are either declared in the definition of the schema, or
discovered using constraint mining tools. In order to identify all
meaningful joins, the closure of these constraints is computed using
an extension [7] of the standard chase method (see, e.g., [2]). While
the chasing process may not terminate for the class of constraints
involved, the Clio experience [14] verified that it is an effective
method in practice.

4.2 Constraint Propagation from Base Tables
to Views

While constraints are declared or discovered at the base-table
level, to determine joins between views and/or base tables one
needs keys and foreign keys on views. This requires reasoning
about constraint propagation from base tables to views. We now
tackle the following question: how to derive keys and foreign keys
on views from their base table counterparts?

We start with a brief review of keys and foreign keys. We then
introduce a new form of constraints in response to the contextual
conditions in views. Finally, we investigate propagation analysis.

Keys and foreign keys. Consider a relational schema R and a class
Σ of constraints defined on R . Let R1,R2 be two tables in R . The
constraints in Σ have the following forms.
(a) Key: φ = R1[X ]→ R1, where X ⊆ att(R1). The key holds on an
instance I1 of R1 if for any tuples t1,t2 in I1, if t1[X ] = t2[X ], then
t1 = t2, i.e., the X attributes of a tuple t uniquely identify t in I1.
(b) Foreign key: ϕ = R2[Y ] ⊆ R1[X ], where Y is a list of attributes
in att(R2), and X is a list of attributes in att(R1) and is a key of R1.
The foreign key holds on instances I1, I2 of R1,R2 if for any tuple
t2 in I2, there exists a tuple t1 in I1 such that t2[Y ] = t1[X ]; in other
words, the Y attributes of t2 reference the t1 tuple in I1.

Contextual constraints on views. For constraints on views we ex-
tend the definitions of keys and foreign keys given above by allow-
ing R1,R2 to be either base tables or views, e.g., we allow a foreign
key of a view referencing a base table or view. Furthermore, we
introduce a notion of contextual foreign keys.

Let V1 be a view defined on R1 via a SP query Q1. A contextual
foreign key of V is an expression V1[Y,a = v]⊆ R[X ,b], where (a) Y
is a list of attributes in att(V1), (b) a is an attribute in R1 but is not
in att(V1) (i.e., a is not on the projection list of Q1), (c) a = v is
the selection condition of Q1, (d) R is either a base table or a view
and (e) [X ,b] is a key of R. The constraint holds on instances I1, I
of R1,R if for any tuple t1 in Q1(I1), there exists a tuple t in I such
that t1[Y ] = t[X ] and t[b] = v. In other words, the Y attributes of
V1 augmented with a constant v as the value of a is a foreign key
referencing R tuples. As will be seen shortly, contextual constraints
are important for semantic association of attributes from views and
base tables. No previous work has studied this form of constraints.
Example 4.1: Consider a schema RS consisting of base tables:

student(name: string, email: string, address: string),
project(name: string, assignt: int, grade: char, instructor: string),

where keys are underlined. The project relation indicates that a
student (name) gets grade for a project assignt under the instruc-
tor. Suppose that our schema matcher finds that assignt ranges over
[0,9] and defines views Vi on project via SP query Qi, for i ∈ [0,9]:

select name, grade from project where assignt = i

then Vi[name, assignt = i] ⊆ project[name, assignt] is a contextual
foreign key of view Vi referencing the base table project. Note that
assignt is not an attribute of the view Vi. 2

Constraint propagation. Consider a collection V of views defined
on R via SP queries Q. We say that a constraint ψ on the views V
is propagated from Σ via Q, if for any instance I of R , if I satisfies
Σ then Q(I ) satisfies ψ.

The constraint propagation problem is to determine, given Σ,
R and Q, whether a key or (contextual) foreign key is propagated
from Σ via Q. While the problem has been studied for functional
and multi-value dependencies (see, e.g., Chapter 10 of [2] and re-
cently [15]), to the best of our knowledge it has not been considered
for keys and (contextual) foreign keys of the above forms. Unfor-
tunately, the theorem below tells us that the propagation analysis of
keys and foreign keys is beyond reach.
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Theorem 4.1: The key and foreign key propagation problem is un-
decidable for views defined in terms of SP queries. 2

Proof sketch: This is verified by reduction from the implication
problem for relational keys and foreign keys, for which the unde-
cidability was established in [12]. 2

In light of this negative result we use two methods to find con-
straints on views propagated from base tables. (a) We employ con-
straint mining tools on sample data to discover keys and (contex-
tual) foreign keys on views, as Clio does for finding keys and for-
eign keys on base tables. (b) We propose a set of sound (but by no
means complete) inference rules for the propagation analysis.

We next give some example inference rules (due to the space
constraint we omit most of the rules). Let V1 be a view defined on
R1 via a SP query Q1, and X be attributes in att(V1). Then the
following tells us that X is a key of V1 under certain conditions.
Contextual propagation. If R1[X ,a]→ R1, i.e., [X ,a] is a key on R1
and a = v is the selection condition of Q1, then V1[X ] → V1, i.e.,
the values of X attributes suffice to uniquely identify a V1 tuple.

Assume that R is either a view or a base table, and that R[Y ]→ R
is a key. Then X is a (contextual) foreign key of V1 referencing Y
of R if one of the following conditions holds.
View-referencing. If R1[X ]→ R1, X ⊆ att(V1), a∈ X , the selection
condition of Q1 is a = v1or . . .or a = vn, and the domain of a is
exactly {v1, . . . .vn}, then R1[X ] ⊆V1[X ].
Contextual constraint. If R1[X ,a]→ R1 and the selection condition
of Q1 is a = v, then V1[X ,a = v] ⊆ R1[X ,a] is a contextual foreign
key of V1 referencing R1.
Example 4.2: Recall the schema RS from Example 4.1. For each
view Vi, Vi[name] → Vi can be derived from the set of keys on RS
using the rule contextual propagation, and the contextual foreign
keys given in Example 4.1 are derived using the rule contextual
constraint. Furthermore, if project[name] ⊆ student[name] is a for-
eign key on RS, then one can derive Vi[name] ⊆ student[name] as
a foreign key of the view Vi referencing base table student, using a
rule FK-propagation (omitted). 2

4.3 Semantic Associations of Attributes
We next study how to group together attributes in different views

and/or base tables based on their logical relations. This is important
for generating schema mapping queries. To this end we propose
new semantic association rules beyond those used in Clio.

Along the same lines as Clio, we associate (a) attributes from the
same base table or view, (b) attributes from different tables or views
that are related via an outer-join on foreign keys, which are derived
by the propagation analysis and mining given above. However, ad-
ditional association rules need to be considered in order to capture
important schema mapping in the presence of contextual conditions
in the view definitions, as illustrated by the example below.
Example 4.3: Consider a target relational schema RT

projs(name: string, assignt0: int, grade0: char, . . ., assignt9 : int, grade9 : char).

Here the projs relation groups, in the same tuple, different as-
signts of the same student by name. Suppose that the contextual
schema matcher finds a conditioned partition that maps Vi.name to
projs.name and Vi.grade to projs.gradei, for i ∈ [0,9], where Vi is
the view given in Example 4.1. Intuitively, to map the source data
in the views to the target, one needs to group together the ten views
by (outer-) joins on the key name. However, this grouping can-
not be derived by using the two association rules given above since
there are no foreign keys involved between those views. 2

This motivates us to use the following association rule:

(join 1). Suppose that V1,V2 are views defined in terms of SP

queries Q1,Q2 on the same attributes of the same base table R, i.e.,
Qi is select Y from R where a = vi, for i ∈ [1,2] and v1 6= v2.
If via propagation analysis we can derive, for i ∈ [1,2], (a) keys
Vi[X ] → Vi and (b) (contextual) foreign keys Vi[X ,a = vi] ⊆ R′[Z]
for some relation R′ and Z ⊆ att(R′), then we group attributes of
V1,V2 together via join between V1 and V2 on the key X . In a nut-
shell, the propagated constraints ensure that it is to associate differ-
ent properties of the same object.
Example 4.4: From rule (join 1) and the constraint propagation
analysis of Example 4.2, we derive a mapping from the joins of the
ten views Vi to the target table RT as described in Example 4.3. 2

For views defined on different attributes of the same table, we
need the following association rule.
(join 2). Suppose that V1,V2 are views defined in terms of SP

queries Q1,Q2 on different attributes of the same base table R, i.e.,
Qi is select Yi from R where condi, where Y1 and Y2 are not
the same set of attributes. If via propagation analysis we can derive
(a) keys Vi[X ]→Vi for i ∈ [1,2], where X is a subset of both Y1 and
Y2, (b) (contextual) foreign keys Vi[X ,a = v] ⊆ R′[Z] for some rela-
tion R′ and Z ⊆ att(R′), and moreover, (c) cond1 and cond2 are the
same condition a = v, then we group attributes of V1,V2 together
via join between V1 and V2 on the key X . Here condition (c) is to
avoid associating properties of different objects.
Example 4.5: Recall the schema Rs of Example 4.1 and consider
a different set of views Ui on Rs for i ∈ [0,9]:

select name, instructor from project where assignt = i

The rule (join 2) tells us that the join of Vi and Ui on name is mean-
ingful. However, it is not logical to join Vi and U j if i 6= j. 2

(join 3). Suppose that V1 is a view and R is either a view or a base
table. If V1[Y,a = v] ⊆ R[X ,b] is a contextual foreign key, then we
can group attributes of V1 and R together via an outer-join from V1
to R on the equality between X of V1 and Y of R, with b = v. This
is a mild extension of Clio join rules, and it is based on contextual
foreign keys instead of foreign keys.

The association rules of Clio are also used in our system to group
attributes of views and/or base tables via outer-join on foreign keys.
Observe that (join 1), (join 2) and (join 3) are introduced to capture
the contextual conditions (views) that are not encountered in Clio.
With the inclusion of these rules, the output of contextual schema
matching can be smoothly incorporated in Clio to not only find
simple contextual mappings, but also to infer sophisticated attribute
normalizations.

5. EXPERIMENTAL RESULTS
In this section, we present the results of an experimental study

of contextual schema matching. We investigate the impact of the
different implementation options and parameters described in Sec-
tion 3 on the quality and performance of contextual schema match-
ing. We also investigate the ability of this process to find mappings
involving attribute normalization in an experiment based on Exam-
ple 4.3. We conduct our experiments on real-world inventory data
scraped from web-sites and on artificially generated data about as-
signment grades.

Algorithms. We evaluate the space of implementation strate-
gies outlined in Section 3. We evaluate different values of
τ and ω, discussed in Sections 3.1 and 3.4, respectively. In
other experiments, we use τ = .5 and ω = 5. We consider
the three algorithms for view inference discussed in Section 3.2,
NaiveInfer, SrcClassInfer and TgtClassInfer, and two algorithms
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Figure 9: Setting ω for Barrett
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Figure 10: Setting ω for Ryan
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Figure 11: Strawman Performance
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Figure 12: Varying ρ with EarlyDisj
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Figure 13: Varying ρ with LateDisj

for SelectContextualMatches: QualTable and MultiTable. Fi-
nally, we consider the EarlyDisjuncts and LateDisjuncts policies
that control when disjuncts are considered, as discussed in Sec-
tion 3.3. (Experimental evaluation of conjunctive conditions is left
as future work.)

Inventory Data. We use publicly-available example schemas as
the basis of our experiments. A variety of schemas for a retail
database similar to Example 1.1 are described in [20] and are avail-
able at [32]. The schemas were created by students in database
courses: the Colin Bleckner schema contains a combined item file
with all items and their attributes, while most others put book and
music items into separate tables. We formed the Retail data set by
using Colin Bleckner as the source, and one of the latter schemas
(Ryan Eyers, Aaron Day, or Barrett Arney) as the target schema.

Colin Bleckner has a single low cardinality attribute, ItemType.
It contains data like “book”, “music album”, “music single”, etc,
which is indicative of whether the row is a book or a CD. To slightly
complicate this schema, we add an additional low cardinality at-
tribute StockStaus, ranging over “Low”, “Normal” and “High”. We
replace the relatively small hand-made samples (tens of records)
that come with the schemas with data scraped from real-world com-
mercial web-sites, plus some name data taken from the Illinois Se-
mantic Integration Archive [10].

Scraped records for books are given an item type of Book, and
similarly for CDs. However, we allow expansion of the cardinal-
ity of ItemType in order to make the contextual matching problem
harder. We use γ to represent the total number of Book and CD
labels in ItemType. For example, with γ = 4, music items are ran-
domly assigned either CD1 or CD2, while book items are randomly
assigned Book1 or Book2, and so on for larger (even) values. When
not specified, γ = 4 is used.

Grades data. Our second data set is an artificially generated
data set meant to correspond to the test scores of 200 students
on 5 exams. In the source schema (grades narrow), there are
three columns - name, examNum and grade. In the target schema
(grades wide), there is a name column and 5 gradei columns. In
order to map these schemas properly, data values in the examNum
column of the source schema must be promoted to attributes in
the target schema. The grade data is generated randomly for each
schema, so that the mean and standard deviation σ of each exam i
is the same in each schema, but the actual scores are not. The mean

of exam i is fixed at 40 + 10(i− 1), while σ is varied. Clearly, as
σ gets larger, the matching task gets more difficult as the number
of overlapping values between sets grows. The correct mapping
for this data involves creating a view on the source table for every
value of examNum.

Evaluating Accuracy. For these data sets, accuracy is evaluated
against the correct mappings determined by manual inspection of
the source and target schemas and designating some attribute-level
matches as correct and the others as incorrect. Only edges originat-
ing from views are considered – all others are ignored.

Once the algorithm is run, the set of contextual matches selected
is compared to the manually determined correct matches. Accuracy
is then computed as the percentage of the correct matches found,
and precision as the percentage of matches found that are correct.
FMeasure is a single number commonly used for combining accu-
racy and precision. It is equal to 2∗acc∗prec

acc+prec .

Experimental Setting. All algorithms are implemented in Java and
run on a 2.8Ghz Pentium 4 processor with 8GB of main memory.
All data and summaries fit in main memory. Sufficient experiments
are run to ensure that each data point had low variance (between 8
and 200 random partitions of the sample data), and the results are
averaged.

5.1 Varying ω under EarlyDisjuncts, LateDisjuncts

In the discussion of SelectContextualMatches in Section 3.4,
the improvement threshold parameter ω was introduced. In gen-
eral, for any algorithm and source and target schemas, there is a
range of ideal ω values that achieve maximal schema matching per-
formance, which we refer to as ω+. Figures 8, 9, and 10 show
the effect of varying ω on the matching performance, as measured
by FMeasure, under both EarlyDisjuncts and LateDisjuncts. The
plateaus in the graphs correspond to the optimal range ω+. The
shorter flat pieces in the curves for LateDisjuncts clearly demon-
strate that the range ω+ is narrower than EarlyDisjuncts. Hence,
LateDisjuncts is more sensitive to ω than EarlyDisjuncts.

5.2 MultiTable vs. QualTable

Next we consider the two different algorithms for
SelectContextualMatches. Recall that MultiTable will se-
lect the best match regardless of the source, while QualTable
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Figure 14: FMeasure of LateDisjuncts
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Figure 15: Runtime of EarlyDisjuncts
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will find the best set of matches coming from a consistent table
(or set of views). MultiTable consistently performs signifi-
cantly worse than QualTable. Figure 11 shows the difference in
FMeasure between MultiTable and QualTable, using NaiveInfer

for InferCandidateViews. Because of its poor performance,
MultiTable is not considered further.

5.3 Adding Correlated Attributes
In these experiments, we modify Colin Bleckner by adding 3 ad-

ditional low cardinality attributes which have the same domain as
ItemType (i.e., CD1, CD2, Books1 and Books2). We vary the cor-
relation ρ between the new attributes and ItemType. For low cor-
relations, these are essentially random categorical attributes. For
high correlations, these attributes are chameleons of ItemType, and
views based on them will be approximately equivalent to views
based on ItemType. But we still consider any matches involving
them to be errors. This is analogous to, for example, an OldItem-
Type and NewItemType. While OldItemType and NewItemType are
likely to be correlated, the user would consider mappings that used
OldItemType to be errors.

As ρ increases, the number of (erroneous) views discovered in-
creases, as expected. These extra views increase the time it takes to
do schema matching. But it is interesting to note that when us-
ing EarlyDisjuncts, these extra views do not “fool” the schema
matcher until ρ becomes very high. In other words, for interme-
diate values of ρ, many erroneous views are introduced, but the
schema matcher with EarlyDisjuncts can still determine that views
based on the original ItemType yield better matches, and hence the
accuracy of the schema matching is not affected. These results are
shown in Figure 12. When using LateDisjuncts, however, FMea-
sure degrades much more quickly (Figure 13). SrcClassInfer and
TgtClassInfer behave similarly in both cases, and both perform
significantly better than NaiveInfer.

5.4 Varying Cardinality
Here we experimentally vary the cardinality, γ, of ItemType from

2 to 10. We find that TgtClassInfer has a slightly higher FMeasure
than SrcClassInfer throughout the range for both EarlyDisjuncts

and LateDisjuncts, while NaiveInfer is significantly worse. When
γ = 2, both EarlyDisjuncts and LateDisjuncts perform the same.
As γ increases, while the FMeasure of EarlyDisjuncts remains con-
stant (not shown), the FMeasure of LateDisjuncts degrades. This
demonstrates the weakness of relying on ω for determining disjunct
size. Figure 14 shows the FMeasure for LateDisjuncts on target
Ryan Eyers. The runtime for EarlyDisjuncts increases exponen-
tially as γ increases, however, while the runtime of LateDisjuncts

only increases linearly. The runtime of EarlyDisjuncts (relative to
the runtime of LateDisjuncts) is shown in Figure 15.

5.5 Varying Schema Size
In these experiments, we vary the size of the schemas by adding

n non-categorical attributes to every table. Furthermore, for ev-

ery table which has a categorical attribute, we add n
4 categorical

attributes. The extra non-categorical attributes are populated with
random data from an unrelated real estate table, while the extra cat-
egorical attributes are populated with data from the same domain
as the existing categorical attribute.

Figure 16 shows the FMeasure as the schemas get larger for 3
different values of γ, using Ryan Eyers as the target. For slightly
increased schema sizes, mismatches tend to be caused by non-
categorical attributes. As the schema size increases further, the
non-categorical attributes (all drawn from the same domain) tend
to match with each other, reducing that type of error. With more
categorical attributes introduced, however, there are more frequent
errors involving incorrect candidate views. For a given schema size,
as γ increases, the number of tuples in each candidate view de-
creases, making it more likely that a random candidate view will
look appealing. We hypothesize that more sample data will al-
low the schema matcher to better maintain its accuracy as extra
attributes are added. As shown in Figure 17, TgtClassInfer runs
much slower than SrcClassInfer as the size of the schema increases.
TgtClassInfer is slightly more accurate than SrcClassInfer, and
both are significantly superior to NaiveInfer (not shown).

5.6 Varying Sample Size
For these experiments, we vary the size of the Retail table. We

find that SrcClassInfer and TgtClassInfer perform similarly. When
there are fewer tuples in the source Inventory table, it is less likely
that InferCandidateViews will find the correct candidate views. As
the size grows, however, accuracy increases. The performance of
TgtClassInfer is shown in Figure 18.

5.7 Grades results
We now describe the result of attribute-normalization experi-

ments using the Grades data set. For these experiments, we im-
plement ClioQualTable, which modifies QualTable to include the
join rules discussed in Section 4.3. Keys are inferred based on sam-
ple data. Because the names are unique within each of the Grade

candidate views, the views can be joined together in a logical man-
ner on Name via rule (join 1). The accuracies of the different al-
gorithms for data sets with varying σ are shown in Figure 19. For
low σ, both SrcClassInfer and TgtClassInfer with ClioQualTable

generate a very accurate set of matches. As σ increases, accuracy
decreases, as expected.

Despite the fact that NaiveInfer always presents more candidate
views to the schema matcher than do the other algorithms, for many
values of σ its accuracy is worse. Because the TgtClassInfer and
SrcClassInfer essentially provide another filter to remove unneces-
sary views (generating approximately 25% of the possible views),
they outperform NaiveInfer for a large range of σ. For high values
of σ, however, SrcClassInfer and TgtClassInfer do not infer the
correct candidate views consistently, and they are outperformed by
NaiveInfer.
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Figure 17: Scaling time
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Figure 18: TgtClassInfer, varying size
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Figure 19: Grades Accuracy
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Figure 20: Inventory sensitivity to τ
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Figure 21: Grades sensitivity to τ
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Figure 22: Inventory runtime vs τ

5.8 Changing the Match Pruning Policy
In these experiments, we vary τ and consider the effects on both

Grades and Inventory results. Increasing τ increases the amount
of pruning, and hence decreases the number of matches returned
from StandardMatch. We find that for the Inventory tests, the
overall accuracy remains constant with relatively high values of τ
(Figure 20). Pruning does not degrade accuracy because all at-
tributes in the inventory base table match with high confidence to
appropriate attributes in both the Book and Music target tables,
even before the base table has been split into its appropriate con-
texts. In the Grades example, however, the matches between the
base table and the target table are more tenuous. Raising τ above
0.65 causes the accuracy to decrease significantly, as shown in Fig-
ure 21.

Finally, while the runtime decreases as τ increases (Figure 22),
this effect is small compared to the overall runtime of the system. A
τ of 0.5 seems to be a reasonable compromise of improved runtime
without any sacrifice in accuracy.

5.9 Discussion
Our experiments demonstrate that contextual schema matching

can effectively find conditional subsets and perform attribute nor-
malization. We demonstrate a variety of tradeoffs between accu-
racy and performance. We find that EarlyDisjuncts is effective,
relatively insulated from the setting of ω. However, for higher
cardinality categorical data, its runtime is greater. LateDisjuncts

scales more effectively, but is more dependent on ω being set
correctly. Finally, both TgtClassInfer and SrcClassInfer perform
significantly better than NaiveInfer. TgtClassInfer yields slightly
higher accuracy than SrcClassInfer, but its runtime is greater.

In conclusion, the highest accuracy can be obtained by using
EarlyDisjuncts with TgtClassInfer, while faster performance with
reasonable accuracy can be obtained using LateDisjuncts with
SrcClassInfer.

6. RELATED WORK
To our knowledge, no previous work has considered inferring

conditional matches between a portion of one table and another,
the topic of this paper.

In general a wide variety of schema matching techniques have
been developed to integrate data represented in different mod-

els, for example relational, ER, object-oriented [4, 6, 17, 19, 27],
and XML [11, 21, 23, 25, 26, 5] (see [29] for a recent sur-
vey). For example, Cupid [21] is a generic system that encom-
passes a variety of techniques such as linguistic analysis, structural
matching and context dependencies. COMA [9] and its successor
COMA++ [5] rely on fragment-based matching for XML data that
is fragmented and then the matching algorithms are deployed over
the fragments. TransScm [26] considers schema mappings based
on schema matching. It uses a semi-automatic mechanism to match
highly similar schemas.

Clio [14, 24, 28] also focuses on deriving schema mappings from
schema matching and is discussed in Section 4.1. In [24], the au-
thors mention that the user might impose selection conditions as
part of information integration. We propose the inference of such
conditions. Our schema mapping mechanism is an extension of its
Clio counterpart in several aspects, as discussed in Section 4.

An alternative approach to handling schema heterogeneity in
schema matching is reported in [13], in which a set of schema
evolution operators [1] (normalizing, denormalizing, horizon-
tal/vertical partitioning, renaming, etc.) is considered, and schema
mapping is viewed as a search-problem in the space of schemas
induced by applying sequences of these operators to one of the
schemas to be matched. This approach has the advantage of han-
dling more sophisticated scenarios, and Example 4.3 is drawn
from [13]. However, the existing work is limited by the require-
ment that example transformed data be provided as input (the so-
called “Rosetta-stone” principle). For unfamiliar target schemas,
this requirement may not be realistic. Also the search space of
schema transformations may be exceedingly large. Contextual
schema matching and mapping can be seen as a step toward ex-
tending traditional schema matching/mapping techniques to handle
more general transformations as considered in this work.

The use of multiple learners to infer mappings between a source
schema and a target schema has been proposed in LSD [11],
iMAP [8], and COMA [9]. The effectiveness of such an approach
lies in that the learners handle different types of information. The
overall accuracy of the system thus improves when mappings pre-
dicted by the different learners are combined. The StandardMatch

used in our experiments follows this general approach.
We note that our view inference problem might be seen as an

instance of projective clustering (see, e.g., [3]). We plan to investi-
gate applying algorithms from this area in future work, but note that
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most current projective clustering work focuses on metric domains.

7. CONCLUSION AND FUTURE WORK
We have introduced contextual schema matching, in which the

schema matching system infers certain views of source and/or tar-
get tables as part of the schema matching process. We have in-
vestigated a class of simple and disjunctive contextual conditions
that cover many practical examples in which matches are mean-
ingful only under these conditions, and developed novel algorithms
for inferring views to characterize these conditions. In response
to the increased ambiguity introduced by inferred views, we have
extended the schema mapping construction techniques of Clio [14,
24, 28], by introducing a novel form of constraints for views, infer-
ence rules for constraint propagation from base relations to views,
and new join-group semantic association rules. We have presented
the results of an extensive experimental study on the performance
and quality of our techniques, concluding that contextual matching
supports the further automation of schema mapping in the face of
(a) horizontal partitioning of schemas and (b) promotions of data
values to attributes.

Significant future work is suggested by this approach on both
the theoretical and practical fronts. In particular, views on the
target schema should be handled and more complex view condi-
tions may be necessary, for example, if both horizontal partitioning
and attribute promotion are encountered by the same match. This
would lead to more involved views and add even more challenge to
the automated inference of such views. Another issue is the need
for a new form of constraints to accommodate complex contex-
tual conditions and attribute promotion and associated semantic-
association rules. A third issue concerns the interaction between
constraints on the target and contextual matches, which calls for a
systematic method to assure that contextual schema mapping does
not violate the target constraints. We also plan to investigate inter-
model contextual schema matching, namely between XML and re-
lational model schemas.
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