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Abstract

We extend the OLAP data model to represent
data ambiguity, specifically imprecision and un-
certainty, and introduce an allocation-based ap-
proach to the semantics of aggregation queries
over such data. We identify three natural query
properties and use them to shed light on alterna-
tive query semantics. While there is much work
on representing and querying ambiguous data, to
our knowledge this is the first paper to handle both
imprecision and uncertainty in an OLAP setting.

1 Introduction
In this paper, we extend the multidimensional OLAP data
model to representdata ambiguity, specificallyimprecision
anduncertainty, and study possible semantics for aggrega-
tion queries over such data. While there is much work on
representing and querying ambiguous data, and even some
work in the context of OLAP, to our knowledge this is the
first paper to identify criteria that must be satisfied by any
approach to handling data ambiguity in an OLAP setting,
and to use these criteria in a principled manner to arrive
at appropriate semantics for queries. Our first criterion,
called consistency, accounts for the relationship between
similar queries issued at related nodes in a domain hierar-
chy in order to meet users’ intuitive expectations as they
navigate up and down the hierarchy. The second criterion,
calledfaithfulness, captures the intuition that more precise
data should lead to better results. The third criterion, called
correlation-preservation, essentially requires that the sta-
tistical properties of the data should not be affected by the
allocation of ambiguous data records. While the last two
criteria are not specific to OLAP, to our knowledge they
have not been proposed previously.

We extend the usual OLAP data model in two funda-
mental ways. First, we relax the restriction that dimension
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attributes in a fact must be assigned leaf-level values from
the underlying domain hierarchy, in order to modelimpre-
cision. For example, we can denote that a particular repair
took place in Texas, without specifying a city. Clearly, this
has implications for how we answer queries—for a query
that aggregates repair costs in Austin, should the example
repair be included, and if so, how? Our second extension is
to introduce a new kind of measure attribute that represents
uncertainty. Intuitively, an uncertain value encodes a range
of possible values together with our belief in the likelihood
of each possible value. Specifically, we represent a value
for an uncertain measure as aprobability distribution func-
tion (pdf)over values from an associated “base” domain.

Our contributions can be summarized as follows:

1. Generalization of the OLAP model to represent data
ambiguity. To our knowledge, this is the first such
generalization that addresses both imprecise dimen-
sion values and uncertain measure values.

2. The introduction of criteria (consistency, faithfulness,
correlation-preservation) that guide the choice of se-
mantics for aggregation queries over ambiguous data.

3. A possible-worlds interpretation of data ambiguity
that leads to a novel allocation-based approach to
defining semantics for aggregation queries, and a care-
ful study of choices arising in the treatment of data
ambiguity, using the consistency, faithfulness, and
correlation-preservation criteria.

4. Algorithms for evaluating aggregation queries (in-
cluding AVERAGE, COUNT, and SUM for ordinary
measures, and LinOp for uncertain measures), to-
gether with a complexity analysis.

5. An experimental evaluation that addresses scalability
as well as result quality.

1.1 Related Work

While there is an extensive literature on queries over am-
biguous data, only a few papers [24, 28, 29, 16] have con-
sidered an OLAP setting. [24] is perhaps the closest to
our work in that it considers the semantics of aggrega-
tion queries, but it does not consider uncertainty or investi-
gate criteria that shed light on appropriate query semantics.
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[28, 29] consider the problem of imputing missing mea-
sure values, using linear equations, entropy maximization,
cross-entropy minimization, or other constraint program-
ming techniques. [16] describes a method to estimate the
error of cube aggregates for certain data; the generalization
of their method to uncertain data is not clear.

The earliest work on aggregate queries over imprecise
data is [8], and it was followed by [20, 9, 25]; how-
ever, none of these papers consider data-level hierarchies
(which are central to OLAP). The approach in [8] leads
to an exponential-time algorithm for SUM. [9] models un-
certainty using intervals and pdfs and provides algorithms
for aggregating them. [25] develops a linear programming
based semantics for computing aggregates over probabilis-
tic databases. We note that [20] also discusses uncertainty,
and [26] supports aggregate functions for uncertain data,
but doesn’t support imprecision or hierarchies.

We believe that a key contribution of this paper is our
methodology—identifying intuitive criteria such as consis-
tency, faithfulness, and correlation-preservation and using
them to study alternative query semantics is an approach
that can be applied outside the OLAP setting (and indeed,
faithfulness and correlation-preservation are not specific to
OLAP). In this respect, our approach is similar in spirit to
the use ofsummarizability, which was introduced to study
the interplay betweenproperties of dataand the aggrega-
tion operators (i.e., what properties should the data possess
for results of certain aggregation functions to be meaning-
ful) [18, 19].

A number of papers consider imprecision and uncer-
tainty for non-aggregation queries. The use of possible
world semantics to represent imprecise data is discussed
in [1]. [7, 13, 4, 17, 12] associate a probability distribution
with the data (either at the data element or tuple level), and
generalize relational algebra operators to reflect the asso-
ciated probability. [2, 3] seek to identify inconsistent data
and to “repair” these databases to a consistent state; in con-
trast, we focus on imprecise yet consistent data, and do
not consider integrity constraints (other than domain con-
straints). Various sources of data ambiguity are classified
in [22, 23], together with approaches for representing and
processing the ambiguity. [27] discusses the many similar-
ities between statistical databases and OLAP.

2 Data Model
In this section we present our generalization of the stan-
dard multidimensional data model, incorporating impreci-
sion and uncertainty.

2.1 Data Representation

Attributes in the standard OLAP model are of two kinds—
dimensionsandmeasures. We extend the model to support
uncertainty in measure values and imprecision in dimen-
sion values.

Definition 1 (Uncertain Domains). An uncertain domain
U over base domainO is the set of all possible probability

distribution functions, or pdfs, overO. �

Thus, each valueu in U is a pdf that, intuitively, indi-
cates our degree of belief that the “true” value being rep-
resented iso, for eacho in the base domainO. For an ex-
ample of uncertain domains we consider in this paper, see
Section 2.2.1.

Definition 2 (Imprecise Domains). An imprecise domain
I over a base domainB is a subset of the powerset ofB
with ∅ /∈ I; elements ofI are calledimprecisevalues. �

Intuitively, an imprecise value is a non-empty set of pos-
sible values. Allowing dimension attributes to have impre-
cise domains enables us, for example, to use the impre-
cise valueWisconsin for the location attribute in a data
record if we know that the sale occurred in Wisconsin but
are unsure about the city.

In OLAP, each dimension has an associated hierarchy,
e.g., the location dimension might have attributesCity and
State, with Statedenoting generalizations ofCity; this sug-
gests a natural special case of imprecise domains calledhi-
erarchicaldomains, which we define next.

Definition 3 (Hierarchical Domains). A hierarchical do-
mainH over base domainB is defined to be an imprecise
domain overB such that (1)H contains every singleton set
(i.e., corresponds to some element ofB) and (2) for any
pair of elementsh1, h2 ∈ H , h1 ⊇ h2 or h1 ∩ h2 = ∅. �

Intuitively, each singleton set is a leaf node in the do-
main hierarchy and each non-singleton set inH is a non-
leaf node; thus,Madison, Milwaukee, etc. are leaf
nodes with parentWisconsin (which, in turn might have
USA as its parent). We will often refer to a hierarchical do-
main in terms of leaf and non-leaf nodes, for convenience.

Definition 4 (Fact Table Schemas and Instances). A fact
table schemais 〈A1, A2, . . . , Ak; M1, . . . , Mn〉 where (i)
each dimension attributeAi, i ∈ 1 . . . k, has an associ-
ated domain dom(Ai) that isimprecise, and (ii) each mea-
sure attributeMj, j ∈ 1 . . . n, has an associated domain
dom(Mj) that is eithernumericor uncertain.

A database instanceof this fact table schema is a col-
lection of facts of the form 〈a1, a2, . . . , ak; m1, . . . , mn〉
whereai ∈ dom(Ai), i ∈ 1 . . . k andmj ∈ dom(Mj), j ∈
1 . . . n. In particular, if dom(Ai) is hierarchical,ai can be
any leaf or non-leaf node in dom(Ai). �

Definition 5 (Regions and Cells). Consider a fact table
schema with dimension attributesA1, A2, . . . , Ak. A vec-
tor 〈c1, c2, . . . , ck〉 is called acell if every ci is an element
of the base domain ofAi, i ∈ 1 . . . k. Theregionof a di-
mension vector〈a1, a2, . . . , ak〉 is defined to be the set of
cells {〈c1, c2, . . . , ck〉 | ci ∈ ai, i ∈ 1 . . . k}. Let reg(r)
denote the region associated with a factr. �

Proposition 1. Consider a fact table schema with dimen-
sion attributesA1, A2, . . . , Ak that all have hierarchical
domains. Consider ak-dimensional space in which each
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Auto Loc Repair Text Brake
p1 F-150 NY $200 . . . 〈0.8, 0.2〉
p2 F-150 MA $250 . . . 〈0.9, 0.1〉
p3 F-150 CA $150 . . . 〈0.7, 0.3〉
p4 Sierra TX $300 . . . 〈0.3, 0.7〉
p5 Camry TX $325 . . . 〈0.7, 0.3〉
p6 Camry TX $175 . . . 〈0.5, 0.5〉
p7 Civic TX $225 . . . 〈0.3, 0.7〉
p8 Civic TX $120 . . . 〈0.2, 0.8〉
p9 F150 East $140 . . . 〈0.5, 0.5〉
p10 Truck TX $500 . . . 〈0.9, 0.1〉

Table 1: Sample data in a CRM application for automobiles

axisi is labeled with the leaf nodes of dom(Ai). For every
region, the set of all cells in the region is a contiguousk-
dimensional hyper-rectangle that is orthogonal to the axes.

If every dimension attribute has a hierarchical domain,
we thus have an intuitive interpretation of each fact in the
database as a region in ak-dimensional space. If allai

are leaf nodes, the observation isprecise, and describes a
region consisting of a single cell. If one or moreAi are
assigned non-leaf nodes, the observation isimpreciseand
describes a largerk-dimensional region. Each cell inside
this region represents a possible completion of an imprecise
fact, formed by replacing non-leaf nodeai with a leaf node
from the subtree rooted atai. The process of completing
every imprecise fact in this manner represents apossible
world for the database (Section 4).

2.2 Motivating Example

Consider the scenario of a car manufacturer using a CRM
application to track and manage service requests across
its worldwide dealer operations. A fact table illustrating
such data is shown in Table 1. Each fact describes an “in-
cident”. The first two columns are dimension attributes
Automobile (Auto) andLocation (Loc), and take values
from their associated hierarchical domains. The structure
of these domains and the regions of the facts are shown in
Figure 1. Precise facts, p1–p8 in Table 1, have leaf nodes
assigned to both dimension attributes and are mapped to
the appropriate cells in Figure 1. Facts p9 and p10, on the
other hand, are imprecise. Fact p9 is imprecise because
the Location dimension is assigned to the non-leaf node
East and its region contains the cells(NY,F150) and
(MA,F150). Similarly, the region for p10 contains the
cells (TX,F150) and(TX,Sierra). Each fact con-
tains a value for the numeric measure attributeRepairde-
noting the repair cost associated with the incident.

2.2.1 Example of Measure Uncertainty

We want to classify incidents based on the type of prob-
lem (e.g., “brake”, “transmission”, “engine noise” etc.),
as described in the auxiliaryText attribute. The subjec-
tive nature of text precludes the unambiguous classifica-

tion of service reports into the different problem types. We
can model this ambiguity by defining an uncertain mea-
sure whose values are represented as pdfs over the set of
problem types. However, due to the dynamic nature of text
analysis engines, new problem types will be continuously
added. Therefore, it is impractical to assume that the base
domain of problem types can be fixed apriori.

To address this, we assume there exist trained classi-
fiers for each type of problem (e.g., see [30]) that output
a discrete probability distribution based on analyzing the
content of theText attribute; the pdf output reflects the un-
certainty inherent in such classifiers. In the example, the
output of the classifier for the brake topic is represented as
a pdf over two valuesYes andNo, and is stored in the un-
certain measure attributeBrake as a pair of probabilities.
(as shown in Table 1).However, we note that all analy-
sis and algorithms presented henceforth are applicable to
attributes with base domain greater than 2.

2.3 Queries

While the OLAP paradigm offers a rich array of query op-
erators, the basic query consists of selecting a node for one
or more dimensions and applying an aggregation operator
to a particular measure attribute. For example, selecting
the Location nodeTX and the Automobile nodeCivic
and applying SUM to theRepair measure returns the to-
tal amount spent on repairs ofCivic cars in Texas. All
other queries (such asroll-up, slice, drill-down, pivot, etc.)
can be described in terms of repeated applications of basic
queries. We therefore concentrate on studying the seman-
tics of basic queries in light of our two data model exten-
sions; the extension to the full array of OLAP query opera-
tors is straightforward, and is omitted for lack of space.

Definition 6 (Queries and Query Results). A query Q over
a databaseD with schema〈A1, A2, . . . , Ak; M1, . . . , Mn〉
has the formQ(a1, . . . , ak; Mi,A), where: (i)a1, . . . , ak

describes thek-dimensional region being queried, (ii)Mi

describes the measure of interest, and (iii)A is an aggrega-
tion function.

The result ofQ is obtained by applyingA to a set of
facts FIND-RELEVANT(a1, . . . , ak, D). This is described
in detail below. �

The function FIND-RELEVANT identifies the set of facts
in D deemed “relevant” to the query region, and the ap-
propriate definition of this function is an important issue
addressed in this paper. All precise facts within the query
region are naturally included, but we have an important de-
sign decision with respect to imprecise facts. We have three
options: ignore all imprecise facts (theNone option), in-
clude only those contained in the query region (theCon-
tains option), or include all imprecise facts whose region
overlaps (i.e., intersects) the query region (Overlaps op-
tion).
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2.4 Motivating Example (Contd.)

How to handle imprecise facts when answering queries is a
central issue, which we now illustrate through an example.
In later sections, we study the various options for deter-
mining the facts relevant to a query more rigorously. We
consider aggregate queries of the type“What are the re-
pair costs for F150’s in the East”?, i.e., a SUM aggregate
value for the measure attributeRepairin the region denoted
by(F150,East). All queries are depicted in Figure 1 as
boxes enclosing the query region. For instance, the above
example query corresponds to Q5 in Figure 1.
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Figure 1: Multidimensional view of the data

For queries whose regions overlap only precise facts,
e.g., Q1 and Q2, the set of relevant facts is clear. For other
queries, e.g., Q5, this is trickier. If we use theNone op-
tion, the result of Q5 isA(p1,p2); the imprecise fact p9
is ignored. If we use theContains option, the result is
A(p1,p2,p9). Which answer is better? Using p9 to answer
Q5 seems reasonable since the region for Q5 contains p9,
and the result reflects all available data. However, there is
a subtle issue with using theContains option to determine
relevant facts. In standard OLAP, the answer for Q5 is the
aggregate of answers for Q3 and Q4, which is clearly is not
the case now, since Q3 =A(p2) and Q4 =A(p1).

Observing that p9 “overlaps” the cellsc1=(F150,NY)
and c2=(F150,MA), we may choose topartially assign
p9 to both cells, a process we refer to asallocation. The
partial assignment is captured by the weightswc1 andwc2,
such thatwc1 +wc2 = 1, which reflect the effect p9 should
have on the aggregate value computed for cellsc1 andc2,
respectively. If theOverlaps option is used, then Q3 =
A(p2, wc1∗ p9) and Q4 =A(p1, wc2∗ p9). Observe the
user’s “expected” relationship between Q3, Q4, and Q5,
which we refer to asconsistency, is now maintained. In
addition to consistency, there is a notion of result quality
relative to the quality of the data input to the query, which
we refer to asfaithfulness. For example, the answer com-
puted for Q3 should be of higher quality if p9 were pre-
cisely known.

To further illustrate the role of allocation, consider query
Q6. If p10 is allocated to all cells in its region then Q6 can
be answered. Otherwise, the answer to Q6 is undefined, as
in regular OLAP. Although allocation can be accomplished
in several ways it is reasonable to expect that allocation
is query independent. For example, Q7 and Q8 must be
answered using the same allocation for p10.

Consistency and faithfulness are discussed further in
Sections 3 and 5. A discussion of the possible-world se-
mantics underlying allocation is presented in Section 4, and
allocation algorithms are discussed in Section 6. For clarity
of exposition, only the statements of the theoretical claims
are included in the main body of the paper. Explanations
and proofs can be found in [6].

2.5 Aggregating Uncertain Measures

Consider a query of the type “How likely are brake
problems for sedans in TX?” This corresponds to query
Q2 where the aggregation is over the uncertain measure
‘Brake’. The answer to this query is an aggregation over
the pdfs for p5, p6, p7, p8. This notion of aggregating pdfs
is closely related to the problem studied in the statistics lit-
erature under the name ofopinion pooling[15]. Informally,
the opinion pooling problem is to provide aconsensusopin-
ion from a set of opinionsΘ. The opinions inΘ as well
as the consensus opinion are represented as pdfs over a dis-
crete domainO.

Many pooling operators have been studied, and the
linear operator LinOp is among the most widely used.
LinOp(Θ) produces a consensus pdfP that is a weighted
linear combination of the pdfs inΘ, i.e., P (x) =
∑

P∈Θ wP · P (x), for x ∈ O. Here, the weights are non-
negative quantities summing to one. Unless there is some
form of prior knowledge, we assume that the weights are
uniform, i.e.,wP = 1/|Θ|, in which caseP (x) is just the
average of the probabilitiesP (x) for P ∈ Θ. It is straight-
forward to compute LinOp using aggregation functions in
current OLAP systems.

3 OLAP Requirements

In providing support for OLAP-style queries in the pres-
ence of imprecision and uncertainty, we argue that the an-
swers to these queries should meet a reasonable set of re-
quirements that can be considered generalizations of re-
quirements met by queries in standard OLAP systems.
We propose two requirements for handling imprecision,
namelyconsistencyand faithfulness, which apply to both
numeric and uncertain measures. (Some requirements for
handling uncertainty have been proposed in [14].) We use
these requirements to argue that only theOverlaps option
for handling imprecision results in well-behaved queries in
the context of OLAP.

3.1 Consistency

The intuition behind the consistency requirement is that a
user expects to see some natural relationships hold between
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the answers to aggregation queries associated with different
(connected) regions in a hierarchy.

Definition 7 (α-consistency). Let α(x, x1, x2, . . . , xp) be
a predicate such that each argument ofα takes on values
from the range of a fixed aggregation operatorA. Con-
sider a collection of queriesQ, Q1, . . . , Qp such that (1)
the query region ofQ is partitioned by the query regions
of Q1, . . . , Qp, i.e., reg(Q) = ∪i reg(Qi) andreg(Qi) ∩
reg(Qj) = ∅ for every i 6= j, and (2) each query speci-
fies thatA be applied to the same measure attribute. Let
q̂, q̂1, . . . , q̂m denote the associated set of answers onD.
We say that an algorithm satisfiesα-consistency with re-
spect toA if α(q̂, q̂1, . . . , q̂p) holds for every databaseD
and for every such collection of queriesQ, Q1, . . . , Qp. �

This notion of consistency is in the spirit ofsummariz-
ability, introduced in [18, 19], although the specific goals
are different. Given the nature of the underlying data, only
some aggregation functions are appropriate, or have the be-
havior the user expects.

3.2 Specific Forms of Consistency

We now define appropriate consistency predicates for the
aggregation operators considered in this paper, using the
notations given in the definition ofα-consistency.

Definition 8 (Sum-consistency). Sum-consistency is de-
fined asq̂ =

∑

i q̂i. �

The above is an intuitive notion of consistency for SUM
and COUNT. Since SUM is a distributive function, SUM
for a query region should equal the value obtained by
adding the results of SUM for the query sub-regions that
partition the region. All statements for SUM in this paper
are applicable to COUNT as well, and will not be explicitly
mentioned in the interest of space.

Definition 9 (Boundedness-consistency). For a nu-
meric measure, this consistency predicate is defined as
mini{q̂i} ≤ q̂ ≤ maxi{q̂i}. For an uncertain mea-
sure, the above inequalities should hold for the probabil-
ities associated with all elements in the base domain. For-
mally, if q̂(o) is the probability for each elemento, then
mini{q̂i(o)} ≤ q̂(o) ≤ maxi{q̂i(o)}. �

Boundedness-consistency is intuitively appropriate for
any kind of averaging operator for numeric measures and
aggregation operator for uncertain measures. In particular,
AVERAGE for a query region should be within the bounds
of AVERAGE for the query sub-regions that partition the
region. In the case of LinOp, the same property should
hold element-wise for the associated pdfs.

An important consequence of the variousα-consistency
properties defined above is that theContains option is un-
suitable for handling imprecision, as shown below:

Theorem 1. There exists a SUM aggregate query which
violates Sum-consistency when theContains option is used
to find relevant imprecise facts inFIND-RELEVANT.

Similar theorems can be shown for other aggregation
operators as well, but we omit them in the interest of space.

3.3 Faithfulness

Starting with a databaseD, suppose we increase impreci-
sion in D by mapping facts in the database to larger re-
gions. We expect that the answer to any queryQ on this
new databaseD′ will be different from the original answer.
Faithfulness is intended to capture the intuitive property
that this difference should be as small as possible. Since an
aggregation algorithm only gets to seeD′ as its input and
is not aware of the “original” databaseD one cannot hope
in general to state precise lower and upper bounds for this
difference. Our aim instead will be to state weaker prop-
erties that characterize this difference, e.g., whether itis
monotonic with respect to the amount of imprecision. The
following definition is helpful in formalizing faithfulness.

Definition 10 (Measure-similar Databases). We say that
two databasesD andD′ aremeasure-similarif D′ is ob-
tained fromD by (arbitrarily) modifying (only) the dimen-
sion attribute values in each factr. Let r′ ∈ D′ denote the
fact obtained by modifyingr ∈ D; we say thatr corre-
spondsto r′. �

Consider a queryQ such that every fact region is either
completely contained within the query region ofQ or com-
pletely disjoint from it. In such a situation, it is reasonable
to treat the facts as if it were precise with respect toQ since
the imprecision in the facts does not cause ambiguity with
respect to the query region ofQ. The first form of faithful-
ness formalizes this property, and is illustrated in Figure2a.

Definition 11 (Basic faithfulness). We say that two
measure-similar databasesD andD′ areidentically precise
with respect to queryQ if for every pair of corresponding
factsr ∈ D andr′ ∈ D′, either bothreg(r) andreg(r′) are
completely contained inreg(Q) or both are completely are
disjoint fromreg(Q). We say that an algorithm satisfiesba-
sic faithfulnesswith respect to an aggregation functionA if
for every queryQ that usesA, the algorithm gives identical
answers for every pair of measure-similar databasesD and
D′ that are identically precise with respect toQ. �

Basic faithfulness enables us to argue that theNone
option of handling imprecision by ignoring all imprecise
records is inappropriate, as we intuitively expect:

Theorem 2. SUM, COUNT, AVERAGE and LinOp violate
basic faithfulness when theNone option is used to handle
imprecision.

Theorems 1 and 2 demonstrate the unsuitability of the
Contains andNone options for handling imprecision, and
we do not consider them further. The remaining option,
namelyOverlaps, is the focus of our efforts for the rest of
the paper, and it raises the challenge of how to handle rele-
vant facts that partially overlap the query region. We tackle
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this problem in later sections using an allocation-based ap-
proach to summarizing the “possible worlds” that may have
led to the imprecise dataset.

The next form of faithfulness is intended to capture the
same intuition as basic faithfulness in the more complex
setting of imprecise facts that partially overlap a query. We
first define an ordering that compares the amount of impre-
cision in two databases with respect to a queryQ, in order
to reason about the answers toQ as the amount of impreci-
sion grows.

Definition 12 (Partial order�Q). Fix a queryQ. We say
that the relationIQ(D, D′) holds on two measure-similar
databasesD andD′ if all pairs of corresponding facts inD
andD′ are identical, except for a single pair of factsr ∈ D
andr′ ∈ D′ such thatreg(r′) is obtained fromreg(r) by
adding a cellc /∈ reg(Q) ∪ reg(r). Define the partial order
�Q to be the reflexive, transitive closure ofIQ. �

Figure 2b illustrates the definition of�Q for a query
Q—the amount of imprecision for every factr′ ∈ D′ is
larger than that of the corresponding factr ∈ D but only
in the cells outside the query region. The reason for this
restriction is that allowingr′ to have a larger projection
inside the query region does not necessarily mean that it is
less relevant toQ thanr (cf. basic faithfulness).

Query

region
r1

r1’

r2
r2’

a: No partial overlap

r’
r

Query

region

b: Partial order Q

Figure 2: Two forms of Faithfulness

Definition 13 (β-faithfulness). Let β(x1, x2, . . . , xp) be a
predicate such that the value taken by each argument ofβ
belongs to the range of a fixed aggregation operatorA.

We say that an algorithm satisfiesβ-faithfulness with re-
spect toA if for any queryQ compatible withA, and for
any set of databasesD1 �Q D2 �Q · · · �Q Dp, the pred-
icateβ(q̂1, . . . , q̂p) holds true wherêqi denotes the answer
computed by the algorithm onDi, i in 1 . . . p. �

3.4 Specific Forms of Faithfulness

We now discuss howβ-faithfulness applies to the aggrega-
tion operations considered in this paper.

SUM: If we consider SUM over non-negative measure val-
ues, the intuitive notion of faithfulness is that as the data
in a query region becomes imprecise and grows outside the
query region, SUM should be non-increasing.

Definition 14 (Sum-faithfulness). Sum-faithfulness is de-
fined as follows: ifD1 �Q D2, thenq̂D1 ≥ q̂D2 . �
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Figure 3: Possible Worlds

AVERAGE and LinOp: It is difficult,unfortunately, to define
an appropriate instance ofβ-faithfulness for AVERAGE
and LinOp. Consider how the AVERAGE behave as facts
in a query region become more imprecise and grow outside
the query region: SUM for the query region diminishes,
but the count also decreases. Since both the numerator and
denominator are decreasing, the value of AVERAGE could
either increase or decrease. The same observation applies
to LinOp as well.

4 Possible Worlds

We now describe apossible-worldsinterpretation of a
databaseD containing imprecise facts, similar to that pro-
posed in [1], as a prelude to defining query semantics when
theOverlaps option is used to find relevant facts. Consider
an imprecise factr which maps to a regionR of cells. Re-
call from the discussion following Proposition 1 that each
cell in R represents a possible completion ofr that elimi-
nates the imprecision inr. Repeating this process for every
imprecise fact inD leads to a databaseD′ that contains
only precise facts. We callD′ a possible worldfor D, and
the multiple choices for eliminating imprecision lead to a
set of possible worlds forD. We illustrate possible worlds
in the following example.

Example 1. Figure 3 shows a multidimensional view of
the data in our running example (Figure 1), together with
all four possible worlds that can be generated by making
the two imprecise factsp9 andp10 precise. Factp9 can
be made precise in two possible ways, placing it in cell
(MA,F150) or(NY,F150). Similarly,p10 can be made
precise in two possible ways, placing it in(TX,F150) or
(TX,Sierra). Different combinations of these (2 ∗ 2)
choices lead to the possible worlds{D1, D2, D3, D4}. �

We interpret the possible worlds{D1, D2, . . . , Dm} as
the collection of “true” databases from which the given
databaseD was obtained; the likelihoods of each possible
world being the “true” one are not necessarily the same. To
capture this likelihood, we associate a non-negative weight
wi with eachDi, normalized so that

∑

i wi = 1. The
weights give us flexibility to model the different behaviors
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that cause imprecision, while the normalization allows for
a probabilistic interpretation of the possible worlds.

4.1 Extended Data Model

If there arek imprecise facts in a datasetD, and the region
for the ith imprecise fact containsci cells, the number of
possible worlds is

∏k

i=1 ci. To tackle the complexity due
to this exponential number of possible worlds, we consider
each imprecise factr and assign a probability for its “true”
value beingc, for each cellc in its region. The assign-
ments for all imprecise facts collectively (and implicitly)
associate probabilities (weights) with each possible world,
as we explain below.

Definition 15 (Allocation). For a factr and a cellc ∈
reg(r), let pc,r denote the probability thatr is completed
to c in the underlying “true” world. We callpc,r thealloca-
tion of factr to cellc, and require that

∑

c∈reg(r) pc,r = 1.
Consider the following probabilistic process, starting

with a databaseD containingk imprecise facts: Inde-
pendently for each imprecise factri, pick a cell ci with
probability pci,ri

and modify the dimension attributes in
ri so that the resulting fact belongs to cellci. The set of
databases that can arise via this process constitute the pos-
sible worlds. The weight associated with a possible world
D′ equals

∏k

i=1 pci,ri
.

Any procedure for assigningpc,r is referred to as anal-
location policy. The result of applying such a policy to a
databaseD is anallocated databaseD∗. The schema of
D∗ contains all the columns ofD plus additional columns
to keep track of the cells that have strictly positive allo-
cations. Suppose that factr in D has a unique identifier
denoted by ID(r). Corresponding to each factr ∈ D,
we create a set of fact(s)〈ID(r), r, c, pc,r〉 in D∗ for every
c ∈ reg(r) such thatpc,r > 0 and

∑

pc,r = 1. �

Allocation policies are described in detail in Section 6.
The size ofD∗ increases only linearly in the number of im-
precise facts. However, since the region of an imprecise
fact is exponentially large in the number of dimension at-
tributes which are assigned non-leaf nodes, care must be
taken in determining the cells that get positive allocations.

Example 2. For the example in Figure 3, suppose that the
probabilities forp9 are 0.6 and 0.4 for cells(MA,F150)
and(NY,F150) respectively. Then inD∗ we will cre-
ate two facts corresponding top11—one belonging to
(MA,F150) with weight 0.6 and another to(NY,F150)
with weight 0.4 both tagged with the same identifier. Sim-
ilarly there are 2 facts forp10, belonging to(TX,F150)
and(TX,Sierra) with the same id, p10. �

5 Summarizing Possible Worlds
The allocation weights encode a set of possible worlds,
{D1, . . . , Dm} with associated weightsw1, . . . , wm. The
answer to a queryQ is a multiset1 {v1, . . . , vm}. We are

1A multiset because many possible worlds may give the same answer.

left with the problem of appropriate semantics for summa-
rizing {v1, . . . vm}.

Recall that the weights give a probabilistic interpreta-
tion of the possible worlds, i.e., databaseDi is chosen
with probabilitywi. We summarize the possible answers
{v1, . . . vm} by defining a discrete random variable,Z, as-
sociated with this distribution.

Definition 16 (Answer variable). Consider the multiset
{v1, . . . vm} of possible answers to a queryQ. We define
the answer variableZ associated with Q to be a random
variable with pdfPr[Z = vi] =

∑

j s.t. vi=vj
wj , i, j ∈

1, . . . , m. �

The answer to a query can be summarized as the first
and the second moments (expected value and variance) of
the answer variableZ. Using E[Z] to answer queries is
justified by the following theorem:

Theorem 3. Basic faithfulness is satisfied if answers to
queries are computed using the expected value of the an-
swer variable.

The above approach of summarizing possible worlds
for answering aggregation queries, though intuitively ap-
pealing, complicates matters because the number of possi-
ble worlds grows exponentially in the number of imprecise
facts. Allocations can compactly encode this exponentially
large set but the challenge now is to summarize without
having to explicitly use the allocations to iterate over all
possible worlds. We now proceed to design efficient algo-
rithms for summarizing various aggregation operators us-
ing the extended data model.

The following notation is useful in the description of
the algorithms below. Fix a queryQ whose associated re-
gion is q. The set of facts that potentially contribute to
the answer are those that have positive allocation toq. If
C(r) = {c | pc,r > 0} denotes the set of cells to which
fact r has strictly positive allocations, the desired set of
facts is given byR(Q) = {r | C(r) ∩ q 6= ∅}. We say
thatR(Q) is the set ofcandidatefacts for the queryQ. For
any candidate factr, let Yr = Yr,Q be the 0-1 indicator
random variable for the event that a possible completion of
r belongs toq. We have,

Pr[Yr = 1] =
∑

c∈C(r)∩q pc,r

SinceYr is a 0-1 random variable,Pr[Yr = 1] = E[Yr];
the above equation says thatE[Yr] equals the sum of the
allocations ofr to the query region ofQ. With a slight
abuse of notation, we say thatE[Yr] is the allocation of
r to the queryQ; it is full if E[Yr] = 1 andpartial other-
wise. Finally, note that the independence assumption in our
modeling of imprecision implies that the random variables
Yr for the differentr’s are statistically independent.

We answer queryQ in the extended data model in two
steps:

Step 1:We identify the set of candidate factsr ∈ R(Q)
and compute the corresponding allocations toQ. The for-
mer is accomplished by using a filter for the query region
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whereas the latter is accomplished by identifying groups of
facts that share the same identifier in the ID column and
then summing up the allocations within each group. At the
end of this step, we have a set of facts that contains for
each factr ∈ R(Q), the allocation ofr to Q and the mea-
sure value associated withr. Note that this step depends
only on the query regionq.

Step 2: This step is specialized to the aggregation op-
erator, and two comments are in order. First, we seek to
identify the information necessary to compute the summa-
rization while circumventing the enumeration of possible
worlds. Second, it is possible in some cases to merge this
second step with the first in order to gain further savings,
e.g., the expected value of SUM can be computed thus.
This extra optimization step will not be discussed further.

5.1 SUM

The random variable corresponding to the answer for a
SUM queryQ is given byZ =

∑

r∈R(Q) vrYr, wherevr

is the value of the numerical measure for record r.
Using this expression, we can efficiently compute the

expectation and variance for SUM:

Theorem 4. Expectation and variance can be computed
exactly for SUM by a single pass over the set of candidate
facts. The expectation of the sum computed from the ex-
tended data model satisfies Sum-consistency.

For SUM,β-faithfulness can be violated if the extended
data model was built using arbitrary allocation policies.
We define a class of allocation policies for which we can
guarantee faithfulness. Such allocation policies will be dis-
cussed in Section 6.

Definition 17 (Monotone Allocation Policy). Let D and
D′ be two similar data sets with the property that the asso-
ciated regions are identical for every pair of corresponding
facts, except for a single pair(r, r′), r ∈ D, r′ ∈ D′ such
that reg(r′) = reg(r) ∪ {c∗}, for some cellc∗. Fix an
allocation policyA, and letpc,r (resp.p′c,r) denote the re-
sulting allocations inD (resp.D′) computed with respect
to A. We say thatA is a monotonicallocation policy if
pc,s ≥ p′c,s for every facts and for every cellc 6= c∗. �

Monotonicity is a strong but reasonable and intuitive
property of allocation policies. When the database has no
imprecision, there is a unique possible world with weight
1. But as the amount of imprecision increases, the set of
possible worlds will increase as well. Monotone allocation
policies restrict the way in which the weights for the larger
set of possible worlds are defined. In particular, as a region
gets larger, allocations for the old cells are redistributed to
the new cells.

Theorem 5. The expectation of SUM satisfies Sum-
faithfulness if the allocation policy used to build the ex-
tended data model is monotone.

5.2 AVERAGE

In this case, the random variable corresponding to the an-

swer is given byZ =
P

r∈R(Q) vrYr
P

r∈R(Q) Yr
. Unfortunately, com-

puting even the expectation becomes difficult because of
the appearance ofYr in both the numerator and denom-
inator. As shown in the following theorem, we device a
non-trivial algorithm for AVERAGE.

Theorem 6. Let n andm be the number of partially and
completely allocated facts in a query region, respectively.
The exact expected value of AVERAGE can be computed in
time O(m + n3), with n passes over the set of candidate
facts.

While the above algorithm is feasible, the cost of com-
puting the exact AVERAGE is high if the number of par-
tially allocated facts forQ is high. To address this, the
following theorem shows that we can efficiently com-
pute an approximation for the AVERAGE, given byZ =
E[

P

r∈R(Q) vrYr]

E[
P

r∈R(Q) Yr ]

Theorem 7. An approximate estimate for AVERAGE can
be computed in timeO(m+n) using a single pass over the
set of candidate facts. The relative error of the estimate is
negligible whenn � m.

The assumption ofn � m in the theorem above is rea-
sonable for most databases since we expect that the fraction
of facts with missing values that contribute to any query
will be small.

We now compare our two solutions for AVERAGE,
namely the exact and the approximate estimate in terms of
the requirements. First, we can show that:

Theorem 8. The expectation of the AVERAGE computed
from the extended data model satisfies basic faithfulness
but violates Boundedness-consistency.

On the other hand:

Theorem 9. The approximate estimate for AVERAGE de-
fined above satisfies Boundedness-consistency and basic
faithfulness.

The above theorems show the tradeoff between being
accurate in answering queries and being consistent. Given
the efficiency aspects and the small relative error (under
reasonable conditions) for the approximate estimate, we
propose using this estimate for answering queries.

5.3 Uncertain Measures

In Section 2.5 we proposed LinOP as a reasonable aggrega-
tion operator for uncertain measures. We now address the
issue of summarizing LinOp over the possible worlds. One
approach is to compute LinOp over all the facts in all the
worlds simultaneously, where the facts in a worldDi are
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weighted by the probability of that worldwi. This is some-
what analogous to the approximate estimate for AVERAGE
described above.2

Definition 18 (AggLinOp). Let D1, D2, . . . Dm be the
possible worlds with weightsw1, w2, . . . wm respectively.
Fix a queryQ, and letW (r) denote the set ofi’s such that
the cell to whichr is mapped inDi belongs toreg(Q). Ag-
gLinOp is defined as

∑

r∈R(Q)

∑

i∈W (r) vrwi
∑

r∈R(Q)

∑

i∈W (r) wi

,

where the vectorvr represent the measure pdf ofr. �

Similar to the approximate estimate for AVERAGE, Ag-
gLinOp can be computed efficiently, and satisfies similar
kinds of requirements.

Theorem 10. AggLinOp can be computed in a single pass
over the set of candidate facts, and satisfies Boundedness-
consistency and basic faithfulness.

6 Allocation Policies
In the previous section, we designed efficient algorithms
for various aggregation operators in the extended data
model, and proved several consistency and faithfulness
properties. We now turn to the task of building the extended
data model from the imprecise data via appropriate alloca-
tion policies; i.e., design algorithms to obtainpc,r for every
imprecise factr and every cellc ∈ reg(r).

As before letA1, A2, . . . , Ak denote the dimension at-
tributes. For any factr, recall from Proposition 1 that
reg(r) equals somek-dimensional hyper-rectangleC1 ×
C2 × . . . Ck of cells, where eachCi is a subset of the
leaf nodes in dom(Ai). Each cellc ∈ reg(r) is defined
by a tuple(c1, c2, . . . , ck) whereci ∈ Ci. Therefore, al-
locating r to the cellc amounts to replacing thei-th at-
tribute value withci for everyi. The space of allocation
policies is very large, and to facilitate the discussion, we
categorize allocation policies as dimension-independent,
measure-oblivious, or correlation-preserving.

Definition 19 (Dimension-independentAllocation). An al-
location policy is said to bedimension independentif
the following property holds for every factr. Suppose
reg(r) = C1×C2×. . . Ck. Then, for everyi and everyb ∈
Ci, there exist valuesγi(b) such that (1)

∑

b∈Ci
γi(b) = 1

and (2) ifc = (c1, c2, . . . , ck), thenpc,r =
∏

i γi(ci). �

The above definition can be interpreted in probabilistic
terms as choosingindependentlyfor eachi, a leaf nodeci ∈
Ci with probabilityγi(ci). Part (1) in the above definition
ensures thatγi defines a legal probability distribution on
Ci. Part (2) says that allocationpc,r equals the probability

2A summarizing estimate for uncertain measures that is analogous to
the exact estimate for AVERAGE can also be defined but is not considered
here because it has the same drawbacks.

cell c is chosen by this process. Auniform allocationpolicy
is one where each factr is uniformly allocated to every cell
in reg(r), and is perhaps the simplest of all policies. We
can show that:

Theorem 11. Uniform allocation is a dimension-
independent and monotone allocation policy.

Even though this policy is simple to implement, a draw-
back is that the size of the extended data model (which de-
pends on the number of cells with non-zero probabilities)
becomes prohibitively large when there are imprecise facts
with large regions.

Definition 20 (Measure-oblivious Allocation). An alloca-
tion policy is said to bemeasure-obliviousif the following
holds. LetD be any database and letD′ be obtained from
D by possibly modifying the measure attribute values in
each factr arbitrarily but keeping the dimension attribute
values inr intact. Then, the allocations produced by the
policy are identical for corresponding facts inD andD′. �

Strictly speaking uniform allocation is also a measure-
oblivious policy. However, in general, policies in this class
do not require the dimensions to be independent. An ex-
ample of such a policy iscount-based allocation. Here, the
data is divided into two groups consisting of precise and
imprecise facts. LetNc denote the number of precise facts
that map to cellc. For each imprecise factr and cellc,

pc,r =
Nc

∑

c′∈reg(r) Nc′

Thus, the allocation of imprecise facts is determined by the
distribution of the precise facts in the cells of the multidi-
mensional space.

Theorem 12. Count-based allocation is a measure-
oblivious and monotone allocation policy.

A potential drawback of count-based allocation is that
once the imprecise facts have been allocated, there is a
“rich get richer” effect. To understand this, consider a re-
gion. Before allocation, this region has a certain distri-
bution of precise facts over the cells of the region. Af-
ter count-based allocation, it is highly conceivable that this
distribution might be significantly different. In some cases
it may be desirable to retain the original distribution exhib-
ited by the precise facts. Applying this requirement to the
entire multi-dimensional space motivates the introduction
of thecorrelation-preservingclass of policies.

Definition 21 (Correlation-Preserving Allocation). Let
corr() be a correlation function that can be applied to any
database consisting only of precise facts. Let∆() be a
function that can be used to compute the distance between
the results of applying corr() to precise databases.

Let A be any allocation policy. For any databaseD con-
sisting of precise and imprecise facts, letD1, D2, . . . , Dm

be the set of possible worlds forD. Let thepc,r’s denote the
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allocations produced byA on D. Recall by definition 15,
that thepc,r’s define a weightwi for Di, i ∈ 1 . . . m. The
quantity∆(corr(D0),

∑

i wi · corr(Di)) is called thecor-
relation distanceof A with respect toD. We say that an
allocation policyA is correlation-preservingif for every
databaseD, the correlation distance ofA with respectD is
the minimum over all policies.

�

By instantiating corr() with the pdf over dimen-
sion and measure attributes (A1, . . . , Ak, M ) and ∆
with the Kullback-Leibler divergence3DKL, follow-
ing Definition 21, we can obtainwi by minimizing
DKL(P0,

∑

i wiPi), wherePi = corr(Di), i ∈ 0 . . .m.
Unfortunately, this is a difficult optimization problem since
there are an exponentially large number of possible worlds.

6.1 Surrogate Objective Function

Let P denote the pdf
∑

i wiPi in the above expression
DKL(P0,

∑

i wiPi), where thewi’s are determined from
the unknownpc,r’s. SinceP is a pdf, an appropriate di-
rection that is taken in statistical learning is to treatP as a
“statistical model” and obtain the parameters ofP by max-
imizing the likelihood of given dataD with respect toP .
We will later show how to obtain the allocation weights
once we have solved for the parameters ofP . The advan-
tage of this method is that it also generalizes very well to
the case of uncertain measures, which we now proceed to
derive below.

Recall that the value for a fixed uncertain measure at-
tribute in factr is denoted by the vectorvr, wherevr(o)
is the probability associated with the base domain element
o. If vr(o) are viewed as empirical distributions induced
by a given sample (i.e., defined by frequencies of events in
the sample) then uncertain measures are simply summaries
of several individual observations for each fact. Conse-
quently, the likelihood function for this case can written
as well. After some simple but not obvious algebra, we ob-
tain the following objective function that is equivalent to
the likelihood function:

∑

r

DKL

(

vr,

∑

c∈reg(r) Pc

| reg(r)|

)

,

wherePc is the measure distribution for cellc (i.e., the pdf
over the base domain)

The vast literature on nonlinear optimization [5] pro-
vides several algorithms to obtain a solution for the above
optimization problem. But our goal is to obtain the allo-
cation weightspc,r, which do not appear in this objective
function. Fortunately, the mechanics of the Expectation
Maximization (EM) algorithm [11] provides an elegant so-
lution. As described below thedual variablesin the EM
algorithm can be naturally associated with the allocation

3Kullback-Leibler divergence [10] is defined over two distributionsP

andQ over the same domain as
P

x P (x) log
P (x)
Q(x)

.

weights thus providing a convenient link back to thepossi-
ble world semantics. Figure 4 presents the EM algorithm
for the likelihood function. The details of the fairly stan-
dard derivation are omitted in the interest of space.

Repeat until Converged: E-step: For all factsr,
cellsc ∈ reg(r), base domain elemento

• Q(c|r, o) :=
P

[t]
c (o)

P

c′∈reg(r) P
[t]
c′

(o)

M-step: For all cellsc, o

• P
[t+1]
c (o) :=

P

r:c∈reg(r) vr(o)Q(c|r, o)
P

o′

P

r:c∈reg(r) vr(o′)Q(c|r, o′)

Figure 4: EM method

Consider now the result of the E-step where we ob-
tain Q(c|r, o). At convergence of the algorithm this rep-
resents the posterior distribution over the different values
of c ∈ reg(r). An alternate pleasing interpretation, in our
context, is to view them as thedual variables(See [21]). In
either view,Q(c|r, o), almost meets our requirements for
allocations. One complication is the added dependency on
the measure domaino. Each factr now has as many alloca-
tion weights as the number of possible values ofo. This is
inconsistent with our extended data model. However, this
can be easily rectified by marginalizingQ(c|r, o) overo re-
sulting in the following expression.

pc,r = Q(c|r) :=
∑

o

P
[∞]
c (o)

∑

c′ P
[∞]
c′ (o)

vr(o) (1)

Allocation policies for numeric measures can also be de-
rived along the lines of the algorithm described above in a
straightforward manner and are omitted in the interests of
space.

7 Experiments
In this section we evaluate the main contributions of this
paper, namely our extensions to OLAP for handling impre-
cision and uncertainty. To this end we designed and con-
ducted experiments to evaluate both scalability and quality.
The scalability experiments targeted the construction and
the querying of the extended data model; the quality ex-
periments targeted the performance of different allocation
policies under varying characteristics of the data.

7.1 Scalability of the Extended Data Model

The experiments were conducted on a 2.4GHz Pentium 4
machine with 1 GB physical memory and a single IDE disk.
The back-end was a commercial relational database system
with buffer pool size set to 100 MB. No materialized views
or indices were built on the data.

To provide a controlled environment for evaluation, we
used synthetically generated data consisting of 4 dimen-
sions. Experiments using both a numeric measure and an
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uncertain measure (over a base domain of size 2) were
conducted. All dimensions had hierarchical domains with
three levels. For three of these hierarchical domains, the
root of the corresponding tree had 5 children; every root
child had 10 children each (resulting in 50 leaf nodes); the
corresponding branching factors for the remaining dimen-
sion was 10 and 10, respectively (100 leaf nodes). Thus,
there are 12.5 million cells in the multidimensional space.
The initial data consisted of 1 million facts (density=1/12.5
= 8%), each generated by choosing (with uniform proba-
bility) a leaf node from the appropriate hierarchy for each
dimension. Imprecision was introduced by replacing the
leaf node for a dimension with an appropriate parent in the
hierarchy. For 50% of the imprecise facts, a second dimen-
sion was made imprecise as well (e.g., if 10% of the facts
were imprecise, 5% were imprecise in 1 dimension and 5%
imprecise in 2 dimensions).

Figure 5a plots the running time for the different alloca-
tion policies. Note that they all increase (almost) linearly
with respect to the number of imprecise records. The run-
ning time has 2 components, one for processing the input
data and the other for writing out the facts to the extended
data model. For EM the first component is high, since it
is an iterative algorithm requiring multiple scans. This ex-
plains the reason for longer running time than Uniform and
Count which require only a single scan. The larger running
time for Uniform with respect to Count is due to the second
component. Since the input data density is low, Uniform
allocates to many empty cells, so the number of allocated
facts created by Uniform is significantly larger than Count
and EM. For example, with 25% imprecision, Uniform had
14.5 million facts whereas Count and EM each had 2.3 mil-
lion facts. This relative difference between Uniform and
Count should increase as the input data density decreases.
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Figure 5: Performance Results

The second experiment evaluated the performance of
standard OLAP point queries using the extended data mod-
els created above. For example, SUM can be calculated in
SQL using the following template:

SELECT dim-values, SUM (measure * weight),
FROM fact-table, dim-tables
WHERE qualification-list GROUP BY dim-values

To understand runtime behavior we randomly gener-
ated a total of 25 queries by choosing a random level and

node for each dimension. Figure 5b shows the average
query running time for SUM. Since the runtime behavior of
LinOp and AVERAGE (approximate estimate) were simi-
lar, they are omitted in the interests of space. In general
the running time was dominated by the I/O cost for scan-
ning the extended data model. As seen above, this is much
higher for Uniform than for Count or EM.

7.2 Quality of the Allocation Policies

These experiments evaluate how data characteristics af-
fect the behavior of our proposed allocation policies. If
all facts are precise, dependencies between dimensions are
perfectly encoded in the cell counts. As facts become im-
precise, a portion of this correlation information is lost.The
strength of this encoding against such loss can be measured
as the expected number of records in each non-empty cell.
We define this new notion of density aspseudo-density. In-
tuitively, high pseudo-density ensures no empty cells are
created as records become imprecise. The other charac-
teristic that we chose to examine is measure correlation,
which captures the effect of dimension values on the mea-
sure value.

We used synthetically generated data consisting of 2
dimensions with 128 leafs in each dimension (128x128
grid) and a single uncertain measure over the base domain
{Y es, No}. We start by generating a precise data set with
the desired pseudo-density and measure correlation. Of the
total grid, only 1 out of 8 cells have data records (i.e., reg-
ular density is fixed at 12.5%). We then select at random
a percentage of records to make imprecise (between 10 -
30%). A record is made imprecise by extending it horizon-
tally over 64 cells. From the resulting imprecise dataset,
extended data models are created using different alloca-
tion policies (Uniform, Count, EM). For each extended data
model, we compute the LinOp aggregate at each cell in the
grid. If a cell is empty, then we assign a uniform distribu-
tion over the uncertain measure domain (e.g., empty cells
are assigned the value (.5, .5) in this case). The quality
metric is the average absolute difference for the results as
compared to the original precise data set.
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Figure 6: Results for Quality Experiments

Figure 6a shows the results for an experiment demon-
strating the effects of pseudo-density. The data was gener-
ated so no correlation exists between the measure and di-
mensions. The pseudo-density was set to 1 (i.e., each non-
empty cell contains a single record). The results show that
Uniform allocation policy has a lower relative error com-
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pared to Count and EM. The reason for this is the loss of
dimension-value correlation information when a record is
made imprecise. For example, if a recordr in cell c is made
imprecise,c becomes empty, sincer was the only record in
that cell. During allocation, Count and EM will not allo-
cate any portion ofr to c. On the other hand, Uniform will
allocate some ofr to c, resulting in a better allocation (i.e.,
one that better reflects the correct answer).

Figure 6b shows the results for a similar experiment, but
with a dataset having a pseudo-density of 4. Again, there is
no correlation between the measure and dimensions. Since
the pseudo-density is higher, less dimension-value correla-
tion information is lost as more records become imprecise.
Thus Count and EM result in better allocations, whereas
Uniform suffers since it ignores the available correlation
information and allocates to empty cells as well.

Figure 6c shows the results for a data set that has a
high correlation between the measure and dimension val-
ues. The data was generated so that records in the left half
of the grid have measure probability that is high forY es
whereas those in the right half have probability that is larger
for No. The pseudo-density was still set to 4. The results
show that EM now significantly outperforms both Count
and Uniform. This is because EM uses the correlation be-
tween the measure and dimensions while performing allo-
cation, whereas Count does not. For example, consider a
recordr in the left half of the grid that is made imprecise to
overlap some cells in the right half. Count will allocater to
the cells in the right half, whereas EM will allocater only
to the cells in the left half since it notices the correlation
between the measure value ofr and cells in the left half.

8 Future Directions
An important aspect of this paper is handling uncertain
measures as probability distribution functions (pdfs). The
example data in Table 1 provides a conceptual view of this
model with a“pdf” type column for Brake. Under the as-
sumptions of the model discussed in this paper, adding a
new uncertain measure (e.g., Transmission) would result
in another column with the same type“pdf” . An obvi-
ous generalization is to capture the relationships between
these two uncertain measures. Consider a query of the type
”How likely are Brake and Transmission problems in Cam-
rys driven in Texas ?”. This more complicated aggregation
query requires additional dependency information between
the two uncertain measures and this can be captured as a set
of constraints either provided by the user or learned from
the data. More generally we believe that the approach ini-
tiated here generalizes to handle more general aspects of
uncertainty-handling in a DBMS, and we are actively in-
vestigating this generalization.
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