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Abstract

In an “uncertain database”, an objecto is associ-
ated with a multi-dimensional probability density
function (pdf), which describes the likelihood that
o appears at each position in the data space. A
fundamental operation is the “probabilistic range
search” which, given a valuepq and a rectangular
arearq, retrieves the objects that appear inrq with
probabilities at leastpq. In this paper, we propose
the U-tree, an access method designed to optimize
both the I/O and CPU time of range retrieval on
multi-dimensional imprecise data. The new struc-
ture is fully dynamic (i.e., objects can be incre-
mentally inserted/deleted in any order), and does
not place any constraints on the data pdfs. We ver-
ify the query and update efficiency of U-trees with
extensive experiments.

1 Introduction

Uncertain databasesare gaining considerable attention re-
cently [13]. In such a system, tuples may not accurately
capture the properties of real-world entities, which is an
inherent property of numerous applications that manage
“dynamic attributes” [14] with continuously changing val-
ues. To enablelocation-based services[15], for instance,
a moving client informs a server about its coordinates, if
its distance from the previously reported location exceeds
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Figure 1: An uncertain object example

a certain threshold. Hence, the database does not have
clients’ precise positions — an object can be anywhere in a
circularuncertainty region(the grey area in Figure 1) that
centers at its last update, and has a radius equal to the dis-
tance threshold.

As another example, consider ameteorology systemthat
monitors the temperatures, humidity, UV indexes (and etc.)
in a large number of regions. The corresponding readings
are taken by sensors in local areas, and transmitted to a
central database periodically (e.g., every 30 minutes). The
database content may not exactly reflect the current atmo-
spheric status, e.g., the actual temperature in a region may
have changed since it was last measured.

The uncertainty in the above examples is caused by de-
layed data updates while, in general, sources of imprecision
include data randomness, limitation of measuring equip-
ments, and so on. Information retrieval directly based on
uncertain data is meaningless, since the result does not have
any quality guarantees. Consider, for example, the query
“find the clients currently in the downtown area”. Return-
ing the objects whose last updates satisfy the query is inad-
equate, because many objects may have entered or left the
search region since they contacted the server last time.

To avoid this problem, the “precise” values need to be
estimated using a probability density function (pdf). For
example, if the location of a moving cliento is considered
uniformly distributed in its uncertainty regionur, the ob-
ject pdf can be represented aspdf(x) = 1/AREA(ur) if
the parameterx (any point in the 2D data space) belongs to
ur, or 0 otherwise. Thus, theappearance probabilitythat
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o lies in a given regionrq (e.g., the rectangle in Figure 1)
equals: ∫

rq∩ur

pdf(x)dx =
AREA(rq ∩ ur)

AREA(ur)
(1)

where the integral arearq ∩ ur is the intersection between
rq andur. For simplicity, we used theuniform distribu-
tion in the above example, while in practice an appropri-
ate pdf depends on the characteristics of the underlying ap-
plication. For instance, an actual temperature may follow
a Gaussiandistribution with an appropriate variance and
a mean calculated based on the last measured value (e.g.,
in the daytime, when the temperature is expected to rise,
the mean may be set to some number larger than the mea-
sured one). Other common stochastic models includeZipf,
Poisson(for describing the happening frequency of some
event), etc.

In general, an “uncertain object” is a multi-dimensional
point whose location can appear at any positionx in the
data space, subject to a probability density functionpdf(x).
Given a valuepq and a rectangular query regionrq, aprob-
abilistic range search(prob-range) returns the objects that
appear inrq with probabilitiesat leastpq. In location-based
systems, such a queryq would “retrieve the objects that are
currently in the downtown area (rq) with a probability no
less than 80%”. A similar inquiry in a meteorology sys-
tem may “identify the regions whose temperatures are in
range [75F, 80F], humidity in [40%, 60%], and UV indexes
[4.5, 6] with at least 70% likelihood”, where the search
arearq is a 3D box with projections on the temperature-,
humidity-, UV-index dimensions described by the corre-
sponding ranges, respectively.

Although conventional range search (on a “precise”
dataset) has been very well studied [1, 3], its solutions are
not applicable to uncertain data, since they do not consider
the probabilistic requirements [6]. As explained later, the
key of optimizing a prob-range query is to avoid, as much
as possible, computing the appearance probability that an
object satisfies a query. Such computation is expensive (es-
pecially when the dimensionality is high), since it requires
costly numerical evaluation of a complex integral.

In this paper, we present the U-tree, a multi-dimensional
access method on uncertain data with arbitrary pdfs. This
structure minimizes the amount of appearance probability
computation in prob-range search. Intuitively, it achieves
this by pre-computing some “auxiliary information” for
each object, which can be used to disqualify the object (in
executing a query) or to validate it as a result without hav-
ing to obtain its appearance probability. Such information
is maintained at all levels of the tree to avoid accessing the
subtrees that do not contain any results. Furthermore, U-
trees are fully dynamic, i.e., objects can be inserted/deleted
in any order.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the previous work that is directly related
to ours. Section 3 formally defines the problem, and Sec-
tion 4 explains techniques for efficiently pruning objects in
prob-range search. Section 5 presents U-trees and clarifies

the concrete update and query algorithms, while Section
6 evaluates the proposed methods with extensive experi-
ments. Section 7 concludes the paper with directions for
future work.

2 Related Work

In the next section, we first review the existing results
on query processing in uncertain databases. Then, Sec-
tion 2.2 describes the R*-tree, which is an effective multi-
dimensional access method for range queries on precise
data, and is fundamental to the subsequent discussion.

2.1 Query Processing on Imprecise Data

Early research [10, 14, 15] primarily focuses on various
data models for accurately capturing the locations of mov-
ing objects. In this context, query algorithms aim at min-
imizing the amount of data transmission (for updating the
central server) to ensure the precision of database values.
Cheng et al. [4] are the first to formulate uncertain retrieval
in general domains. They present an interesting taxonomy
of novel query types, together with the corresponding pro-
cessing strategies. An I/O efficient algorithm for nearest
neighbor search is proposed in [5]. None of the above
works considers prob-range retrieval.

Cheng et al. [6] develop several solutions for prob-range
queries which, however, target 1D space only. They argue
that range search in uncertain databases is inherently more
difficult than that on traditional precise objects, and sup-
port their claims by providing two theoretical approaches
that achieve (almost) asymptotically optimal performance.
Nevertheless, the practicability of these methods is limited
since (i) they cannot support objects with arbitrary pdfs
(e.g., one method targets only uniform pdfs), and (ii) they
may incur large actual execution overhead due to the hid-
den constants in their complexity guarantees.

Dalvi and Suciu [8] discuss “probabilistic databases”,
where each record is the same as a tuple in a conventional
database, except that it is associated with an “existential”
probability. For example, a 60% existential probability
means that a tuple may not exist in the database with a
40% chance; if it does, however, its values are precise.
Hence, probabilistic databases are different from uncertain
databases (the topic of this paper), where each object def-
initely exists but its concrete values follow a probabilistic
distribution.

2.2 R*-trees

The R*-tree [1] can be regarded as an extension of the B-
tree for multi-dimensional rectangular objects. Figure 2
shows a two-dimensional example where 10 rectangles (a,
b, ..., j) are clustered according to their spatial proximity
into 4 leaf nodesN1, ..., N4, which are then recursively
grouped into nodesN5, N6 that become the children of the
root. Each intermediate entry is represented as aminimum
bounding rectangle(MBR), which tightly bounds all the
data in its subtree (e.g.,N1 is the MBR enclosinga, b, c).
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Figure 2: An R*-tree

To find the objects intersecting the search regionrq in Fig-
ure 2, for example, the algorithm visits the nodes (root of
the R-tree,N6, N4) whose MBRs intersectrq, and returns
the only qualifying objecti.

The R*-tree construction algorithm aims at minimizing
the following penalty metrics: (i) the area, (ii) the margin
(i.e., perimeter) of each MBR, (iii) the overlap between two
MBRs in the same node, and (iv) the distance between the
centroid of an MBR and that of the node containing it. As
discussed in [9], minimization of these metrics decreases
the probability that an MBR intersects a query region.

3 Problem Definition

Formally, an “uncertain object”o is associated with (i) a
probability density functiono.pdf(x), wherex is an arbi-
trary d-dimensional point, and (ii) ad-dimensional uncer-
tainty regiono.ur. Given a prob-range query with a (hyper-
) rectanglerq and a thresholdpq ∈ [0, 1], the appearance
probabilityPapp(o, q) of an objecto is calculated as:

Papp(o, q) =

∫
o.ur∩rq

o.pdf(x) dx (2)

whereo.ur ∩ rq denotes the intersection ofo.ur andrq.
Objecto is a result ifPapp(o, q) ≥ pq.

Our objective is to minimize the cost (including both
I/O and CPU time) of prob-range search, without making
any assumption about the “types” (e.g., uniform, Gaussian,
Zipf, etc.) of objects’ pdfs.Clearly, the problem would
be much easier if all the pdfs were known to be of the
same “type”. For example, if only Gaussian functions were
present, specialized methods could be developed based on
their means and variances [6]. These methods, however,
are not useful for other types of pdfs, which in turn require
“dedicated” solutions based on their own characteristics.
Instead, we aim at developing a “unified” solution that can
support a database where objects can have arbitrary pdfs.

One difficulty in handling multi-dimensional data is that
the integral in Equation 2 cannot be solved accurately even
for a “regular” pdf such as Gaussian. To see this, assume
that in Figure 1, the object’s actual location is described
using a Gaussian pdf whose mean falls at the center of the
circle (i.e., the uncertainty regiono.ur). Given an arbi-
trary query arearq, the intersection betweenrq ando.ur
has a shape that isnotsymmetric with respect to the mean.
In this case, Equation 2 cannot be derived into a formula
without any integrals, and hence, must be evaluatednumer-
ically through, for example, the following “monte-carlo”

approach1 [2].
First, a numbern1 of points x1, x2, ..., xn1 are ran-

domly generated in the uncertainty regiono.ur of an ob-
ject o. Without loss of generality, assume thatn2 of these
points fall into the search regionrq, and they arex1, x2, ...,
xn2 , respectively. For each pointxi (1 ≤ i ≤ n1), we pass
it into the object’s pdf, and calculates the resulting value
pdf(xi). Then,Papp (in Equation 2) can be approximated
as:

Papp(o, q) ≈
n2∑
i=1

o.pdf(xi)/

n1∑
i=1

o.pdf(xi) (3)

As a special case, when the entire uncertainty regiono.ur
falls inside the query arearq, the above equation returns
the correct value 1 ofPapp(o, q) (sincen2 = n1). In gen-
eral, however, monte-carlo is accurate only ifn1 is suffi-
ciently large(at the order of106, as tested in our experi-
ments). Even worse, the appropriaten1 increases with the
dimensionality.Therefore, computingPapp incurs expen-
sive costs, especially when the dimensionalityd is high. In
the next section, we present techniques that can eliminate
a majority of the non-qualifying data without calculating
their appearance probabilities.

4 Filtering Multi-Dimensional Uncertain
Data

Section 4.1 first introduces “probabilistically constrained
regions” (PCR) and explain the heuristics of applying
PCRs to assist prob-range search, while Section 4.2 dis-
cusses “practical” versions of these heuristics. Section 4.3
presents “conservative functional boxes” (CFB) as a space-
efficient method to capture PCRs. Section 4.4 provides an
algorithm for computing CFBs based on linear program-
ming.

4.1 Probabilistically Constrained Regions

The PCRo.pcr(p) of an objecto takes a parameterp whose
value is in [0, 0.5]. Figure 3a illustrates a 2D example,
where the polygon represents the uncertainty regiono.ur
of o (our technique can be applied to uncertainty regions
of any shapes). Theo.pcr(p) (the grey area) is decided
by 4 linesl1+, l1−, l2+, l2−. Line l1+ divideso.ur into
two parts (on the left and right ofl1+ respectively) and the
appearance probability ofo in the right part (i.e., the shad-
owed area) equalsp. Similarly, l1− is such that the appear-
ance likelihood ofo on the left ofl1− equalsp. Clearly, the
probability thato lies betweenl1− andl1+ is 1− 2p. Lines
l2+ andl2− are obtained in the same way, except that they
horizontally partitiono.ur.

It is possible to use PCRs toprunea non-qualifying ob-
ject, or tovalidate that an object indeed satisfies a query,
without computing the accurate appearance probability. To
illustrate pruning, assume that the grey box in Figure 3a is
theo.pcr(0.2) of o, and boxesrq1, rq2 are the search areas

1We choose monte-carlo because it is a popular technique for solv-
ing complex equations in the database literature [2]. In the future work,
we will investigate alternative numerical approaches for evaluating Equa-
tion 2, as well as their impacts on query performance.
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Figure 3: A 2D probabilistically constrained region

of two prob-range queriesq1, q2 with probability thresh-
oldspq1 = 0.8, pq2 = 0.2, respectively. Objecto cannot
qualify q1 becauserq1 does not fully containo.pcr(0.2).
To understand this, notice thatrq1 is disjoint with the shad-
owed region. Hence, the appearance probability ofo in r q1

must be smaller than1−0.2 = 0.8, where 0.2 is the proba-
bility of o falling on the right ofl1+. Rectangleo.pcr(0.2)
also indicates thato does not satisfyq2, but for a different
reason:rq2 does not intersecto.pcr(0.2). In fact, sincerq2

lies entirely on the right ofl1+, the appearance probability
of o in rq2 is definitely smaller than 0.2 (the probability that
o lies in the shadowed region, as mentioned earlier).

Figure 3b explains how a PCR is utilized to validate
an object. Again, assume the grey box to beo.pcr(0.2),
and rectangleABCD is the MBR (denoted aso.MBR)
of the uncertainty region (the polygon). Linesl 1− and
l1+, which pass the left and right boundaries ofo.pcr(0.2),
are not shown (to avoid an excessively complex figure) but
should be implicitly understood. Consider queriesq3, q4,
q5 with search areasrq3, rq4, rq5, and probability thresh-
olds 0.6, 0.8, and 0.2 respectively. Objecto must satisfy
q3 becauserq3 fully covers the part ofo.pcr(0.2) between
l1− and l1+, where the appearance probability ofo equals
1−0.2−0.2 = 0.6. It can also be asserted thato qualifiesq4

(andq5) sincerq4 (andrq5) completely contains the portion
of o.pcr(0.2) on the right (and left) ofl1−, whereo appears
with a probability1 − 0.2 = 0.8 (and 0.2, respectively). It
is important to note that different pruning/validating crite-
ria were used for the 5 queriesq1, q2, ...,q5 in Figure 3.

Formally, in a generald-dimensional space, the PCR
o.pcr(p) (p ≤ 0.5) of an objecto is a hyper-rectangle
decided by a 2d-dimensional vector: {o.pcr1−(p),
o.pcr1+(p), ..., o.pcrd−(p), o.pcrd+(p)}. In particular,
[o.pcri−(p), o.pcri+(p)] is the projection ofo.pcr(p) on
the i-th dimension. In the sequel, without ambiguity we
also useo.pcri−(p) to refer to a plane that is perpendicular
to thei-th dimension, and intersects this axis at coordinate
o.pcri−(p). Valueo.pcri+(p) also defines a plane in a sim-
ilar manner. Then, the probability thato appears on the left
(right) of planeo.pcri−(p) (o.pcri+(p)) equalsp, where
“left” refers to the negative direction of thei-th axis, and
“right” to the positive direction. Notice thato.pcr(p) of
an objecto continuously shrinks asp increases, and when
p = 0.5, o.pcr(p) degenerates into a point. The heuristics
illustrated in Figure 3 are formalized as follows.

Observation 1. For a prob-range queryq with search regionrq

and probabilitypq:

1. For pq > 0.5, an objecto can be eliminated ifrq does not
fully containo.pcr(1 − pq);

2. For pq ≤ 0.5, the pruning condition is thatrq does not
intersecto.pcr(pq);

3. For anypq, an object is guaranteed to satisfyq if rq fully
covers the part ofo.MBR between planeso.pcri−(

1−pq

2
)

ando.pcri+(
1−pq

2
) for somei ∈ [1, d];

4. For pq > 0.5, the validating criterion is thatrq completely
contains the part ofo.MBR on the right (or left) of plane
o.pcri−(1 − pq) (or o.pcri+(1 − pq)) for somei ∈ [1, d].

5. For pq ≤ 0.5, the validating criterion is thatrq com-
pletely contains the part ofo.MBR on the left (or right)
of o.pcri−(pq) (or o.pcri+(pq)) for somei ∈ [1, d].

In many cases, an object can be asserted to violate or
satisfy a query using the above rules directly, thus avoiding
the expensive appearance probability computation (which
is necessaryonly if these rules can neither prune nor vali-
date the object).

Observation 1 requires a fast method to answer ques-
tions in the form: “doesrq cover the part ofo.MBR be-
tween two planesl− andl+ perpendicular to an axis (called
the interesting dimension)?”. For this purpose, we first
examine ifrq completely encloseso.MBR on all dimen-
sions except the interesting axis. If not, then the answer
to the original question is negative. Otherwise, we con-
tinue to check whether the projection ofrq on the inter-
esting dimension includes the corresponding projections of
l− andl+ (i.e., two points). The answer to the target ques-
tion is “yes” only if the second check returns a positive
result. Hence, the total examination time isO(d) (the time
of checking the intersection ofd pairs of 1D intervals).

Equipped with the above method, Observation 1 can
prune/validate an object with a small cost. Specifically, de-
pending on the value ofpq, only 3 rules are applicable si-
multaneously. For example, forpq > 0.5, only Rules 1, 4,
3 are useful, and we apply them in this order (e.g., if Rule 1
already achieves pruning, then no validation is necessary).
Similarly, for pq ≤ 0.5, we apply Rule 2 first, followed by
Rules 5, 3 respectively.

Interestingly, although evaluating the appearance prob-
ability of an object is costly,o.pcr(p) can actually be ob-
tained with small overhead, since it can be computed by
considering each individual dimension in turn. We illus-
trate this using the 2D example in Figure 3a but the idea ex-
tends to arbitrary dimensionality in a straightforward man-
ner. To decide, for example, linel1− (l1+), we resort to the
cumulative density functiono.cdf(x1) of o.pdf(x) on the
horizontal dimension. Specifically,o.cdf(x1) is the proba-
bility that o appears on the left of a vertical line intersect-
ing the axis atx1. Thus, l1− can be decided by solving
x1 from equationo.cdf(x1) = p, and similarly,ll+ from
o.cdf(x1) = 1 − p. For “regular” pdfs (e.g., uniform),
o.cdf(x1) can be derived into a simple formula (by inte-
gratingo.pdf(x) along only one dimension), after which
both equations mentioned earlier can be solved efficiently.
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4.2 Heuristics with A Finite Number of PCRs

The effectiveness of Observation 1 would be maximized if
we could pre-compute the PCRs for allp ∈ [0, 0.5]. Since
this is impossible, for each objecto, we obtain itso.pcr(p)
only at somepre-determined values ofp, which are com-
mon to all objects and constitute theU-catalog(a system
parameter). Denote the values in the U-catalog asp1, p2,
..., pm sorted in ascending order, wherem is the size of
the catalog. A problem, however, arises. Given an arbi-
trary pq, the corresponding PCR needed in Observation 1
for pruning/validating may not exist. For instance, in Fig-
ure 3a, as mentioned earlier disqualifying the objecto for
queryq1 requires itso.pcr(0.2). Thus, the pruning cannot
be performed if 0.2 is not a value in the U-catalog.

We solve this problem by applying Observation 1 in a
“conservative” way. Assuming a U-catalog withm = 3
values{p1 = 0.1, p2 = 0.25, p3 = 0.4}, Figure 4 shows
an example where the dashed rectangle is the MBR of
the polygonal uncertainty region of an objecto, and the
rectangle inside the polygon is theo.pcr(0.25) of o (for
clarity, the other PCRs are omitted). Letq1 be a query
with pq1 = 0.8 whose search region is the small grey
box rq1. Rectangleo.pcr(0.25) is not contained inrq1,
which implies that (by Rule 1 of Observation 1)o does
not qualifyq1 even if the query probability thresholdwere
1 − 0.25 = 0.75, let alone a larger value 0.8.

The value 0.25 used in the above example is thesmallest
number in the U-catalog no less than1 − pq1 = 0.2. Any
value in the U-catalog smaller than 0.25 cannot be applied
for pruning based on Rule 1. For example,p1 = 0.1 is
useful only for a query with a probability threshold at least
1 − 0.1 = 0.9. On the other hand, although a value (e.g.,
p3 = 0.4) larger than 0.25 can be applied, it is less effec-
tive. To understand this, note thato.pcr(0.4) is necessarily
covered byo.pcr(0.25); thus, if o.pcr(0.25) is contained
in the query region (i.e.,o.pcr(0.25) cannot disqualify the
object), so iso.pcr(0.4) (it cannot, either). The reverse,
however, is not true (i.e.,o.pcr(0.25) may still succeed in
pruning even ifo.pcr(0.4) fails).

Next let us consider a queryq2 with pq2 = 0.7
and a search regionrq2 (the left grey rectangle in Fig-
ure 4). We can validateo for q2 without calculating its
appearance probability. In fact, sincerq2 covers the part
o.MBR on the left of the line passing the right bound-
ary of o.pcr(0.25), we can assert (by Rule 4 of Observa-
tion 1) thato appears inrq2 with a probability at least 0.75,
i.e., larger thanpq2. Observe that, here, the selected value
0.25 is thelargest number in the U-catalog no greater than
1 − pq2 = 0.3. 0.25 can be verified to be the best in the
U-catalog to perform the validation, following an analysis
similar to the case of queryq1.

The above examples show that, using only a finite num-
ber of PCRs, we can still prune or validate objects by iden-
tifying the “appropriate” PCR. To successfully prune an
objecto, the selected PCR should allow us to verify that
o cannot appear in the query regionrq even with a prob-
ability lower than or equal tothe query thresholdpq. To

rq1o.pcr(0.25)

rq2

o.MBR

Figure 4: Illustration of Observation 2

validateo, we aim at establishing thato falls in rq with
a chancehigher than or equal topq. The PCR selection
reduces to picking the suitable value in the U-catalog. A
special picking method is required for each of the 5 cases
in Observation 1. The examples in Figure 4 explain the
methods for the representative Rules 1 and 4, respectively.
Since the rationale of the other cases is similar, we do not
analyze them in detail, but simply list the resulting rules in
a separate observation:

Observation 2. For a prob-range queryq with search regionrq

and probabilitypq:

1. For pq > 1 − pm, an objecto can be eliminated ifrq does
not fully containo.pcr(pj), wherepj (1 ≤ j ≤ m) is the
smallest value in the U-catalog not less than1 − pq;

2. For pq ≤ 1 − pm, o can be pruned ifrq does not intersect
o.pcr(pj), wherepj is the largest value in the U-catalog not
greater thanpq.

3. An object is guaranteed to satisfyq if rq fully covers the part
of o.MBR between planeso.pcri−(pj) and o.pcri+(pj)
for somei ∈ [1, d], wherepj is the largest value in the U-
catalog not greater than(1 − pq)/2;

4. For pq > 0.5, the validating criterion is thatrq com-
pletely contains the part ofo.MBR on the right (or left) of
o.pcri−(pj) (or o.pcri+(pj)) for somei ∈ [1, d], wherepj

is the largest value in the U-catalog not greater than1−pq.

5. For pq ≤ 0.5, the validating criterion is thatrq com-
pletely contains the part ofo.MBR on the left (or right)
of o.pcri−(pj) (or o.pcri+(pj)) for somei ∈ [1, d], where
pj is the smallest value in the U-catalog not less thanpq.

4.3 Conservative Functional Boxes

Although PCRs provide an efficient way for pruning ob-
jects, they are not suitable for indexing, since each entry
in the resulting structure would need to recordm PCRs,
wherem is the size of the U-catalog. Storing a PCR re-
quires2d values, and thus, each entry contains at least2d·m
values, which renders the node fanout to decrease quickly
asd increases, and compromises query performance. In the
sequel, we present an approach that avoids this problem by
storing the PCRs of an object in a compact manner.

Consider an objecto whose pre-computed PCRs (at the
values in the U-catalog) areo.pcr(p1), ..., o.pcr(pm). We
aim at capturing thesem rectangles using two functions
o.cfbout ando.cfbin, which are called theouterandinner
conservative functional boxes, respectively. For each value
pj (1 ≤ j ≤ m), o.cfbout(pj) returns ad-dimensional
box thatcontainso.pcr(pj). The subscriptout indicates
that o.cfbout(pj) boundso.pcr(pj) from the “outside”.
Similarly, o.cfbin(pj) produces ad-dimensional rectangle
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Figure 5: Visualizing conservative functional boxes

that is containedin o.pcr(pj). Specifically,o.cfbout and
o.cfbin have linear forms:

o.cfbout(p) = αout − βout · p (4)

o.cfbin(p) = αin − βin · p (5)

whereαout, βout, αin, andβin are2d-dimensional vec-
tors independent ofp. In particular,αout is essentially the
d-dimensional rectangleo.cfbout(0), while βout describes
“how fast” o.cfbout(p) shrinks asp grows. The seman-
tics of αin andβin are similar but with respect too.cfbin.
Representing botho.cfbout ando.cfbin requires only8d
values (independent of the U-catalog sizem), as opposed
to 2d · m mentioned earlier.

Conservative functional boxes can be best visualized for
d = 1, where an object’s uncertainty region is an inter-
val. Assume that the U-catalog includesm = 3 values2

{p1 = 0, p2 = 0.25, p3 = 0.4}. Figure 5a shows the
pre-computed 1D PCRs of an objecto in a special two-
dimensional space, where the horizontal axis captures the
coordinates of uncertainty intervals, and the vertical axis
indicates the probability values where these intervals are
obtained. For example, thepcr(p1) is a segmentAB whose
projection on the vertical dimension equalsp1 = 0. Inter-
valsCD andEF represent the PCRs atp2 andp3, respec-
tively.

Functiono.cfbout is illustrated using linesl1 and l2.
Specifically, o.cfbout(p1) corresponds to segmentGH
(i.e., a 1D rectangle), whereG (H) is the intersection
between l1 (l2) and the horizontal dimension. Simi-
larly, o.cfbout(p2) ando.cfbout(p3) are intervalsIJ and
KL, respectively. Notice thato.cfbout(pj) indeed con-
tains o.pcr(pj), for j = 1, 2, 3. For d = 1, αout and
βout in Equation 4 are 2D vectors; let us denote them as
{α1−

out, α
1+
out} and{β1−

out, β
1+
out}, respectively. Sinceαout =

o.cfbout(0), interval [α1−
out, α

1+
out] is equivalent to segment

GH . On the other hand,β1−
out (β1+

out) is determined by
the slope of linel1 (l2)3. Figure 5b demonstrateso.cfbin

using linesl3 and l4, such thato.cfbin(p1), o.cfbin(p2),
o.cfbin(p3) are segmentsMN , OP andQR, respectively.
Notice thato.cfbin(pj) is contained ino.pox(pj) for each
1 ≤ j ≤ 3.

Both cfbout(pj) andcfbin(pj) of an object can be rep-
resented as2d-dimensional vectors. For example, the vec-

2We use a small valuem = 3 here for simplicity, but a practically
suitablem is around 10, as shown in the experiments.

3Precisely,β1−
out is the inverse of the slope ofl1, andβ1+

out is the neg-
ative inverse of the slope ofl2.

tor of cfbout(pj) is:

{cfb1−
out(pj), cfb1+

out(pj), ..., cfbd−
out(pj), cfbd+

out(pj)} (6)

where interval[cfbi−
out(pj), cfbi+

out(pj)] is the projection of
(rectangle)cfbout(pj) on thei-th dimension (1 ≤ i ≤ d).
When it is not ambiguous, we usecfbi−

out(pj) to denote the
plane passing the left boundary ofcfbout(pj) on thej-axis
(likewise, cfbi+

out(pj) also captures a plane). The above
definitions also apply tocfbin in a straightforward manner.

To enable CFBs in query processing, we need to adapt
the heuristics in Observation 2. The reason for introduc-
ing botho.cfbout ando.cfbin is that they are required for
appropriately adapting different rules. We first present the
resulting rules before providing explanation.

Observation 3. Observation 2 is still correct with the following
changes:

• In Rule 1, replaceo.pcr(pj) with o.cfbin(pj);

• In Rule 2, replaceo.pcr(pj) with o.cfbout(pj);

• In Rules 3 and 4, replaceo.pcri−(pj) ando.pcri+(pj) with
o.cfbi−

out(pj) ando.cfbi+
out(pj), respectively;

• In Rule 5, replaceo.pcri−(pj) and o.pcri+(pj) with
o.cfbi−

in (pj) ando.cfbi+
in (pj), respectively;

The observation is a natural extension of Observation 2.
To illustrate this, let us first focus on Rule 1. Ifo.cfbin(pj)
is not covered by the query regionrq, neither iso.pcr(pj)
— recall thato.cfbin(pj) is containedo.pcr(pj). Accord-
ing to Observation 2, this indicates thato is not a qualifying
object, thus justifying the first bullet of Observation 3. For
Rule 2, wheno.cfbout(pj) does not intersectrq, o.pcr(pj)
must be disjoint withrq too (sinceo.cfbout(pj) encloses
o.pcr(pj)). In this case, by Observation 2,o can also be
eliminated, confirming the second case in Observation 3.
The modifications to Rules 3-5 (for validating a qualifying
object) follow the same idea.

Although (compared to Observation 2) Observation 3
has weaker pruning/validating power, it requires only the
CFBs of an objecto (instead of them rectangleso.pcr(p1),
..., o.pcr(pm)), and thus reduces space consumption. The
space saving increases node fanout in the corresponding in-
dex structure (the topic of Section 5), which in turn im-
proves query performance. It is worth mentioning that
a more sophisticated function could also be selected for
CFBs, as long as the conservative properties are preserved
(e.g., o.cfbout(pj) should always encloseo.pcr(pj) for
l = 1, ..., m). For example, instead of using a linear form,
one could represento.cfbout(p) using a quadratic function
of p so thato.cfbout(pj) boundso.pcr(pj) more tightly.
While this approach enhances the pruning effect of Obser-
vation 3, it also increases the storage space of CFBs, and
adversely affects query efficiency. Furthermore, as will be
elaborated in Section 5, a linear CFB offers considerable
convenience in updating the index of uncertain data, which
would be difficult for other representations.
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4.4 Finding Conservative Functional Boxes

Next, we elaborate the computation of CFBs. A good
cfbout should be such thatcfbout(pj) (the rectangle out-
put bycfbout with parameterpj) is similar to thepcr(pj)
of the corresponding object, for eachp j (1 ≤ j ≤ m) in
the U-catalog. Sincecfbout(pj) always coverspcr(pj), a
natural goal in optimizingcfbout is to minimize4:

m∑
j=1

MARGIN(cfbout(pj)) (7)

whereMARGIN is the perimeter of ad-dimensional
rectangle. Using the vector representation ofcfbout in For-
mula 4, we can derive Equation 7 as:

m∑
j=1

(
d∑

i=1

(
cfbi+

out(pj) − cfbi−
out(pj)

))
(8)

Recall that, as in Equation 4,cfbout is decided by
two 2d-dimensional vectorsαout and βout, whose com-
ponents are listed as:{α1−

out, α
1+
out, ..., α

d−
out, α

d+
out} and

{β1−
out, β

1+
out, ..., β

d−
out, β

d+
out}, respectively. According to

Equation 4, for eachi ∈ [1, d], we have:

cfbi−
out(p) = αi−

out − βi−
out · p (9)

cfbi+
out(p) = αi+

out − βi+
out · p (10)

Thus, Formula 8 becomes:

d∑
i=1

(
m∑

j=1

(
αi+

out − βi+
out · pj − αi−

out + βi−
out · pj

))

=
d∑

i=1

(
m∑

j=1

(
αi+

out − βi+
out · pj

)
−

m∑
j=1

(
αi−

out − βi−
out · pj

))

=
d∑

i=1

(
m · αi+

out − βi+
out · P − m · αi−

out + βi−
out · P

)

whereP is a constant equal to
∑m

j=1 pj (i.e., the sum of
all the values in the U-catalog). The above equation is min-
imized when

m · αi+
out − βi+

out · P − m · αi−
out + βi−

out · P (11)

takes the smallest value for eachi ∈ [1, d]. Without loss of
generality, next we consideri = 1, and discuss the compu-
tation ofα1−

out, α1+
out, β1−

out, β1+
out that minimize Formula 11.

The solution can be applied to find the bestα i−
out, αi+

out,
βi−

out, βi+
out. Combining the solutions for alli = 1, ..., d,

the resulting vectorsαout andβout achieve the minimum
for Formula 7, and therefore, produce the bestcfb out.

The 4 variablesα1−
out, α1+

out, β1−
out, β1+

out are not arbitrary,
but confined by several linear constraints. First, for eachp j

4An alternative choice is to minimize the sum ofareasof cfbout(pj)
for 1 ≤ j ≤ m. We choose margin because a rectangle with a low margin
also has a small area, but not the vice versa.

(1 ≤ j ≤ m), interval[cfb1−
out(pj), cfb1+

out(pj)] should al-
ways cover the projection of thepcr(pj) of the correspond-
ing object on the first dimension. Denoting this projection
as[pcr1−(pj), pcr1+(pj)], we have:

cfb1−
out(pj) = α1−

out − β1−
out · pj ≤ pcr1−(pj) (12)

cfb1+
out(pj) = α1+

out − β1+
out · pj ≥ pcr1+(pj) (13)

for eachj ∈ [1, m]. Therefore, discoveringα1−
out, α1+

out,
β1−

out, β
1+
out that minimize Formula 11 can be cast as alinear

programmingproblem, subject to the2m linear constraints
shown in inequalities 12 and 13. Linear programming has
been very well studied and numerous efficient solutions ex-
ist. In our implementation, we adopt the well-known Sim-
plex [7] method.

So far we have focused on computingcfbout, while a
similar approach can be utilized to obtaincfb in. Since
cfbin(pj) is always enclosed bypcr(pj), we aim atmaxi-
mizinga metric identical to Formula 7, replacing the sub-
script “out” with “in”. This problem is also an instance
of linear programming, where the objective is to maxi-
mize Formula 11 based on constraints in inequalities 12
and 13 with the following modifications: (i) all subscripts
are changed to “in”, (ii) in inequality 12, sign “≤” should
be “≥”, and (iii) in inequality 13, “≥” should be “≤”.
Unlike discoveringcfbout, finding cfbin requires another
type of constraints capturingcfb1−

in (pj) ≤ cfb1+
in (pj) for

1 ≤ j ≤ m:

α1−
in − β1−

in · pj ≤ α1+
in − β1+

in · pj (14)

In fact, when an object’s pdf (e.g., Gaussian) is sym-
metric with respect to the center of the uncertainty region,
o.cfbin(pj) ando.cfbout(pj) are also symmetric (by the
center) for allj ∈ [1, m]. Hence, the size of representing a
CFB can be cut by half (e.g., in Figure 5a, ifl1 andl2 are
symmetric, then only one line needs to be kept). Note that
the time for computing the conservative functional boxes
of an object is a one-time cost, since the CFBsneed to be
computed only once(at the time the object is inserted into
the database). The resulting CFBs are then managed by an
efficient structure introduced in the next section.

5 The U-Tree
Based on the discussion in the previous section, we can pre-
compute theo.cfbout ando.cfbin of all objectso, and pro-
cess a prob-range query based on sequential scan. Specifi-
cally, given a queryq, the filter step inspects each object in
turn, and attempts to prune it using Observation 3. Objects
that cannot be eliminated this way are candidates, whose
appearance probabilities must be computed from their pdfs
in the refinement step. In this section, we present the U-
tree, an index structure designed to accelerate the filter step.
Section 5.1 explains the structure of a U-tree and its prop-
erties, and Section 5.2 elaborates the algorithm for prob-
range search. Section 5.3 presents the incremental update
algorithms.
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Figure 6: Representation of a non-leaf entry
5.1 Structure Overview and Properties

A U-tree is designed for pruning subtrees that do not con-
tain any results (the structure does not accelerate the vali-
dating process, which requires the detailed information of
individual objects stored in leaf nodes). A leaf entry con-
tains theo.cfbout and o.cfbin of an objecto, the MBR
of its uncertainty regiono.ur, together with a disk address
where the the details ofo.ur and the parameters ofo.pdf
are stored.

An intermediate entryeI carries a pointer referencing
its child node, and twod-dimensional rectanglese.MBR⊥
ande.MBR�. Specifically,e.MBR⊥ is the MBR (mini-
mum bounding rectangle) ofo.cfbout(p1) of all the objects
o in the subtree ofe, wherep1 is the smallest value in the U-
catalog. Thee.MBR� is similarly defined but with respect
to o.cfbout(pm), wherepm is the largest in the U-catalog.

Figure 6 shows a 1D example that illustrates thecfbout

of two objects o1 and o2 (in a way similar to Fig-
ure 5). Specifically, linesl1 and l2 represent function
o1.cfbout(p), segmentAB corresponds too1.cfbout(p1),
and segmentCD to o1.cfbout(pm). Likewise, linesl3
and l4 captureo2.cfbout(p), o2.cfbout(p1) = EF , and
o2.cfbout(pm) = GH . Assume thato1 ando2 are the only
two objects in the subtree of an intermediate entrye. Then,
e.MBR⊥ is intervalAF (i.e., the MBR ofAB andEF ),
while e.MBR� is GD (the MBR ofCD andGH).

Based one.MBR⊥ ande.MBR�, we define a linear
function ofp for e:

e.MBR(p) = α − β · p (15)

whereα and β are 2d-dimensional vectors resulting in
e.MBR(p1) = e.MBR⊥ ande.MBR(pm) = e.MBR�.
The two vectors can be uniquely solved as (considering
p1 = 0): α = e.MBR⊥, and β = (e.MBR⊥ −
e.MBR�)/pm. It is important to note thatα andβ arenot
physically stored; instead, they are derived frome.MBR⊥
and e.MBR� whenever necessary. In Figure 6 (where
e.MBR⊥ is segmentAF ande.MBR� is GD), function
e.MBR(p) is decided by two segmentsl5, l6, wherel5
connects pointsA, G, andl6 links D, F . For thepj shown
in the example,e.MBR(pj) returns a segmentKL, where
pointK (L) is the intersection of linel5 (l6) with the hori-
zontal linep = pj .

Without loss of generality, lete be an intermediate entry
in the U-tree, ando be any object in its subtree.Then, for
any valuepj (1 ≤ j ≤ m) in the U-catalog,e.MBR(pj)
always coverso.cfbout(pj). In Figure 6, for instance, the
o1.cfbout(pj) of o1 equals segmentIJ , which is indeed

enclosed ine.MBR(pj) = IL. This property leads to
an efficient algorithm for prob-range queries, as discussed
shortly.

We point out that an intermediate entry does not con-
tain any information about thecfbin of the objects in its
subtree. Indeed, a U-tree is constructed solely based on
cfbout. As will be elaborated in Section??, although pre-
servingcfbin in non-leaf levels may reduce query costs, it
significantly complicates the resulting structure, as well as
its update algorithms.

5.2 Prob-Range Query Algorithm

We provide an observation for pruning subtrees that do not
contain qualifying objects.

Observation 4. For a prob-range queryq with search regionrq

and probabilitypq, the subtree of an intermediate entrye can
be pruned ifrq does not intersecte.MBR(pj) (for somej ∈
[1, m]), wheree.MBR(.) is a function as in Equation 15, andpj

is the largest value in the U-catalog satisfyingpj ≤ pq.

To establish the correctness of this heuristic (i.e., it does
not generate any false negatives), we will show: no ob-
ject o in the subtree ofe can satisfy queryq if the search
region rq is disjoint with e.MBR(pj) (pj is selected as
above). This is relatively obvious if the probability thresh-
old pq does not exceed1 − pm. Specifically, as mentioned
earlier,o.cfbout(pj) is totally contained ine.MBR(pj).
Sincee.MBR(pj) does not intersectrq, o.cfbout(pj) must
also be disjoint withrq . Notice that the value ofpj here is
identical to that in Rule 2 of Observation 3, which asserts
thato is not a query result.

When pq > 1 − pm, we utilize the fact that all val-
ues in the U-catalog do not exceed 0.5, leading to:p q >
1 − pm ≥ 0.5 ≥ pm. Therefore, thepj in Observation 4
is necessarilypm (the largest value in the U-catalog). Con-
sider an alternative queryq ′ whose probability threshold
pq′ equalspm, and its search region is that ofq (i.e., dis-
joint with e.MBR(pm)). Sincepm ≤ 1− pm, the analysis
earlier shows that no objecto in the subtree ofe can pos-
sibly satisfyq′. Since any qualifying object forq must at
least satisfyq′ (due topq > pq′ ), we guarantee that the
subtree ofe does not have any result forq either.

We are ready to discuss the prob-range algorithm. The
search starts from the root, and eliminates its entries ac-
cording to Observation 4. For each remaining entry, we
retrieve its child node, and perform the above process re-
cursively until a leaf node is reached. For an objecto en-
countered, we first attempt to prune or validate it using Ob-
servation 3. In caseo can neither be eliminated or asserted
as a result, it is added to a candidate setScan together with
the disk address storing itso.ur ando.pdf . After the neces-
sary nodes in the U-tree have been visited, we start the re-
finement step for processingScan. In this phase, elements
in Scan are first grouped by their associated disk addresses.
For each address, one I/O is performed to load the detailed
information of all relevant candidates, whose appearance
probabilities are then computed.
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5.3 Dynamic Update Algorithms

The U-tree shares a common rationale with the R-tree: an
intermediate entry always “bounds” the entries in its sub-
tree. Specifically, lete be an intermediate entry, whose
child node is a non-leaf node. Then,e.MBR⊥ (e.MBR�)
is the MBR of those of all entries in its child node. Hence,
the information of a non-leaf entry can be decided di-
rectly from its child node, without accessing any object
further down its subtree. Furthermore, if we want to in-
sert a new objecto into the subtree of an entrye, the new
e.MBR⊥ (after incorporatingo) equals the union of the
old e.MBR⊥ with o.cfbout(p1), and similarly,e.MBR�
should be updated to the union of itself witho.cfbout(pm).

Observation 4 implies that, to maximize query effec-
tiveness, we should minimize the rectangles returned by
e.MBR(pj) for all j = 1, ..., N . To achieve this, we adapt
the update algorithms of the R*-tree (introduced in Sec-
tion 2.2) to U-trees. The core of adaptation is the opti-
mization metric. Recall that the R* algorithms require four
metrics: (i-ii) the margin (or area) of a MBR, (iii) the over-
lap between two MBRs, and (iv) the distance between the
cetroids of two MBRs. These metrics are no longer suitable
for U-trees because each entry has a more complex form.

We replace these metrics with theirsummed coun-
terparts5. Given an intermediate entrye, its summed
margin equals

∑m
j=1 MARGIN(e.MBR(pj)), where

function e.MBR(.) is defined in Equation 15,pj

is the j-th value in the U-catalog, andMARGIN
gives the margin of rectanglee.MBR(pj). Simi-
larly, a summed area is

∑m
j=1 AREA(e.MBR(pj)).

Given two non-leaf entriese1, e2, we compute their
summed overlap and summed centroid distance as∑m

j=1 OV ERLAP (e1.MBR(pj), e2.MBR(pj)) and∑m
j=1 CDIST (e1.MBR(pj), e2.MBR(pj)) respec-

tively, where OV ERLAP (CDIST ) calculates the
overlapping area (centroid distance) between two rect-
angles. The U-tree aims at minimizing these “summed
metrics” with the reasoning that, a good intermediate entry
e should lead to a small rectanglee.MBR(pj) for all
j = 1, ..., m.

Each insertion/deletion in a U-tree is performed in ex-
actly the same way as the R*-tree, except that each metric
is replaced with its summed counterpart. The only excep-
tion lies in the split algorithm (handling a node overflow).
Recall that, in the R*-tree [1], a node split is performed in
two steps, which select a split axis, and decide the actual
entry distribution, respectively. Each step relies on sorting
the coordinates of the MBRs in the node. In the U-tree, the
sorting must be performed in an alternative manner due to
the difference in entry representation.

Intuitively, a good split should be such that, the par-
ent entriese1 and e2 of the resulting nodes have small
MBR(p) for all valuesp = p1, ..., pm in the U-catalog.
Therefore, ideally, the best split should be obtained by per-

5A similar technique was applied in [11] to convert R*-trees to a
spatio-temporal index.

forming a sorting at eachpj (1 ≤ j ≤ m) which, unfortu-
nately, incurs expensive overhead. We avoid so many sort-
ing operations using a simple heuristic that examines only
the median valuep�m/2� in the U-catalog. Specifically,
given an overflowing leaf (or intermediate) node, we first
compute thee.MBR(p�m/2�) of all entriese contained.
Then, the entry distribution after splitting is decided us-
ing the R*-split, passing all the rectangles obtained in the
previous step. Note that considering all values in the U-
catalog in the other update procedures is feasible, because
the cost of calculating a summed metric is trivial, and no
sorting is required. Finally, although the above discussion
uses intermediate levels as examples, it also applies to leaf
nodes, by replacing functione.MBR(.) with o.cfbout(.)
of an object.

6 Experiments
This section experimentally evaluates the efficiency of the
proposed techniques. We create uncertain data to simu-
late location-based service environments (Figure 1). For
this purpose, we select two real spatial datasetsLB andCA,
which contain 53k and 62k points representing locations in
the Long Beach county and California, respectively6. All
dimensions are normalized to have domains [0, 10000].

Each data pointp generates an uncertain objecto. The
uncertainty regiono.ur is a circle centering atp with ra-
dius 250 (i.e., 2.5% of the length of an axis). The pdf ofo
is Uniform or Constrained-Gaussian(Con-Gaufor short).
Specifically, forUniform, o falls at each position ino.ur
with equal probability. The definition ofCon-Gauis based
on the traditional Gaussian distribution which, however,
has an infinite input universe (in our case,o must be limited
to o.ur). Hence, given the pdfpdfG(x) of Gaussian7, we
first calculate the valueλ =

∫
x∈o.ur pdfG(x)dx, and then

formulatepdfCG as:

pdfCG =

{
pdfG(x)/λ if x ∈ o.ur
0 otherwise

(16)

The variance ofpdfG(x) used to definepdfCG is set to
1252 (i.e., the standard deviation 125 is half the uncertainty
region’s radius). We convertLB and CA into uncertain
datasets by applyingUniform and Con-Gauon their ob-
jects, respectively. Note that theλ in Equation 16 is identi-
cal for all the data items inCA, and needs to be calculated
only once.

In order to investigate our solutions in 3D space, we gen-
erate anotherAircraft dataset as follows. First, 2000 points
are sampled fromLB to serve as “airports”. The “reported
location” of an “airplane” consists of 3 valuesa, b, c, cor-
responding to its spatial location (a, b) and altitudec. To
obtain the first two numbers, we randomly choose two air-
ports as the aircraft’s source and destination; then (a, b) is
set to a random point on the segment connecting the two

6Available at http://www.census.gov/geo/www/tiger/.
7If x is a 2D point with coordinates (a, b), then pdfG(x) =

1
2πσ2 e−[(a−µa)2+(b−µb)2])]/2σ2

, whereσ2 is the variance, andµa,
µb are the means ofa, b, respectively.
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Figure 8: Tuning the catalog
size for U-PCR

airports. The valuec is uniformly obtained in a (normal-
ized) range [0, 10000].Aircraft contains 100k aircrafts thus
obtained, whose uncertainty regions are spheres centering
at their reported locations with radius 125. The pdfs de-
ployed areUniform.

The search region of a query is a square/cube with side
lengthqs, and the distribution of the region’s location (in
the data space) follows that of the underlying data. A work-
load contains 100 queries with the same parametersqs and
pq (i.e., the probability threshold). Since there is no ex-
isting structure for indexing multi-dimensional uncertain
data, we compare the U-tree with its variation (called “U-
PCR”) that stores the PCRs in (leaf and intermediate) en-
tries, as opposed to CFBs. The performance of a structure
is measured as the average (I/O and CPU) time of answer-
ing all the queries in a workload. All the experiments are
performed using a machine with a Pentium III CPU of 800
MHz. The page size is fixed to 4096 bytes.

6.1 Cost of Computing Appearance Probability

We first evaluate the cost of computing the appearance
probability of an object using the monte-carlo method dis-
cussed in Section 3. The efficiency of monte-carlo depends
on the number (n1 in Equation 3) of points generated in
an object’s uncertainty region. The goal is to identify the
lowestn1 that leads to accurate results. We use a workload
where the query regions have the same sizeqs = 500 (5%
of the length of a dimension), but have different intersec-
tions with an object’s uncertainty region (a 2D circle or 3D
sphere). The object’s appearance probability for each query
is estimated using different values ofn1, and the relative er-
ror8 of each estimate is calculated with respect to thetrue
value (obtained with an extremely largen1). The workload
error is the average error of all the queries involved.

Figure 7 shows the workload error asn1 increases (the
accuracy is related only to the area/volume of the uncer-
tainty region, and is independent of the concrete pdf). The
numbers on top of the columns indicate the time (in mil-
liseconds) of computing a single probability. Clearly, in
2D space,n1 must be at least106 to guarantee highly accu-
rate results (with error less than 1%), and the corresponding
number is even higher in 3D space (where an uncertainty
region is “larger”). In the following experiments, we setn1

to 106 for both 2D and 3D, in which case each application
of monte-carlo requires 1.3 milliseconds.

8The relative error equals|act − est|/act, whereact andest are the
actual and estimated values, respectively.

LB CA Aircraft
U-PCR 11.9M 14.0M 40.1M
U-tree 5.0M 5.9M 14.2M

Table 1: Size comparison (bytes)
6.2 Tuning the Catalog Size

The performance of U-PCR is determined by the number
m of values in its U-catalog. The second set of experi-
ments aims at identifying the bestm that maximizes the
effectiveness of U-PCR. Specifically, the catalog contains
values 0, 0.5

m−1 , 1
m−1 , ..., 0.5 (recall that all numbers must

be in the range [0, 0.5]). For each dataset (LB, CA, Air-
craft), we create U-PCR trees withm varied from 3 to 12.
The efficiency of each tree is examined with 80 workloads
that haveqs = 500, and theirpq equals 0.11, 0.12, ..., 0.89,
0.9, respectively. Figure 8 plots the average query time of
these workloads as a function ofm.

U-PCR initially improves asm increases, but deterio-
rates asm grows beyond a certain threshold. This is not
surprising because a U-PCR with a higherm retains more
PCRs in each entry, which permit pruning/validating a
greater number of objects directly (without evaluating their
appearance probabilities), resulting in less CPU cost. How-
ever, a larger catalog size also decreases the node fanout,
leading to more page accesses in processing a query. For
LB andCA, the best performance is obtained withm = 9,
while the optimalm for Aircraft equals 10. We use these
values in the rest of the experiments.

The catalog tuning for U-trees is much easier. The only
disadvantage of using a large sizem is that it will compro-
mise the update performance (recall that each object inser-
tion needs to derivem PCRs). As will be shown in Sec-
tion 6.4, however, the overhead of each PCR computation
is low, which allows the U-tree to utilize a sizable catalog
— an important advantage of U-trees over U-PCR. In the
sequel, we set the U-tree catalog size to 15 (the catalog val-
ues are 0, 1/28, ..., 14/28).

6.3 Space Consumption and Query Performance

Table 1 compares the space consumption of the U-tree and
U-PCR for various datasets. As expected, U-trees are much
smaller due to their greater node capacities. Specifically,
each U-tree entry stores at most two CFBs that are repre-
sented with totally 16 (24) values in 2D (3D) space, as op-
posed to 36 (60) values in each U-PCR entry (for recording
numerous PCRs). Note that the size of a U-tree isnot af-
fected by its catalog size.

In Figure 9a, we illustrate the number of page accesses
of using the U-tree and U-PCR (onLB) to answer work-
loads whosepq equals0.6, and theirqs (size of a query
region) changes from 500 to 2500. The U-tree significantly
outperforms its competitor in all cases, again due to its
much larger node fanout. Figure 9b shows the CPU costs in
the previous experiments, measured in the average number
of appearance probability computations in a query. Each
percentage in this diagram indicates the average percentage
of qualifying objects which are directly validated by the U-
tree/U-PCR in a query. For example, a 90% means that,
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Figure 9: Effects of search region sizes on query performance (p q = 0.6)

among all the objects satisfying a query, on average only
10% have their appearance probabilities calculated. The
CPU overhead of the U-tree is slightly higher because prun-
ing/validating with CFBs is less efficient than with PCRs.
The total costs (including both I/O and CPU time) of the
two methods are compared in Figure 9c.

The same experiments are also performed for datasets
CAandAircraft respectively, and their results are presented
in Figures 9d-9i, confirming similar observations. The only
exception is that in Figure 9h, both methods incur low CPU
time for qs equal to 500 and 1000 because the queries in
these two workloads have fairly small result sizes. Further-
more, the U-tree has better CPU performance than U-PCR.
The reason is that, the CFBs used by the U-tree (for prun-
ing/validating) turn out to be tighter than the PCRs utilized
by U-PCR (note that these CFBs and PCRs are defined at
different probability values).

Figure 10 illustrates the results of the experiments using
workloads whoseqs is fixed to the median value 1500, and
their qp falls in the range from 0.3 to 0.9. Each row of the
figure contains, for one dataset, three diagrams demonstrat-
ing the average I/O cost, number of probability evaluations,
and execution time of a query. U-trees are better than U-
PCR in terms of overall performance.

6.4 Update Overhead

The last set of experiments evaluates the update perfor-
mance of the U-tree. Figure 11a shows the average cost
of an insertion during the index construction forLB, CA,
andAircraft, respectively. Each cost is broken down into
the I/O and CPU overhead, respectively. In particular, the
CPU time essentially corresponds to the combined cost of
(i) the simplex algorithm (for computing CFBs; see Sec-
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I/O CPU
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(a) Insertion (b) Deletion

Figure 11: The update overhead

tion 4.4), and (ii) calculating the necessary PCRs. Then, we
remove all the objects from each U-tree, and measure the
amortized cost of a deletion. The results are demonstrated
in Figure 11b (CPU time is omitted as it is negligible).

7 Conclusions and Future Work

In this paper, we presented a careful study of the proba-
bilistic range search problem on uncertain data. Our solu-
tions can be applied to objects described by arbitrary pdfs,
and process queries efficiently with small space. This work
also lays down a solid foundation for further research on
uncertain databases. An interesting issue is to investigate
the algorithms that deploy U-trees to solve other types of
queries (e.g., those defined in [4]). Another exciting direc-
tion for future work is to derive analytical models [12] that
can accurately estimate the query costs. Such models can
be utilized to facilitate query optimization, which is also an
important topic to be studied.
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