
XML Evolution: A Two-phase XML Processing Model
Using XML Prefiltering Techniques

Chia-Hsin Huang1,2

jashing@iis.sinica.edu.tw
Tyng-Ruey Chuang2

 trc@iis.sinica.edu.tw
James J. Lu3,2

jlu@mathcs.emory.edu
Hahn-Ming Lee2,4

hmlee@mail.ntust.edu.tw

1 Department of Electronic Engineering, National
Taiwan University of Science and Technology,

Taipei 106, Taiwan
3 Department of Mathematics and Computer Science,

Emory University, Atlanta, GA 30332

2 Institute of Information Science,
Academia Sinica, Taipei 115, Taiwan

4 Department of Computer Science and Information
Engineering, National Taiwan University of Science

and Technology, Taipei 106, Taiwan

ABSTRACT
An implementation based on the two-phase XML processing
model introduced in [3] is presented in this paper. The model
employs a prefilter to remove uninteresting fragments of an input
XML document by approximately executing a user's queries. The
refined candidate-set XML document is then returned to the user's
DOM- or SAX-based applications for further processing. In this
demonstration, it is shown that the technique significantly
enhances the performance of existing DOM- and SAX-based
XML applications and tools (e.g., XPath/XQuery processors and
XML parsers), while reducing computational resource needs.
Moreover, the prefilter can be easily integrated into existing
applications by adding only one instruction. We also present an
enhancement to the indexing scheme of the prefiltering technique
to speed up the evaluation of certain axes.

1. INTRODUCTION
In the conventional XML processing model, user applications
employ XPath [14] expressions to retrieve XML document
fragments (Figure 1(a)). XPath processors translate given XPath
expressions into node access instructions to process an in-memory
Document Object Model (DOM) tree or a series of Simple API for
XML (SAX) events. For applications retrieving a small subset of a
large XML document, building a DOM-tree or sequentially
parsing the document into SAX-events is costly and inefficient.
Therefore, it is necessary to develop efficient XML document
processing models or techniques.

Typically, the amount of memory that DOM uses is five times the
size of the original document. Lazy XML processing [6] and
Apache Xerces’s lazy processing [13] avoid parsing an entire
document into memory by incrementally building a DOM-tree as

different parts of the document are requested by the user. The
result shows that reducing the size of a DOM-tree has the potential
for improving the conventional XML processing model.

An XML streaming model, e.g., SAX, consumes a constant and
small amount of memory when parsing an XML document. SAX-
based XPath processors, such as XSQ [5] and TurboXPath [12],
have been proposed for querying or filtering streaming XML data.
Generally, SAX-based XPath processors suffer from two
drawbacks: their query algorithms are complex, and processing
reverse axes (e.g., ancestors) may require a significant amount of
memory to maintain bookkeeping information. Moreover, current
streaming models lack interaction mechanisms while parsing an
XML document. Hence, significant computational resources are
wasted on processing uninteresting data.

Many indexing techniques, such as structural summaries [9], path
indexes [7], and edge indexes [4], have been proposed for
improving the efficiency of XML query processing. They
generally require large disk storage and complicated query
algorithms. Some of the techniques rely on high performance
indexing technologies provided by a relational/XML database
management system (RDBMS/XDBMS). XDBMS, such as
Berkeley DB XML and Natix [11], are designed for storing and
manipulating XML documents. Although XDBMS- and RDBMS-
based approaches provide efficient solutions for processing XML
data, they are too expensive to integrate into small-scale
applications. Moreover, they are intrusive and non-transparent;
user applications need to be aware of the mechanics of the
enhancement; and they typically require considerable
modifications to integrate the enhancement.

In our previous work [3], we proposed an XML document
prefiltering framework with the following characteristics:

Accurate: it preserves the results of the original XPath
processor.
Efficient: it performs efficiently.
Lightweight: it consumes few computational resources, such
as CPU time, memory, and disk space.
Transparent: it works transparently with existing
applications. Users/applications need not be aware of its
underlying mechanics.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.
VLDB ‘06, September 12–15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1215

Non-intrusive: it can be integrated into existing tools or
applications with minimal modifications.
Small-scale: it can be installed and operated in small-scale
applications or devices (with limited computational
resources), such as mobile phones, PDAs, or mote-level
platforms in a sensor network.

In this demonstration, we realize a two-phase XML document
processing model using the prefiltering technique. The
contributions of our work summarized as follows.

We present a two-phase XML processing model that
provides a framework for improving the performance of the
conventional XML processing model.
We implement a small-scale, lightweight, and efficient
prefiltering technique that improves XML processing. The
prefilter possesses the characteristics of the prefiltering
framework [3], and can be integrated into existing XML
applications by simply adding one instruction.
We demonstrate the integration of the prefiltering technique
into an XML streaming parser that allows for XML parsing
in a random access manner. To the best of our knowledge,
no such implementation has been reported in the literature.
We also demonstrate the integration of the prefiltering
technique into DOM-based XPath/XQuery processors.
A prototype of the prefiltering technique is implemented as
JAVA packages, and is available at
http://www.iis.sinica.edu.tw/~jashing/prefiltering/.

2. TWO-PHASE XML PROCESSING
MODEL
The key idea of a two-phase XML processing model is to rapidly
filter uninteresting fragments out of the input XML document
before the actual application process it. The interesting fragments
and some bookkeeping information (e.g., document structures and
pointers to uninteresting fragment) are returned to applications by
the prefilter. As shown in Figure 1(b), the prefiltering module
refines the input XML document.

2.1 XML Prefiltering Technique
The prefiltering technique employs a tiny search engine to extract
candidate fragments from the input XML documents by
approximately executing the user's query. The fragments are
collected together with some bookkeeping metadata into
candidate-set XML documents, which are returned to the user
applications for the actual query processing. Uninteresting
fragments are not returned, but they are still accessible by external
fragment links specified in the candidate-set XML document.

For example, when prefiltering the source XML document in
Figure 2(a) over the XPath expression “/A/child::E”, the
candidate-set XML document in Figure 2(c) is returned. Two
uninteresting fragments rooted at B2,7 and ns:I16,19 are filtered out.
Also, two external fragment links (the dotted lines) that indicate
the uninteresting fragment are added to node A1,20.

2.2 System Architecture of the XML
Prefiltering Technique
The XML prefiltering technique consists of five components. The
Indexer, a preprocessing module, scans the XML document D and
constructs an inverted index table. Next, in the prefiltering process,
the Query Simplifier simplifies user XPath expressions (XPEs) to
reduce the query evaluation time. In the third step, the Fast
Lightweight Step Analyzer, a tiny search engine, determines the
candidate fragments in D by evaluating the simplified XPEs.
Those fragments and necessary document structures are then
either transformed into a series of SAX-events by the Micro XML
Streaming Parser or gathered into a candidate-set XML document
D’ by the Fragment Gatherer. Note that it is unnecessary to yield
a physical file for D’. Instead, a memory-based input/output buffer
is used to temporarily store data streams. More details are given in
[3].

2.3 Index Scheme
Our previous research revealed that the size of an edge index is
large and that edge join operations are expensive [4]. Therefore,
we employ a node index scheme in the prefiltering technique.

(a)

XML Document
Parsers

(DOM and SAX)

XPath
Query

Processors

User
ApplicationsDocument

Fragments

XPath
Expressions

Node Access
Instructions

Document
Fragments

 Conventional Processing Phase

XML
Document

 Prefiltering
Phase Conventional Processing Phase

XML Document
Parsers

(DOM and SAX)

XPath
Query

Processors

User
ApplicationsDocument

Fragments

XPath
Expressions

Node Access
Instructions

Document
Fragments

XML
Prefiltering

Module

XPath
Expressions

Candidate-set
XML Document

(b)

XML
Document

Figure 1. (a) The conventional XML processing model. (b) The two-phase XML processing model.

1216

Specifically, we index all elements and attributes of an XML
document. Text nodes are ignored since the size of the index must
remain small. Each record of the index has two fields: the name
and the position list. The value of the name field is either an
element name (including its namespace, e.g., ns:I) or a string that
is the concatenation of an attribute name and its value (e.g., ID=1).
The value of the position list is an ordered list of triples: (start tag

position, end tag position, height), sorted by the start tag position.
As a result, evaluating the user XPath expressions can be carried
out efficiently by a binary search on the index.

2.4 Query Simplification and Evaluation
An input XPath query is simplified by removing certain steps. The
last step, specifying the root node of a candidate fragment, is
always preserved. The others, which are used to restrict the
computed fragments, are removed selectively. Clearly, for each
step removed, more and larger candidate fragments will be
matched and returned. In our current implementation, we adopt a
heuristic that eliminates steps with a low degree of selectivity (i.e.,
matching a large number of elements). In particular, wildcard
steps “/*” as well as those that require scanning the index or
accessing the source document (see Section 2.5), are removed.
The selectivity of a step can be calculated by computing the length
of a position list selected by the step.
In the query evaluation, we adapt the semantics specification of
XPath [8] for query evaluation. Let U denote the space of all
tuples in the index. Evaluating the XPath expression “u/axis::v”
over U is formalized in Figure 3. Here, u and v refer to two
element names, and axis is any one of the XPath axes [14]. The
tuple (u, s, e, h) represents a context node, consisting of an
element u, its start tag position s, its end tag position e, and its
height h.

2.5 Properties
Some properties of the prefiltering technique are as follows:

Property 1. All XPath axes can be computed in O(|pos_list(u)|
log |pos_list(v)|), where |pos_list(u)| and |pos_list(v)| refer to the
size of the position lists of u and v, respectively. Note that
evaluating the attribute and namespace axes requires scanning the
name field of the entire index.
Property 2. The node type of each XPath step must be specified;
otherwise, it is necessary to scan the position list field of the entire
index.
Property 3. The node-set, Booleans, number, and string function
calls can be supported but it is necessary to access the source
XML document and additional code. We do not consider these
operations.

In the current implementation, to keep the system lightweight and
small, we omit any XPath step that requires scanning the entire
index.

3. DEMONSTRATIONS OVERVIEW
Our demonstration includes reporting the performance results and
showing the source codes of the following systems: the
prefiltering technique, DOM-based XPath/XQuery processors
with the prefiltering technique, and an interactive SAX parser. An
example of integrating the prefiltering technique into a Java
DOM-based XPath processor by adding a single instruction is
shown in Figure 4 (displayed in bold face). In addition, we
demonstrate a GML-based (Geography Markup Language [10])
geographic information system that employs the prefiltering
technique to speed up geospatial operations over large GML
documents. For demonstration purposes, the system only uses
small datasets at the server-side. It can be accessed at
http://tsm.iis.sinica.edu.tw/~jashing/w3p/gmlsvg_pf/maps.php.

A1,20

B2,7
ID="1" ns:I16,19

C3,4 D5,6

E8,15

E9,14 J17,18

G10,11 H12,13

(a)

(b)

(c)

A1,20

B2,7
ID="1" ns:I16,19

C3,4 D5,6

E8,15

E9,14
J17,18

G10,11 H12,13Uninteresting
fragment
document

Uninteresting
fragment
documentCandidate-set

XML document

<A1>
 <B2 ID="1">
 <C3></C4>
 <D5></D6>
 </B7>
 <E8>
 <E9>
 <G10></G11>
 <H12></H13>
 </E14>
 </E15>
 <ns:I16>
 <J17></J18>
 </I19>
<A20>

Figure 2. (a) An XML document. (b) The tree view of (a). (c) The
candidate-set XML document prefiltered by the XPath expression
“/A/child::E”. Note that pre-order numbering is used to represent
the start- and end-tag positions.

1. Sancestor[v](u, s, e, h) = {(u’, s’, e’, *) | s’ < s e’ > e u’ = v}
2. Sancestor-or-self[v](u, s, e, h) = {(u’, s’, e’, *) | s’ s e’ e

u’=v}
3. Sparent[v](u, s, e, h) = {(u’, s’, e’, h’) | s’ < s e’ > e h’=h-1

 u’=v}
4. Sdescendant[v](u, s, e, h) = {(u’, s’, e’, *) | s’ > s e’ < e u’=v}
5. Sdescendant-or-self[v](u, s, e, h) = {(u’, s’, e’, *) | s’ s e’ e

u’=v}
6. Schild[v](u, s, e, h) = {(u’, s’, e’, h’) | s’ > s e’ < e h’=h+1

u’=v}
7. Spreceding[v](u, s, e, h) = {(u’, s’, e’, *) | e’ < s u’=v}
8. Sfollowing[v](u, s, e, h) = {(u’, s’, e’, *) | e < s’ u’=v}
9. Sfollowing-sibling[v](u, s, e, h) = {(u’, s’, e’, h’) | e < s’ (u’, s’, e’,

h’) Schild[v](u’’, s’’, e’’, h’’) (u’’, s’’, e’’, h’’)
Sparent[*](u, s, e, h) u’=v}

10. Spreceding-sibling[v](u, s, e, h) = {(u’, s’, e’, h’) | e’ < s (u’, s’, e’
h’) Schild[v](u’’, s’’, e’’, h’’) (u’’, s’’, e’’, h’’)
Sparent[*](u, s, e, h) u’=v}

11. Sself[v](u, s, e, h) = {(u’, s’, e’, h’) | s’ = s e’ = e u’=v
h’=h}

12. Sattribute[v](u, s, e, h) = {(uatt’, s’, e’, h’) | s’ = s e’ = e h’=h
 u’= “attribute=value” = v}

Figure 3. The XPath semantics.

1217

Table 1 and Table 2 show the performance results of evaluating
the queries “/site/regions/item[@id="item1"]/name” (matching
one node) and “/site/regions/asia” (matching about 4.5% of nodes)
against XML documents generated by XMark [1] on an Intel
Pentium-4 PC running at 2.53GHz, with a 1GB DDR-RAM, a
120GB EIDE hard disk, and MS Windows 2000 server OS.
Obviously, the XML prefiltering technique helps the XPath
processors evaluate queries that return a few fragments from large
documents. In addition, for streaming the processing model, the
interactive SAX parser in the XML prefiltering technique can
achieve nearly a ten-fold performance improvement when
evaluating a query that selects a few fragments. In general, an
overhead of about 10~15% (loading index and evaluating a
simplified query) would be incurred for answering queries that
return almost an entire document. In such cases, the complete
source document would be returned directly.

4. ACKNOWLEDGMENTS
We would like to thank the reviewers for many valuable
suggestions. This work was partially supported by the National
Digital Archives Program (NSC95-2422-H-001-007), Taiwan.
Chia-Hsin Huang is a Ph.D. candidate in the Department of
Electronic Engineering, National Taiwan University of Science and
Technology. He is supported by a graduate student fellowship
from the Institute of Information Science, Academia Sinica,
Taiwan. James Lu was supported by the National Science Council
under grant NSC94-2811-Z-001 while visiting the Institute of
Information Science, Academia Sinica, Taiwan, in 2005-2006.

5. REFERENCES
[1] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I.

Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project. Technical Report INS-R0103, Centrum
voor Wiskunde en Informatica, 2001

[2] A. Vyas, M. Fernandez, and J. Simeon. The Simplest XML
Storage Manager Ever. In Informal Proc. of the 1st
International Workshop on XQuery Implementation,
Experience, and Perspectives, 2004, pp. 37-42.

[3] C. H. Huang, T. R. Chuang, and H. M. Lee. Prefiltering
techniques for efficient XML document processing. In Proc.
of the 2005 ACM Symposium on Document Engineering,
2005, pp. 149-158.

[4] C. H. Huang, T. R. Chuang, and H. M. Lee. Fast Structural
Query with Application to Chinese Treebank Sentence
Retrieval. In Proc. of the 2004 ACM Symposium on
Document Engineering, 2004, pp. 11-20.

[5] F. Peng and S. S. Chawathe. XSQ: A streaming XPath
engine. ACM Transactions on Database Systems, 30, 2,
2005, pp. 577-623

[6] M. L. Noga, S. Schott, and W. Löwe. Lazy XML processing.
In Proc. of the 2002 ACM Symposium on Document
Engineering, 2002, pp. 88-94

[7] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura.
XRel: A Path-based Approach to Storage and Retrieval of
XML Documents Using Relational Databases. ACM
Transactions on Internet Technology, 1, 1, 2001, pp. 110-
141.

[8] P. Wadler, Two semantics for XPath. Tech. Report, Bell
Labs, 2000. Available: http://homepages.inf.ed.ac.uk/
wadler/papers/xpath-semantics/xpath-semantics.pdf

[9] Q. Zou, S. Liu, and W. W. Chu. Ctree: A Compact Tree for
Indexing XML Data. In Proc. of the 6th Annual ACM
International Workshop on Web Information and Data
Management, 2004, pp. 39-46

[10] S. Cox, P. Daisey, R. Lake, C. Portele, and A. Whiteside,
editors. OpenGIS© Geography Markup Language (GML)
Implementation Specification, Version: 3.00, 2003.

[11] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J.
Neumann, R. Schiele, and T. Westmann. Anatomy of a
native XML base management system. The VLDB Journal,
11, 4, 2002, pp. 292-314

[12] V. Josifovski, M. Fontoura, and A. Barta. Querying XML
streams. The VLDB Journal, 14, 2, 2005, pp. 197-210

[13] Xerces Java Parser 2.8.0 Release. The Apache XML project.
Available: http://xerces.apache.org/xerces2-j/.

[14] XML Path Language (XPath) Version 1.0, W3C
Recommendation, 1999.

(1) Prefilter pf = new Prefilter (source_xmlfile,
candidate-set_xmlfile, xpath_exp); // prefilter
source_xmlfile and generate a candidate-set XML document.

(2) InputSource in = new InputSource(new
FileInputStream(candidate-set_xmlfile)); // use
candidate-set_xmlfile as input to build up a DOM-tree.

(3) DocumentBuilderFactory df =
DocumentBuilderFactory.newInstance();

(4) Document doc = df.newDocumentBuilder().parse(in);
//build up the DOM-tree of the candidate-set_xmlfile.

(5) NodeIterator nl = XPathAPI.selectNodeIterator(doc,
xpath_exp);// evaluate the xpath_exp against the DOM-tree.

Figure 4. A source code fragment of
an XPath processor with prefiltering technique.

Table 1. Performance results of the query
“/site/regions/item[@id="item1"]/name”.

Methods

Datasets
Xerces XPath Processor
with Lazy DOM Parser

Xerces XPath Processor
with Prefiltering

XMark
(factor/size)

Memory
Usages (MB)

Run Time
(sec.)

Memory
Usages (MB)

Run Time
(sec.)

1/113MB 770 36.812 34.8 8.1
2/232MB N/A N/A 91.7 15.5
10/1,164MB N/A N/A 413.9 71.5
20/2,333MB N/A N/A 851.8 240.3
30/3,499MB N/A N/A 866.4 388.4

*N/A means that the method ran out of memory and did not finish.

Table 2. Performance results of the query “/site/regions/asia”.
Methods

Datasets
Xerces XPath Processor
with Lazy DOM Parser

Xerces XPath Processor
with Prefiltering

XMark
(factor/size)

Memory
Usages (MB)

Run Time
(sec.)

Memory
Usages (MB)

Run Time
(sec.)

1/113MB 770 48.093 26.8 13.75
2/232MB N/A N/A 75.9 27.2
5/581MB N/A N/A 227.2 66
10/1,164MB N/A N/A 372 130.1
20/2,333MB N/A N/A 857.9 268.5
30/3,499MB N/A N/A N/A N/A

*N/A means that the method ran out of memory and did not finish.

1218

