
POP/FED: Progressive Query Optimization for Federated
Queries in DB2

Holger Kache

IBM Silicon Valley Lab
555 Bailey Avenue
San Jose, CA, USA

kache@us.ibm.com

Wook-Shin Han, Volker Markl,
Vijayshankar Raman

IBM Almaden Research Center
650 Harry Road

San Jose, CA, USA

{wookshin,marklv,ravijay}
@us.ibm.com

Stephan Ewen

IBM Boeblingen Lab
Schönaicher Str. 220

71032 Böblingen, Germany

ewens@de.ibm.com

ABSTRACT
Federated queries are regular relational queries accessing data on
one or more remote relational or non-relational data sources,
possibly combining them with tables stored in the federated
DBMS server. Their execution is typically divided between the
federated server and the remote data sources. Outdated and
incomplete statistics have a bigger impact on federated DBMS
than on regular DBMS, as maintenance of federated statistics is
unequally more complicated and expensive than the maintenance
of the local statistics; consequently bad performance commonly
occurs for federated queries due to the selection of a suboptimal
query plan. To solve this problem we propose a progressive
optimization technique for federated queries called POP/FED by
extending the state of the art for progressive reoptimization for
local source queries, POP [4]. POP/FED uses (a) an
opportunistic, but risk controlled reoptimization technique for
federated DBMS, (b) a technique for multiple reoptimizations
during federated query processing with a strategy to discover
redundant and eliminate partial results, and (c) a mechanism to
eagerly procure statistics in a federated environment. In this
demonstration we showcase POP/FED implemented in a
prototype version of WebSphere Information Integrator for DB2
using the TPC-H benchmark database and its workload. For
selected queries of the workload we show unique features
including multi-round reoptimizations using both a new graphical
reoptimization progress monitor POPMonitor and the DB2
graphical plan explain tool.

1. INTRODUCTION
In a federated database, data is integrated from different
remote data sources, without the requirement to replicate or
otherwise copy the data to the federated database instance.
Federated databases use references instead that point to the
objects living in the remote data source. They are called
nicknames, or index specifications and point to a physical

object in the remote data source. While in a non-federated
database, the query execution plan defines an access
strategy for the local relational objects that reside in the
database where the plan was compiled, a federated query
execution also includes an access strategy for the objects in
the remote data source. Based on the complete cost model,
the query optimizer will choose the optimal global query
access plan with regards to the total query execution time. It
will consider different join strategies for the join of the
remote and local data, different join orders, different points
to transfer data between data sources for multiple joins,
trade off between local and remote joins, and even push
down of predicates to a remote data source as opposed to
local processing.

The federated query optimizer, however, does not influence
the remote query access plan. It sends a SQL string
representing the remote sub-statement to the remote data
source only and the plan decision for the sub-statement is
entirely left to the remote data source. The remote data
source, in turns, compiles the sub-statement and generates a
local access strategy for the objects that it owns. It may or
may not employ a query optimizer to do that, depending on
the nature and capabilities of the data source. The federated
server retrieves the data returned by the remote data source
to join it with data from another remote data sources or
local data stored at the federated server itself. At this point
in time it executes the federated query plan.

2. DB2 FEDERATED QUERIES
In DB2, federated queries are prepared and processed like
regular relational queries with a few extra steps specifically
introduced for federated queries. In the query prepare
phase, the query is first parsed and rewritten using semantic
rules. During that phase, the query compiler determines
which quantifiers, columns, and predicates can be sent to
which remote data source and marks them with a push-
down flag. In the next phase, the query is optimized with
respect to that push-down flag using a cost-based optimizer.
The plan costs are computed differently for the local parts
of the plan and the parts that are to be processed by the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.
VLDB ‘06, September 12–15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1175

remote data sources. After the query is optimized and the
access strategy is clear, the query compiler generates the
SQL string for every sub-statement to be sent to a remote
data source. During query execution, DB2 uses the common
APIs available for the remote data source to submit the
SQL statements and fetches the results back into local data
structures. The results are retrieved and the federated server
starts processing the local plan operators using the results
from the remote sources. In the final fetch phase, it delivers
the query results back to the requesting application.

Cost based optimization of federated queries transparently
extends optimization across data sources, by introducing
communication cost, but otherwise treating remote tables
similar to local tables and by introducing a source- or
server property that describes where the processing of the
current plan operator happens. A special operator (SHIP)
describes the point in the QEP where intermediate results
are communicated between a remote data source and the
federated DBMS. The statistics that are used to estimate
cardinalities for remote base tables are in most cases
obtained from the remote data source, since the gathering of
statistics on remote data is very expensive for the federated
DBMS. The varieties of relational DBMSs, which can be a
remote source, employ different optimizers and utilize
different forms of statistics. Often, the federated server can
only exploit very basic statistics about the number of rows
in a table. The federated DBMS’s optimizer is hence not
able to model data distribution and correlation in detail, as
this would require distribution and multivariate statistics.
The worst cases are federated queries that access non-
relational remote data sources or remote DBMSs that do
not employ a cost based optimizer. In those cases, there are
no statistics on the remote data available at all and the
optimizer is forced to derive its cardinality estimates from
default values.

3. POP/FED OVERVIEW
3.1 Concept
Progressive Optimization (POP) is a technique that breaks
with the fixed sequence of query prepare, execute, and
fetch. It is a compromise between static optimization and
continuous dynamic optimization which allows us to
optimize a query again during query runtime. Especially for
federated queries, where the query execution phase is
exceptionally complex and includes the remote query
compilations, remote execution, and remote fetch phases,
followed by the actual local execution, it makes sense to
allow an additional query compile cycle. That compilation
can now be based on actual cardinality values as discovered
during query runtime, rather than cardinality estimates.

During the initial query compilation, POP determines
criterions for estimated parameters that are required to hold
if the plan is to be the optimal one. The current prototype
uses only the estimated cardinality, which is the most

important parameter and also the one subject to the gravest
estimation error. It computes the validity range around it,
an interval that describes for which cardinality range the
current plan is truly the optimal one. It then places CHECK
operators at strategic points, which in turn validate during
plan execution that the actual cardinality, obtained from the
runtime monitor, is within the validity range. If this is not
the case, all intermediate results from fully materialized
points are retained and the optimizer is called again. The
actual cardinalities from the aborted query execution are
made available to the optimizer so that it is able to develop
a better plan, which is not subject to the estimation error
that caused the reoptimization. Note that this makes POP
suitable for any source of cardinality estimation error, be it
bad statistics, wrong assumptions, or parameter markers.
The retained intermediate results are treated as materialized
views, also called materialized query tables (MQT) or
automatic summary tables in DB2 [6]. The optimizer has
the cost based choice to match them back into the plan,
enabling the query to basically continue from the point it
was aborted for reoptimization, avoiding the re-execution of
previously executed parts. Figure 2 shows an example of
this process.

 Reuse

P

NLJN

SHIP SHIP
�1(R) �2(S)

P

NLJN

SHIP
�2(S)

CHECK

SORT

SHIP
�1(R)

Add CHECK

P

MGJN

CHECK

SORT

SHIP
�2(S)

Reoptimize

TEMP
�1(R)

SCAN

Reuse

P

NLJN

SHIP SHIP
�1(R) �2(S)

P

NLJN

SHIP
�2(S)

CHECK

SORT

SHIP
�1(R)

Add CHECK

P

MGJN

CHECK

SORT

SHIP
�2(S)

Reoptimize

TEMP
�1(R)

SCAN

Figure 1. POP reoptimizing a sub-optimal nested loop join for
2 federated sources.

The left side shows the initial plan for the example used
above. �1(R) represents the sub-statement to read from the
owner table and �1(S) the statement to read from the car
table. During optimization, POP computes the validity
ranges around the edges of the plan and places CHECK
operators at places that are suitable or performance critical.
The CHECK operator, in this case with artificial
materialization, takes the validity range of its child edge as
parameter. During runtime, it identifies whether the actual
cardinality is within validity ranges, and triggers
reoptimization if not. The optimizer uses knowledge about
the actual cardinality to develop the new plan; the
intermediate result is matched into the plan as a temporary
table (right side). [4] introduces different flavors of check
operators for eager checking (tuple pipelines) and lazy
checking (full materialization points in a QEP). The current
prototype supports only the lazy variant, which is also the
preferable one for federated queries, as it solely supports

1176

the re-use of intermediate results; an effect that we very
much want to utilize for federated queries to reduce
communication cost. Furthermore, so far no research has
proposed a good way to determine the validity range for
eager checkpoints, which has to consider the cost inherent
to partial re-execution.

3.2 Multiple Reoptimizations
For federated queries, the number of reoptimizations is
commonly as high as the number of uncorrelated SHIP
operators in the federated query plan, possibly higher if
correlation on join predicates that span several SHIPs
occurs. One potential problem associated with multiple
rounds of reoptimization is the stockpiling of partial results,
as each iteration introduces new temporary tables. POP is
not forced to reuse partial results but rather performs the
decision to reuse them on a cost base. Through this
mechanism, it occurs that POP ignores partial results but
reconsiders them after another round of reoptimization or
decides to fall back to another partial result; this happens
especially when new knowledge that was added in the
course of another reoptimization compensated for
correlation on join predicates. It is consequently dangerous
and regressive to throw away partial results as soon as POP
does not consider them during a reoptimization.

POP/FED provides a technique for multiple reoptimizations
with a strategy to discover redundant and eliminate partial
results. Dropping redundant partial results here ensures that
the DBMS processes the query, and also other concurrently
running queries, with the maximum possible temporary
storage space. However, when we drop a redundant partial
results, we keep statistics as a virtual statistical view.

Figure 2 shows a screenshot for POPMonitor, which is a
new graphical progress monitor tool for the demo. In each
round of reoptimization, POPMonitor 1) invokes the db2
graphical explain tool showing the reoptimized plan, and 2)
displays partial results maintained as virtual materialized
views and statistical views. With POPMonitor, one is able
to understand how POP/FED reoptimizes plans and
maintains partial results throughout multiple rounds of
reoptimization. As shown in this figure, POPMonitor also
shows QGM information for a given virtual materialized
view using a pop-up window.

4. DEMONSTRATION
We demonstrate POP for federated queries with the TPC-H
workload as defined by the Transaction Processing
Performance Council (TPC). The TPC-H tables are
distributed amongst an Oracle database and a DB2
database. The federated queries are executed using the IBM
Information Integrator product, which implements the DB2
federated query processing functionality. POP/FED applied

Figure 2. Screenshot for POPMonitor.

to the federated TPC-H queries demonstrates its ability to
improve the quality of the federated query plans. POP does
not interfere with the remote plan compilation and it is
apparent that only the local portion of the plan can be
optimized. Therefore, we will demonstrate queries that have
complex local plans (e.g. complex joins) and put a high
load on the federated server.

The story-line of the demonstration is the following.

1. We start with a partially loaded TPC-H Oracle database.
Only the PART, SUPPLIER, CUSTOMER, NATION, and
REGION tables are loaded and statistics are updated for the
tables and indexes. The missing LINEITEM and ORDERS
tables are loaded into a DB2 database, which is enabled as a
federated database.

2. Federated connection to the remote Oracle database is set up
as documented in [3], and nicknames to the Oracle tables are
created in the local schema ‘ORA’. Since we created the
nicknames after we populated the data into the Oracle TPC-
H database, we will automatically pick up the correct
federated statistics for the underlying Oracle base tables.

3. To demonstrate a number of capabilities of POP for
federated queries, we run TPC-H query 8 using the Oracle
and DB2 tables.

4. The initial plan compiled by the federated query compiler
uses a local hash join for the results of the remote
NATION/REGION join and the remote CUSTOMER table.
That is the cheapest option only if CHECK(40) returns at
least 25 rows.

1177

5. The remote statement represented at SHIP(42) is

SELECT A1."N_NATIONKEY" FROM
"TPCH"."REGION" A0, "TPCH"."NATION" A
WHERE (A0."R_NAME" = 'AMERICA') AND
(A1."N_REGIONKEY" = A0."R_REGIONKEY")

and returns 5 rows. At CHECK(40) POP/FED interrupts
query execution and creates a virtual materialized view
consisting of 2 quantifiers (NATION, REGION) and 2
predicates (R_NAME, N_REGEIONKEY).

6. Reoptimization is triggered and a POP/FED proposes a new
plan that pushes down the 3 table join between Oracle
NATION, REGION, and CUSTOMER tables.

The materialized view created in 6 is not used because the
quantifiers and predicates don’t match for the 3 table join.

7. During execution of the new plan, a second reoptimization is
triggered by another CHECK point in the plan. POP/FED
materializes the new results for the 3 table join into another
virtual materialized view

CREATE VMV 11bdf1d8 QTB(5) OPR(27)
nQuns(3) nPreds(3) nQncs(1) Quns(9 10 12
) Prds(6 7 8) Qncs(43)

8. The third plan proposed by POP/FED reuses the results
materialized in step 7. The quantifiers and predicate lists
match and the cost of computing the result suggests the use
of the materialized virtual view.

5. CONCLUSION
POP/FED, an extension of POP for a single local source
queries, is a powerful technique for progressively
reoptimizing federated queries. The problem of incorrect or
incomplete statistics is far greater for federated queries than
for non-federated queries. The federated query compiler has
to make assumptions about the complexity and costs of
remote statements without actual knowledge about the
remote query plans. Thus, the federated query plan faces
the danger of being sub-optimal. POP/FED reoptimizes
queries for an arbitrary number of times and avoids wasting
storage space by analyzing partial results for redundancy
and cleaning up after each reoptimization. For federated
queries that were optimized with little knowledge, early
materialization reorders the subplans in a way that data
access, in the federated case access to the remote results, is
done prior to the actual plan execution. It provides
knowledge about actual cardinalities earlier and reduces
number of reoptimizations. Through a more evenly
provided knowledge, the optimizer runs less risk of getting
into a plan bias.

6. REFERENCES
[1] Aboulnaga, A., Haas, P., Lightstone, S., Lohman, G., Markl,

V., Popivanov, I., and Raman, V. Automated Statistics
Collection in DB2 Stinger, Proc. VLDB 2004.

[2] Ewen, S., Kache, H., Markl, V., and Raman, V., Progressive
Query Optimization for Federated Queries. Proc. EDBT
2006 (accepted).

[3] IBM DB2 Information Integrator Federated Systems Guide
Version 8.2, IBM Corp 2004.

[4] Mark, V., Raman, V., Simmen, G., Lohman, G., Priahesh,
H., and Cilimdzic, M. Robust Query Processing through
Progressive Optimization. Proc. ACM SIGMOD 2004.

[5] Stillger, M., Lohman, G., Markl, V., and Kandil, M. LEO –
DB2’s Learning Optimizer, Proc. VLDB 2001.

[6] Zaharioudakis, M., Cochrane, R., Lapis, G., Pirahesh, H.,
and Urata, M. Answering Complex SQL Queries Using
Automatic Summary Tables, Proc. ACM SIGMOD 2000.

1178

