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Uncertain databaseare gaining considerable attention re-
cently [13]. In such a system, tuples may not accuratel
capture the properties of real-world entities, which is an
inherent property of numerous applications that manag
“dynamic attributes” [14] with continuously changing val-
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Abstract

In an “uncertain database”, an objecis associ-
ated with a multi-dimensional probability density
function (pdf), which describes the likelihood that

o appears at each position in the data space. A
fundamental operation is the “probabilistic range
search” which, given a valye, and a rectangular
arear,, retrieves the objects that appear jrwith
probabilities at least,. In this paper, we propose
the U-tree, an access method designed to optimize
both the 1/0 and CPU time of range retrieval on
multi-dimensional imprecise data. The new struc-
ture is fully dynamic (i.e., objects can be incre-
mentally inserted/deleted in any order), and does
not place any constraints on the data pdfs. We ver-
ify the query and update efficiency of U-trees with
extensive experiments.

I ntroduction

ues. To enablécation-based servicgd 5], for instance,

a moving client informs a server about its coordinates, if
its distance from the previously reported location exceed
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Figure 1: An uncertain object example

a certain threshold. Hence, the database does not have
clients’ precise positions — an object can be anywhere in a
circularuncertainty regior(the grey area in Figure 1) that
centers at its last update, and has a radius equal to the dis-
tance threshold.

As another example, considengeteorology systethat
monitors the temperatures, humidity, UV indexes (and etc.)
in a large number of regions. The corresponding readings
are taken by sensors in local areas, and transmitted to a
central database periodically (e.g., every 30 minutes). The
database content may not exactly reflect the current atmo-
spheric status, e.g., the actual temperature in a region may
have changed since it was last measured.

The uncertainty in the above examples is caused by de-
layed data updates while, in general, sources of imprecision

Yinclude data randomness, limitation of measuring equip-

ments, and so on. Information retrieval directly based on

QUncertain data is meaningless, since the result does not have

any quality guarantees. Consider, for example, the query
“find the clients currently in the downtown area”. Return-
ing the objects whose last updates satisfy the query is inad-
equate, because many objects may have entered or left the
search region since they contacted the server last time.

To avoid this problem, the “precise” values need to be

advantge, theVLDB copyright notice and the title of the publication and €Stimated using a probability density function (pdf). For
its date appear, and notice is given that copying is by permission of th€xample, if the location of a moving clientis considered
Very Large Data Base Endowment. To copy otherwise, or to republishuniformly distributed in its uncertainty regiamr-, the ob-
requires a fee and/or special permission from the Endowment.
Proceedings of the 31st VL DB Conference,

Trondheim, Norway, 2005
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ject pdf can be represented gdf (z) = 1/ARE A(ur) if
the parameter (any point in the 2D data space) belongs to
ur, or 0 otherwise. Thus, th@ppearance probabilityhat



o lies in a given regiom, (e.g., the rectangle in Figure 1) the concrete update and query algorithms, while Section
equals: 6 evaluates the proposed methods with extensive experi-

_ AREA(rqNur) ments. Section 7 concludes the paper with directions for
/Tqmur pdf (w)de = AREA(ur) @) future work.

where the integral areg N ur is the intersection between
rq andur. For simplicity, we used theniform distribu- 2 Related Work

tion in the above example, while in practice an appropri-|n the next section, we first review the existing results
ate pdf depends on the characteristics of the underlying apon query processing in uncertain databases. Then, Sec-
plication. For instance, an actual temperature may followtion 2.2 describes the R*-tree, which is an effective multi-
a Gaussiandistribution with an appropriate variance and dimensional access method for range queries on precise

a mean calculated based on the last measured value (e.@iata, and is fundamental to the subsequent discussion.
in the daytime, when the temperature is expected to rise,
the mean may be set to some number larger than the me&:1  Query Processing on Imprecise Data
sured one). Other common stochastic models incHigg ) ) )
Poisson(for describing the happening frequency of some Early research [10, 14, 15] primarily focuses on various
event), etc. data models for accurately capturing the locations of mov-

In general, an “uncertain object” is a multi-dimensional '"Y objects. In this context, query algorithms aim at min-
point whose location can appear at any positiom the imizing the amount of data transmission (for updating the
data space, subject to a probability density funcfidf(z). central server) to ensure the precision of database values.
Given avalh@ and a rectangular query regiop, aprob- Cheng et al. [4] are the first to formulate uncertain retrieval

q ] . . . .

abilistic range searcffprob-range) returns the objects that N 9éneral domains. They present an interesting taxonomy
appear i, with probabilitiesat leastp, . In location-based ~ ©f novel query types, together with the corresponding pro-
systems, such a quegywould “retrieve the objects that are C€SSINg strategies. An 1/O efﬁ_ment algorithm for nearest
currently in the downtown area ) with a probability no ~ N€ighbor search is proposed in [5].  None of the above
less than 80%". A similar inquiry in a meteorology sys- WOrks considers prob-range retrieval.
tem may “identify the regions whose temperatures are in CNneng etal. [6] develop several solutions for prob-range
range [75F, 80F], humidity in [40%, 60%], and UV indexes YUeries which, hov_vever, target 1D space pn_ly. They argue
[4.5, 6] with at least 70% likelihood”, where the search that range search in uncertain databases is inherently more
arear, is a 3D box with projections on the temperature-, difficult than that on traditional precise objects, and sup-

humidity-, UV-index dimensions described by the corre- port their claims by providing two theoretical approaches
sponding ranges, respectively. that achieve (almost) asymptotically optimal performance.

»Nevertheless, the practicability of these methods is limited
ince (i) they cannot support objects with arbitrary pdfs
e.g., one method targets only uniform pdfs), and (ii) they

may incur large actual execution overhead due to the hid-

den constants in their complexity guarantees.

Although conventional range search (on a “precise
dataset) has been very well studied [1, 3], its solutions ar
not applicable to uncertain data, since they do not conside
the probabilistic requirements [6]. As explained later, the
key of optimizing a prob-range query is to avoid, as much . ) . ) e R
as possible, computing the appearance probability that an Dalvi and Suciu [8] discuss “probabilistic databases”,

object satisfies a query. Such computation is expensive (e%‘—’ hterbe each reCO{(Z:r:S tthte' Same as ? BUDI.?hm a Son.vfnt'tc.mlf‘l
pecially when the dimensionality is high), since it requires atabase, except that 1t IS associated with an “existentia

costly numerical evaluation of a complex integral. probability. For example, a 60% existential probability

In this paper, we present the U-tree, amulti-dimensional 21> that a tuple may not exist in the database with a

access method on uncertain data with arbitrary pdfs. Thi 0% chance; if it does, however, its values are precise.
y pdis. §—|ence, probabilistic databases are different from uncertain

structure minimizes the amount of appearance prObf"‘b'“tydatabases (the topic of this paper), where each object def-
computation in prob-range search. Intuitively, it achieves.

this by pre-computing some “auxiliary information” for initely exists but its concrete values follow a probabilistic

each object, which can be used to disqualify the object (ind|str|but|on.

executing a query) or to validate it as a result without hav—2 5 R*-trees
ing to obtain its appearance probability. Such information®
is maintained at all levels of the tree to avoid accessing therhe R*-tree [1] can be regarded as an extension of the B-
subtrees that do not contain any results. Furthermore, Utree for multi-dimensional rectangular objects. Figure 2
trees are fully dynamic, i.e., objects can be inserted/deleteghows a two-dimensional example where 10 rectangles (
in any order. b, ..., j) are clustered according to their spatial proximity
The rest of the paper is organized as follows. Sec-into 4 leaf nodesVy, ..., N4, which are then recursively
tion 2 reviews the previous work that is directly related grouped into noded’;, Ng that become the children of the
to ours. Section 3 formally defines the problem, and Sectoot. Each intermediate entry is represented asramum
tion 4 explains techniques for efficiently pruning objects in bounding rectanglédMBR), which tightly bounds all the
prob-range search. Section 5 presents U-trees and clarifiefata in its subtree (e.g; is the MBR enclosing, b, c).
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root

approach[2].
o e Ng NsNg | tevel2 First, a numbem, of points z1, 3, ..., z,, are ran-
3 — . : ;
£ Ny domly generated in the uncertainty regiomr of an ob-
Ny ) 7] J level 1 jecto. Without loss of generality, assume that of these
qN o T vl 0 points fall into the search regiory, and they are:q, z2, ...,
\ 2 [a]ofe]afe] Jt[a] [n]i]i]teve Zn,, respectively. For each point (1 < i < n;), we pass
A I = -
. N, [l it into the object’s pdf, and calculates the resulting value
o~ [0 4 pdf (x;). Then,P,,, (in Equation 2) can be approximated

. as:
Figure 2: An R*-tree
To find the objects intersecting the search regigin Fig-
ure 2, for example, the algorithm visits the nodes (root of
:Ee R—TreeN?_, J.V4) wtr:_oste MBRs interseat;, and returns falls inside the query ares,, the above equation returns
€ only ciua ifying objec N . . ... the correct value 1 oP,,, (0, q) (Sinceny = n;). In gen-
The R _—tree constructlo_n alg_onthm aims ‘_"_‘t minimizing eral, however, monte-carlo is accurate only:if is suffi-
the following penalty metrics: (i) the area, (ii) the margin qjony |arge (at the order ofl0°, as tested in our experi-
(i.e., perimeter) of each MBR, (iii) the overlap between two 1o ytq) - Even worse, the appropriateincreases with the
MBRs in the same node, and () the distance between thg; e ngjonality. Therefore, computing?s,,, incurs expen-
centroid of an MBR and that of the node containing it. As sive costs, especially when the dimensionality high. In

discussed in [9], minimization of these metrics decreasege next section, we present techniques that can eliminate
the probability that an MBR intersects a query region. 5 maiority of the non-qualifying data without calculating
their appearance probabilities.

Papp(0,q) = _Z o.pdf (z:)/ _Z o.pdf (z:) ®3)

As a special case, when the entire uncertainty region

3 Problem Definition o o _ )
Formally, an “uncertain objectd is associated with (i) a 4 Filtering Multi-Dimensional - Uncertain

probability density functiom.pdf (), wherez is an arbi- Data
trary d-dimensional point, and (ii) d-dimensional uncer-  gection 4.1 first introduces “probabilistically constrained
;amt)t/ reg;ono.urdGnt/ﬁn arﬁ)r?qjt))-ran%e?]u?rr]ywnha(hyper- regions” (PCR) and explain the heuristics of applying
rectangler, and a thresholg, € [0, 1], the appearance ' i , : T
probability P,,,, (0, q) of an objecb is calculated as: PCRs t? aSS'.St erob range search, Wh"? _Sectlon 4'2 dis
cusses “practical” versions of these heuristics. Section 4.3
presents “conservative functional boxes” (CFB) as a space-
Papp(o,q) = / o.pdf(z) dx (2)  efficient method to capture PCRs. Section 4.4 provides an
o-urirg algorithm for computing CFBs based on linear program-

whereo.ur N r, denotes the intersection ofur andr,. ~ MNG-
Objecto is a result ifP,,, (0, q) > pq. I . :

Our objective is to minimize the cost (including both 4.1 Probabilistically Constrained Regions
I/O and CPU time) of prob-range search, without making The PCRo.per(p) of an objecb takes a parametgrwhose
any assumption about the “types” (e.g., uniform, Gaussian,value is in[0,0.5]. Figure 3a illustrates a 2D example,
Zipf, etc.) of objects’ pdfs.Clearly, the problem would where the polygon represents the uncertainty region
be much easier if all the pdfs were known to be of theof o (our technique can be applied to uncertainty regions
same “type”. For example, if only Gaussian functions wereof any shapes). The.pcr(p) (the grey area) is decided
present, specialized methods could be developed based &y 4 linesly ., I, la;, lo_. Linel;, divideso.ur into
their means and variances [6]. These methods, howevetwo parts (on the left and right @f , respectively) and the
are not useful for other types of pdfs, which in turn require appearance probability ofin the right part (i.e., the shad-
“dedicated” solutions based on their own characteristicsowed area) equajs Similarly,;_ is such that the appear-
Instead, we aim at developing a “unified” solution that canance likelihood ob on the left ofl ; _ equalsp. Clearly, the
support a database where objects can have arbitrary pdfs.probability that lies betweeri; — andl, is 1 — 2p. Lines

One difficulty in handling multi-dimensional data is that /5, andi,_ are obtained in the same way, except that they
the integral in Equation 2 cannot be solved accurately evernorizontally partitioro.usr.
for a “regular” pdf such as Gaussian. To see this, assume It is possible to use PCRs pyunea non-qualifying ob-
that in Figure 1, the object’s actual location is describedject, or tovalidatethat an object indeed satisfies a query,
using a Gaussian pdf whose mean falls at the center of thevithout computing the accurate appearance probability. To
circle (i.e., the uncertainty regiomur). Given an arbi- illustrate pruning, assume that the grey box in Figure 3ais
trary query area,, the intersection between, ando.ur  theo.per(0.2) of o, and boxes 41, 742 are the search areas
has a shape that “D-t symmetric with respect -to the mean. 1we choose monte-carlo because it is a popular technique for solv-
In. this Case? Equation 2 cannot be derived into a fOrrnu'amg complex equations in the database literature [2]. In the future work,
without any integrals, and hence, must be evaluateder-

) : we will investigate alternative numerical approaches for evaluating Equa-
ically through, for example, the following “monte-carlo” tion 2, as well as their impacts on query performance.
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Figure 3: A 2D probabilistically constrained region

of two prob-range querieg;, g2 with probability thresh-
oldsp,1 = 0.8, p2 = 0.2, respectively. Object cannot
qualify ¢1 becauser,; does not fully contaim.pcr(0.2).
To understand this, notice thay; is disjoint with the shad-
owed region. Hence, the appearance probabilityiofr ;;
must be smaller thah— 0.2 = 0.8, where 0.2 is the proba-
bility of o falling on the right ofl ; ;. Rectangle.pcr(0.2)
also indicates that does not satisfy,, but for a different
reasonr,, does not interseat.pcr(0.2). In fact, sincer
lies entirely on the right of, ;, the appearance probability
of o in rys is definitely smaller than 0.2 (the probability that
o lies in the shadowed region, as mentioned earlier).

Figure 3b explains how a PCR is utilized to validate

an object. Again, assume the grey box todyecr(0.2),
and rectangleA BC'D is the MBR (denoted as.M BR)
of the uncertainty region (the polygon). Linés_ and
l1+, which pass the left and right boundariegfcr(0.2),

are not shown (to avoid an excessively complex figure) bu

should be implicitly understood. Consider querigs g4,
g5 With search areag;s, rq4, 45, and probability thresh-
olds 0.6, 0.8, and 0.2 respectively. Objectnust satisfy
q3 becauser,; fully covers the part 0b.pcr(0.2) between
l,— andl; 4, where the appearance probabilitycoéquals
1—0.2—0.2 = 0.6. It can also be asserted thequalifiesq
(andgs) sincer 44 (andrys) completely contains the portion
of o.pcr(0.2) on the right (and left) of, _, whereo appears
with a probabilityl — 0.2 = 0.8 (and 0.2, respectively). It
is important to note that different pruning/validating crite-
ria were used for the 5 querigs, ¢2, ...,q5 in Figure 3.
Formally, in a generall-dimensional space, the PCR
o.per(p) (p < 0.5) of an objecto is a hyper-rectangle
decided by a 2d-dimensional vector: {o.pcri_(p),
0.pcr14(p), -, 0.pcrqa—(p), o.pcrasr(p)}. In particular,
[o.pcri—(p), 0.pcri1(p)] is the projection ofo.per(p) on
the i-th dimension. In the sequel, without ambiguity we
also usev.pcr;_ (p) to refer to a plane that is perpendicular
to thei-th dimension, and intersects this axis at coordinat
o.pcri—(p). Valueo.per;4 (p) also defines a plane in a sim-
ilar manner. Then, the probability thatppears on the left
(right) of planeo.pcr;_(p) (o.pcriy(p)) equalsp, where
“left” refers to the negative direction of thieth axis, and
“right” to the positive direction. Notice thai.pcr(p) of
an objecto continuously shrinks ag increases, and when

p = 0.5, o.pcr(p) degenerates into a point. The heuristics

illustrated in Figure 3 are formalized as follows.

Observation 1. For a prob-range query; with search region,
and probabilityp,:
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. Forp, > 0.5, an objecto can be eliminated if, does not
fully containo.per(1 — pq);

. For p; < 0.5, the pruning condition is that, does not
intersecto.pcr(pq);

. For anyp,, an object is guaranteed to satisfyif r, fully
covers the part ob.M BR between planes.per; (—222)

2
=24 for somei € [1, d];

ando.perit(

. Forpg > 0.5, the validating criterion is that, completely
contains the part 0b. M BR on the right (or left) of plane
o.pcri— (1 — pq) (or o.pcrit (1 — pg)) for somei € [1, d].

. For p, < 0.5, the validating criterion is that, com-
pletely contains the part af. A/ BR on the left (or right)
of o.pcri—(pq) (Or 0.periy (pq)) for somei € [1,d].

In many cases, an object can be asserted to violate or
satisfy a query using the above rules directly, thus avoiding
the expensive appearance probability computation (which
is necessarpnly if these rules can neither prune nor vali-
date the object).

Observation 1 requires a fast method to answer ques-
tions in the form: “does:, cover the part ob.M BR be-
tween two plane&_ andi; perpendicular to an axis (called
the interesting dimensig®”. For this purpose, we first
examine ifr, completely encloses.)M BR on all dimen-
sions except the interesting axis. If not, then the answer
to the original question is negative. Otherwise, we con-
tinue to check whether the projection ©f on the inter-
esting dimension includes the corresponding projections of
[_ andl, (i.e., two points). The answer to the target ques-
tion is “yes” only if the second check returns a positive
result. Hence, the total examination timeléd) (the time
of checking the intersection afpairs of 1D intervals).

Equipped with the above method, Observation 1 can
prune/validate an object with a small cost. Specifically, de-
pending on the value qf,, only 3 rules are applicable si-
multaneously. For example, fpr, > 0.5, only Rules 1, 4,

3 are useful, and we apply themin this order (e.g., if Rule 1
already achieves pruning, then no validation is necessary).
Similarly, for p, < 0.5, we apply Rule 2 first, followed by
Rules 5, 3 respectively.

Interestingly, although evaluating the appearance prob-
ability of an object is costlyp.pcr(p) can actually be ob-
tained with small overhead, since it can be computed by
considering each individual dimension in turn. We illus-
trate this using the 2D example in Figure 3a but the idea ex-
tends to arbitrary dimensionality in a straightforward man-
ner. To decide, for example, lirig_ (/,4), we resort to the
cumulative density function.cdf (z1) of o.pdf (x) on the
horizontal dimension. Specifically,cdf (z1) is the proba-
bility that o appears on the left of a vertical line intersect-
ing the axis atr;. Thus,/;_ can be decided by solving
x1 from equatioro.cdf (z1) = p, and similarly,l;; from
o.cdf (x1) 1 — p. For “regular” pdfs (e.g., uniform),
o.cdf (x1) can be derived into a simple formula (by inte-
grating o.pdf (x) along only one dimension), after which
both equations mentioned earlier can be solved efficiently.



4.2 Heuristicswith A Finite Number of PCRs 0.MBR

The effectiveness of Observation 1 would be maximized if 0.pcr(0.25) Ty
we could pre-compute the PCRs for alE [0, 0.5]. Since
this is impossible, for each objeetwe obtain itso.per(p) 7

q2

only at somepre-determined values @f which are com-
mon to all objects and constitute thecatalog(a system . ) . .
parameter). Denote the values in the U-catalog a%-, Figure 4: lllustration of Observation 2
..., Pm SOrted in ascending order, where is the size of validateo, we aim at establishing that falls in r, with
the catalog. A problem, however, arises. Given an arbi-2 chancenigher than or equal tgp,. The PCR selection
trary p,, the corresponding PCR needed in Observation Ireduces to picking the suitable value in the U-catalog. A
for pruning/validating may not exist. For instance, in Fig- Special picking method is required for each of the 5 cases
ure 3a, as mentioned earlier disqualifying the objefr in Observation 1. The examples in Figure 4 explain the
queryq; requires itso.per(0.2). Thus, the pruning cannot methods for the representative Rules 1 and 4, respectively.
be performed if 0.2 is not a value in the U-catalog. Since the rationale of the other cases is similar, we do not
We solve this prob|em by app|y|ng Observation 1 in a analyze them in detall, but Slmply list the reSUlting rulesin
“conservative” way. Assuming a U-catalog with = 3 @ Separate observation:
values{p; = 0.1,p2 = 0.25,p3 = 0.4}, Figure 4 shows
an example where the dashed rectangle is the MBR 0
the polygonal uncertainty region of an objegtand the

Pbservation 2. For a prob-range query; with search regiomn
and probabilityp,:

rectangle inside the polygon is theper(0.25) of o (for 1. Forpg > 1 — pm, an objecto can be eliminated if, does
clarity, the other PCRs are omitted). Let be a query not fully containo.pcr(p;), wherep; (1 < j < m) is the
with p;; = 0.8 whose search region is the small grey smallest value in the U-catalog not less thar p,;

box r,1. Rectangleo.per(0.25) is not contained inyq, 2. Forp, < 1 — pm, o can be pruned if,, does not intersect
which implies that (by Rule 1 of Observation &)does o.per(pj), wherep; is the largest value in the U-catalog not
not qualify g; even if the query probability thresholdere greater thanp,.

1 —0.25 = 0.75, let alone a larger value 0.8 3. Anobject is guaranteed to satigf§f r, fully covers the part
The value 0.25 used in the above example isthallest of o.M BR between planes.pcr;—(p;) and o.pcrit(p;)
number in the U-catalog no less than- p,; = 0.2. Any for somei € [1,d], wherep; is the largest value in the U-

value in the U-catalog smaller than 0.25 cannot be applied  catalog not greater thaiil — p,)/2;
for pruning based on Rule 1. For exampie, = 0.1 is 4. For p; > 0.5, the validating criterion is that, com-
useful only for a query with a probability threshold at least pletely contains the part of. M BR on the right (or left) of
1 —0.1 = 0.9. On the other hand, although a value (e.g., o.peri—(pj) (Or o.pcri4 (p;)) for somei € [1,d], wherep,
p3 = 0.4) larger than 0.25 can be applied, it is less effec- is the largest value in the U-catalog not greater thian p,,.
tive. To understand this, note.thapcr(OA) is necessarily 5. For p, < 0.5, the validating criterion is thatr, com-
covered byo.per(0.25); thus, if o.per(0.25) is contained pletely contains the part of. M/ BR on the left (or right)
in the query region (i.eq.pcer(0.25) cannot disqualify the of o.pcri— (p;) (Or o.pcri (p;)) for somei € [1, d], where
object), so iso.pcr(0.4) (it cannot, either). The reverse, p; is the smallest value in the U-catalog not less thgn
however, is not true (i.eqg.pcr(0.25) may still succeed in
pruning even ib.pcr(0.4) fails). 4.3 Conservative Functional Boxes

Next let us consider a querys with p,e = 0.7

and a search region,, (the left grey rectangle in Fig- Although PCRs provide an efficient way for pruning ob-
ure 4). We can validate for ¢, without calculating its  J€cts, they are not suitable for indexing, since each entry
appearance probability. In fact, sineg, covers the part in the resulting structure would need to recondPCRs,
0.MBR on the left of the line passing the right bound- Wherem is the size of the U-catalog. Storing a PCR re-
ary of 0.pcr(0.25), we can assert (by Rule 4 of Observa- quires2d values, and thus, each entry contains at I2dst.
tion 1) thato appears i, with a probability at least 0.75, valu_es, which renders the no_de fanout to decrease quickly
i.e., larger tham,,. Observe that, here, the selected value@sd increases, and compromises query performance. In the
0.25 is thdargest number in the U-catalog no greater than Sequel, we present an approach that avoids this problem by
1 — pg2 = 0.3. 0.25 can be verified to be the best in the Storing the PCRs of an object in a compact manner.
U-catalog to perform the validation, following an analysis  Consider an objecet whose pre-computed PCRs (at the
similar to the case of quey. values in the U-catalog) awepcr(p1), ..., 0.per(py,). We

The above examples show that, using only a finite num aim at capturing these: rectangles using two functions

: X . 7 T0.cfboyr ando.cfb;,, Which are called theuterandinner
ber of PCRs, we can still prune or validate objects by iden-,nservative functional boxes, respectively. For each value

tifying the “appropriate” PCR. To successfully prune an p; (1 < j < m), 0.cfbou(p;) retumns ad-dimensional
objecto, the selected PCR should allow us to verify that hox thatcontainso.per(p;). The subscripbut indicates
o cannot appear in the query regiop even with a prob-  that o.cfb,.:(p;) boundso.per(p;) from the “outside”.
ability lower than or equal tdhe query thresholg,. To  Similarly, o.cfb;,(p,;) produces a-dimensional rectangle
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Figure 5: Visualizing conservative functional boxes

thatis containedn o.pcr(p;). Specifically,o.cfb,.+ and
o.cfb;, have linear forms:

0.cfbout(p) (4)
0.cfbin(p) (5)

whereaoyt, Bout, in, andg;, are2d-dimensional vec-
tors independent gif. In particular,a . is essentially the
d-dimensional rectangle.cfb,.:(0), while 3,,; describes
“how fast” o.cfb,..(p) shrinks asp grows. The seman-
tics of a;,, and By, are similar but with respect tacfb;,,.
Representing both.cfb,,; ando.cfb;, requires only8d
values (independent of the U-catalog sizg, as opposed
to 2d - m mentioned earlier.

Qout — ﬁout N p

Qi — ﬁzn -p

Conservative functional boxes can be best visualized for
d = 1, where an object’s uncertainty region is an inter-

val. Assume that the U-catalog includes = 3 valueg
{p1 = 0,p2 = 0.25,p3 = 0.4}. Figure 5a shows the
pre-computed 1D PCRs of an objecin a special two-

tor of cfbout(pj) IS
L efbl(py), cfbt(pi)} (6)

where intervalcfb’., (p;), cfbit, (p;)] is the projection of
(rectangle)x:fbou: (pj) on thei-th d|mension( <1 <d).
When it is not ambiguous, we usg¢b’.,(p;) to denote the
plane passing the left boundaryqfb ., (pj) on thej-axis
(likewise, ¢ fbom(pj) also captures a plane). The above
definitions also apply tefb,,, in a straightforward manner.

To enable CFBs in query processing, we need to adapt
the heuristics in Observation 2. The reason for introduc-
ing botho.cfb,,; ando.cfb;, is that they are required for
appropriately adapting different rules. We first present the
resulting rules before providing explanation.

{Cfbout (pj) Cfbout (pJ)

Observation 3. Observation 2 is still correct with the following
changes:

e InRule 1, replace.pcr(p;) with o.cfbin (p;);
e In Rule 2, replace.pcr(p;) with o.cfbout (p;);

e InRules3and 4, I’epla(‘&lpcri (pj) ando.pcriy (p;) with
0. Cfbout (p]) andO cfbout (p]) respeCtively;

In Rule 5, replaceo.pcri—(p;) and o.pcriy(p;) with
o.cfbi (p;) ando.cfbil (p;), respectively;

The observation is a natural extension of Observation 2.
To illustrate this, let us first focus on Rule 1.0lt:fb;,, (p;)

dimensional space, where the horizontal axis captures thig not covered by the query regiey, neither iso.pcr(p;)
coordinates of uncertainty intervals, and the vertical axis— recall thato.cfb;,(p;) is contained.pcr(p;). Accord-
indicates the probability values where these intervals aréng to Observation 2, this indicates theis not a qualifying

obtained. For example, ther(p, ) is a segmentl B whose
projection on the vertical dimension equals = 0. Inter-
valsC'D andE'F represent the PCRs pt andps, respec-
tively.

Functiono.cfb,,; is illustrated using lineg; and l-.
Specifically, o.cfbout(p1) corresponds to segmerdt
(i.e., a 1D rectangle), wher& (H) is the intersection
betweenl; (I3) and the horizontal dimension. Simi-
larly, o.cfbout(p2) ando.cfbou:(ps) are intervalsl.J and
KL, respectively. Notice thab.cfb,.:(p;) indeed con-
taiﬂSOpCT(pj) for j 1,2,3. Ford = 1, a,, and

object, thus justifying the first bullet of Observation 3. For
Rule 2, wherv.cfb,.:(p;) does not interseety, o.pcr(p;)
must be disjoint with-, too (sinceo.cfb,..(p;) encloses
o.pcr(pj)). In this case, by Observation 2,can also be
eliminated, confirming the second case in Observation 3.
The modifications to Rules 3-5 (for validating a qualifying
object) follow the same idea.

Although (compared to Observation 2) Observation 3
has weaker pruning/validating power, it requires only the
CFBs of an objeact (instead of then rectangle®.pcr(p1),

, 0.pcr(pm ), @and thus reduces space consumption. The

Bout in Equatlon 4 are 2D vectors; let us denote them aSspace saving increases node fanout in the corresponding in-

{aout’ out} and{ﬁoum out} reSpethely Slnce[ouf -
0.¢fbout (0), interval[al ., },ut] is equ|valent to segment
GH. On the other handg,,, (8.},) is determined by
the slope of lind; (I2)%. Figure 5b demonstratescfb;,
using linesls andly, such that.cfb;,(p1), 0.cfbin(p2),
o.cfbin(p3) are segmentd/ N, OP and@R, respectively.
Notice thato.cfb;,(p,) is contained im.pox(p;) for each
1<j<3.

Both ¢ fbou(p;) andefbin(p;) of an object can be rep-
resented a8d-dimensional vectors. For example, the vec-

2We use a small valuen = 3 here for simplicity, but a practically
suitablem is around 10, as shown in the experiments.

3PreC|serﬂou, is the inverse of the slope of, and3., is the neg-
ative inverse of the slope &f.
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dex structure (the topic of Section 5), which in turn im-
proves query performance. It is worth mentioning that
a more sophisticated function could also be selected for
CFBs, as long as the conservative properties are preserved
(e.9., 0.cfbou(p;) should always enclose.pcr(p;) for

[ =1,...,m). For example, instead of using a linear form,
one could represetcfb,..(p) using a quadratic function

of p so thato.cfby:(p;) boundso. pcr(pj) more tightly.
While this approach enhances the pruning effect of Obser-
vation 3, it also increases the storage space of CFBs, and
adversely affects query efficiency. Furthermore, as will be
elaborated in Section 5, a linear CFB offers considerable
convenience in updating the index of uncertain data, which
would be difficult for other representations.



4.4 Finding Conservative Functional Boxes

Next, we elaborate the computation of CFBs. A good
cfbour should be such thatfb,.:(p;) (the rectangle out-
put by cfbo.: With parametep;) is similar to thepcr(p;)

of the corresponding object, for eaph (1 < j < m) In
the U-catalog. Sincefb,.:(p;) always coverger(p;), a
natural goal in optimizing fb ... is to minimize*:

zm: MARGIN (cfbout(p;))

j=1

@)

where M ARGIN is the perimeter of al-dimensional
rectangle. Using the vector representationf,,,, in For-
mula 4, we can derive Equation 7 as:

Recall that, as in Equation 4;fb,,; is decided by

two 2d-dimensional vectors,,; and (3,.;, whose com-
ponents are listed as:{a! ., all .. o  a?t} and
(L, BLE, . B, B4, respectively.  According to
Equation 4, for each € [1, d], we have:

d

Z (cfbi,tt(pj) - Cfbi»;t(pj)>

i=1

m

>

3

®)

cfbi

out

cfbit

out

9)
(10)

(p) = aé;t - ﬁZ;t P
(p) = gty — Bt - P

out

m

Thus, Formula 8 becomes:
Z (agtt - ﬁéj;t “Pi — Cour + Bout 'pj>

$

j=1

IR

i=1

m

S
(

whereP is a constant equal td

it

out

M=

i)

Bote 'Pj) - Z (aiz_n — Bout 'pj>

i—=1 Jj=1 )

N

i+
m:- Qoyut —

M=

Biti P—m- by + Boue - P)

.
=

1 pj (i.e., the sum of

(1 < j < m), interval[cfbl,(p;), cfbl(p;)] should al-
ways cover the projection of ther(p ;) of the correspond-
ing object on the first dimension. Denoting this projection
as[pcri—(pj;), periy (pj)], we have:

Cfbtl);t

cfolt

out

for eachj € [1,m]. Therefore, discovering. ,, alt,

L BLE that minimize Formula 11 can be cast dgaar
programmingproblem, subject to them linear constraints
shown in inequalities 12 and 13. Linear programming has
been very well studied and numerous efficient solutions ex-
ist. In our implementation, we adopt the well-known Sim-
plex [7] method.

So far we have focused on computiagp ..., while a
similar approach can be utilized to obtaifib;,. Since
cfbin(p;) is always enclosed byer(p;), we aim atmaxi-
mizinga metric identical to Formula 7, replacing the sub-
script “out” with “in”. This problem is also an instance
of linear programming, where the objective is to maxi-
mize Formula 11 based on constraints in inequalities 12
and 13 with the following modifications: (i) all subscripts
are changed to “in”, (ii) in inequality 12, sign<” should
be “>", and (iii) in inequality 13, =" should be <”.
Unlike discovering:fb,.:, finding ¢ fb;, requires another
type of constraints capturingfb; (p;) < cfb;t(p,) for
I<j<m

17 J—
out

1+
out

(12)
(13)

Bout - Pj < per' ™ (py)
Bat - pj = per'™(py)

(pj) =a
(pj) =a

1+

1_ p—
n

1+

«@ n

ot
In fact, when an object’s pdf (e.g., Gaussian) is sym-
metric with respect to the center of the uncertainty region,
0.cfbin(p;) ando.cfb,u(p;) are also symmetric (by the
center) for allj € [1,m]. Hence, the size of representing a
CFB can be cut by half (e.g., in Figure 5a]ifandl, are
symmetric, then only one line needs to be kept). Note that
the time for computing the conservative functional boxes
of an object is a one-time cost, since the CFiged to be
computed only onct the time the object is inserted into

Bl pj<a - p; (14)

all the values in the U-catalog). The above equation is minthe database). The resulting CFBs are then managed by an

imized when

7 —

m: af,}tt - 52—& P —m- Oézq_n + Bour - P (11)

takes the smallest value for each [1, d]. Without loss of
generality, next we considér= 1, and discuss the compu-
tation of al,,, andy, Beuss By that minimize Formula 11.
The solution can be applied to find the besf,,, o},
! But,. Combining the solutions for all = 1, ..., d,
the resulting vectors:,,; and(§,,; achieve the minimum
for Formula 7, and therefore, produce the hgdt, ;.
The 4 variables:!,, ol t,, g1, 31T are not arbitrary,

out’ “out? Mout?

but confined by several linear constraints. First, for gach

4An alternative choice is to minimize the sumareasof cfout(pj)
for1 < j < m. We choose margin because a rectangle with a low margi
also has a small area, but not the vice versa.
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efficient structure introduced in the next section.

5 TheU-Tree

Based on the discussion in the previous section, we can pre-
compute the.cfb,,; ando.cfb;, of all objectso, and pro-
cess a prob-range query based on sequential scan. Specifi-
cally, given a query;, the filter step inspects each object in
turn, and attempts to prune it using Observation 3. Objects
that cannot be eliminated this way are candidates, whose
appearance probabilities must be computed from their pdfs
in the refinement step. In this section, we present the U-
tree, an index structure designed to accelerate the filter step.
Section 5.1 explains the structure of a U-tree and its prop-
erties, and Section 5.2 elaborates the algorithm for prob-

fJange search. Section 5.3 presents the incremental update

algorithms.



enclosed ine. M BR(p;) = IL. This property leads to
an efficient algorithm for prob-range queries, as discussed
shortly.

We point out that an intermediate entry does not con-
tain any information about thefb;, of the objects in its
subtree. Indeed, a U-tree is constructed solely based on
cfbout- As Will be elaborated in SectioP?, although pre-
servingcfb;, in non-leaf levels may reduce query costs, it
Figure 6: Representation of a non-leaf entry ;ignificantly complicates the resulting structure, as well as
its update algorithms.

5.1 StructureOverview and Properties

A U-tree is designed for pruning subtrees that do not con5.2 Prob-Range Query Algorithm
tain any results (the structure does not accelerate the vali- i i )
dating process, which requires the detailed information of/Ve Provide an observation for pruning subtrees that do not
individual objects stored in leaf nodes). A leaf entry con- cOntain qualifying objects.
tal_ns theo'cﬂ)‘)“t an(_:i 0.cfbin Of an ob!ecto, _the MBR Observation 4. For a prob-range query; with search region,
of its uncertainty regiom.ur, together with a disk address ;4 probability p,, the subtree of an intermediate entrycan
where the the details ofur and the parameters ofpdf  pe pruned ifr, does not intersect. M BR(p;) (for some;j €
are stored. [1, m]), wheree.M BR(.) is a function as in Equation 15, ang

An intermediate entry; carries a pointer referencing is the largest value in the U-catalog satisfyipg < p,.
its child node, and twd-dimensional rectanglesM BR |
ande.M BR~. Specificallye.M BR is the MBR (mini- To establish the correctness of this heuristic (i.e., it does
mum bounding rectangle) ofcfb,..(p1) of all the objects  not generate any false negatives), we will show: no ob-
oin the subtree of, wherep; is the smallest value inthe U- jecto in the subtree ot can satisfy query if the search
catalog. The. M BR+ is similarly defined but with respect  regionr, is disjoint with e. M BR(p;) (p; is selected as
t0 0. fbout (Pm ), Wherep,, is the largest in the U-catalog. above). This is relatively obvious if the probability thresh-

Figure 6 shows a 1D example that illustratesdlfié,,; ~ old p, does not exceetl— p,,,. Specifically, as mentioned
of two objectso; and o, (in a way similar to Fig- earlier,o.cfb..:(p;) is totally contained ire. M BR(p;).
ure 5). Specifically, lined; and I, represent function Sincee.M BR(p;)does notinterseet;, o.cfbyut(p;) must
01.cfbout(p), SEgMENAB corresponds te;.cfb..¢(p1),  also be disjoint withr,. Notice that the value qf; here is
and segment’’D t0 o1.cfbout(pm). Likewise, linesis identical to that in Rule 2 of Observation 3, which asserts
andl, captureos.cfbou(p), 02.¢fboui(p1) = EF, and  thatois nota query result.
02.¢fbout(pm) = GH. Assume thab; ando, are the only Whenp, > 1 — p,,, we utilize the fact that all val-
two objects in the subtree of an intermediate entryhen,  ues in the U-catalog do not exceed 0.5, leadingytg:>
e.MBR, is interval AF (i.e., the MBR ofAB and EF), 1 —pm > 0.5 > p,,. Therefore, the; in Observation 4

while e. M BR+ is GD (the MBR of CD andGH). is necessarily,,, (the largest value in the U-catalog). Con-
Based ore. M BR, ande.M BR+, we define a linear sider an alternative query whose probability threshold
function ofp for e: pg €qualsp,,, and its search region is that @f(i.e., dis-

joint with e.M BR(p.,)). Sincep,,, < 1 — p,,,, the analysis
earlier shows that no objeetin the subtree oé can pos-
wherea and 3 are 2d-dimensional vectors resulting in sibly satisfyq’. Since any qualifying object foy must at
e.MBR(p1) = e.MBR, ande.M BR(p.,) = e.M BR. least satisfyg’ (due top, > p,), we guarantee that the
The two vectors can be uniquely solved as (consideringsubtree ok does not have any result foreither.
pr = 0 o« = eMBR,, andg = (eMBR, — We are ready to discuss the prob-range algorithm. The
e.M BRT)/pm. Itis important to note that and/ arenot ~ search starts from the root, and eliminates its entries ac-
physically stored; instead, they are derived frad/ BR | cording to Observation 4. For each remaining entry, we
and e.M BR+ whenever necessary. In Figure 6 (whereretrieve its child node, and perform the above process re-
e.MBR, is segmentA F ande.M BR is GD), function  cursively until a leaf node is reached. For an objeein-
e.M BR(p) is decided by two segments, ls, wherels countered, we first attempt to prune or validate it using Ob-
connects pointsl, GG, andlg links D, F. For thep; shown  servation 3. In case can neither be eliminated or asserted
in the exampleg. M BR(p;) returns a segmetff L, where  as aresult, it is added to a candidate$gt, together with
point K (L) is the intersection of linés (Ig) with the hori-  the disk address storing itsur ando.pdf . After the neces-
zontal linep = p;. sary nodes in the U-tree have been visited, we start the re-
Without loss of generality, let be an intermediate entry  finement step for processir}..,. In this phase, elements
in the U-tree, an@ be any object in its subtre@hen, for  in S.,, are first grouped by their associated disk addresses.
any valuep; (1 < j < m) in the U-cataloge. M BR(p;) For each address, one I/O is performed to load the detailed
always covers.cfbo..(pj). In Figure 6, for instance, the information of all relevant candidates, whose appearance
o1.cfbout(pj) Of 01 equals segmentJ, which is indeed probabilities are then computed.

eMBR(p)=a—0-p (15)
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5.3 Dynamic Update Algorithms forming a sorting at each; (1 < j < m) which, unfortu-
nately, incurs expensive overhead. We avoid so many sort-

The U-tree shares a common rationale with the R-tree: arihg operations using a simple heuristic that examines only

intermediate entry always “bounds” the entries in its SUb'the median valugy,, - in the U-catalog. Specifically

tree. Specifically, let be an intermediate entry, whose iy en an overflowing leaf (or intermediate) node, we first
child node is a non-leafnode. ThenM B | (e. MBRr) compute thee. M BR(py,,,/21) of all entriese contained.

is the MBR of those of all entries in its child node. Hence, thop, the entry distribution after splitting is decided us-
the information of a non-leaf entry can be decided di-jng the R*.split, passing all the rectangles obtained in the
rectly from its child node, without accessing any object reyioys step. Note that considering all values in the U-

further down its subtree. Furthermore, if we want {0 in- ca104 in the other update procedures is feasible, because
sert & new objeat into the subtree of an entry the new 5 oot of calculating a summed metric is trivial, and no
e.MBR, (after incorporating) equals the union of the  gqing s required. Finally, although the above discussion
olde.MBR with o.cfbou(p1), and similarlye MBRT ges intermediate levels as examples, it also applies to leaf
should be updated to the union of itself with:fbou:(Pm).  nodes, by replacing function M BR(.) With 0.¢fb gy (.)
Observation 4 implies that, to maximize query effec- 4 gan object.
tiveness, we should minimize the rectangles returned by
e.MBR(p;)forall j = 1,..., N. To achieve this, we adapt :
the update algorithms of the R*-tree (introduced in Sec—6 Experiments
tion 2.2) to U-trees. The core of adaptation is the opti- This section experimentally evaluates the efficiency of the
mization metric. Recall that the R* algorithms require four proposed techniques. We create uncertain data to simu-
metrics: (i-ii) the margin (or area) of a MBR, (iii) the over- late location-based service environments (Figure 1). For
lap between two MBRs, and (iv) the distance between thehis purpose, we select two real spatial datakBtandCA,
cetroids of two MBRs. These metrics are no longer suitablevhich contain 53k and 62k points representing locations in
for U-trees because each entry has a more complex form.the Long Beach county and California, respectiviiyAll
We replace these metrics with thesummed coun- dimensions are normalized to have domains [0, 10000].
terpart$. Given an intermediate entry, its summed Each data poinp generates an uncertain objectThe

margin equals>"™ M ARGIN (e.MBR(p;)), where uncertainty regiom.ur is a circle centering g with ra-
e ’ dius 250 (i.e., 2.5% of the length of an axis). The pdbof

function e.MBE(.) is defined in Equation 15p;  isjnitorm or Constrained-GaussiaCon-Gaufor short

is the j-th value in the U-catalog, and/ARGIN  gpecifically, forUniform, o falls ataga:ch position ira».m)~

gives the margin of rectangle.A/BR(p;).  Simi-  ith equal probability. The definition dton-Gais based

larly, a summed area i ;" AREA(e.MBR(p;)).  on the traditional Gaussian distribution which, however,

Given two non-leaf entries;, ez, we compute their has an infinite input universe (in our casenust be limited

summed overlap and summed centroid distance asgo o.ur). Hence, given the pddfs(x) of Gaussiah, we

;-1 OVERLAP(e).MBR(p;),e2.MBR(p;)) ~and first calculate the valud = [,_  pdfc(x)dz, and then
i, CDIST(e1.MBR(p;), e2.MBR(p;)) respec- formulatepdfcq as:

tively, where OVERLAP (CDIST) calculates the _

overlapping area (centroid distance) between two rect- pdfoc :{ pdfc(z)/A ifz € our (16)

angles. The U-tree aims at minimizing these “summed 0 otherwise

metrics” with the reasoning that, a good intermediate entry

e should lead to a small rectangteM BR(p;) for all The variance opdfc(x) used to defingdfog is set o

S 1252 (i.e., the standard deviation 125 is half the uncertainty
J= e L . . region’s radius). We convelitB and CA into uncertain
Each insertion/deletion in a U-tree is performed in ex- j i cato by applyingniform and Con-Gauon their ob-

gctly the Same way as the R*-tree, except that each met”fects, respectively. Note that thein Equation 16 is identi-
Is replaced with its summed counterpart. The only excepty oy 41 the data items i€A, and needs to be calculated
tion lies in the split algorithm (handling a node overflow). only once

Recall that, in the R*-tree [1], a node split is performed in In order to investigate our solutions in 3D space, we gen-

two steps, Wh.iCh select a split axis, and dec_ide the ac.tuaérate anotheAircraft dataset as follows. First, 2000 points
entry dlstrlbuuon, respectlvely. Each step relies on sorting, . sampled frorhB to serve as “airports”. The “reported
the coordinates of the MBRs in the node. In the U-tree, thqocation" of an “airplane” consists of 3 valuesb, ¢, cor-

sorting must be performed in an alternative manner due tc}esponding to its spatial location,(b) and altituder. To

the d|ff'e.rence In entry representatlon. obtain the first two numbers, we randomly choose two air-
Intuitively, a good split should be such that, the par- ,os a5 the aircraft's source and destination; them)(is

ent entriese; and e, of the resulting nodes have small get 1o 3 random point on the segment connecting the two
M BR(p) for all valuesp = ps, ..., pm, in the U-catalog.

Therefore, ideally, the best split should be obtained by per- ©Available at http://www.census.gov/geo/wwwitiger/.
“If z is a 2D point with coordinatesa( b), then pdfg(z) =

2 2 2 . .
5A similar technique was applied in [11] to convert R*-trees to a o=z e [(@7#a)"+(=m)"DI/207 whereo? is the variance, angk,
spatio-temporal index. up, are the means af, b, respectively.
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100%. Workload erior 02D m3D25pquerycost(sec) o g LB CA Aircraft
1o% 0.013 0(.:cl)g})utation time(msec) , :_— iiﬁcraﬂ U-PCR| 119M | 140M | 40.1M
1.3 1. U-tree | 5.0M | 5.9M 14.2M
1% 130 1 Table 1: Size comparison (bytes)
0.1% 0. 6.2 Tuning the Catalog Size

0+ + 1 + + i
lerd lets 16 det? 1t T 3 4 Saogzem® 2 The performance of U-PCR is determined by the number
. ) . . . . m of values in its U-catalog. The second set of experi-
Figure 7: Cost of numericalFigure 8: Tuning the catalog ments aims at identifying the best that maximizes the

eyaluanon ) ) size for U'_PCR_ effectiveness of U-PCR. Specifically, the catalog contains
airports. The value is uniformly obtained in a (normal- 5, ,es 0.-0:5 L_ ., 0.5 (recall that all numbers must

ized) range [0, 10000Rircraft contains 100k aircrafts thus 4 i, thé”rlér%éem[bl'o.S]). For each datadeB,(CA Air-
obtained, whose uncertainty regions are spheres centerirlgraﬁ) we create U,-PCR trees with varied frc;m 3to0 12.
at their reported locations with radius 125. The pdfs de-thg efficiency of each tree is examined with 80 workloads
ployed areUniform. , __thathaveys = 500, and theinp, equals 0.11, 0.12, ..., 0.89,
The search region of a query is a square/cube with sidg) g, respectively. Figure 8 plots the average query time of
lengthgs, and the distribution of the region’s location (in these workloads as a functionaf
the data space) follows that of the underlying data. Awork-  j_pCR initially improves asn increases, but deterio-
load contains 100 queries with the same parameteasid  ates agn grows beyond a certain threshold. This is not
pq (i-€., the probability threshold). Since there is no ex- grprising because a U-PCR with a higheretains more
isting structure for indexing multi-dimensional uncertain pcRrs in each entry, which permit pruning/validating a
data, we compare the U-tree with its variation (called "U- greater number of objects directly (without evaluating their
PCR") that stores the PCRs in (leaf and intermediate) enappearance probabilities), resulting in less CPU cost. How-
tries, as opposed to CFBs. The performance of a Structurgyer, a larger catalog size also decreases the node fanout,
is measured as the average (I/O and CPU) time of answefpading to more page accesses in processing a query. For
ing all the queries in a workload. All the experiments are | g andCA, the best performance is obtained with= 9,
performed using a machine with a Pentium |1 CPU of 800 yhjle the optimalm for Aircraft equals 10. We use these

MHz. The page size is fixed to 4096 bytes. values in the rest of the experiments.
The catalog tuning for U-trees is much easier. The only
6.1 Cost of Computing Appearance Probability disadvantage of using a large sizeis that it will compro-

. i mise the update performance (recall that each object inser-
We first evaluate the cost of computing the appearancggn needs to deriven PCRs). As will be shown in Sec-
probability of an object using the monte-carlo method dis-tjon 6.4, however, the overhead of each PCR computation
cussed in Section 3. The efficiency of monte-carlo dependss oy, which allows the U-tree to utilize a sizable catalog
on the numbers{; in Equation 3) of points generated in __ 4 important advantage of U-trees over U-PCR. In the

an object’s uncertainty region. The goal is to identify the sequel, we set the U-tree catalog size to 15 (the catalog val-
lowestn, that leads to accurate results. We use a workloaq,es are 0. 1/28. ... 14/28).

where the query regions have the same gize- 500 (5%

of the length of a dimension), but have different intersec-g 3 gpace Consumption and Query Performance

tions with an object’s uncertainty region (a 2D circle or 3D )

sphere). The object’s appearance probability for each queryable 1 compares the space consumption of the U-tree and

is estimated using different valuesof, and the relative er- U-PCR for various datasets. As expected, U-trees are much

ror® of each estimate is calculated with respect totthe smaller due to their greater node capacities. Specifically,

value (obtained with an extremely largg). The workload ~ €ach U-tree entry stores at most two CFBs that are repre-

error is the average error of all the queries involved. sented with totally 16 (24) values in 2D (3D) space, as op-
Figure 7 shows the workload error as increases (the POS€d to 36 (60) values in each U-PCR entry (for recording

accuracy is related only to the area/volume of the uncerUmerous PCRs). Note that the size of a U-tresdisaf-

tainty region, and is independent of the concrete pdf). Thd€cted by its catalog size.
numbers on top of the columns indicate the time (in mil- _ N Figure 9a, we illustrate the number of page accesses

liseconds) of computing a single probability. Clearly, in ©f Using the U-tree and U-PCR (drB) to answer work-
2D spacen; must be at least0® to guarantee highly accu- 10ads whose, equals0.6, and theirgs (size of a query
rate results (with error less than 1%), and the correspondin§9ion) changes from 500 to 2500. The U-tree significantly

number is even higher in 3D space (where an uncertainpUtPerforms its competitor in all cases, again due to its
region is “larger”). In the following experiments, we set much larger node fanout. Figure 9b shows the CPU costs in

to 10° for both 2D and 3D, in which case each application the previous experiments, measured in the average number

of monte-carlo requires 1.3 milliseconds. of appearance probability qomputations in a query. Each
percentage in this diagram indicates the average percentage

8The relative error equalsict — est|/act, whereact andest are the ~ Of qualifying ijeCtS which are directly validated by the U-
actual and estimated values, respectively. tree/U-PCR in a query. For example, a 90% means that,
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Figure 9: Effects of search region sizes on query performange=(0.6)
among all the objects satisfying a query, on average only 07 st 0.2 cost(sec)

06/ 0 /O m CPU
0.1
0.1
0.0
O " ca

10% have their appearance probabilities calculated. The ;’_‘0
" Aircraft '

CPU overhead of the U-tree is slightly higher because prun- 0o
ing/validating with CFBs is less efficient than with PCRs.
The total costs (including both 1/0 and CPU time) of the o0
two methods are compared in Figure 9c. "B CA Aircraft
The same experiments are also performed for datasets (a) Insertion (b) Deletion
CAandAircraft respectively, and their results are presented Figure 11: The update overhead

in Figures 9d-9i, confirming similar observations. The only . . .
exception is that in Figure 9h, both methods incur low cpytion 4.4), and (ii) calculating the necessary PCRs. Then, we

time for ¢s equal to 500 and 1000 because the queries iffemove all the objects from each U-tree, and measure the

these two workloads have fairly small result sizes. Further-2MOrtized cost of a deletion. The results are demonstrated

more, the U-tree has better CPU performance than U-PCR
The reason is that, the CFBs used by the U-tree (for prun- .
ing/validating) turn out to be tighter than the PCRs utilized 7 Conclusions and Future Work
by U-PCR (note that these CFBs and PCRs are defined gf, his paper, we presented a careful study of the proba-
different probability values). . _ bilistic range search problem on uncertain data. Our solu-
Figure 10 |Ilustra_tes_ the results of the experiments usinGjons can be applied to objects described by arbitrary pdfs,
workloads whosgs is fixed to the median value 1500, and and process queries efficiently with small space. This work
their g, falls in the range from 0.3 to 0.9. Each row of the |56 |ays down a solid foundation for further research on
figure contains, for one dataset, three diagrams demonstrafmcertain databases. An interesting issue is to investigate
ing the aver_age_I/O cost, number of probability evaluations the algorithms that deploy U-trees to solve other types of
and execution time of a query. U-trees are better than Uyyeries (e.g., those defined in [4]). Another exciting direc-

n Figure 11b (CPU time is omitted as it is negligible).

PCR in terms of overall performance. tion for future work is to derive analytical models [12] that
can accurately estimate the query costs. Such models can
6.4 Update Overhead be utilized to facilitate query optimization, which is also an

) important topic to be studied.
The last set of experiments evaluates the update perfor-

mance of the U-tree. Figure 11a shows the average co

of an insertion during the index construction 1d8, CA, %‘CknOWIedgementS
andAircraft, respectively. Each cost is broken down into Yufei Tao and Xiaokui Xiao were supported by Grant

the 1/0 and CPU overhead, respectively. In particular, theCityU 1163/04E from the Research Grants Council (RGC)
CPU time essentially corresponds to the combined cost 0b6f HKSAR, Reynold Cheng and Sunil Prabhakar by NSF
(i) the simplex algorithm (for computing CFBs; see Sec-grants 1IS 9985019 and CCR-0010044, and Wang Kay
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Figure 10: Effects of probability thresholds on query performange= 1500)

Ngai and Ben Kao by RGC grant HKU 7040/02E. We [8] N. N. Dalvi and D. Suciu. Efficient query evaluation
thank the anonymous reviewers for their insightful com-
ments.
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