
Checking for k-Anonymity Violation by Views∗

Chao Yao
Ctr. for Secure Info. Sys.
George Mason University

cyao@gmu.edu

X. Sean Wang
Dept. of Computer Sci.
University of Vermont
Sean.Wang@uvm.edu

Sushil Jajodia
Ctr. for Secure Info. Sys.
George Mason University

jajodia@gmu.edu

Abstract

When a private relational table is published
using views, secrecy or privacy may be vio-
lated. This paper uses a formally-defined no-
tion of k-anonymity to measure disclosure by
views, where k >1 is a positive integer. Intu-
itively, violation of k-anonymity occurs when
a particular attribute value of an entity can
be determined to be among less than k pos-
sibilities by using the views together with the
schema information of the private table. The
paper shows that, in general, whether a set
of views violates k-anonymity is a computa-
tionally hard problem. Subcases are iden-
tified and their computational complexities
discussed. Especially interesting are those
subcases that yield polynomial checking algo-
rithms (in the number of tuples in the views).
The paper also provides an efficient conserva-
tive algorithm that checks for necessary con-
ditions for k-anonymity violation.

1 Introduction

In this paper, we are concerned with data release (or
data publication) from relational databases. We as-
sume that secret and private information takes the
form of associations, that is, pairs of values appear-
ing in the same tuple. For example, the association of
“John” with “Obesity” in a medical database is private
information. Note that neither “John” nor “Obesity”
alone is a secret, but the association of the two values

∗The work was partially supported by the NSF grants IIS-
0430402, IIS-0430165, and IIS-0242237.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

is. Instead of releasing the whole relational table that
contains secret associations, we publish query results
on the table.

The released data can thus be described as ma-
terialized views. Secret associations themselves can
also be defined as a view with the projection on
the two attributes involved in a secret or private as-
sociations. For example, in Figure 1, given base
table P1, secret associations can be defined by
ΠName,Problem(P1), while released data are two views,
namely, ΠName,Job(P1) and ΠJob,Problem(P1).

Name Job Salary Problem

George Manager 70K Cold

John Manager 90K Obesity

Bill Lawyer 11K HIV

Base table P1

v1 = ΠName,Job(P1) v2 = ΠJob,Problem(P1)

Name Job

George Manager

John Manager

Bill Lawyer

Job Problem

Manager Cold

Manager Obesity

Lawyer HIV

Figure 1: Base table and two releasing views.

Note views here are used for releasing data instead
of for enforcing access control policies (as in, e.g., [10]).

A simple protection we may immediately come up
with is that we do not allow access to the two at-
tributes in secret associations together in one view.
However, in many cases, releasing the two attributes in
two different views may still cause problems. Indeed,
for the example in Figure 1, it is not difficult to deduce
that “Bill” has “HIV” from the two released views v1

and v2, since “Bill” can only be linked to “HIV” by the
value “Lawyer” on the common attribute between v1

and v2. The purpose of this paper is to study how to
protect secret associations from leaking through mul-
tiple views.

Data release in most cases requires tolerance of
some disclosure (see [8]). A practical approach is to
provide a measure of disclosure and, based on this
measure, organizations can give a threshold on how
much disclosure is tolerated.

910

In short, this paper addresses two problems:
(1) how to define a measure of information disclosure
by a set of releasing views regarding secret associa-
tions, and (2) how to determine whether a set of re-
leasing views discloses more information about secret
associations than a predefined threshold in terms of
the defined measure.

There already exists work addressing the problems
similar to the above ones. Based on a probability
model, Miklau and Suciu suggested a measure on in-
formation disclosure by a set of views w.r.t. a given
secret view [8]. But this measure is to calculate the to-
tal information disclosure about a secret view. It can
happen that the disclosure about a single association
is severe, but the sum of the disclosure for all secret
associations is relatively minor. In practice, disclosure
about a single association matters even if the total dis-
closure is tolerable. Furthermore, in most cases, the
calculation of disclosure based on this measure is far
too hard to be practical; and reasonable and feasi-
ble necessary conditions for the disclosure above the
threshold by this measure do not seem to exist.

In this paper, we apply a different measure, namely
k-anonymity, on the disclosure about each single secret
association; and we provide a set of practical check-
ing methods. The concept of k-anonymity was intro-
duced in [12] to anonymize a single releasing view. We
give a formal definition of k-anonymity based on rela-
tional view. And then we concentrate on how to detect
whether or not a given set of releasing views violates
k-anonymity. We study the cases where checking is
polynomial time and the cases where checking is in-
tractable. For the former, checking methods are pre-
sented; for the latter, we suggest an efficient conserv-
ative checking method based on “indistinguishability”
between tuples in the releasing views.

The rest of paper is organized as follows. In the next
section we provide some intuition about k-anonymity
and related issues. We give our formal definitions and
notation in Section 3. The basic mechanism of our
checking methods is presented in Section 4. We pro-
vide the checking methods for the cases without and
with functional dependencies in Section 5 and Section
6, respectively. The conservative checking method is
introduced in Section 7. We discuss the related work
in Section 8, and conclude with Section 9.

2 Discussion

In this section we discuss the notion of k-anonymity in
an intuitive manner and provide some reasons why it
is nontrivial to check releasing views for k-anonymity
violation. Roughly speaking, k-anonymity means that
one can only be certain that a value is associated with
one of at least k values. Such collections of values
give anonymity to secret associations. For example,
from the releasing views in Figure 1, outside users can
know that George has at least one of two problems

“Cold” and “Obesity”, but outside users do not know
which one is certainly his. We can say the releasing
views do not violate 2-anonymity regarding George’s
privacy. If the views do not violate k-anonymity for a
person, where k is predefined per privacy policy, then
the disclosure of that person’s privacy is considered
tolerable.

ΠNameσSalary>80K (P1) ΠP roblemσ80K<Salary<100K (P1)

Name

John

Bill Name

George

John

Problem

Obesity

ΠNameσSalary<105K (P1)

Figure 2: Three releasing views on P1. Selection condi-
tions play a role in disclosure.

Checking releasing views for k-anonymity turns out
nontrivial in general. Firstly, releasing views may not
merely be projections but with selection conditions.
Such selection conditions make checking difficult. As
an example, in Figure 2, there are three releasing views
on table P1 in Figure 1. If the first view is intersected
with the second one, the third view satisfies the se-
lection condition of the intersection. Thus, “John”
is revealed to be associated with “Obesity”, violating
2-anonymity. Generally, the operations used for infer-
ence can be join, intersection, union, and difference,
making the situation complicated.

Name Problem Charge

George Cold 20K

John Obesity 20K

John Obesity 30K

Bill HIV 30K

Base table P2

ΠName,Charge(P2) ΠCharge,Problem(P2)

Name Charge

George 20K

John 20K

John 30K

Bill 30K

Charge Problem

20K Cold

20K Obesity

30K Obesity

30K HIV

Figure 3: Base table P2 with an FD Name→Problem and
2 releasing views. The FD affects anonymity.

Secondly, FDs (Functional Dependencies) may ex-
ist across views, which in some situations cannot be
assumed to be unknown to outside users. Such FDs
may provide more ways to infer the information about
secret associations. For example, in Figure 3, there
are two releasing views with an FD Name → Problem
across them. Since “John” can be associated with only
one problem, by the given FD, “John” must be associ-
ated with “Obesity”. Since only “obesity” appears in
both tuples in the second view that can join the “John”
tuples in the first view. Thus violation of privacy is
made possible due to the FD.

911

3 Formal Definitions

In this paper, we only consider views on a single pri-
vate table. We believe this covers many cases in prac-
tice. We also restrict the releasing views to those that
contain only (duplicate removing) projections and se-
lections. And we do not consider the situation in which
the base table may be updated.

We assume a base table baseT bl with schema D,
which consists of a set of attributes and a (possible
empty) set of FDs (Functional Dependencies). We as-
sume no NULL values are allowed, and will use ID to
denote the set of all possible relations on D. By this
definition, FDs are the only possible constraints on
baseT bl. We further assume that D contains two at-
tributes ID and P , where a value on ID is an identifier
of an external entity (e.g., a person) while a value on P
is a sensitive property of the entity. Although, baseT bl
may contain many attributes that can be viewed as ID
and P , in the sequel we assume a pair of fixed ID and
P , and we call S = ΠID,P (baseT bl) the secret view on
baseT bl.

We consider the situation where data in baseT bl are
being released in the form of a view set. A view set
is pair (V, v), where V is a list of selection-projection
queries (q1, q2, ..., qn) on baseT bl, and v is a list of rela-
tions (r1, r2, ..., rn) without duplicate tuples such that
∃I ∈ ID, ri = qi(I) for each i = 1, 2, ..., n. We may ab-
breviate (V, v) to v if V is understood. We call a pair
(qi, ri) a view in the view set (V, v), if qi is in V and
ri is the corresponding relation in v. We also denote
(qi, ri) by vi. We suppose there exist views (qi, ri) and
(qj , rj) in v such that qi and qj contain the projection
on ID and P , respectively. In order to avoid confusion
with the tuples in baseT bl, a tuple in a view is called
a PF (Projection Fact), the same term used in [2].

Other than the view set, outside users only know the
base table schema D with its functional dependencies
if any. Given a view set v, outside users can deduce the
possible base table instances that can yield v. The set
of all these instances is denoted as Iv, i.e. Iv = {I ∈
ID|∀(qi, ri) ∈ v : ri = qi(I)}. We use I to denote an
instance in Iv, and S(I) to denote the secret view on
I, i.e., S(I) = ΠID,P (I). We will use T v to denote the
union of all instances in Iv, i.e., the set all of possible
tuples in all instances in Iv.

Binary tuples in ΠID,P (baseT bl), also called secret
associations, are what need to be protected. In Fig-
ure 1, baseT bl is P1, v consists of two views v1 and v2,
and S corresponds to ΠName,Problem(P1). Since (John,
Obesity) is in the secret view from P1, we would like
to protect from outside users the fact that John is as-
sociated with Obesity. “Protect” is a notion defined
precisely below via “anonymity”.

Definition (association cover) Each binary tuple on
(ID, P) is called an association. Given a view set v, a
set A of associations on (ID, P) is called an association

cover w.r.t. v if all the binary tuples in A have the same
ID value and for each I in Iv, S(I) ∩ A 6= ∅.

Each association cover has the same value on ID.
An association cover of size k is called a k-association-
cover. An association cover is minimal if none of
its proper subsets are association covers. In Fig-
ure 1, {(John, Cold), (John, Obesity)} is an associ-
ation cover. Indeed, John is a manager from v1 while
a manager has either Cold or Obesity, or both from
v2. Hence, for any base table instance I that yields
v1 and v2, either (John, Cold) or (John, Obesity), or
both are in S(I). By definition, {(John, Cold),(John,
Obesity)} is 2-association-cover. This cover is minimal
since neither {(John, Cold)} nor {(John, Obesity)} is
an association cover.

Definition (k-anonymity) Given a view set v and
integer k ≥ 2, we say v violates k-anonymity if there
exists an association cover w.r.t. v of size less than k.

Intuitively, if a view set does not violate k-
anonymity (for a user-specified, sufficiently large k),
then we would say that all the secret associations are
“protected”. This definition requires that for each
value a on ID, there does not exist an association
cover with ID being a; in other words, it requires k-
anonymity for each a on ID.

By definition, if a view set violates k-anonymity,
then there exists an n-association-cover such that
n < k. An extreme case is when 2-anonymity is vi-
olated, and in this case we surely know a binary tuple
on (ID, P), the one in the association cover, is a se-
cret association, i.e., it must be in the secret view on
baseT bl (actually on any allowable instance that yields
v). In Figure 1, the view set of v1 and v2 violates 2-
anonymity, since {(Bill, HIV)} is 1-association-cover.
This means (Bill, HIV) must be a secret association.

Proposition 1 Given a view set v, if A is a minimal
association cover, then for each association α in A,
there exists I in Iv such that α ∈ S(I) and (A−{α})∩
S(I) = ∅.1

Proposition 1 says that for each given association in
a minimal association cover, there exists an instance
(that yields v) that contains the given association but
no other associations in the association cover. This
provides an intuition for k-anonymity. By definition,
if a view set does not violate k-anonymity, any of its as-
sociation covers must have at least k associations in it.
It means that outside users can never make sure which
one of k property values an entity e is certainly asso-
ciated with, except when they are be able to exclude
k − 1 values from them using some external knowl-
edge. Indeed, even if they can exclude k−2 values, by

1Proofs are omitted due to space limit, but can be found at
http://mason.gmu.edu/∼cyao/kTechnical.pdf

912

proposition 1, there still exist two possible instances
such that each contains exactly one of the two remain-
ing associations; thus, the outside users still cannot
make sure which one of the values must be associated
with entity e. Therefore, each entity’s secrecy is pro-
tected by a kind of anonymity. The greater the k is,
the more protection the secret has.

Notation Explanation

baseT bl Current Base Table

D Base Table Schema

I
D All allowable base table

instances on D

(v, V) or v View set

I
v All allowable base table

instances yielding v

T v Union of all instances in I
v

S = ΠID,P (baseT bl) Secret view definition

α Association

A Association Cover

Table 1: Notation table.

4 Basic Mechanism

In this section we turn to methods that check whether
a view set violates k-anonymity. By definition, it is
equivalent to checking whether or not there are asso-
ciation covers of size less than k.

If there are no FDs in D, we will show that the
time complexity of checking is polynomial. Otherwise,
checking generally is very intractable. In fact, we will
show that its complexity is Σp

2-hard. Note the com-
plexity here is “data complexity”, i.e., we only con-
sider the size of the relations in the view set as input
size. In this paper, we will consider special cases where
checking can be done in polynomial time, or can be ap-
proximated. (As noted in [13], Σp

2-hard problems are
not easily approximated. Hence it is not easy to find
a good approximation for the general case.)

In Section 5, we first give the checking algorithm for
the case where FDs are not present. This algorithm
also forms the basis for checking methods in Section 6
for the case where FDs are present. We then consider
the subcases where there are no selection conditions
in the queries in the view sets, which is called the
projection-only subcase. We believe this kind of view
set is used frequently in practice.

A view set can be looked as constraints on the base
table, since each instance must exactly return the PFs
(Projection Facts) in the view set. More specifically,
give a view set v, by the definition of Iv, we have
(1) For each PF p in the view (qi, ri) and each instance
I in Iv, a tuple t must exist in I such that p = qi(t);
(2) For each tuple t′ and each view (qi, ri), if p′ = qi(t

′)
and p′ is not in ri, then t′ is not in any instance in Iv.

For example, consider the base table P1 in Fig-
ure 1, and the view (ΠNameσSalary>80K(baseT bl),
{(John); (Bill)}). By property (1) above, for each in-

stance I in Iv, one tuple of the form {(John, j, s, p)},
where s is a value greater than 80k and j and p are any
allowable values, must be in I. Furthermore, by prop-
erty (2), a tuple like (George, manager, 90K, Cold)
cannot be in T v since otherwise George would have
to appear in the view.

To precisely describe the above constraints given by
a view set, we introduce the following concepts.

Definition (Tuple Cover) Given a view set v, a tuple
cover T for v is a set of tuples on D such that for each
I in Iv, I ∩ T 6= ∅.

Tuple covers have a similar meaning as association
covers. Note ΠID,P (T) is an association cover for each
tuple cover T , since for each I in Iv, if I ∩ T 6= ∅,
then ΠID,P (I) ∩ ΠID,P (T) 6= ∅. Thus, we can get all
minimal association covers by obtaining all minimal
tuple covers.

Definition (Tuple Set for a PF) Given a PF p in
a view (qi, ri) in v, the tuple set for p is the set of all
the tuples t in T v such that qi(t) = p.

The tuple set for a PF is all the tuples that exist in
any possible instance and yield the given PF with the
corresponding query. It is easily seen that the tuple
set for a PF is a tuple cover. Indeed, given an instance
I in Iv, there must be a tuple t in I such that qi(t) = p
by the definition of Iv, and therefore the tuple set for
p intersects with I. Therefore, to get all minimal tuple
covers, we may first get all tuple sets for all PFs in v.

Before presenting the basic checking method, we
introduce some more notation for convenience. Given
a view set v, we define the following sets.

• Amin: the set of all minimal association covers;

• Tmin: the set of all minimal tuple covers;

• u(p): the tuple set for PF p in v;

• U : the set of all tuple sets u(p) for all PFs in v;

• w(p): the tuple set for PF p in v disregarding FDs.
Here “disregarding FDs” means that we assume
that there were no FDs on baseT ble even if there
are. That is, as far as w(p) and W below are
concerned, we consider Iv to consist of all possible
instances on baseT bl (that yield v) that do or do
not satisfy the FDs. In case we do not have FDs
on baseT bl to start with, u(p) = w(p).

• W : the set of all tuple sets w(p) for all PFS in v
disregarding FDs.

Proposition 2 Given a view set v, (a) Amin ⊆
{ΠID,P (T)|T ∈Tmin}, (b) u(p) ⊆ w(p) for each p in v.

Proposition 2(a) says that the set of all minimal
association covers are a subset of the set consisting of
all the projections of all minimal tuple covers upon ID
and P . Proposition 2(b) says that for each PF p in v,

913

the tuple set for p is a subset of that disregarding all
the FDs.

Our main checking methods are stimulated by the
above proposition. The outline of the methods are
illustrated by the following diagram.

W ⇒ U ⇒ Tmin ⇒ Amin

That is, we consider the view set without FDs to com-
pute W , explained in Section 5. Such a computing
method is also a checking method for the case without
FDs. Then we present the methods inspired by propo-
sition 2(b) that impose FDs on W to get U in Section
6 for some subcases. Also, we introduce some meth-
ods that compute Tmin from U in Section 6. Finally
we can get Amin from Tmin by Proposition 2(a).

5 Without FDs

This section details a checking method for the case
where there are no FDs on baseT bl. This checking
method in effect gives W from a given view set v. The
time complexity of the method is polynomial in the
number of the tuples in v (the number views and the
size of the view definitions are take as constants).

5.1 Checking method

Since there are no FDs on baseT bl, we have U = W .

Proposition 3 Given a view set v, for two distinct
PFs p1 and p2 in the same view in v, w(p1) and w(p2)
are disjoint.

Since p1 and p2 are distinct tuples in the same view,
there must exists an attribute Â such that the values
of p1 and p2 on Â are distinct. Then w(p1) and w(p2)
must be disjoint.

Proposition 4 For a view set v on baseT bl without
FDs, Tmin ⊆ W .

The above proposition forms the basis of our check-
ing method for this case. By Proposition 2(a),
{ΠID,P (T)|T ∈ Tmin} is a superset of Amin. Since
Tmin is a subset of W , {ΠID,P (w(p))|w(p) ∈ W} is
a super set of Amin. Therefore, the problem of find-
ing all the minimal association covers becomes that of
finding W , all tuple sets for all the PFs.

Now we show a procedure for finding W . Firstly,
for each (qi, ri) in v, let vi be the view set containing
the single view (qi, ri). Given vi, we generate tuple set
Tij for each pij in ri and a complement tuple set Ti0 as
follows, where j = 1, 2, ..., (1) Tij = {t|qi(t) = pij , t ∈

T vi

}; (2) Ti0 is the set of all allowable tuples appearing

in Ivi

that make the selection condition of qi false.
These tuple sets are called tuple sets by single view.
We will use logical expressions to represent these tuple
sets. We use Fij = Ci ∧ pij to express Tij , where Ci is
the selection condition of qi, and pij is the conjunction

∧x(Âx = Π
Âx

(pij)), where x ranges over all attributes

Âx in pij . Clearly, a tuple t is in Tij iff the attribute
values of t satisfy the condition Ci∧pij , since there are
no FDs. Similarly, we use Fi0 = ¬Ci, the complement
to the selection condition of qi, to express Ti0.

For example, consider the view (ΠNameσSalary>80K

(baseT bl), {(John); (Bill)}) in Figure 2, which is also
shown in in Figure 4. (Here we omit out the at-
tribute Job in baseT ble for convenience, since it does
not affect the checking result.) We generate two tu-
ple sets by single view for the PF (John) and (Bill),
respectively, and the dump tuple set. The tuple set
by single view for John is represented by (salary >
80K) ∧ (name = John). In our example, in order to
make easier illustration, we shall use another intuitive
notation (John, s > 80K, ∗) to denote the same tuple
set. Here (John, s > 80K, ∗) denotes the set of tuples
that the first entry value is John, the second is a num-
ber greater than 80K and the third is any allowable
value. Similarly, the tuple set for PF Bill can be writ-
ten as (Bill, s > 80K, ∗); and the complement tuple
set is denoted by (∗, s ≤ 80K, ∗).

For each view vi in v, all tuple sets by vi includ-
ing the complement tuple set are pairwise disjoint by
Proposition 3. Let Zi = (∪Tij∈T iTij) ∪ Ti0, where T i

is the set of all tuple sets by single view for all PFs
in vi. We can now generate w(pij) via the following
proposition.

Proposition 5 Given a view set v, w(pij) = (Tij ∩
(∩m 6=iZm)), for each PF pij in (qi, ri) in v.

Proposition 5 says that for each PF p in one view
in v, to get the tuple sets for p, we can intersect the
tuple set by single view for p with the unions of all
the tuple sets by single view for the PFs in the other
views. For example, given the 3-view set in Figure 2,
let Tij denote a tuple set only by vi and Ti0 denote
a complement tuple set, where j > 0 and i = 1, 2, 3.
Then the tuple set for the PF (John) in v1 is T11 ∩
(T21 ∪ T22 ∪ T20) ∩ (T31 ∪ T32 ∪ T30).

On considering the generation of all tuple sets for
PFs, we can improve this method by merging the com-
mon calculations between the tuple sets. For example,
if the tuple set for p11 is formed by T11 ∩ (T21 ∪ T20)∩
(T31 ∪ T30), it is calculated by the equivalent formula
(T11 ∩T21 ∩T31) ∪ (T11 ∩T21 ∩T30) ∪ (T11 ∩T20 ∩T31)
∪ (T11 ∩ T20 ∩ T30). In other words, each views in
a given view set can be looked as one dimension, in
which each tuple set is a coordinate, since they are
disjoint by Proposition 3. Each point or cell, corre-
sponding to a clause in the above example, is formed
by intersecting the corresponding coordinates. Then
the tuple sets for PFs can be obtained by projecting
corresponding cells. Thus, the common calculations
that generate the cells need not be repeated.

By Proposition 2 and Proposition 4, after obtain-
ing the tuple sets w(pij) for all PFs in v, we project

914

(*, 80K<s<100K, Cough) (John, s>80K, *) (Bill,s>80K, *) (*, s<=80K, *)

(George, s<105K, *)

(John, s<105K, *)

Empty

(John, 80K<s<100K,
Cough)

Empty Empty

Empty Empty(*, s>=105K, *)

EmptyEmpty

Empty

(John,
s>80K, *)

(Bill,s>80K
, *)

(*, s<=80K,
*)

(George, s<105K, *)

(John, s<105K, *)

(*, s>=105K, *)

(*, 80K<s<100K, Cough)

(*, s<=80K or s>=100K, *)

v1

v3

v2

(a) views v1, v2 and v3

(John, s>80K, *) (Bill,s>80K, *) (*, s<=80K, *)

(George, s<105K, *)

(John, s<105K, *)

Empty Empty
(George,

s<=80K, *)

(John,
80K<s<105K, *)

Empty
(John, s<=80K,

*)

(John, s>=105K, *) (Bill,s>=105K,*)(*, s>=105K, *) Empty

v1

v2

(b) views v1 and v2

Figure 4: The illustration of checking procedure for the
view set in Figure 2

them upon ID and P to obtain all minimal associ-
ation covers. Finally, we check these minimal asso-
ciation covers to determine whether the view set vi-
olates k-anonymity or not by looking at the sizes of
the association covers. This is equivalent to checking
whether or not |ΠID(w(pij))| = 1 and |ΠP (w(pij))| < k
for each PF pij . Here we make another improvement
on the method. That is, we make such projections
upon (ID, P) performed in advance. Since the tu-
ple sets are the union of corresponding cells, we can
project each cell upon ID and P , respectively, and
then union the projections. Moreover, since we only
need to know whether or not |ΠID(w(pij))| = 1 and
|ΠP (w(pij))| < k, if for a given cell, the number of
distinct projections on ID is greater than 1, or the
number of distinct projections on P is greater than
or equal to k, or they are just empty, we may just
mark the cell with a special label and do not need to
enumerate the values. Indeed, if one of the cells that
form w(pij) is specially labelled, |ΠID(w(pij))| = 1 ∧
|ΠP (w(pij))| < k is not true. Now we concentrate on
how to project and enumerate the values on ID and P
for each cell. Since each cell is formed by the conjunc-
tion of logical expressions that represents the tuple sets
by single view, the projections are not conventional re-
lation projections, but is equivalent to quantifier elim-

ination [9]. The result of quantifier elimination here is
a formula having a single variable that represents ID
or P . Thus, we can determine how many values on
ID or P can satisfy this kind of formula, and enumer-
ate them. The complete description of the algorithm
is in Figure 5. In the figure, given i and j, the ex-
pression (∪m1,...,mi−1,mi+1,...,mN

(cID
m1...mi−1jmi+1..mN

))

means the union of all sets denoted by cID
...j... that have

the subscript of the j value at the ith position. By the
above study, we can see that the following theorem
holds.

Theorem 1 Given a view set v and integer k, the pro-
cedure in Figure 5 correctly checks v for the violation
of k-anonymity.

Procedure Checking k-anonymity
Input: v, S = ΠID,P and integer k
Output: True (violating k-anonymity) or False

Let N be the number of views in v.
Let ni be the number of PFs in view vi in v
For each view vi with selection condition Ci

Let Fi0 = (¬Ci)
For each PF pj in the view vi

Let Fij = (Ci ∧ pj)
For each m1, ..., mN , where
0 ≤ m1 ≤ n1, ..., 0 ≤ mN ≤ nN

Let cID
m1...mN

= ΠID(F1m1
∧ ... ∧ FNmN

)
Let cP

m1...mN
= ΠP (F1m1

∧ ... ∧ FNmN
)

For each i,j, where 1 ≤ i ≤ N and 1 ≤ j ≤ ni

Let wID
ij = ∪m1,...,mi−1,mi+1,...,mN

(
cID
m1...mi−1jmi+1..mN

)

Let wP
ij = ∪m1,...,mi−1,mi+1,...,mN

(
cP
m1...mi−1jmi+1..mN

)

If |wID
ij | = 1 and |wP

ij | < k
Return true

Return false

Figure 5: A Procedure for checking a view set without
FDs for k-anonymity

Figure 4 shows an example of the generation proce-
dure for tuple sets. Given the 3-view set in Figure 2,
we generate three sets of the tuple sets by single view,
respectively, plus the complement tuple sets, shown
as the coordinates of the three dimensional in Figure
4(a), and then intersect them to generate the tuple
sets for the PFs. In the top portion of Figure 4(a),
we show a tuple set for the PF (Cough) in v3, which
is (John, 80K < s < 100K, Cough). In order to illus-
trate the intersection clearly, Figure 4(b) also shows
the intersection of two sets of the tuple sets by v1 and
v2. We get the tuple sets constrained by the view set
{v1, v2} via the intersection, which are the box with
bold lines in the figure.

915

5.2 Time Complexity and Improvements

Here we are only interested in data complexity with
respect to the number of PFs in a given view set v.
The number of the views and the sizes of the query
expressions in v are taken as constants.

In the algorithm, every operation can be easily im-
plemented except for cID

m1...mN
= ΠID(F1m1

∧ ... ∧

FNmN
) and cP

m1...mN
= ΠP (F1m1

∧ ... ∧ FNmN
) that

are implemented by quantifier elimination and enu-
meration of the satisfied values for logical expressions
having a single variable. Its complexity is dependent
only on the size and type of formula, and the domain
of variables, which are independent on the number of
PFs in v. Thus, the time complexity of each projection
and enumeration is constant regarding the number of
PFs in v. Note that since the selection conditions of
the most queries in releasing views are simple types
of short expressions, such as conjunctive expressions
with inequalities, those projections and enumerations
do not cost much time.

The following two steps dominate the computing
time. One is the generation of N dimensional cells
c. The other is the generation of T ′

ij . The former
has

∏
i |vi| conjunction operations. The latter has

N
∏

i |vi| union operations. Since the number of views
are taken as constant regarding the size of view set
(actually, the complexity is in the number of views),
the data complexity of the method is O((max(|vi|))N).
Hence, we have the following theorem.

Theorem 2 The time complexity of the algorithm in
Figure 5 is polynomial in the number of PFs in a given
view set.

Certainly, this algorithm is just a basic one. It can
be improved in many ways. For example, if two view
sets v1 and v2 have the exclusive selection conditions,
their tuple sets can be put into the same dimension.
Or if v consists of two collections of views that have
exclusive selection conditions to each other, by the fol-
lowing proposition, we can check them separately.

Proposition 6 Given two view sets v and v′, if v and
v′ do not violate k-anonymity and each view of v has
exclusive selection condition to each view of v′, then
the view set v ∪ v′ does not violate k-anonymity.

For the projection-only subcase, the above check-
ing procedure can be simplified greatly. Indeed, it
can be simplified into an intuitive and straightforward
checking method through relational natural join be-
tween views. The complement tuple sets are empty
and hence can be discarded, since there are no selec-
tion conditions for each view. For the same reason,
each PF itself already represents the tuple set. By the
procedure in Figure 5, each cell c is corresponding to
a PF p in the natural join result between the views,
which means that c is composed of all allowable tuples

that have the projection value p. Therefore, checking
can be done by natural join on the views in a given
view set. A pitfall we want to note here is that one may
think checking can be done as follows. For each value
a on ID, count how many values of P are linked to a in
the natural join; if the number is less than k, then the
view set violates k-anonymity. This intuition is not
correct, which is equivalent to only checking the tuple
sets for the values on ID. For example, given two views
(ΠID(baseT bl), {a1}) and (ΠP (baseT bl), {b1, b2}). we
cannot just check the tuple set for a1, which does
not result in the violation of 2-anonymity. However,
{(a1, b1)} is an association cover. In contrast, the pro-
cedure in Figure 5 catches all the minimal association
covers.

6 With FDs

If there are FDs in the base table schema, which out-
side users are assumed to have knowledge of, checking
for k-anonymity is Σp

2-hard, since a special subcase is
Σp

2-complete, which is shown below. We say an FD

Â1 → Â2 is across views v1 and v2, if v1 (v2, respec-

tively) contains a projection on Â1 (Â2, respectively)

in it or Â1 (Â2, respectively) appears in the selection
condition of v1 (v2, respectively).

Theorem 3 Given a two-view set v in the projection-
only subcase, where there is a single FD across them,
and integer k, the problem of whether there exists an
association cover of size less than k is NP-hard.

Theorem 4 Given a two-view set v in the projection-
only subcase, where there are two distinct FDs across
them, the problem of whether a set of associations is an
association cover is CO-NP-complete; Given integer
k, the problem of whether there exists an association
cover of size less than k is Σp

2-complete.

Corollary 1 Given a view set v on baseT bl with FDs,
the problem of whether a set of associations is an as-
sociation cover is CO-NP-hard; Given integer k, the
problem of whether there exists an association cover of
size less than k is Σp

2-hard.

However, there are still many subcases where check-
ing is polynomial or can be approximated easily. We
discuss some typical ones in the following subsections.

6.1 Ineffective FDs for Secret Associations

Not all FDs increase checking complexity. Some FDs
have no effects on a given view set regarding k-
anonymity. For example, given a view v and an FD F
Â1 → Â2, where Â1 and Â2 only appear in the same
view in v, F does not affect v regarding k-anonymity.
Given an FD F and V , for each view set (V, v), if the
set of minimal association covers w.r.t v without F is
the same as that with F , we say F is ineffective for V .

916

We list some typical conditions of ineffective FDs.
Given V and an FD F Â1 → Â2, F is ineffective for
V , if for each two views v1 and v2 in (V, v), one of the
following conditions is hold:

• F is not across v1 and v2;

• F is across v1 and v2; and v1 and v2 have the same
selection condition; and at least one of v1 and v2

contains the projection on (Â1, Â2);

• F is across v1 and v2; and v1 and v2 have the
same selection condition; and there exist Â1→Â3

and Â3→Â2, where Â3 is contained in both v1

and v2;

For example, the queries V in a given view set are
ΠName,Job(baseT bl) and ΠJob,Salary(baseT bl). There
are FDs Name → Job, Job → Salary and Name →
Salary in the schema. By the above 1st and 3rd con-
dition, all these FDs are ineffective for V . Thus, for
any view set from V , the checking method for the case
without FDs can be applied, which is polynomial time.

6.2 Without Common Attributes and with a

Single FD

The common attributes between the views in a given
view set play a major role in the violation of k-
anonymity. If there are no common attributes, check-
ing may be much easier. We first consider a view set
with two projection-only views without common at-
tributes and with a single FD across the views. One
view contains ID, denoted as (qID, rID) or vID, and an-
other contains P , denoted as (qP , rP) or vP . We have
the following conclusion.

Proposition 7 Given a projection-only view set
{(qID, rID), (qP , rP)}, where there is only one FD
across them and there are no common attributes be-
tween them, for each PF pi in rID and each PF pj in
rP , there exists a tuple t in T v such that qID(t) = pi

and qP (t) = pj.

This proposition claims that each PF in vID can
be linked to each PF in vP . Here we say a PF can be
linked to another PF, if there exists a tuple t in T v such
that t yields both PFs. (A checking procedure can be
looked as determining the links between the PFs in
v.) Thus, if the single FD is ID → P , then checking
is trivial, which just counts how many distinct values
on P in rP . Otherwise, checking is NP-complete due
to the FD, as shown in the proof of Theorem 3.

Now we use an example in Figure 6 to illustrate
why checking is NP-hard for this subcase. There is
a two-view set v in Figure 6; attribute A is ID and
attribute D is P . Since the number of distinct values
on B is the same as that on C in v, due to the FD
B → C, each value on B has to be associated with one
and only one value on C in each instance in Iv. Con-
sider the association covers with a1. Since the PFs p11

and p12 containing a1 have two distinct values on B,
they have to be linked to the PFs in the second view
with exact two distinct values on C in each instance
in Iv. Thus, the sets of the PFs in the second view
linked to p11 and p12 are {p21, p22, p23}, {p21, p22, p24},
{p21, p22, p25}, {p23, p24}, {p23, p25}, or {p24, p25}. As
a result, in all instances in Iv, the possible sets of val-
ues on D associated with a1 are {d1, d2}, {d1, d2, d3},
{d1, d2, d4}, {d2, d3}, {d2, d4}, and {d3, d4}. Clearly,
by the definition of association cover, the problem of
finding association cover of size less than k from these
sets is that of finding set cover on these sets of size less
than k that is known to be NP-hard [5].

FD:B → C Secret:(A, D)
ΠA,B(baseT bl) ΠC,D(baseT bl)

A B

p11 a1 b1

p12 a1 b2

p13 a2 b3

p14 a2 b4

C D

p21 c1 d1

p22 c1 d2

p23 c2 d2

p24 c3 d3

p25 c4 d4

Figure 6: An example for the minimal association cover
due to FD.

For this particular case, we can use an approximate
checking method. The basic idea is that if, for each
value a on ID, there exists k base table instances such
that a is associated with a set of distinct values on P
in each instance, then the view set does not violate
k-anonymity. More formally, the following theorem
holds. Indeed, this theorem is general enough to be
applied to other subcases. Here Aa

I denotes the set of
all associations with value a on ID that are in S(I).

Theorem 5 Given a view set v, for each value a on
ID, if there exists k instance I1...Ik ∈ Iv such that
∀Ii, Ij ∈ {I1...Ik}, where i 6= j, Aa

Ii
∩ Aa

Ij
= ∅, then v

does not violate k-anonymity.

We take the example in Figure 6 to explain this
approximate method. We want to check the violation
of 2-anonymity and only consider the value a1 on A
in the example, which has to be associated with two
distinct values on C. By the above theorem, we need
to find 2 instances with disjoint sets of values on D that
a1 is associated with. In one instance, we can let c1

and c2 be associated with a1 so that the set {d1, d2} is
associated with a1. In another instance, we can choose
c3 and c4 to be associated with a1 so that {d3, d4} is
associated with a1. Since {d1, d2} ∩ {d3, d4} = ∅, the
view set does not violate 2-anonymity.

Here we analyze the approximate ratio of this
method. Let l be the least size of minimal association
covers. In general, if we can only find the l′ disjoint
sets of associations in instances, where l′ < k, then it
may or may not violate k-anonymity. Since we can-
not find any other instance without any association in

917

the union of these l′ sets, the union is an association
cover. Therefore, the least size of the association cov-
ers is less than or equal to the size of the union, hence
l′ ≤ l ≤ (l′ ∗ max), where max is the maximum size
among the disjoint sets of associations. For this ex-
ample, let m be the maximum number of the distinct
values on B each value on A is associated with and n is
the maximum number of the distinct values on C each
value on D is associated with. Since max ≤ (m ∗ n),
the approximate ratio is 1/(m ∗ n).

If a given two-view set with a single FD has selection
conditions, then “common attributes” includes the at-
tributes appearing in the selection conditions, and the
above study is still applicable. That is, if there are not
common attributes, then there exists a link between
any two PFs in the two views, and the FD does not
affect the links between PFs but may affect minimal
association cover.

6.3 ID as Key

In practice, it is usual that ID is the key of baseT bl
and there are no other FDs except the FDs involving
the key. Under this situation, checking is tractable in
some subcases.

Because of the FD from ID to P , there is no instance
in Iv such that a value on ID is associated with more
than one values on P . Thus, we only need to check how
many values on P each value on ID can be associated
with.

6.3.1 The projection-only subcase

We first consider the projection-only subcase. Given
a view set v, we construct a graph G as follows. Each
view vi in v is mapped to a node, denoted by N(vi),
in G. If two views vi and vj have common attributes,
then there exists an edge between N(vi) and N(vj).
A join path is a path from N(vID) to N(vP) without
passing any edge more than once. We only consider
the subcase where there is one and only one join path.
If there is no join path, checking is simple, since each
value on ID in vID can be associated with any value
on P in vP , and hence checking is to simply count how
many distinct values on P in vP .

Proposition 8 Given G constructed by v, where G
has only one join path, if an association α exists in
ΠID,P (J), then there exists instance I in Iv such that
α is in ΠID,P (I).

Let Ā be the set of attributes appearing in the views
in the join path. Then the result of the natural join
through the join path is a set of PFs upon Ā, denoted
by J . Since the following proposition holds, to count
how many values on P can be associated with each
value on ID, we can just perform natural join on the
views through the join path and count those associa-
tions in the join result.

For example, we have a view set with 3
views (ΠName,Job, r1), (ΠJob,Salary , r2) and

(ΠSalary,Problem, r3) on the base table in Figure 1.
And we know that Name is the key. In order to
check for k-anonymity violation, we can just perform
r1 ⋊⋉ r2 ⋊⋉ r3 to see in the join result how many values
on Problem in r3 can be associated with each value
on Name in r1, respectively.

6.3.2 The subcase with selection conditions

On extending this subcase to that with selection con-
ditions, we still may be able to perform checking by
join through the join path. The only difference is that
a join between two views is not only a natural join con-
sidering selection conditions. Thus, we concentrate on
two-view sets with selection conditions to demonstrate
the checking method in this subcase.

We take the example in Figure 7 to explain the
checking procedure. The checking is equivalent to de-
termining the possible links between the PFs. We
perform the following procedure. First, we apply the
method in Section 5 to get the links L between the
PFs disregarding the FDs, which is W in Section 5.
We construct a bipartite graph G as Figure 7 from L.
Two sets of nodes are mapped to the PFs in two views
v1 and v2, respectively. If there is a link in L between
p1 in v1 and p2 in v2, then there is an edge between
the two corresponding nodes.

(a1,1)

(a2,2)

(2)

(3)

 , CBBA <Π σ CBC <Π σ

(a3,2)

AKey :),(: CASecret

Figure 7: An example for the bipartite graph for links.

Then we need to remove the links that are not al-
lowed due to the FDs, which actually is to impose FD
on W . The link represented by the dashed line in the
figure is removed in this step. The implementation of
this step is as follows. Since each possible base table
instance yields a set of links between r1 and r2, a sub-
graph m of G. Because A is the key and two views
have the same condition, each node mapped to a PF
in the first view has to be associated with one and only
one node corresponding to a PF in the second view.
Therefore, m has the following properties: (1) Each
node in G is incident to at least one edge in m; (2) no
two edges are in m with the same endpoint on a node
mapped to a PF in the first view. In Figure 7, there is
only one subgraph m, which is the links in solid lines.

Each link must appear in such a subgraph m. Thus,
the problem is transformed into checking whether an
edge e exists in such a subgraph m. We can do this
by checking whether e exists in a complete matching
of G, which can be seen from the properties of m.
To determine e being in a complete matching, we can

918

check whether a complete matching can be found in
G−N(e), where N(e) are the two nodes incident to e.
Since finding a complete matching is polynomial time
in the size of bipartite graph, checking is polynomial
time in the number of PFs in v.

7 Conservative Checking

The previous section shows that accurate checking for
k-anonymity violation in many cases is intractable.
Even though the data complexity of checking in other
cases is polynomial time, it may be too costly to be
practical, especially for view sets with large number
of tuples. Thus, we introduce a conservative checking
method that only checks necessary condition for k-
anonymity violation. We call a checking method “con-
servative” if it always catches k-anonymity violation,
but it may make mistakes when a view set actually
does not violate k-anonymity.

All the necessary conditions in this section are based
on the idea “indistinguishable characteristics” of the
values in secret associations. For example, consider
the three views in Figure 8. In the view containing
Problem, the attribute Salary could be used to link
Problem to Name, since there is an FD Job → Salary.
The two PFs containing Cold and Obesity have the
same value on Salary. As a result, if in an instance, a
value on Name, e.g., George, is associated with only
Cold (Obesity, respectively), then there exists another
instance such that it is associated with Obesity (Cold,
respectively). Due to Name is the key, since George
has to be associated with one problem at a time, ei-
ther (George, Name) or (George, Obesity) alone can-
not be an association cover. Thus, both values cannot
incur the violation of 2-anonymity. In contrast, HIV is
unique, hence may incur the violation of 2-anonymity.
In this sense, we intend to seek the functions catching
such characteristics and find enough different values on
P with the same characteristics regarding associations
with values on ID.

Key:Name FD:Job → Salary

ΠName,Zip(baseT bl) ΠZip,Job(baseT bl)

Name Zip

George 20001

John 20001

Bill 20002

Zip Job

20001 Manager

20001 Manager

20002 Lawyer

ΠSalary,Problem(baseT bl)

Salary Problem

100K Cold

100K Obesity

150K HIV

Figure 8: An example for the characteristics of join. Cold
is the same as Obesity while HIV is unique w.r.t. charac-
teristics base on the PFs containing Problems.

From the above example, we can see that this is a
kind of rough and fast conservative checking method.

We believe this method is practical. Furthermore, this
method makes it possible to tradeoff accuracy with ef-
ficiency by introducing different levels of functions for
such characteristics. Basically, the more conservative
the checking method, usually the faster the checking.
In addition, this method suggests a way to anonymize
the view sets that violate k-anonymity. That is, gen-
eralize and suppress the appropriate attribute values
to make the characteristics of the enough number of
values on P or ID be the same. We do not go into this
direction in this paper.

7.1 General Method

Let IDD denote the set of all allowable values on ID
in the base table schema D and PD denote those on
P . We introduce the concept of signature function to
measure the characteristics of the values on ID and P .

Definition (Signature Function) Given v, a signa-

ture function fv is a mapping IDD × PD → R, where
R is a infinite set. Give a ∈ IDD and b ∈ PD, fv(a, b)
is called the signature of b for a.

A signature function can be looked as a set of cus-
tomized queries on v. The argument of each query is a
pair (a, b) in IDD×PD. As the values of a function are
not related to a or b, the function can be abbreviated
to f(b) or f(a). In this paper, we are only interested
in the particular class of signature functions, symmet-
ric signature function. Before giving its definition, we
introduce the following concept. Here Sa(I) denotes
the set of all associations in S(I) that have the same
value a on ID.

Definition (Symmetric Values) Given a view set

v, a value a in IDD and values b1, b2 in PD, b1 and
b2 are symmetric for a, if the following condition is
satisfied: ∀I ∈ Iv, if exactly one of (a, b1) and (a, b2)
is in Sa(I), there exists I ′ in Iv such that Sa(I ′) =
(Sa(I) − {(a, b1), (a, b2)}) ∪ ({(a, b1), (a, b2)} − Sa(I)).

Proposition 9 Symmetry between values is transi-
tive.

This proposition says that if b1 is symmetric to b2 for
a and b2 is symmetric to b3 for a, then b1 is symmetric
to b3 for a.

Definition (Symmetric Signature Function)
Given a view set v, a signature function f is symmetric
if the following condition is satisfied: ∀a ∈ IDD and
∀b1, b2 ∈ PD, if f(a, b1) = f(a, b2), then b1 and b2 are
symmetric for a.

For the example in Figure 8, for a value b on
Problem, we define a signature function that returns
the value on Salary associated with b. For example,
fv(Bill, Cold) = 100K, which can be abbreviated to

919

fv(Bill). George or John can be associated with ei-
ther Cold or Obesity in possible instances; Bill is not
associated with any one of them in all instances. By
the definition of symmetry, Cold and Obesity, which
have the same signature, are symmetric for all values
on Name. Thus, this function is symmetric.

We can utilize symmetric signature functions to
check if two values are symmetric. Since symmetry
between values is transitive, for two values b1 and
bn in PD, if there exist symmetric signature func-
tions f1, f2, ..., fn−1 and b2, b3, ..., bn−1 in PD

such that f1(a, b1) = f1(a, b2), f2(a, b2) = f2(a, b3),
..., fn−1(a, bn−1) = fn−1(a, bn), then b1 and bn are
symmetric for a. Thus, we can introduce many dif-
ferent symmetric signature functions into the checking
for symmetry between values.

Theorem 6 Given a view set v and a value a in IDD,
v does not violate k-anonymity for a, if there exists I
in Iv, the following condition is satisfied: For each
association (a, b) in S(I), there exists a set of k − 1
distinct values bi such that bi is symmetric to b for a
and (a, bi) is not in S(I).

Procedure Checking k-anonymity for a view set
Input: v, S = ΠID,P , integer k
and a set F of symmetric signature functions
Output: True (possible violation) or False

For each (a, b) in S(baseT bl), a and b are in v
Let U = {b}
For i=1 to k − 1

If ∃bi /∈ U , ∃f ∈ F f(a, bi) = f(a, bj),
bj ∈ U and (a, bi) /∈ S(baseT bl)

Let U = U ∪ bi

Else Return true;
Return false

Figure 9: A general procedure for conservative checking
for k-anonymity

Theorem 6 is the basis of our conservative checking
method. We may choose the current base table as
I in the theorem. Usually, we do not need to check
k-anonymity for all values on ID and P in baseT bl,
but those that appear in v. Because in most cases
the minimal association covers are composed of the
values in v. Therefore, we introduce a general checking
procedure as Figure 9. The basic idea is that for each
association (a, b) in S(baseT bl), check whether we can
find k − 1 distinct values that are symmetric to b for
a by a given set of symmetric signature functions.

7.2 Symmetric Signature Functions

Now we suggest some symmetric signature functions
in the projection-only subcase. It is easy to extend
those signature functions to the subcase with selection
conditions by incorporating the attributes in selection
conditions. We still suppose there are one view vID

containing ID and another view vP containing P . We
use IDv to denote the set of all values on ID in v and
Pv to denote those on P .

Given a view v1, a view v2 is a linkable view for v1,
if (1) there exist common attributes between v1 and
v2, or an FD across v1 and v2; Or (2) there exists view
v3 such that v2 is a linkable view for v3, and v3 is a
linkable view for v1, which means that it is transitive.
Clearly, v1 is a linkable view for itself. We let LC de-
note the set of all the attributes in vP that appear in
a linkable view for vID; LF the set of all the attributes
in vP that have FD relationship with an attribute in
a linkable view for vID, excluding the attribute P . In-
deed, LC and LP collect all the attributes that affect
the characteristics of the values on P regarding as-
sociations. For example, in the example of Figure 8,
Salary is in LF ; and if Zip were contained in the third
view, Zip should be in LC .

Definition (Complete Signature Function) The
complete signature function fP

c (b) is the result of
the query ΠLC∪LF

σP=b(vP) without eliminating du-
plicates.

For the example in Figure 8, for any value on Name,
the complete signature of Cold is {(100K)} on Salary,
which is the same as that of Obesity.

Proposition 10 The complete signature function is
symmetric.

Complete signatures are not related to values on
ID. Thus, we do not need to compute signatures for
each value on ID. As a result, the algorithm in Fig-
ure 9 can be simplified greatly. Furthermore, complete
signatures are simple relational queries, hence can be
easily evaluated. But the complete signature function
reflects a very necessary condition for k-anonymity vi-
olation, since for a value b on P , it conservatively
records the projection values of all tuples that b ap-
pears in upon the set of all attributes that may affect
links between PFs.

Secret:(A, B)
FD:A → D FD:A → B

ΠA,C ΠC,D,B

A C

a1 c1

a1 c2

a2 c1

a2 c2

C D B

c1 d1 b1

c2 d1 b2

c1 d2 b3

c2 d2 b4

ΠA,C ΠC,B

A C

a1 c1

a2 c1

a3 c2

a4 c2

C B

c1 b1

c1 b2

c2 b1

c2 b3

(a) (b)

Figure 10: Examples for symmetric signature functions.

There are some other symmetric signature func-
tions, which can be more complicated but reflect less
necessary conditions for k-anonymity violation. For
the sake of space, we list only two by example. One

920

makes two values b1 and b2 have the same signature,
if for the PFs containing b1 and b2, the projection
values on Lc are the same, and the projection val-
ues on LF have the same complete signature. In
Figure 10(a), b1 and b3 have the same signature be-
cause the values on C are the same and the values
on D, d1 and d2, have the same complete signature.
The other covers the example in Figure 10(b). Such
a signature function, which is related to values on
ID, causes that f(a1, b1) = f(a1, b2) = {(c1)} and
f(a3, b1) = f(a3, b3) = {(c2)}.

8 Related Work
Analysis of information disclosure with views is not
new (see, e.g., [8, 3, 4]). Miklau and Suciu [8] were
perhaps the first to apply perfect secrecy to the analy-
sis of information disclosure, and mainly concentrated
on the conditions of absolute safety. In a followup pa-
per [3], Dalvi et.al. suggested a method to calculate
the disclosure. In [4], Deutsch and Papakonstanti-
nou studied whether or not an extra view discloses
more information than the existing views with respect
to a secret view. However, these methods are based
on probability model and are complex and difficult to
be applied practically. Moreover, the authors did not
measure disclosure at the tuple level. This paper ap-
plied k-anonymity, which is more intuitive, to measure
disclosure at the tuple level.

Previous works about k-anonymity concentrated on
how to gain k-anonymity by modifying the data in a
single view or table [11, 12, 7, 6]. The authors did not
study how to check releasing views for k-anonymity
violation. In addition, k-anonymity considered is be-
tween the given Quasi-ID and sensitive attributes. In
this paper, the checking methods implicitly gave a way
to identify such quasi-IDs. There are other works,
which are not about k-anonymity, on how to protect
secrecy or privacy by modifying data in a single view.
One of them is privacy in data mining, first proposed
by Agrawal and Srikant [1]. In contrast, we concen-
trated on checking for k-anonymity violation.

Another related field is inference control. Authors
studied the information disclosure resulted by FDs or
other constraints at the tuple level. One of recent
works is [2]. Unlike in this paper, the method in [2]
checks whether we can infer sensitive attribute values
of a tuple from other tuples based on the known con-
straints, but does not check the inferences by linking
tuples based on view definitions.

9 Conclusions

In this paper, we applied k-anonymity to measure the
information disclosure of multiple releasing views with
respect to secret associations. We showed that check-
ing is polynomial time when the base table does not
have FDs, while checking is highly complex if the given
view set does. In fact, the general checking is hard

even for a two-view set with a single FD. However,
it is still practical to tackle the checking problem for
the case with FDs. Indeed, we presented some rep-
resentative subcases where checking is easy or can be
approximated. In order to avoid the complex checking
for a given view set, one solution is to make the releas-
ing view set in one of the tractable subcases. That is,
choose the queries for releasing data such that checking
is not hard. Another solution is to use our conservative
checking method.

For future work, we will perform some experiments
on real data to verify the checking methods for k-
anonymity violation. Furthermore, in this paper, we
assumed view sets do not preserve duplicates. Views
with duplicates may disclose more information, and
checking methods need be revised. Finally, we concen-
trated on views having only selection and projection.
Checking methods need to be extended to other kinds
of views such as those using joins.

References

[1] R. Agrawal and R. Srikant. Privacy-preserving
data mining. In SIGMOD, 2000.

[2] A. Brodsky, C. Farkas, and S. Jajodia. Secure
databases: Constraints, inference channels, and
monitoring disclosures. TKDE, 12(6), 2000.

[3] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic
conditional probabilities for conjunctive queries.
In ICDT, 2005.

[4] A. Deutsch and Y. Papakonstantinou. Privacy in
database publishing. In ICDT, 2005.

[5] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, 1979.

[6] R. J. B. Jr. and R. Agrawal. Data privacy through
optimal k-anonymization. In ICDE, 2005.

[7] A. Meyerson and R. Williams. On the complexity
of optimal k-anonymity. In PODS, 2004.

[8] G. Miklau and D. Suciu. A formal analysis of
information disclosure in data exchange. In SIG-
MOD, 2004.

[9] P. Revesz. Introduction to constraint databases.
Springer-Verlag, 2002.

[10] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and
P. Roy. Extending query rewriting techniques for
fine-grained access control. In SIGMOD, 2004.

[11] P. Samarati. Protecting respondents’ identities in
microdata release. TKDE, 13(6):1010–1027, Nov.
2001.

[12] P. Samarati and L. Sweeney. Generalizing data
to provide anonymity when disclosing information
(abstract). In PODS, 1998.

[13] C. Umans. Approximability and Completeness in
the Polynomial Hierarchy. PhD thesis, University
of California, Berkeley, Fall 2000.

921

