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ABSTRACT
Distributed computing environments, including workflows
in computational grids, present challenges for monitoring,
as the state of the system may be captured only in logs
distributed throughout the system. One approach to moni-
toring such systems is to “sniff” these distributed logs and
to store their transformed content in a DBMS. This central-
izes the state and exposes it for querying; unfortunately, it
also creates uncertainty with respect to the recency and con-
sistency of the data. Previous related work has focused on
allowing queries to express currency and consistency con-
straints, which are then enforced by “pulling” data from
the distributed sources on demand, or by requiring syn-
chronous updates of a centralized data store. In some in-
stances this is impossible due to legacy system issues or in-
efficient as the system scales to large numbers of processors.
Accordingly, we propose that instead of enforcing consis-
tency and recency, such monitoring systems should report
these properties along with query results, with the hope that
this will allow the data to be appropriately interpreted. We
present techniques for reporting consistency and recency for
queries and evaluate them with respect to efficiency and pre-
cision. Finally, we describe our prototype implementation
and present experimental results of our techniques.

1. INTRODUCTION
Grid computing [6] is an umbrella concept for technolo-

gies that enable the sharing of computing resources, perhaps
even across organizational boundaries, to make computing
pervasive and inexpensive. Currently there is a dramatic
growth in both the number of processors in grids and the
number of jobs users submit to these grids. For reasons of
flexibility, scalability, and reliability, the job scheduling and
execution systems that run jobs in grids are structured as a
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collection of independent processes running on the proces-
sors of the grid. To aid in debugging, to establish a historical
record, and to expose their state to the rest of the system,
these processes typically log status records to files on the
processors on which they run. This means that the opera-
tional and historical data generated as the system executes
user jobs are scattered about the grid in these log files. Un-
fortunately, the result is a nightmare for an administrator
trying to ascertain the state of the system or a user trying
to understand the status of her jobs.

One promising approach to address this problem is to
“sniff” these logs, extract and format the information therein,
and load it into an RDBMS. This requires no or minimal
changes to the existing job scheduling and execution sys-
tem, and centralizes and exposes the distributed state of
the system to declarative SQL querying, giving users and
administrators an easy way to answer their questions. There
is intense interest among the grid user community and sys-
tem adminstrators in having such a tool. However, once one
drills deeper into the logistics of such a system, a problem
becomes evident: the database will be updated at unpre-
dictable intervals, as each processor in the grid will write
to its logs at different rates and times, and each “sniffing”
process may make progress at different rates in loading the
data into the database. In extreme cases such as machine
failures, a node may not “report in” for a long time. This
means that the central database will always have an incon-
sistent view of the system.

Note that this inconsistent view will arise even when the
system is running exactly as designed. For example, sup-
pose a user submits a job j to machine m1, and the job
scheduling system decides to run j on a different machine
m2. Depending upon the order in which m1 and m2 write
their logs and these logs get propagated to the DBMS, we
could see at least four different states in response to DBMS
queries:

1. Neither m1 nor m2 have reported in anything about j.

2. m1 has reported that j has arrived and has been sent
to m2 to run, but m2 has not reported receiving j.

3. m1 has not reported any information about j, but m2

has reported that it is running j.

4. m1 has reported that it has received j and sent it to
m2, and m2 has reported that it is running j.

Even in simpler cases it may be hard for users to interpret
the results of their queries. For example, if a user asks “how
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many CPU seconds have my jobs used” they may get differ-
ent answers depending upon which machines have “reported
in” to the DBMS.

The standard DBMS approach to resolving this problem
would be to insist that the system do everything transac-
tionally. In such an approach, no event (for example, job
submission, job commencing execution, job suspension, and
so forth) would be allowed to occur without being syn-
chronously logged in the DBMS. In cases where machines
of the grid communicate, one would need distributed trans-
actions — for example, in the example of the preceding para-
graph, machines m1 and m2 would have to participate in a
distributed protocol with each other and the DBMS to make
sure that only scenarios 1 or 4 are visible to queries.

Unfortunately, this transactional approach is infeasible for
several reasons. First, grid job schedulers are large legacy
systems and it would be a daunting task to add synchronous
distributed transactions everywhere they are needed to guar-
antee consistency. Second, even if it were feasible to rewrite
these systems, the resulting synchronous system would have
undesirable blocking behavior (especially when machines fail)
and would likely not scale to the ten- or hundred-thousand
node grids that are envisioned in the near future. Also,
such a synchronous, rigid approach is at odds with the gen-
eral philosophy of grid systems, in which machines can come
and go, jobs and system processes fail regularly, yet the job
execution system is flexible and resilient enough to take eva-
sive action and eventually complete the jobs.

Finally, and perhaps most importantly, a transactional
view of the distributed system may not be what users want;
in many instances what they want is the most recent data
available rather than some transactionally consistent view
that might ignore the most recent updates from some data
sources. For example, in the preceding scenario, a user may
prefer to see that job j is running on machine m2 even if
m1 has not yet reported its submission rather than seeing
an earlier report from m2 that omits j.

Accordingly, in this paper we consider a radically differ-
ent approach: rather than enforcing transactional consis-
tency, we propose that the system provide recency informa-
tion along with the answers to user queries. Thus users will
still see inconsistent views of the distributed system (this
is unavoidable in an asynchronous distributed system that
makes data available to users as soon as possible), but they
will be able to correctly interpret the answers to their queries
despite this inconsistency. For example, in the previous sce-
nario of job j being submitted to m1 and running on m2, a
user might see in a query response that j is running on ma-
chine m2 despite the fact that it has apparently never been
submitted; however, the concerned user could easily deter-
mine that this is because m2 has reported in more recently
than m1.

A naive way to provide such information would be to
maintain a table in the DBMS that records, for each data
source, the time of the latest update from that data source,
and then to tag all data updates with the updating source.
This table can be viewed as a vector of “last report times”;
we could just return this table along with user queries. A
moment’s reflection shows that this may be suboptimal.
First, how should we maintain consistency between this ta-
ble and the result of user queries? Second, how should we
interpret the lack of a report from a data source? (Is it in
trouble, or does it have nothing to report?) Finally, and

most interestingly, for many queries we can prove that only
a few data sources could possibly impact the query result.
In such cases users will suffer unnecessary information over-
load if we just hand them the whole vector of report times.
As an example of this last point, suppose in a ten thousand
node cluster a user asks “what jobs do I have running on
machine 257?” The user will likely not appreciate an an-
swer that includes a list of the last report times for 9,999
processors in addition to machine 257.

In this paper we propose an alternative approach to pro-
viding recency information for such scenarios. Our main
contributions are

1. We establish requirements for query-centric data source
recency and consistency reporting;

2. We precisely define the concept of which data sources
are “relevant” to a given query;

3. We describe how to automatically generate, from a
user query, a corresponding recency query, and prove
that the resulting query never omits a “relevant” data
source;

4. We present a prototype implementation in a monitor-
ing system [9] for Condor [17] and explore, through an
experimental evaluation, the impact of our techniques
for recency on system performance.

While our target application is job scheduling and execu-
tion systems for computational grids, we think these tech-
niques may find broader application. Roughly speaking, the
approach of reporting recency rather than enforcing consis-
tency appears useful in systems where a distributed collec-
tion of data sources are reporting their state to a centralized
DBMS and for which it is infeasible or undesirable to insist
on synchronous distributed snapshot. Other examples of
such systems include distributed workflows in distributed
service oriented architectures and certain categories of sen-
sor networks.

2. RELATED WORK
Early work [1, 7, 12] in replica management and dis-

tributed databases allowed local copies of objects to di-
verge from the master copy and studied various mainte-
nance strategies to guarantee divergence bounds under dif-
fering requirements. In data warehousing, [16] introduced
query-centric currency driven materialized view refreshing.
In web views, [11] defined data freshness metrics and tack-
led the online view selection problem in the presence of
this data freshness information, while [2] used client tunable
latency-recency parameters and heuristic functions to decide
whether to use a cached object or download a fresh object.
More recently, in database caching, [8] explored how to ex-
press “good enough” currency and consistency constraints
in SQL and how to enforce them during query evaluation.

A common theme in all this previous work is that it en-
forces recency constraints through a combination of choosing
the correct version of an object to query (that is, the cached
copy or the primary copy) or refreshing “stale” objects by
synchronously “pulling” new data in response to a query.
This approach is not viable in our environment, where the
DBMS has no choice but to query its (potentially out of
date) copy of an object, and where it cannot synchronously
“pull” data from the processes being monitored.
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The data source recency problem we address is similar
to one that arises in data warehousing when multiple po-
tentially remote sources feed into the warehouse. The en-
vironments we are targeting (for example, a computational
grid with machines in different administrative domains) dif-
fer from typical data warehousing in that we have no con-
trol whatsoever over the data sources, so that having many
sources arbitrarily out of date is “business as usual” rather
than an exceptional event to be avoided or flagged or recti-
fied. Also, to our knowledge the published literature on data
warehousing does not consider the problem we address: pro-
viding query-centric data recency reports along with query
results.

Also in the context of data warehousing, [4] investigated
how to identify the set of source data items that produced a
view item. Their work differs from ours in that they wanted
to trace the lineage of a specific data item, while we want to
find the recency of the data sources that could possibly im-
pact a given query result. Their lineage-based approach can
indeed be modified to determine a subset of the sources that
impacted a given query result; however, theirs and other
similar lineage-based approaches are not complete, as they
can only provide information about data that is present in
answer, and may miss sources that impacted the answer by
not contributing any result tuples.

In the context of distributed databases, [13] addressed the
problem of finding the minimal set of locations sufficient to
process a query. Their problem statement relies on data
items being placed in a distributed environment in such a
way that they satisfy various predicates, and then they use
the interaction of the data placement predicates and query
predicates to identify where data satisfying a simple query
might be located. We have a simpler model (where updates
are tagged with data sources, and these source tags have spe-
cial semantics) that allows us to handle more general classes
of queries. Finally, our problem is at some level related to
the partition pruning techniques implemented in the con-
text of parallel DBMS [5, 10, 14], although in the published
literature these techniques focus on noticing when a selec-
tion predicate matches the “partitioning predicate” used to
allocate data to processors, which again is not sufficient for
our purposes.

3. BACKGROUND AND DEFINITIONS

3.1 Terminology
In this paper, the term “data source” is an abstraction

that may comprise a monitoring process, the application
processes being monitored, and perhaps other processes and
files used for communicating data between them. From the
point of view of the DBMS, each update is tagged with the
time of the event recorded in the update and updates stream
in from the source in the order of these timestamps. The
details of how these updates get from the application process
to the DBMS may vary. For example, it may be that the
application process generates data and writes them to a well-
known place where the monitoring process will read and
report them to the centralized database. The database never
“pulls” data from a monitoring process.

A database is a collection of system and user relations.
For simplicity, we do not consider user relations that are not
updated by the data sources we are monitoring. We assume
each user relation receives updates from one or more sources

and each tuple is inserted or updated by a single data source.
With each data source the DBMS associates a “recency”

timestamp, which represents the most recent timestamp be-
fore which all data generated by the application on the data
source are guaranteed to be reported to the database. The
exact protocol for maintaining the recency timestamp may
vary from system to system and is not the focus of this pa-
per. A simple way to do this is to maintain for each data
source the timestamp of the most recent event reported by
that source. This has the advantage that it does not require
any modifications to an application that is already writing
logs of events; it has the disadvantage that if the application
has nothing to report for a long time it will appear to be a
very out of date data source.

It is possible to enable more accurate views of the recency
of a source even if it has nothing to report. One way is to
require that the application periodically communicate in a
“heartbeat” fashion to the corresponding monitoring pro-
cess, even if it has nothing to report (perhaps by writing
a “nothing to report” record with a timestamp to its log.)
Finally, in this paper, we assume data is written to reliable
storage and that we use a reliable transport mechanism, so
that no data is lost from the time it is generated to the time
it is reported to the database.

3.2 Guiding Requirements
Our first requirement is concerned with consistency be-

tween the user query result and the recency information
about the query result. In our paper this recency infor-
mation is obtained by issuing a system-generated “recency
query” along with every user query. If the underlying DBMS
uses multiversion concurrency control (MVCC), the consis-
tency constraint means that the same snapshot should be
used for both the user query and the corresponding recency
query. For lock-based concurrency control, a transaction
with serializable isolation-level should be used to guarantee
transactional consistency between the two queries.

The second requirement is the completeness of the com-
puted set of “relevant” data sources. Recall that in general
our recency report will only cover a subset of the (perhaps
thousands) of data sources in the system. This requirement
means that no data source that could potentially impact a
query’s result should be missing from the recency report for
that query.

The third requirement is the reverse of the second, and
deals with the precision of the reported set of “relevant”
sources. Specifically it states that while observing the com-
pleteness requirement we should try to minimize the number
data sources we report as “relevant” that are not actually
relevant. Including “false positive” sources could result in
information overload on the user and may even cause the
user to take “incorrect” action, for example, waiting for a
source to report in when in fact there is no reason to wait.

3.3 Schema Model
Here we clarify our assumptions about the schema the

DBMS uses to store the state of the distributed system it
is monitoring. Specifically, the schema model needs to take
care of two issues: 1) how to model the relationship between
data instances and data sources; 2) where to keep track of
the recency timestamp of each data source. There are of
course many options for how to do this; in the following we
discuss one reasonable way and for clarity we use it in the
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rest of the paper.
We first consider how to maintain the recency of each

data source. For simplicity and efficiency, we want to keep
one copy of the recency of each data source. We do this by
maintaining a system Heartbeat table with two columns: a
data source id, and a recency timestamp. The data source
column is the primary key in this table. We assume that
every contributing data source in a system has an entry in
the Heartbeat table.

To maintain the association between data sources and
rows in the database, we assume that each tuple in a re-
lation is associated with a data source. (Recall that for
simplicity we are ignoring tables that are not updated by
the data sources being monitored.) This may be achieved
by directly adding a data source column to a table, and us-
ing this column as a foreign key into the Heartbeat table.
We expect that often a relation will already contain a col-
umn that identifies the data source for each tuple. In this
case this existing column can be treated as the data source
column. Given a data source ’s’, we assume that only up-
dates from ’s’ can insert or change tuples with ’s’ in the data
source field.

3.4 Problem Definitions
We now turn to define precisely what we mean by the set

of “relevant” data sources for a query. In order to define
what it means for a data source to be “relevant” to a query,
we consider two cases separately: 1) a query references one
relation; 2) a query references multiple relations. In this
paper we assume that a query contains only a single SPJ
expression. We first introduce some useful notation:

Notation 1. We use Q to denote a query. For a single-
relation query, we use R to denote the relation and use < c1,
c2, ..., ck, cs > to denote the columns of the relation. We use
cs to denote the data source column and refer to other
columns as regular columns. A tuple instance is denoted
as < v1, v2, ...,vk, s >. The correponding domains for the
columns are denoted D1, D2, ..., Dk, Ds. Specifically, Ds is
the domain of the data source column. Ds contains the same
set of data source ids that the Heartbeat table records.

Notation 2. For a multi-relation query, we use Ri to de-
note a relation and use < ci

1, ci
2, ..., ci

k, ci
s > to denote the

columns for that relation. We use ci
s to denote the data

source column of Ri and call all the other columns reg-
ular columns. A tuple instance in relation Ri is denoted
< vi

1, vi
2, ..., vi

k, si >. The correponding domains for the
columns of Ri are denoted as Di

1, Di
2, ..., Di

k, Ds. For
simplicity we will also use R to refer to a relation in a multi-
relation query when doing so doesn’t cause any confusion.

Definition 1. If Q references R, we say that a data source
s ∈ Ds is relevant for Q if ∃v1 ∈ D1, v2 ∈ D2, ..., vk ∈ Dk

s.t. the tuple < v1, v2, ..., vk, s > satisfies Q’s predicates.

As we can see, a data source is relevant to a query if it is
potentially associated with a tuple that satisfies the query.
Note that the tuple doesn’t have to exist in the relation.
This is because a data source is relevant if it is possible that
an update from that data source could change the query re-
sult, not just if it appears in a tuple in the query result. Next
we turn to the definition of relevance for a query referencing
multiple relations.

Definition 2. For a query Q referencing relations R1, R2,
..., Rn, we say that a data source s ∈ Ds is relevant for
Q if ∃i (1 ≤ i ≤ n), ∃vi

1 ∈ Di
1, vi

2 ∈ Di
2, ..., vi

k ∈ Di
k, and

for ∀j (j 6= i, 1 ≤ j ≤ n), ∃ a tuple < vj
1, vj

2, ..., vj
k, sj >

∈ Rj , s.t. the tuple < vi
1, vi

2, ..., vi
k, s > for Ri, < vj

1, vj
2,

..., vj
k, sj > for each Rj (j 6= i, 1 ≤ j ≤ n) together satisfy

the predicates of Q. In this case we say that s is relevant
for Q via Ri.

When a query references multiple relations, a data source
is relevant if potentially it is associated with a tuple of a
relation that joins with the remaining relations and satisfies
the other predicates. Here a subtlety is that existing tuples
(instead of potential tuples) of the remaining relations are
used for joining. If we used potential tuples (as in the single
relation case) we might get the unfortunate situation that all
data sources are always relevant. One reasonable question
is whether our definition corresponds to any intuitive user-
level guarantee.

It turns out that it does — a common property of the
definitions for both the multi-relation and single relation
cases is that no single update from an irrelevant data source
can change the result of a query. It is possible that an
update from a relevant source could change the result. In
the multi-relation case, it is also possible that a sequence
of changes from an irrelevant data source could change the
result. For example, one update from an irrelevant data
source may make that source relevant, then another update
could change the query result. Note also that the multi-
relation definition defaults to the single relation definition if
n = 1. We formally prove a theorem to make this guarantee
shortly after we introduce the set of relevant data sources
below.

Notation 3. We denote the defined set of relevant data
sources for a query Q as S(Q) and use A(Q) to represent
the set of relevant data sources computed by an algorithm.

S(Q) = {s ∈ Ds|s is relevant for Q}

We say that an answer A(Q) is an upper bound if A(Q) ⊇
S(Q) and an answer A(Q) is the minimum if A(Q) = S(Q).

Theorem 1. Let Q reference relations R1, R2, ..., Rn.
We denote the result of Q as Q(R1, R2, ..., Rn). If s /∈ S(Q),
then ∀i(1 ≤ i ≤ n), ∀vi

1 ∈ Di
1, ∀vi

2 ∈ Di
2, ..., ∀vi

k ∈ Di
k, with

ti denoting the tuple < vi
1, v

i
2, ..., v

i
k, s >, the following holds:

Q(R1, ..., Ri, ..., Rn) = Q(R1, ..., Ri ∪ {ti}, ..., Rn)

Informally, this says that if ti is an update from a data
source that is not relevant, it in isolation cannot change the
answer to Q.

Proof. Because Q (as an SPJ expression) can be formu-
lated as a cross product followed by selection and projec-
tion, it is not hard to prove that Q(R1, ..., Ri ∪ {ti}, ..., Rn)
= Q(R1, ..., Ri, ..., Rn) ∪ Q(R1, ..., {ti}, ..., Rn). With this
we only need to prove that Q(R1, ..., {ti}, ..., Rn) = ∅. As-
suming Q(R1, ..., {ti}, ..., Rn) 6= ∅, then for ∀j (j 6= i, 1 ≤
j ≤ n), ∃ a tuple < vj

1, vj
2, ..., vj

k, sj > ∈ Rj , s.t. the

tuple ti for Ri, < vj
1, vj

2, ..., vj
k, sj > for each Rj (j 6= i,

1 ≤ j ≤ n) together satisfy the predicates of Q. By Defini-
tion 2, the data source s in ti is relevant for Q via Ri. This
is a contradiction to the condition that s /∈ S(Q).
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A final subtlety here is that these definitions talk about
the existence of tuples selected from the cross product of
the domains of the columns of a relation in a query. If we
are also given constraints for the relation schemas, then not
all such tuples are valid as updates to the relation instances
in question. If constraints are in form of predicates, we can
take a user query and append the conjunction of predicates
defining such constraints. This converts Q to an equiva-
lent expression Q′. Our definitions can be modified to sup-
port such constraints by replacing Q with Q′. For scenarios
with constraints not in form of predicates such as key con-
straints, the definitions of “relevant sources” would have to
be augmented to restrict the tuples considered to be those
that, when appended to the relation instance, give a legal
instance of the relation. This will have the effect in some
cases of further increasing the precision of the set of relevant
sources identified for a query. If we ignore key constraints
on the relations mentioned in a query, it is possible that we
overestimate the set of relevant data sources (we say that
sources are relevant when actually they are not), because
our definitions allow sources to be made relevant by tuples
that will never actually occur in the database. Because of
this overestimate, we never miss a relevant data source.

Accordingly, in the next section we first ignore such con-
cerns, and leave the development of recency information in
the presence of key constraints as an interesting area for
future work.

4. TECHNIQUES
In this section we propose techniques for computing the

set of data sources that are relevant for a given query. We
first show that computing the minimal set of data sources
relevant to a query is NP-hard. Despite this negative re-
sult, we give efficient algorithms for computing relevant data
sources. We prove that they are correct in that they never
fail to report a relevant data source; furthermore, we prove
that they return the minimum except in two extreme cases:
1) when the user’s query is unsatisfiable (it will return no
data for any legal instance of the database), or 2) when the
user query contains what we call a “mixed predicate” that
compares a data source column to a regular column. Even
in these extreme cases our techniques may return minimal
relevant sets, but we lose the minimality guarantee. Be-
cause we suspect these extreme cases are not likely to occur
in practice, the NP-hardness result, while theoretically in-
teresting, is not likely to limit the utility of our technique in
practice.

4.1 Computing Relevant Data Sources
The definitions in Section 3.4 imply an idea for how to

compute the relevant data sources for a query. Taking a
single-relation query, for example, we could generate a new
relation that is the cross product of the domains for all
columns of the relation filtered by constraints, if any. Then
we apply the predicates of the query to the new relation by
brute force and project out only the data source column.
By definition this will produce the minimum answer. While
this approach is conceptually simple, it is impractical for two
reasons: 1) the domains of some columns may contain an in-
finite number of values; 2) even if domains of all columns are
finite, the performance is likely to be unacceptable because
of the size of the cross product. In the following we show
that the problem of determining the minimal set of relevant

data sources for a query is NP-hard in general.

Theorem 2. Given a query Q referencing R, the problem
of computing S(Q) is NP-hard.

Proof. Assuming the domain of data sources Ds has
only one value s, P is the predicates of Q. Let P (cs = s) be
the remaining predicates after we substitute cs with value
s in P . Under the assumptions we make here, the problem
of computing S(Q) is equivalent to answering whether s is
relevant for Q. Furthermore, if s is relevant for Q, by def-
inition P (cs = s) must be satisfiable. On the other hand,
if s is not relevant for Q, by definition P (cs = s) can not
be satisfiable. Therefore we have reduced the problem of
determining the satisfiability of P (cs = s) to the problem of
computing S(Q). Because the satisfiability of P (cs = s) is
NP-hard [15], so is the problem of computing S(Q).

In the following our approach is to derive constraints on
the data source column from the predicates of a query to
compute the minimum or an upper bound of the set of rele-
vant data sources. We also present conditions for when the
minimum can be reached with a theoretical guarantee.

A query’s predicates can be formed using any number of
logical operators and comparison operators. To solve the
problem uniformly, we first convert the predicate of a query
to disjunctive normal form (DNF), which is a disjunction
consisting of one or more conjunctive predicates. That is,
a query’s predicates can be transformed into the following
form: P1 ∨ P2 ∨ ... ∨ Pk, where each Pi is a conjunction
of one or more smaller terms, which we call basic terms,
that are free of ∧ or ∨ operators.

Corollary 1. Let Q be a query with predicates in DNF:
P1 ∨ P2 ∨ ... ∨ Pk where each Pi (1 ≤ i ≤ k) is a conjunc-
tion of basic terms. If Q1 is the same as Q except with only
P1 as predicates, Q2 with P2, ... Qk with Pk, then

S(Q) =
[

1≤i≤k

S(Qi)

The proof is evident by applying the definition of a rele-
vant data source to both sides of the equation above. With
Corollary 1, we can focus on queries with conjunctive predi-
cates of basic terms. Once again we proceed by first treating
single-relation queries, followed by multiple-relation queries.

4.1.1 Single-relation Queries
We first introduce some more notation to facilitate the

description and proof of theorems in this section.

Notation 4. Let P be the predicates of Q. We separate
P into three parts, Ps ∧ Pr ∧ Pm, where each part is a
conjunction of zero or more basic terms such that: each term
of Ps references only cs (the data source column), each term
of Pr references only regular columns, and lastly each term
of Pm references both cs and at least one regular column. We
call Ps data source only predicates, Pr regular column
only predicates and Pm mixed predicates. If there is
no basic term for a part, we say it is NULL.

Notation 5. We use H to represent the Heartbeat table
and use < cs, ct > to denote its columns. cs is the data
source column and ct is the recency timestamp. If Q refer-
ences R, we use P ′

s to stand for the predicates after R.cs is
replaced with H.cs in Ps.
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Theorem 3. If Q references R, and then predicates of Q
are organized as Ps ∧ Pr ∧ Pm, and if Pm is NULL and
Pr is satisfiable in D1 × D2 × ... × Dk, then

S(Q) = πcs
(σP ′

s
(H))

Proof. If s ∈ S(Q), then ∃v1 ∈ D1, v2 ∈ D2, ..., vk ∈ Dk

s.t. the tuple < v1, v2, ..., vk, s > satisfies the predicates of
Q. Consequently the tuple must satisfy partial predicates
of Q, i.e., Ps (R.cs = s) = TRUE. By replacing the variable
R.cs with H.cs in Ps, we have P ′

s (H.cs = s) = TRUE.
Therefore s ∈ πcs

(σP ′

s
(H)).

On the other hand, if s ∈ πcs
(σP ′

s
(H)), then s ∈ Ds and

P ′
s (H.cs = s) = TRUE. By replacing the variable H.cs with

R.cs, we have Ps (R.cs = s) = TRUE. Furthermore since
Pr is satisfiable in D1 × D2 × ... × Dk, implying ∃v1 ∈ D1,
v2 ∈ D2, ..., vk ∈ Dk s.t. the tuple < v1, v2, ..., vk >
satisfies the Pr. Therefore the tuple < v1, v2, ..., vk, s >
satisfies Ps , Pr and Pm (which is NULL), by Definition 1.
we have s ∈ S(Q).

Intuitively Theorem 3 means that if all predicates of a
query can be separated into data source only predicates and
regular column only predicates, and if the regular column
only predicates are satisfiable, then we can directly apply the
data source only predicates as constraints on the Heartbeat

table to get the set of relevant data sources for the query.
The set of data sources found through this approach is the
minimum.

There are two cases which would break the assumptions
of Theorem 3: 1) there are mixed predicates, 2) the regular
column only predicates are not satisfiable. The first case
occurs when a user wants to compare the data source col-
umn to some other column of the same relation. The second
case happens when a user specifies contradictory predicates
within a query or in a more likely scenario specifies predi-
cates contradictory to constraints. When predicates are not
satisfiable, a straighforward result can be obtained as in the
following.

Corollary 2. Let Q reference R and the predicates in
Q be P . If P is not satisfiable in D1 × D2 × ... × Dk ×
Ds, then the following holds:

S(Q) = ∅

For all cases where the minimum is not guaranteed either
because satisfiability of predicates is unknown or there are
mixed predicates, our solution always guarantees an upper
bound with Corollary 3.

Corollary 3. Suppose Q references R and that the pred-
icats in Q can be organized as Ps ∧ Pr ∧ Pm. The following
holds:

S(Q) ⊆ πcs
(σP ′

s
(H))

The first part of the proof for Theorem 3 proves Corollary
3.

We introduce the following example for illustration. Sup-
pose we keep track of the activities on machines across ad-
ministrative boundaries in a single table:
Activity(mach id, value, event time)

The attributes of the Activity table are machine ID, ac-
tivity value and the event time when an activity value be-
comes valid. We treat the machine ID as the data source

Table 1: Sample data set for Activity

mach id value event time

m1 idle 03/11/2006 20:37:46
m2 busy 02/10/2006 18:22:01
m3 idle 03/12/2006 10:23:05

column. Table 1 shows an example instance of the Activity
relation. Now suppose that a user would like to know which
of m1 and m2 have reported an “idle” state, and does so
with the following query Q1:

SELECT mach id FROM Activity

WHERE mach id IN (’m1’, ’m2’) AND value = ’idle’;

In this example, mach id IN (’m1’,’m2’) of Q1 is a pred-
icate on the data source column, and value = ’idle’ is
a predicate on a regular column. It is satisfiable because
’idle’ is contained in the domain for value. Therefore ac-
cording to Theorem 3, mach id IN (’m1’, ’m2’) can be
directly applied to the data source domain to find the set of
relevant data sources, which are {’m1’, ’m2’}.

4.1.2 Multi-relation Queries
For multi-relation queries, we need to further break down

the relevant data sources in the following way:

S(Q, R) = {s ∈ Ds|s is relevant for Q via R}

Corollary 4. If Q references relations R1, R2, ..., Rn,
then

S(Q) =
[

1≤i≤n

S(Q, Ri)

The proof of Corollary 4 is also evident by applying Defi-
nition 2 to both sides of the equation. With Corollary 4,
we can now focus on solving each individual S(Q, Ri). In
the declaration of the following notation, we call a predicate
a “selection predicate” if it only references columns of one
relation and a “join predicate” if it references columns of
more than one relation.

Notation 6. We organize predicates of Q involving a rela-
tion Ri into five parts: P i

s ∧ P i
r ∧ P i

m ∧ J i
s ∧ J i

rm. Each part
is a conjunction of zero or more basic terms. Each term of
P i

s is a selection predicate referencing only Ri.cs. Each term
of P i

r is a selection predicate referencing only Ri’s regular
columns. Each term of P i

m is a selection predicate referenc-
ing both Ri.cs and at least one of Ri’s regular columns. Each
term of J i

s is a join predicate referencing only cs in terms of
Ri’s columns. Each term of J i

rm is a join predicate referenc-
ing at least one regular column of Ri and it may or may not
reference Ri.cs. We refer to P i

s as the data source only
selection predicates, P i

r as the regular column only
selection predicates, P i

m as the mixed selection pred-
icates, J i

s as data source only join predicates, J i
rm as

regular column only or mixed join predicates. We
use P i

o to denote all the other predicates of Q excluding the
ones referencing Ri.

Here we do not distinguish regular column only join pred-
icates and mixed join predicates. We will explain the reason
shortly after Theorem 4.
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Notation 7. If Q references R1, R2, ..., Rn, we use P i′

s to
denote the predicates after Ri.c

i
s is replaced with H.cs in

P i
s , and J i′

s to stand for the preciates after Ri.c
i
s is replaced

with H.cs in J i
s.

Theorem 4. Suppose Q references relations R1, R2, ...,
Rn, and that as above, the predicates of Q involving Ri are
organized as P i

s ∧ P i
r ∧ P i

m ∧ J i
s ∧ J i

rm. P i
o includes all the

other predicates of Q on the other relations. If P i
m and J i

rm

are NULL and P i
r is satisfiable in Di

1 × Di
2 × ... × Di

k,
then S(Q, Ri) =

πcs
(σ

P i′

s
∧Ji′

s
∧P i

o

(H × R1 × ...Ri−1 × Ri+1... × Rn))

Proof. if s ∈ S(Q,Ri), then ∃vi
1 ∈ Di

1, vi
2 ∈ Di

2, ...,
vi

k ∈ Di
k, and for ∀j(j 6= i, 1 ≤ j ≤ n) , ∃ < vj

1, vj
2, ..., vj

k,

sj > ∈ Rj , s.t. the tuples < vi
1, vi

2, ..., vi
k, s > for Ri, < vj

1,

vj
2, ..., vj

k, sj > for Rj (j 6= i, 1 ≤ j ≤ n) together satisfy
all the predicates of Q. Consequently the tuples satisfy P i

s

∧ J i
s ∧ P i

o . By replacing the variable Ri.c
i
s with H.cs in P i

s

and J i
s, we have s for H.cs, < vj

1, vj
2, ..., vj

k, sj > for Rj

(j 6= i, 1 ≤ j ≤ n) satisfying P i′

s ∧ J i′

s ∧ P i
o , therefore

s ∈ πcs
(σ

P i′

s
∧Ji′

s
∧P i

o

(H × R1 × ...Ri−1 × Ri+1... × Rn))

On the other hand, if
s ∈ πcs

(σ
P i′

s
∧Ji′

s
∧P i

o

(H × R1 × ...Ri−1 × Ri+1... × Rn))

then for ∀j(j 6= i, 1 ≤ j ≤ n) , ∃ < vj
1, vj

2, ..., vj
k, sj > ∈ Rj ,

s.t. s for H.cs and the tuple < vj
1, vj

2, ..., vj
k, sj > for Rj

(j 6= i, 1 ≤ j ≤ n) satisfy P i′

s ∧ J i′

s ∧ P i
o . By replacing the

variable H.cs with Ri.c
i
s in P i′

s and J i′

s , we have s for Ri.c
i
s

and < vj
1, vj

2, ..., vj
k, sj > for Rj (j 6= i, 1 ≤ j ≤ n) satisfy

P i
s ∧ J i

s ∧ P i
o . With the condition that P i

r being satisfiable
in Di

1 × Di
2 × ... × Di

k, there must ∃vi
1 ∈ Di

1, vi
2 ∈ Di

2, ...,
vi

k ∈ Di
k, s.t. the tuple < vi

1, vi
2, ..., vi

k, s > satisfies P i
r .

Therefore the tuples < vi
1, vi

2, ..., vi
k, s > for Ri, < vj

1, vj
2,

..., vj
k, sj > for Rj (j 6= i, 1 ≤ j ≤ n) satisfy P i

s ∧ P i
r ∧ J i

s ∧
P i

o , which are all the predicates of Q since P i
m and J i

rm are
NULL. By Definition 2. s ∈ S(Q, Ri).

Therefore the relevant data sources of Q via Ri can be
computed by a semijoin between the Heartbeat table and
the other relations when the conditions are met. Like the
single relation case, the assumptions of Theorem 4 will break
when there are mixed selection predicates (the P i

m part) or
when there is a contradiction in P i

r . One additional case for
multi-relation query is when there are regular column only
or mixed join predicates (the J i

rm part). Such join predicates
involve at least one regular column. In this case, the cross
product of the data source domain and the domains of any
regular column referenced in the predicates can be joined
with the other relations to further filter out any irrelevant
data sources. This again would be problematic if the domain
for a column is infinite or the cross product of the domains
is large. The problem applies regardless whether we have
regular column only join predicates or mixed join predicates.
This is the reason that we do not distinguish them earlier in
our notation. Like the single-relation query, we provide an
upper bound that is complete for cases where the minimum
can’t be guaranteed.

Corollary 5. Suppose that Q references relations R1,
R2, ..., Rn, and that as above, the predicates of Q involving
Ri are organized as P i

s ∧ P i
r ∧ P i

m ∧ J i
s ∧ J i

rm. P i
o includes

Table 2: Sample data set for Routing

mach id neighbor event time

m1 m3 03/12/2006 23:20:06
m2 m3 02/10/2006 03:34:21

all the other predicates of Q on the other relations. Then
the following holds: S(Q, Ri) ⊆

πcs
(σ

P i′

s
∧Ji′

s
∧P i

o

(H × R1 × ...Ri−1 × Ri+1... × Rn))

The first part of the proof for Theorem 4 suffices to prove
Corollary 5. Similarly a straightforward result can be ob-
tained when predicates of Q are not satisfiable.

Corollary 6. Suppose that Q references R1, R2, ..., Rn

and predicates of Q are P . If P is not satisfiable in Dj
1 ×

Dj
2 × ... × Dj

k × Ds (1 ≤ j ≤ n), then the following holds:

S(Q) = ∅

We will now give a multi-relation query example to il-
lustrate Theorem 4. Consider a P2P job scheduling and
execution system in which each machine in a grid can send
jobs to any of its neighbors for execution. Also, suppose
that the ”neighbor” relationship is captured in the table
Routing(mach id, neighbor, event time) with the seman-
tics that if (m1, m2, t) appears in the routing table, at time
t m2 became a neighbor of m1. We treat the machine ID as
the data source column. Table 2 shows a sample instance of
the Routing relation.

Now suppose a user would like to know which of the neigh-
bors of m1 have reported an “idle” state, so the user issues
the following query Q2.

SELECT A.mach id

FROM Routing R, Activity A

WHERE R.mach id = ’m1’ AND A.value = ’idle’ AND

R.neighbor = A.mach id;

By applying Corollary 4, we have S(Q2) = S(Q2, R)
S

S(Q2, A). To compute S(Q2, R), we identify R.mach id =

’m1’ as a data source only selection predicate (i.e., the
Ps), R.neighbor = A.mach id as a regular column only join
predicate (i.e., the Jrm) and A.value = ’idle’ as the re-
maining predicate (i.e., the Po) on the other relation. Be-
cause Jrm is not NULL, we can’t apply Theorem 4 to guar-
antee the minimum. However, with Corollary 5, we can get

S(Q2, R) ⊆ πH.cs
(σH.cs=′m′

1
∧A.value=′idle′(H × A))

Because the value ’idle’ appears in the Activity table, the
expression in the above evaluates to {’m1’}.

If we assume the domain of Routing.neighbor is the same
as the domain for Activity.mach id, the regular column
only join predicate R.neighbor = A.mach id is also satis-
fiable in this example. Therefore in fact the upper bound
found above is the minimum even though Corollary 5 doesn’t
guarantee it in general. An extreme counter-example is
when the domain of Activity.mach id has no intersection
with the domain of Routing.neighbor. In this case Jrm al-
ways evaluates to FALSE. Therefore S(Q2, R) = ∅, which
is a proper subset of the upper bound.

Now let us turn to the problem of finding S(Q2, A). Be-
cause A.value = ’idle’ (i.e., the Pr) is satisfiable and Pm
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and Jrm are all NULL, Theorem 4’s assumptions all hold
true. Therefore we have S(Q2, A) =

πH.cs
(σR.neighbor=H.cs∧R.mach id=′m′

1
(H × R))

Given our data, the right side evaluates to {’m3 ’}.
The example above can be modified slightly to illustrate

the point that a sequence of updates from an irrelevant data
source can change the result of a query. If we change the
sample instance for the Activity table such that all three
machines have ’busy’ value, then by evaluating the same
expressions above we will get S(Q2, R) = ∅ and S(Q2, A) =
{′m′

3}. This means that no single update from m1 or m2

can change the query result. Now suppose there are two
updates in order from m1: 1) m1 is updated to ’idle’ in
Activity and 2) m1 is added as a neighbor of m1 itself
in Routing. The first update will make m1 relevant via
Routing. The second update will change the query result
to include m1. An interesting observation here is that this
particular scenario would not occur if we had an explicit
constraint on the Routing table that a machine can’t have
itself as a neighbor.

4.2 Impact of Query Semantics on Recency
A subtle issue is that in such database queries which look

very similar may produce different result and recency, be-
tween which we observe that there is a tradeoff. Suppose in
an example computing system, jobs are submitted to ma-
chines which are called scheduling machines. For simplicity
let us assume that the scheduling machine for a job decides
where it is executed. Assume the database schema for the
system has two tables as following:
S(schedMachineId, jobId, remoteMachineId)

R(runningMachineId, jobId)

The idea is that S captures what the scheduler thinks is
happening, R captures what the running machine thinks is
happening. Whenever a scheduler assigns a job to a ma-
chine, or changes the machine for a job, it updates its tuple
for that job to reflect the change. Whenever a running ma-
chine is running a job, it reports that fact. R and S are
supposed to capture the current state, but they can allow
inconsistencies due to time lags.

Now suppose there is a user who wants to know “is my job,
which I submitted to the scheduling machine myScheduler,
running yet?”

This user may write one of two different queries identified
by Q3 and Q4 respectively:

SELECT R.runningMachineId FROM R

WHERE R.jobId = myId;

SELECT R.runningMachineId FROM S, R

WHERE S.schedMachineId = myScheduler AND

S.jobId = myId AND R.jobId = myId AND

R.runningMachineId = S.remoteMachineId;

Both capture the user’s idea, but they have different seman-
tics (Q3 does not require a scheduling machine tuple) and
different recency.

1. Without any of our techniques, for both Q3 and Q4

we would report that all sources are relevant.

2. With our techniques, for Q3, we will report that all
machines are relevant. If any running machine has

reported myId, then the query will return the ID for
that machine, else nothing.

3. With our techniques, for Q4, the answer depends upon
what we find in S:

(a) If there is nothing in S for myId and myScheduler,
the query will return an empty result and we will
report that only myScheduler is relevant; this is
correct because only updates from myScheduler
can change the query result.

(b) If there is a tuple in S for myId and mySched-
uler, but it doesn’t join with anything in R, then
the query will return an empty result and we will
report that myScheduler and S.remoteMachineId
are relevant. This is correct because only updates
from these two machines can change the answer.

(c) If there is a tuple in S for myId and myScheduler,
and it joins with a tuple in R, then the query
will return R.runningMachineId and we will re-
port that myScheduler and R.runningMachineId
are relevant.

4.3 Reporting recency and consistency
Getting the set of data sources relevant to a user query

solves only one part of the puzzle. In this section we use
those results to query the recency timestamps for the rel-
evant data sources and compute descriptive statistics that
indicate the overall recency and consistency of a user query
result. By “consistency” we mean the relative recency of a
set of data sources.

In our approach, the recency timestamps for the relevant
data sources of a query are stored in an automatically cre-
ated temporary table, which is a snapshot of recency infor-
mation transactionally consistent with the user query result.
The temporary table persists until the end of a user session.
The user can decide whether to copy it to a permanent ta-
ble before the end of a session or to allow it to be discarded
automatically by the system. With the detailed recency in-
formation in a temporary table, users and applications are
able to query them to look into recency information of rele-
vant data sources that is consistent with a query result.

When there are only a few relevant data sources, it may
be sufficient for users to look at the entire set of returned re-
cency timestamps. However, this will not be an option when
there are a large number of relevant data sources. To han-
dle this, we automatically compute the following descriptive
statistics to extract some salient features of the set of re-
cency data: the minimum recency timestamp, the maximum
recency timestamp, and the range of recency timestamps.
The range descriptor in statistics is defined as the difference
between the maximum and minimum data points. Other
statistics could be computed as well, but we think these
three are perhaps the most useful. Specifically, the mini-
mum recency timestamp provides a consistent snapshot for
all data sources because all events with timestamps before
it must have been reported from all sources. The range of
recency timestamps can be interpreted as a bound of incon-
sistency among the relevant data sources of a query.

In a loosely coupled environment, from time to time we
might have data sources that are extremely out of date (for
example, when they are suffering from a “hard” network
disconnect or failure.) When this happens, if the recency

230



timestamps of these sources are included in our descriptive
statistics they will not be descriptive of the majority of the
data sources relevant to a query. To help address this prob-
lem, we propose that the system automatically identify “ex-
ceptional” data sources and report them in a separate tem-
porary table. Then the usual descriptive statistics would be
computed over the remaining “normal” data sources.

Obviously there are many methods that could be used to
define what counts as an “exceptionally out of date” data
source. One reasonable approach that has found acceptance
in other domains is the z-score [3] method from statistics.
The z-score is an indicator of how far an individual observa-
tion is from the mean of a data set. The idea of using z-score
for detecting outlier is based on the Chebyshev theorem [3]
which states that for any data set at least 89% of the values
will have a z-score less than 3 in absolute value. If the rela-
tive frequency distribution of a data set is bell-shaped, then
the empirical rule [3] tells that near 100% of the values will
have a z-score less than 3 in absolute value.

For each recency timestamp x, the z-score can be calcu-
lated with the following formulas:

x − µ

σ
where µ =

PN

i=1 xi

N
and σ =

s

PN

i=1(xi − µ)2

N

The µ and σ are respectively the mean and the standard
deviation of a data set. xi represents the recency timestamp
of a data source and N is the total number of data sources.

5. PROTOTYPE AND EVALUATION
In this section we address the question of whether our

techniques have anything to contribute over the naive ap-
proach of simply reporting the recency of all sources along
with the answer to user queries. This naive approach has
the advantage of simplicity; the reader may wonder if our
more complicated approach introduces unacceptable over-
head when compared to the naive approach, or if it really
succeeds in significantly limiting the size of the reported rel-
evant sources. Our conclusion from running example queries
in our prototype implementation is 1) the overhead of our
approach is acceptable (in fact, somewhat counter-intuitively,
in general our approach has lower overhead than the naive
approach), and 2) on the example queries we consider, our
technique often succeeds in dramatically reducing the num-
ber of sources reported.

5.1 Prototype And Issues
We chose PostgreSQL as our DBMS platform because of

its support for table functions. In our prototype, the recency
reporting functionality is implemented in a table function
that runs the user query and also computes the recency and
consistency information, returning them in a temporary ta-
ble that can be queried subsequently.

Leveraging a table function solves the consistency of re-
cency information and user results in a transparent way. By
exposing the reporting mechanism through a table function,
users are able to invoke it in one SQL statement within
which both the recency query and the original user query
are evaluated. By default, PostgreSQL starts a transaction
implicitly for each statement and while querying a database
each transaction sees a consistent snapshot of the data. Thus
consistency between the user query and the corresponding
recency query are guaranteed in our prototype.

Suppose a user wants to find all the machines that have
reported an “idle” state with the following query over the
sample data for Activity presented in the example Q1:

SELECT mach id, value FROM Activity A

WHERE value = ’idle’;

To get recency information with our techniques, a user can
run the query through our prototype function called “recen-
cyReport”. In response, the user will get a report (format-
ted) as in the following. Notice that the “mydb=#” is the
prompt from the SQL client.

mydb=# SELECT * FROM recencyReport($$

SELECT mach_id, value FROM Activity A

WHERE value = ’idle’$$)

AS t(mach_id TEXT, activity TEXT);

NOTICE: Exceptional relevant data sources and

timestamps are in the temporary table:

sys_temp_e1142376455

NOTICE: The least recent data source: m1,

2006-03-15 14:20:05-06

NOTICE: The most recent data source: m3,

2006-03-15 14:40:05-06

NOTICE: Bound of inconsistency: 00:20:00

NOTICE: All ‘‘normal’’ relevant data sources and

timestamps are in the temporary table:

sys_temp_a1142376455

mach_id | activity

---------+----------

m1 | idle

m3 | idle

(2 rows)

-- query the exceptional relevant data sources

mydb=# SELECT * FROM sys_temp_e1142376455;

sid | recency timestamp

-----+------------------------

m2 | 2006-02-10 17:23:00-06

(1 row)

-- query the ‘‘normal’’ relevant data sources

mydb=# SELECT * FROM sys_temp_a1142376455;

sid | recency timestamp

-----+------------------------

m1 | 2006-03-15 14:20:05-06

m3 | 2006-03-15 14:40:05-06

m4 | 2006-03-15 14:21:05-06

m5 | 2006-03-15 14:22:05-06

m6 | 2006-03-15 14:23:05-06

m7 | 2006-03-15 14:24:05-06

m8 | 2006-03-15 14:25:05-06

m9 | 2006-03-15 14:26:05-06

m10 | 2006-03-15 14:27:05-06

m11 | 2006-03-15 14:28:05-06

(10 rows)

Besides the normal query result that m1 and m3 have an
“idle” state, our table function reports that except the rele-
vant data source m2, all relevant data sources have reported
since “2006-03-15 14:20:05-06” and the bound of inconsis-
tency for all such data sources is 20 minutes.

We have encountered two main issues during the course
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of implementation. The first issue is that parsing the SQL
statement outside the DBMS is not easy, because parsing
requires not only a SQL language parser but also access to
the schema definition stored in the DBMS so that identi-
fiers can be correctly resolved. The second issue is with
the PL/pgSQL, which we used for implementing the table
function, is not the ideal language in which to implement a
parser. Our current implementation has around 760 lines of
PL/pgSQL code, of which more than 2/3 deal with parsing
a user query string and generating new query strings. Based
on these issues and the system nature of recency and con-
sistency reporting, we think that it would be preferable to
implement our functionality within database system instead
of as an external add-on.

5.2 Metrics And Evaluation
To measure precision, we calculate the percentage of irrel-

evant data sources reported vs. the relevant data sources.
We call this percentage the false positive rate (fpr). The
smaller the false positive rate, the better. Given a query Q,

the false positive rate is: |A(Q)−S(Q)|
|S(Q)|

.

The false positive rate would be impossible to calculate
if we did not have a way to determine the relevant data
source set for a query. To solve this, we used a test schema
specially designed so that a finite domain with a reasonable
cardinality is associated with each column of a relation. This
way we can apply the brute force idea briefly discussed in
the first paragraph of Section 4.1 to determine the relevant
data source set for a query. We emphasize that we used
this approach only to compute the exact relevant source set
in order to analyze our results, not in our recency table
function.

To test efficiency, we measure the response time over-
head caused by the additional recency and consistency re-
porting. Given a query Q, if t1(Q) is the response time for
evaluating Q and t2(Q) is the response time for evaluating
Q with consistency and recency reporting, the overhead is

given by: t2(Q)−t1(Q)
t1(Q)

.

For our experiment we used Tao Linux 1.0 as the OS on
top of a 2.4 GHZ Intel Pentium with 512MB memory. We
used PostgreSQL 8.0.0 as the database. The shared buffer
pool size was set to 8MB and the size of working memory
used for sorting and hash joining was set to 1MB. We used
the same schema as given in our previous examples. In addi-
tion, we created B-tree indexes on the data source columns
of the Heartbeat, Activity and Routing tables.

The data for the tables were synthetically generated and
designed to help us understand how the performance over-
head scales with respect to the number of data sources and
the average amount of data per source. We fixed the total
number of rows in the Activity table at 10,000,000. Then
we varied both the number of data sources and data ra-
tio with inverse proportion. Here the data ratio refers to
the number of rows per data source in the Activity table.
Specifically, we increased the data ratio from 10 to 1,000,000
by factors of 10, while decreasing the number of data sources
from 1,000,000 to 10 by the same factor.

The size of the Activity table was about 666 MB. The
largest Heartbeat and Routing both had 1,000,000 rows,
which was about 58 MB and 74 MB respectively. The largest
size of the index was around 303 MB for the Activity table
and 30 MB for the other two tables. The tables were all an-
alyzed by the PostgreSQL statistics gathering utility before

test queries are run.
We have designed four typical test queries for the purpose

of demonstrating the overhead of our techniques and pre-
cision of our method compared to the naive mathod. The
first query accesses a single relation Activity using a very
selective predicate. The second query does the opposite by
using a predicate that is not selective. The third query joins
the Routing table and Activity tables with a very selective
predicate on the Routing table. The fourth query differs
from the third one by using a non-selective predicate on the
Routing table.

Q1: SELECT COUNT(*) FROM Activity A

WHERE A.mach_id IN (’Tao1’,’Tao10’,’Tao100’,

’Tao1000’,’Tao10000’,’Tao100000’)

AND A.value = ’idle’;

Q2: SELECT COUNT(*) FROM Activity A

WHERE A.mach_id NOT IN (’Tao1’,’Tao10’,

’Tao100’,’Tao1000’,’Tao10000’,

’Tao100000’) AND A.value = ’idle’;

Q3: SELECT COUNT(*) FROM Routing R,Activity A

WHERE R.mach_id IN (’Tao1’,’Tao10’,’Tao100’,

’Tao1000’, ’Tao10000’, ’Tao100000’)

AND R.neighbor = A.mach_id

AND A.value = ’idle’;

Q4: SELECT COUNT(*) FROM Routing R,Activity A

WHERE R.mach_id NOT IN (’Tao1’,’Tao10’,

’Tao100’,’Tao1000’,’Tao10000’,

’Tao100000’) AND R.neighbor = A.mach_id

AND A.value = ’idle’;

In the experiments, in addition to measuring our method,
which we refer to as the Focused method, we also measured
the Naive method, which is implemented as another table
function that queries all data sources in addition to running
a user query , and compare their response time overheads
and false positive rates for the four test queries. The re-
sponse times for the Focused method includes three parts:
1) the time to parse a user query and generate a recency
query, 2) the time to compute relevant data sources using
the generated recency query, 3) the time to detect excep-
tional data sources and compute the least and most recent
data sources. The response times for the Naive method in-
clude the same last two parts as above, but not the first part
because it uses a default recency query that covers all data
sources. Lastly, we also measure the Focused method with-
out the query parsing and generation cost by hardcoding
a recency query in the table function. This helps us under-
stand how much overhead comes from the query parsing and
generation for the Focused method.

For each data set generated, we ran the four queries, their
corresponding queries with focused and naive recency and
consistency reporting. The response times were collected
for all queries and used to compute the overhead of each
method. Each individual query was run 11 times and the
average response time of the last 10 runs is used to mini-
mize fluctuation. Figure 1 shows the performance overhead
curves of the methods respectively for each query.

For queries that are not selective (Q2 and Q4), the over-
heads for all methods approach 0% when the data ratio is
100. This is because non-selective user queries will touch
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Figure 1: Performance overhead for recency and consistency reporting w.r.t data ratio and # of data sources
((data ratio) × (# of data sources) = 10,000,000).
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Figure 2: Response times for Q1 and Q3 with and
without recency report w.r.t data ratio and # of
data sources ((data ratio) × (# of data sources) =
10,000,000). The Focused method with auto gener-
ation of recency query is used here.

data of almost all data sources, in which case the data ratio
is effectively the factor by which a user query accesses more
data than the recency queries. We regard these results as
encouraging, because we expect that in most scenarios we
would expect each data source to have contributed far more
than 10 rows. For the very selective queries (Q1 and Q3),
we see that the overheads approach 0% when the data ratio
is 10000. If we zoom into to the portion where the overheads
are high (in Figure 2), we discover the reason to be that the
user queries have very short running times when the data
ratio is 10000 or less. For the same reason, the query parsing
and recency query generation also add significant overhead
to the Focused method. This is also due to the fact that
PL/pgSQL processes each expression as a SQL statement
sent to the SQL execution engine.

Looking at the other direction where the number of data
sources increases, the overhead of the Naive method grows
rapidly as the number of data sources increases when a user
query is very selective. This is because the Naive method
always queries all the data sources, even if a user query is
able to restrict to a few data sources with a very selective
predicate. On the contrary, the overhead of the Focused
method scales much better because it utilizes the selective
predicate to probe only relevant data sources.

The only case where the overhead of the Focused method
is noticably higher than the Naive method is when the data
ratio is low for Q4. The query joins the Activity table with
the Routing table, which is associated with a non-selective
predicate. In this case, the Focused recency query is a union
of two recency subqueries, one for each relation joined. The
recency subquery for the Activity table also contains a join
between the Routing table and the Heartbeat table. This
subquery is almost as expensive as the user query because
the data ratio is low. The other recency subquery for the
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Routing table is as expensive as the Naive recency query
because the predicate is not selective.

Finally we present the false positive rates of the methods
for the test queries. For all the queries used in the experi-
ment, the false positive rates of the Focused method are 0.
For the Naive method, for clarity we compute the false pos-
itive rates for one configuration where there are 100000 data
sources and assume that the Routing table maps the set of
machines specified in the query predicates onto itself. The
formulas can be verified against the the queries by applying
the definition of the false positive rate. Take Q1 for exam-
ple, the rationale behind the expression is that the Naive
method returns all data sources while there are only 6 of
them as specified in the query are relevant.

Q1: fpr = (100000−6)
6

= 16665

Q2: fpr = 6
(100000−6)

= 0.00006

Q3: fpr = (100000−6)
6

= 16665

Q4: fpr = 6
(100000−6)

= 0.00006

Overall we observe that the overhead of both methods
decreases in general as the data ratio increases. When the
number of data sources is large and a user query is highly
selective on data sources, the Focused method is much less
expensive than the Naive method. Furthermore, the Fo-
cused method always achieves lower false positive rates than
the Naive method along with the performance gains.

6. CONCLUSION
In this paper we have argued that when a DBMS is used

as a centralized repository to store the state of a distributed,
asynchronous job scheduling and execution system, it is
more useful and practical to report the recency and con-
sistency of user queries than to enforce traditional notions
of consistency. It turns out that if one wants to report re-
cency information for a large system and only wishes to
tell the user about data sources that are “relevant” to the
user’s query, some non-trivial issues arise with defining “rel-
evance.” Our solution is to say that a data source is relevant
if an update from that data source could possibly change the
answer to the user’s query.

With this definition of relevance we have developed algo-
rithms for determining relevant data sources, and showed by
a theoretical analysis that our techniques will find the min-
imum except in some extreme cases. We have implemented
a working prototype in the Postgres DBMS to explore some
practical aspects of doing recency and consistency report-
ing. Experiments with our implementation show that our
techniques incur less overhead in most cases and scale much
better than the naive method, in addition to the far better
precision achieved with our method for the set of relevant
data sources.

Our techniques for recency and consistency reporting are
not limited to monitoring grid systems. We think that re-
porting recency and consistency, rather than enforcing it,
will be a viable solution for centralized monitoring and log-
ging of any system comprising a large number of autonomous
sources for which it is impractical to obtain and store syn-
chronous global snapshots.
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