
LGeDBMS: a Small DBMS for Embedded System with
Flash Memory

Gye-Jeong Kim Seung-Cheon Baek Hyun-Sook Lee Han-Deok Lee
Moon Jeung Joe

Embedded System Technology Group, Information Technology Lab.
LG Electronics Institute of Technology

16 Woomyeon-Dong, Seocho-Gu, Seoul, Korea
{gjkim81, white413, hslee04, cyber93, joemoon}@lge.com

ABSTRACT
The ever-increasing requirement of high performance and
huge capacity memories of emerging consumer electronics
appliances, such as mobile phone, digital camera, MP3, PMP,
PDA, etc., has led to the widespread adaptation of flash
memory as main data storages, respectively. As a result,
managing the data on flash memory has been gaining in sig-
nificant to satisfy the requirement of mobile embedded ap-
plications. However, the read/write/erase behaviors of flash
memory are radically different than that of magnetic disks
which make traditional database technology irrelevant. In
this paper, we introduce LGeDBMS, a scale-downed DBMS
engine designed for flash memory and its application. Fi-
nally, we demonstrate a PIM(Personal Information Manage-
ment) application on a mobile phone using LGeDBMS.

1. INTRODUCTION
As mobile embedded systems evolve into data centric and
multimedia-oriented applications, storage with high perfor-
mance and huge capacity has become necessary. For this
reason, flash memory has become an indispensable compo-
nent in mobile embedded systems because of its versatile
features such as non-volatility, shock resistance, low cost,
small size and high density.

However, the read/write/erase behaviors of flash memory
are radically different than that of other programmable mem-
ories such as volatile RAM and magnetic disks. Perhaps
more importantly, memory blocks in a flash memory can be
written to only a limited number of times, between 10,000
and 1,000,000, after which they wear out and become solid
state.

In fact, flash memories come in two flavors, NOR and NAND,
that are also quite different from each other. In both types,
write operations can only clear bits (change their value from

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1 to 0). The only way to set bits (change their value from 0
to 1) is to erase an entire region of memory. These regions
have fixed size in a given device, typically ranging from sev-
eral kilobytes to hundreds of kilobytes and are called erase
units. NOR flash memory, the older type for code storage,
is a random-access device that is directly addressable by the
processor. Each bit in a NOR flash memory can be individu-
ally cleared once per-erase-cycle of the erase unit containing
it. NOR flash memory suffers from high erase times. NAND
flash memory, the newer type for data storage, enjoys much
faster erase times, but it is not directly addressable, access
is by page (a fraction of an erase unit, typically 512 bytes)
not by bit or byte, and each page can be modified only a
small number of times in each erase cycle. That is, after a
few writes to a page, subsequent writes cannot reliably clear
additional bits in the page; the entire erase unit must be
erased before further modifications of the page are possible.

Because of these peculiarities, storage management tech-
niques that were designed for other types of memory de-
vices, such as magnetic disks, are not always appropriate
for flash memory. To address these issues, flash-specific file
system techniques have been developed with the widespread
introduction of flash memories in the early 1990s[5][1].

Moreover, as the flash memory capacity is doubled in every
year[8], managing the data on flash memory has been gain-
ing in significant to satisfy the requirement of mobile embed-
ded applications. Generally, database management helps
to separate data management code from application code,
thereby simplifying and developing application code easier.
However, due to the resource limitations, small memory and
low computing power, the traditional DBMS technology can
not apply to mobile embedded systems.

To address these problems, we have implemented LGeDBMS,
a DBMS for mobile systems with flash-memory. LGeDBMS
has the following features: (1) optimized to flash memory
with LFS design principle[7], (2) compact size suitable for
consumer electronics appliances, and (3) transaction process
based on flash memory characteristics.

Some approaches have been developed for scaling down DBMS
[2][9][6][4]. PicoDBMS[2] is a database system designed to
execute on resource-constrained smart card. PicoDBMS
aims to reduce the total database size by vertically decom-

 1255

posing relations in one column partitions to limit the rep-
etition of column values. While such storage model is ap-
propriate for EEPROM memories that can be erased one
word at a time, it is inappropriate for flash memory that
can be erased only in large blocks, since tuple may be dis-
tributed among multiple blocks. Light version of popular
DBMS like Sybase Adaptive Server Anywhere[9], Oracle 8i
Lite[6] or DB2 Everywhere[4] have been primarily designed
for portable computers and PDA. They use relatively much
RAM and stable memory and do not address the more serve
limitation of mobile phones.

In this paper, we describe LGeDBMS, a small DBMS for
embedded system with flash memory. Section 2 explains
LGeDBMS storage system and transaction process special-
ized for flash memory. Section 3 demonstrates efficiency
of PIM component, a middleware for mobile phone appli-
cations, on LGeDBMS through PC simulators and mobile
phones.

2. OVERVIEW OF LGeDBMS
LGeDBMS is a relational database management system de-
signed for efficient data management and easy data access
in embedded mobile system.

LGeDBMS has the following features:

Table 1: Features of LGeDBMS

REX, pSOS, QNX,
Windows, Linux, MacOS

Supported OS

Disk, NAND/NOR Flash MemoryStorage Media

UCS2Code Schema

Fixed Size Cache(Configurable)Memory Management

Versioning Based RecoveryRecovery

Char, Var Char, Int, Boolean, Float, Double,
BLOB, Date

Data Type

Table, IndexObject

Begin, Commit, Redo
(Atomicity, Durability Transaction)

Transaction

Single SelectSearch

Insert, Update, DeleteDML

Create/Drop Table, IndexDDL

C APISQL/API

LGeDBMSFunction

REX, pSOS, QNX,
Windows, Linux, MacOS

Supported OS

Disk, NAND/NOR Flash MemoryStorage Media

UCS2Code Schema

Fixed Size Cache(Configurable)Memory Management

Versioning Based RecoveryRecovery

Char, Var Char, Int, Boolean, Float, Double,
BLOB, Date

Data Type

Table, IndexObject

Begin, Commit, Redo
(Atomicity, Durability Transaction)

Transaction

Single SelectSearch

Insert, Update, DeleteDML

Create/Drop Table, IndexDDL

C APISQL/API

LGeDBMSFunction

2.1 Storage System
LGeDBMS adopts principles of Log-structured file system
(LFS) whose I/O unit is a page. LFS is a file system origi-
nally developed for disk[7]. It organized a disk as a log which
is an ideally continuous medium. In this scheme, data are
always written to the end of the log in order to enjoy good
write performance due to no seek and no rotational delays.
While LFS is not in widespread use on disks, it makes per-
fect sense on flash memory[3]. On flash memory, old data
cannot be overwritten before erasing, so the modified data
must be written out-of-place. Therefore, the design princi-
ple of LFS is used by most of flash-specific file system.

We apply the design principle of LFS for designing the stor-
age system and the transaction process of LGeDBMS. Firstly,

Vol
Header

File
Map

Extent
Map

Page
Map

Page
Num 0

Page
Num 1

Page
Num 2

Page
Num 3

Page
Num 4

Page
Num 5

Page
Num 6

Page
Num 7

Vol
Header

File
Map

Extent
Map

Page
Map

Vol
Header

File
Map

Extent
Map

Page
Map

Page
Num 0

Page
Num 1

Page
Num 2

Page
Num 3

Page
Num 4

Page
Num 5

Page
Num 6

Page
Num 7

File 1

File 2

1 block = Set of pages

1 Extent = Set of pages1 Extent = Set of pages

Storage

Page

Extent

Logical File

Volume

Page

Extent

Logical File

Volume

Figure 1: Storage Structures of LGeDBMS

we focus on the storage system of LGeDBMS. Figure 1 shows
the data storage structures of LGeDBMS. LGeDBMS has
hierarchical structures of volumes, logical files, extents, and
pages. The structures are managed by a volume header, a
file map, an extent map, a page map, and a PID mapping
table.

A volume corresponds to a part or whole flash memory for
storing data. A volume header occupies one page and con-
tains information as following: (1) volume name, (2) file
information such as the total number of logical files in the
volume, the number of file maps, the last logical file number,
and a position of the first file map, (3) extent information
such as the total number of extents in the volume, the num-
ber of extent maps, the last extent number, and a position of
the extent map, and (4) page information such as the total
number of the pages and a position of the page map.

A file map manages logical files such as table files and index
files created in a volume. And it contains an extent fill factor
and the extent number which includes the first extent map.
The extent fill factor is the maximum number of extents
that can be contained in a file.

An extent is fixed number pages which are logically contin-
uous. And the number of pages in one extent can be config-
urable. An extent map contains the next extent number to
construct a linked list of extents in the same file.

A page is an I/O unit of LGeDBMS. A page map indicates
whether each page in an extent is occupied or not. And each
extent is represented as a byte unit. Each map is maintained
and managed as a linked list.

A PID mapping table has mapping information from logical
pages to physical pages. By setting the size of a logical page
as the size of a physical page, LGeDBMS is able to reduce
additional I/Os due to unaligned pages or other layer infor-
mation such as a file system. For example, when LGeDBMS
is implemented on a file system, one logical page can be
written to two physical pages due to additional file system

 1256

information.

Furthermore, a PID mapping table resolves in-place up-
date overhead and wear-leveling issue when LGeDBMS di-
rectly controls flash memory at the device driver level. (If
LGeDBMS runs on a file system, the file system resolves
those issues.) Without PID mapping table, data should
be written in-place after erase, which degrade performance.
And frequent erasing of some particular locations of flash
memory could quickly deteriorate the overall lifetime of flash
memory.

Complex wear-leveling technique consumes relatively much
more memory and expensive management cost, which is in-
adequate to mobile embedded system with resource limita-
tion. Therefore, LGeDBMS ’s wear-leveling technique is in
simple round-robin manner.

2.2 Transaction Process
Most of embedded applications including those of mobile
phones either may not support multitasking or may not re-
quire concurrent access to the database. Especially, they
may need multi-read operations, but they usually do not
need multi-write operations. Thus, instead of supporting
concurrency control, LGeDBMS supports only an atomic
and durable update, which makes it possible to reduce un-
necessary management cost.

To recover a system crash, LGeDBMS uses a PID mapping
table versioning scheme for logging/recovery which is differ-
ent from a traditional DBMS logging/recovery method. In
the traditional logging method, when data is written to flash
memory, a recovery log should be written to flash memory.
It means that writing the log produces expensive additional
I/Os. Moreover, the traditional recovery method causes
other log reading I/Os and rolling back/forward I/Os(log-
replay I/Os).

However, LGeDBMS logging method reduces the number
of I/Os by writing a final PID mapping table once rather
than writing a log for each data change. And recovery is
performed simply by restoring the previous consistent PID
mapping table, so log-replay I/Os are also reduced.

With the traditional DBMS, transaction begin/commit in-
formation should be logged. This scheme accompanies ad-
ditional write operations, so that a DBMS application with
only read operations receives unnecessary performance pe-
nalty. In case of read only transaction, we do not have to
log about transaction information because we support only
single transaction.

3. DEMONSTRATION
PIM component is a kind of middleware for personal infor-
mation management, such as contact, schedule, and event,
in mobile phones. As more people manage their personal in-
formation with mobile phones, mobile phones must guaran-
tee data integrity and support various data formats. There-
fore, the PIM component is implemented on LGeDBMS so
that it can support transation/recovery and general schema.
The PIM component has some additional features special-
ized for personal information. It provides common APIs and
data structures which enable UI applications to access the

data easily and safely. And it supports standard formats for
personal data exchange such as vCard v2.1/3.0 and vCalen-
dar v1.0[10]. The PIM component runs on our company’s
mobile phones and supports unified development environ-
ment for PIM application such as a phone book, a scheduler,
and so on. Just as PIM component, specialized features for
a specific application can be added on LGeDBMS as a form
of plug-in. Figure 2 shows a PIM component architecture.

We demonstrate a PIM application (e.g. phone book) im-
plemented on PIM component to show effectiveness of flash
memory based LGeDBMS. The PIM application runs on:
PC simulators to sniff its internal state, and a real phone
to demonstrate real-time operation. Figure 3 shows the PC
simulators. The former is a phone simulator which simulates
functions of a mobile phone, and the later is a flash memory
simulator which enables a disk to simulate a flash memory.

LGeDBMS

Phonebook

APIs

PIM Component

Phone UI Applications

Scheduler To Do Group SpeedDial

Data Mngt.

Data Model
Config

Schema Mngt.

Porting Layer

Figure 2: PIM Component Architecture

Figure 3: Simulators for Demonstration

4. REFERENCES
[1] Ban, A., Flash file system optimized for page-mode

flash technologies, US patent 5,937,425, Filed Oct.
1997; Issued Aug. 1999; Assigned to M-Systems.

[2] Bobineau, C., Bouganim, L., Pucheral, P., and
Valuriez, P, “PicoDBMS: Scaling down Database
Techniques for the Smartcard,” In Proc. 26th Int’l
Conf. on Very Large Databases, pp. 11-20, Sept. 2000.

[3] Gal, E. and Toledo, S., “Algorithms and Data
Structures for Flash Memories,” ACM Computing
Surveys, Vol. 37, No. 2, pp. 138-163, June 2005.

 1257

[4] IBM Corporation, DB2 Everywhere - Administration
and Application Programming Guide, IBM Software
Documentation, SC26-9675-00, 1999.

[5] Kawaguchi, A., Nishioka, S., and Motoda, H., “A
Flash-Memory Based File System,” In Proc. Usenix
Technical Conference, Jan. 1995.

[6] Oracle Corporation, Oracle 8i Lite - Oracle Lite SQL
Reference, Oracle Documentation, A73270-01, 1999.

[7] Rosenblum, M. and Pisterhout, J., “The Design and
Implenmentation of a Log-Structured File System,” In
Proc. 13th ACM Symposium on Operating Systems
Principles, Feb. 1992.

[8] Samsung Electronics, “Advantages of SLC NAND
Flash Memory,” http://www.samsungelectronics.com/

[9] Sybase Inc., Sybase Adaptive Server Anywhere
Reference, Sybase Documentation, CT75KNA, 1999.

[10] vCard/vCalendar, “VCard and VCalendar,”
http://www.imc.org/pdi/

 1258

