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Abstract

In recent years, the wide availability of per-
sonal data has made the problem of privacy
preserving data mining an important one. A
number of methods have recently been pro-
posed for privacy preserving data mining of
multidimensional data records. One of the
methods for privacy preserving data mining
is that of anonymization, in which a record is
released only if it is indistinguishable from k
other entities in the data. We note that meth-
ods such as k-anonymity are highly dependent
upon spatial locality in order to effectively im-
plement the technique in a statistically robust
way. In high dimensional space the data be-
comes sparse, and the concept of spatial local-
ity is no longer easy to define from an applica-
tion point of view. In this paper, we view the
k-anonymization problem from the perspec-
tive of inference attacks over all possible com-
binations of attributes. We show that when
the data contains a large number of attributes
which may be considered quasi-identifiers, it
becomes difficult to anonymize the data with-
out an unacceptably high amount of infor-
mation loss. This is because an exponential
number of combinations of dimensions can be
used to make precise inference attacks, even
when individual attributes are partially spec-
ified within a range. We provide an analysis
of the effect of dimensionality on k-anonymity
methods. We conclude that when a data set
contains a large number of attributes which
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are open to inference attacks, we are faced
with a choice of either completely suppressing
most of the data or losing the desired level of
anonymity. Thus, this paper shows that the
curse of high dimensionality also applies to the
problem of privacy preserving data mining.

1 Introduction

The privacy preserving data mining problem has
gained considerable importance in recent years be-
cause of the vast amounts of personal data about indi-
viduals stored at different commercial vendors and or-
ganizations. In many cases, users are willing to divulge
information about themselves only if the privacy of the
data is guaranteed. Thus methods need to be proposed
to mask the sensitive information in the records. This
creates the natural challenge of mining the data in an
effective way with a limited data representation. A
variety of techniques [3, 4, 6, 7, 9, 10, 11, 12, 14] have
recently been proposed both to represent and mine the
data without loss of privacy. Some important tech-
niques for privacy include methods such as perturba-
tion [4], k-anonymity [14], condensation [1], and data
hiding with conceptual reconstruction [3].
In this paper, we will analyze the k-anonymity ap-

proach [14] for the high dimensional case. The idea
behind this class of approaches is that many of the
fields in the data can be treated as pseudo-identifiers or
quasi-identifiers which can be matched with publically
known data in order to identify individuals. For ex-
ample, a commercial database containing birthdates,
gender and zip-codes can be matched with voter reg-
istration lists in order to identify the individuals pre-
cisely. Another related class of methods to deal with
the issue of k-anonymity is the k-indistinguishability
approach. The k-anonymity and k-indistinguishability
approaches are briefly discussed below:

• In the k-anonymity approach [14], generalization
techniques are applied in order to mask the exact
values of attributes. For example, a quantitative
attribute such as the age may only be specified to
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a range. This is referred to as attribute general-
ization. By defining a high enough level of gener-
alization on each attribute, it is possible to guar-
antee k-anonymity. On the other hand, attribute
generalization also leads to a loss of information.

• In the k-indistinguishability model [1], clustering
techniques are used in order to construct indis-
tinguishable groups of k records. The statistical
characteristics of these clusters are used to gen-
erate pseudo-data which is used for data mining
purposes. While such pseudo-data does not rep-
resent the true data records, it is useful for most
modelling purposes, since it reflects the original
distribution of the records. There are some ad-
vantages in the use of pseudo-data, in that it is
more resistant to hacking, and it does not require
any modification of the underlying data represen-
tation as in a generalization approach.

While the k-anonymity and k-indistinguishability
model differ in the final anonymized data representa-
tion, they are similar in methodology and concept. For
example, both the approaches are aimed to thwart the
case where an inference driven user may use a combi-
nation of attributes in order to infer the identity of the
individual record. Typical anonymization approaches
assume that only a small number of fields which are
available from public data are used as quasi-identifiers.
These methods assume that these publically defined
fields are well studied from a domain specific point of
view and use generalizations on corresponding domain
hierarchies of these small number of fields. These hi-
erarchies are used to construct privacy preserving gen-
eralizations of the data set. While such solutions are
useful for the case of small subsets of quasi-identifiers,
they cannot be used effectively in the high dimensional
case. In general, a quasi-identifier may not be derived
from a public database, but may be any field which
is partially or substantially known to any particular
group or entity (such as an employer). In such cases,
the number of combinations of dimensions available
for inference attacks increases rapidly, and also makes
the data more challenging for the privacy preserva-
tion process. We will see that inter-attribute combi-
nations within a record have such a powerful revealing
effect in the high dimensional case, that the amount
of data required to preserve anonymity increases be-
yond most practical limits. While an earlier paper [1]
has discussed the data mining advantages of preserv-
ing inter-attribute statistics, the results of this paper
would seem to indicate that there are also some ad-
vantages in privacy preservation approaches which do
not preserve inter-dimensional statistics (as in the per-
turbation model [4]).
This paper is organized as follows. In the next sec-

tion, we will discuss some quantifications of informa-
tion loss resulting from the anonymization process. We

will analyze both axis-parallel and generic methods for
the anonymization process. In section 3, we will illus-
trate some empirical results showing the effectiveness
of different methods of privacy preserving data mining.
Section 4 contains discussions and conclusions.

2 The Privacy Model

For ease in exposition, we will assume that any dimen-
sion in the database is a potentially identifying quasi-
identifier. This assumption can be made without loss
of generality, since we can restrict our analysis only to
such identifying attributes. We will further assume the
use of quantitative attributes. This assumption can
also be made without loss of generality. The results
can be easily extended to categorical data, since both
the quantitative and categorical data domains can be
represented in binary form.
We note that all anonymization techniques depend

upon some notion of spatial locality in order to per-
form the generalization. This spatial locality is often
defined in the form of a distance function as in [1].
However distance functions begin to show loss of intra-
record distinctiveness in high dimensional space. It has
been argued in [2, 8], that under certain reasonable
assumptions on the data distribution, the distances of
the nearest and farthest neighbors to a given target in
high dimensional space is almost the same for a variety
of data distributions and distance functions. In such a
case, the concept of spatial locality becomes ill defined,
since the contrasts between the distances to different
data points do not exist. Generalization based ap-
proaches to privacy preserving data mining are deeply
dependent upon spatial locality, since they use the am-
biguity of different data points within a given spatial
locality in order to preserve privacy. We will see that
privacy preservation by anonymization becomes im-
practical in very high dimensional cases, since it leads
to an unacceptable level of information loss.
In order to facilitate further discussion, we will es-

tablish certain notations and definitions. We assume
that all points are distributed in the unit cube. In
Table 1, we have introduced some notations and defi-
nitions, which we will use throughout this paper.
In Figure 1, we have illustrated two cases of gen-

eralization of data points into a range along each di-
mension. In Figure 1(a), 2-anonymization is achieved
by simple discretization without much optimization.
In Figure 1(b), more careful clustering methods are
utilized to achieve 2-anonymity, so that the sizes of
the bounding rectangles are reduced. The latter is
also an example of optimized axis-parallel generaliza-
tions. It is not necessary to generalize using axis-
parallel ranges only. Instead, the condensed statistics
of arbitrary clusters can be used for the anonymiza-
tion process [1]. In general, the problem of finding
the optimal k-anonymous representation is known to
be NP-hard [13]. Therefore, we will analyze both the
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Notation Definition

d Dimensionality of the data space
N Number of data points
F 1-dimensional data

distribution in (0, 1)
Xd Data point from Fd with

each coord. drawn from F
distkd(x, y) Distance between (x1, . . . xd)

and (y1, . . . yd) using Lk metric

=
∑d

i=1
[(xi

1
− xi

2
)k]1/k

‖ · ‖k Distance of a vector
to the origin (0, . . . , 0) using
the function distkd(·, ·)

E[X], var[X] Expected value and
variance of a random variable X

Yd →p c A sequence of vectors
Y1, . . . , Yd converges in probability
to a constant vector c if:
∀ε > 0 limd→∞P [distd(Yd, c) ≤ ε] = 1

Table 1: Notations and Definitions
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Figure 1: Some Examples of Generalization for 2-
Anonymity
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Figure 2: Upper Bound of 2-anonymity Probability in
an Non-Empty Grid Cell

methods of axis-parallel generalization and arbitrary
clustering. We will show that the asymptotic informa-
tion loss with increasing dimensionality is sufficiently
high to make the privacy preservation process imprac-
tical.
First, let us consider the axis-parallel generaliza-

tion approach, in which individual attribute values are
replaced by a randomly chosen interval from which
they are drawn. In order to analyze the behavior of
anonymization approaches with increasing dimension-
ality, we consider the case of data in which individ-
ual dimensions are independent and identically dis-
tributed. The resulting bounds provide insight into the
behavior of the anonymization process with increasing
implicit dimensionality. We construct a bounding box
around a target point Xd in order to generalize it. The
value of the data point Xd in this grid cube is gener-
alized to the corresponding partially specified range
of this bounding box. For data point Xd to main-
tain k-anonymity, this bounding box must contain at
least (k − 1) other points. First, we will consider the
case when the generalization of each point uses a max-
imum fraction f of the data points along each of the
d partially specified dimensions. Thus, data points
which do not satisfy this condition may need to be
suppressed [14]. It has been suggested [14], that sup-
pression of a larger percentage of the data leads to an
unacceptable aggregate change in the statistical char-
acteristics of the data for mining purposes. In the fol-
lowing analysis, we will show the difficulty of preserv-
ing k-anonymity using the approach of partial range
masking.

Lemma 1 Let D be a set of N points drawn from
the d-dimensional distribution Fd in which individual
dimensions are independently distributed. Consider
a randomly chosen grid cell, such that each partially
masked dimension contains a fraction f of the total
data points in the specified range. Then, the prob-
ability P q of exactly q points in the cell is given by
(

N
q

)

· fq·d · (1− fd)(N−q).

Proof: We note that the probability of a data point in
a grid cell with range specificity of f along each of the
d dimensions is given by x = fd. Then, the probability
that a given grid cube contains exactly q points is given
by the binomial distribution with parameters N and
x. Therefore, we can use the binomial distribution
formula to define the corresponding probability P q:

P q =

(

N

q

)

· xq · (1− x)(N−q) (1)

A direct corollary of the above result is the following:

Corollary 1 Let Bk be the event that the grid cell cor-
responding to the partially specified dimensions con-
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tains k or more data points. The corresponding prob-
ability P (Bk) is given by:

P (Bk) =
N
∑

q=k

(

N

q

)

· fq·d · (1− fd)(N−q) (2)

Proof: We note that P (Bk) =
∑N

q=k P
q. By substi-

tuting x = fd from Equation 1, we get the correspond-
ing result.
We note that a set of partially specified dimensions
violates the conditions of k-anonymity, when the cor-
responding set of partially specified ranges contain at
least one data point, but less than k data points.
Therefore, we need to find the conditional probability
denoted by P (Bk|B1). The value of this conditional
probability is defined by the Lemma below.

Lemma 2 Let Bk be the event that the set of par-
tially masked ranges contains at least k data points.
Then the following result for the conditional probabil-
ity P (Bk|B1) holds true:

P (Bk|B1) =

∑N
q=k

(

N
q

)

· fq·d · (1− fd)(N−q)

∑N
q=1

(

N
q

)

· fq·d · (1− fd)(N−q)
(3)

Proof: We know from elementary probability theory
that:

P (Bk|B1) = P (Bk ∩B1)/P (B1) (4)

However, the event Bk is a special case of B1. This
is because if a set of masked ranges contain at least k
points, the corresponding set of ranges must also be
non-empty. Therefore, we have:

P (Bk ∩B1) = P (Bk) (5)

Therefore, we have:

P (Bk|B1) = P (Bk)/P (B1) (6)

By substituting for the value of P (Bk) and P (B1) in
Equation 2, we get the desired result.
We note the following simple observation:

Observation 1 For all k > 2, we have P (Bk|B1) ≤
P (B2|B1).

The above observation is true because the event Bk is
subsumed by the event B2 for any value of k larger
than 2. Therefore, by finding an upper bound on
P (B2|B1), we can also find a upper bound on the prob-
ability that k-anonymity is achieved on a randomly
chosen (non-empty) set of non-empty grid changes.
Next, we observe the following:

P (B2|B1) =
1−N · fd · (1− fd)(N−1) − (1− fd)N

1− (1− fd)N

(7)

The above observation can be easily verified by sub-
stituting the values of k = 2, P (Bk) and P (B1) in
Equation 3 of Lemma 2. We are simply expressing the
events P (B2) and P (B1) in the complementary form

1

of the binomial expression. Next, we will show that the
probability of achieving 2-anonymity in a non-empty
grid cell is zero for the limiting case of high dimension-
ality. We formalize this result as follows:

Lemma 3 The limiting probability for achieving 2-
anonymity in a set of partially specified ranges, each
containing a fraction f < 1 of the data points is zero.
In other words, we have:

limd→∞P (B2|B1) = 0 (8)

Proof: By substituting x = fd in Equation 7, we get:

P (B2|B1) = 1−
N · x · (1− x)N−1

1− (1− x)N
(9)

We note that as d → ∞, we have x → 0. This is
because f < 1. Consequently, we get:

limd→∞P (B2|B1) = 1− limx→0
N · x · (1− x)N−1

1− (1− x)N

(10)
Since both the numerator and denominator tend
to zero in the limiting case, we can use L’Hopital’s
rule to differentiate the numerator and denominator.
Therefore, we have:

P (B2|B1) =

1− limx→0
N ·(1−x)(N−1)

−N ·x·(1−x)(N−2)

N ·(1−x)(N−1)

It is easy to verify that this expression evaluates to
zero.
The following result follows directly:

Corollary 2 The limiting probability for achieving k-
anonymity in a non-empty set of masked ranges con-
taining a fraction f < 1 of the data points is zero. In
other words, we have:

limd→∞P (Bk|B1) = 0 (11)

This result follows because of our earlier observation
that P (Bk|B1) ≤ P (B2|B1). In order to derive a fur-
ther practical understanding of this bound, let us con-
sider some practical values of f . While it is clear that
larger values of the population size (denoted byN) and
f result in increased privacy, it is interesting to ana-
lyze some practical limts on these numbers. Therefore,

1Another way of deriving this would be to simply use the fact
that the event of k or more data points occurring in the unit
cube is the complementary event to that of less than k points
in the unit cube.
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we will set f and N to the largest practical values pos-
sible and calculate the variation of privacy probability
with increasing dimensionality. Therefore we will set
f = 0.5, and N to the values of 3 ∗ 108 and 6 ∗ 109.
The latter two values represent the populations of the
United States and the earth respectively. In Figure
2, we have plotted the 2-anonymity bound with in-
creasing value of the dimensionality d. It is clear that
even for modest values of the dimensionality between
25 and 35, the probability of achieving 2-anonymity
within a non-empty grid cell fall off rapidly. Further-
more, we note that these are upper bounds for very
liberally set values, and represent the probability of 2-
anonymity preservation in each non-empty cell. In or-
der for privacy to be preserved over the entire data set,
the privacy of each non-empty cell must be preserved.
Consequently, the overall probability for 2-anonymity
preservation would be much lower than that predicted
by Figure 2. We note that while these results are de-
rived for uniformly distributed data, they conceptu-
ally represent the behavior of the privacy preservation
process with increasing implicit dimensionality of the
data set. In the empirical section, we will also illus-
trate the cases when correlations are present in the
data and show that a very large fraction of the records
would continue to violate the privacy requirements.
This would require a large level of suppression.
In the previous discussion, we analyzed the privacy

requirements for the case of randomly chosen masked
attributes. Next, we will analyze the case where the
masking can be performed in a more effective way with
optimization techniques such as clustering. An exam-
ple is the anonymization approach of [1] which uses
the technique of multi-group cluster formation with-
out the use of bounding rectangles. In the following
discussion, we will try to find a lower bound on the
information loss for achieving 2-anonymity using any
kind of optimized group formation. We will show that
in this case, the privacy preservation process requires
an unacceptably high loss of information in order to
satisfy the anonymity requirements.
We assume that a set S of k data points are merged

together in one group for the purpose of condensa-
tion. Let M(S) be the maximum euclidian distance
between any pair of data points in this group. We
note that larger values of M(S) represent a greater
loss of information, since the points within a group
cannot be distinguished for the purposes of data min-
ing. Similarly, let M(D) represent the corresponding
measure for the global database D. This provides us
a global base for the overall contrast between different
data points. Then, we define the relative condensation
loss L(S) for that group of k entities as follows:

Definition 1 The relative condensation loss L(S) for
the group S is defined as the following ratio:

L(S) =M(S)/M(D) (12)

Intuitively speaking, the above definition measures
how much of the relative contrast between the data
points (in a group) is lost with respect to the base con-
trast of the remaining data set. A value of L(S) which
is close to one implies that most of the distinguishing
information is lost as a result of the privacy preser-
vation process. We further note that L(S) represents
the very minimum level of information loss that any
anonymization or condensation technique is likely to
be achieve. This is because a particular algorithm for
condensation or anonymization may use domain spe-
cific considerations [14], which are not always optimal
from the information preservation perspective. In the
following analysis, we will show how the value of L(S)
is affected by the dimensionality d.
In order to provide a better understanding of the

results, we will first analyze the behavior of a uniform
distribution of N = 3 data points, and deal with the
particular case of 2-anonymity. For ease in analysis,
we will assume that one of these 3 points is the ori-
gin Od, and the remaining two points are Ad and Bd

which are uniformly distributed in the data cube. We
also assume that the closest of the two points Ad and
Bd need to be merged with Od in order to preserve 2-
anonymity of Od. Later, we will generalize the results
to the case of N = n data points. Since the informa-
tion loss L(·) depends upon relative distances among
data points, we will start by establishing some conver-
gence results about the distances between Ad, Bd, and
Od in high dimensionality.

Lemma 4 Let Fd be uniform distribution of N = 2
points. Let us assume that the closest of the 2 points
to Od is merged with Od to preserve 2-anonymity of
the underlying data. Let qd be the Euclidean dis-
tance of Od to the merged point, and let rd be the dis-
tance of Od to the remaining point. Then, we have:
limd→∞E [rd − qd] = C, where C is some constant.

Proof: Let Ad and Bd be the two points in a d di-
mensional data distribution such that each coordinate
is independently drawn from the data distribution F .
Specifically Ad = (P1 . . . Pd) and Bd = (Q1 . . . Qd)
with Pi and Qi being drawn from F . Let PAd =

{
∑d

i=1(Pi)
2}1/2 be the distance of Ad to the origin

Od, and PBd = {∑d
i=1(Qi)

2}1/2 the distance of Bd

from Od. The difference of distances is PAd − PBd =
{∑d

i=1(Pi)
2}1/2 − {∑d

i=1(Qi)
2}1/2.

It can be shown 2 that the random variable (Pi)
2

has mean 1
3 and standard deviation

(

2
3

)

√

(

1
5

)

. This

means that (PAd)
2/d →p 1/3, (PBd)

k/d →p 1/3
and therefore we have:

PAd/d
1/2 →p (1/3)

1/2
, PBd/d

1/2 →p (1/3)
1/2

(13)

2This is because E[P 2

i ] = 1/3 and E[P 4

i ] = 1/5.
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We intend to show that |PAd − PBd| →p C
′′′ for some

constant C ′′′. We can express |PAd − PBd| in the
following numerator/denominator form:

|PAd − PBd| =
|(PAd)

2 − (PBd)
2|

(PAd) + (PBd)
(14)

Now, we will analyze the convergence behavior of the
numerator and denominator individually. By divid-
ing numerator and denominator on RHS by the same
value, we get:

|PAd − PBd| =
|((PAd)

2 − (PBd)
2)|/

√
d

PAd

d1/2 +
PBd

d1/2

(15)

Consequently, using Slutsky’s theorem 3 and the re-
sults of Equation 13 we obtain

(

PAd

d1/2

)

+

(

PBd

d1/2

)

→p 2/
√
3 (16)

Having characterized the convergence behavior of the
denominator of the right hand side of Equation 15,
let us now examine the behavior of the numerator:
|(PAd)

2−(PBd)
2|/
√
d = |∑d

i=1((Pi)
2−(Qi)

2)|/
√
d =

|∑d
i=1 Ri|/

√
d. Here Ri is the new random variable

defined by ((Pi)
2 − (Qi)

2) ∀i ∈ {1, . . . d}. This ran-
dom variable has zero mean and standard deviation
which is

√
2 · σ where σ is the standard deviation of

(Pi)
2. The sum of different values of Ri over d di-

mensions will converge to a normal distribution with
mean 0 and standard deviation

√
2 · σ ·

√
d because

of the central limit theorem. Consequently, the mean
average deviation of this distribution will be C · σ for
some constant C. Therefore, we have:

limd→∞E

[ |(PAd)
2 − (PBd)

2|√
d

]

≤= C ′′ (17)

Here C ′′ is a new constant defined by a product of
the above mentioned constants. Since the denomina-
tor of Equation 15 shows probabilistic convergence to
2/
√
3, we can combine the results of Equations 15, 16

and 17 to obtain the following result for some constant
C ′′′=C ′′ ·

√
3/2.

limd→∞E [|PAd − PBd|] = C ′′′ (18)

We can easily generalize the result for a database of
N = n uniformly distributed points. The following
corollary provides the result.

Corollary 3 Let Fd be uniform distribution of N = n
points. Let us assume that the closest of the n points is
merged with Od to preserve 2-anonymity. Let qd be the

3Slutsky’s Theorem: Let Y1 . . . Yd . . . be a sequence of ran-
dom vectors and h(·) be a continuous function. If Yd →p c then
h(Yd) →p h(c).

Euclidean distance of Od to the merged point, and let
rd be the distance of the furthest point from Od. Then,
we have: C ′′′ ≤ limd→∞E [rd − qd] ≤ (n − 1) · C ′′′,
where C ′′′ is some constant.

Proof: This is because if L is the expected differ-
ence between the maximum and minimum of two ran-
domly drawn points, then the same value for n points
drawn from the same distribution must be in the range
(L, (n− 1) · L).
A further corollary of the above results is as follows:

Corollary 4 Let Fd be uniform distribution of N = n
points. Let us assume that the closest of the n points
is merged with Od to preserve 2-anonymity. Let qd be
the Euclidean distance of Od to the merged point, and
let rd be the distance of the furthest point from Od.

Then, we have: limd→∞E
[

rd−qd

rd

]

= 0, where C ′′′ is

some constant.

Proof: This result can be proved by showing that
rd →p

√
d. Note that the distance of each point to the

origin in d-dimensional space increases at this rate.
Combining the result with Corollary 3, we see that
both the lower and upper bounds on the expression
converge to 0.
Let S be the two point set represented by Od and the
closest point to Od. We note that the information
loss M(S)/M(D) for 2-anonymity can be expressed4

as 1 − E
[

rd−qd

rd

]

. It is easy to see that the value of

the information loss converges to 1 in the limiting case
in order to achieve 2-anonymity. We also note that
the bounds for 2-anonymity also provide lower bounds
for the general case of k-anonymity. Therefore, the
following result holds:

Theorem 1 For any set S of data points to achieve
k-anonymity, the information loss on the set of points
S must satisfy:

limd→∞E[M(S)/M(D)] = 1 (19)

Thus, these results show that with increasing dimen-
sionality, all the discriminatory information in the data
is lost in order to achieve k-anonymity. In the next sec-
tion, we will experimentally examine the behavior of
these privacy metrics over a variety of data domains
and distributions.

3 Experimental Analysis

In this section, we will provide some experimental
analysis of the behavior of the different data sets. We
will show that the behavior discussed earlier in this
paper is exhibited over a variety of real and synthetic
data sets. The synthetic data sets were generated as

4Here we are approximating M(D) to rd since the origin
of the cube is probabilistically expected to be one of extreme
corners among the maximum distance pair in the database.
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Anonymity with Data Dimensionality (Gaussian Clus-
ters)
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Figure 4: Minimum Information Loss for 2-Anonymity
(Gaussian Clusters)
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Figure 5: Fraction of Data Points Preserving 2-
Anonymity with Data Dimensionality (Market Basket
Data)
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Figure 6: Minimum Information Loss for 2-Anonymity
(Market Basket Data)
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Gaussian clusters with randomly distributed centers in
the unit cube. The radius along each dimension of each
of the clusters was a random variable with a mean of
0.075 and standard deviation of 0.025. Thus, a given
cluster could be elongated differently along different
dimensions by varying the corresponding standard de-
viation. Each data set was generated with N = 10000
data points in a total of 50 dimensions. Finally, the
data set was normalized such that the variance along
each dimension was 1 unit. We generated the data sets
with different numbers (1, 2, 5 and 10) of clusters in
order to test the effectiveness of the method with data
skew. A larger number of clusters lead to a greater
amount of skew in the data.

We tested the two measures on the bounds for the
privacy preservation process using projections of differ-
ent dimensionality from the generated data set. Since
the original data set was 50-dimensional, projections
up to 50 dimensions could be generated. In Figure
3, we have illustrated the behavior of a generaliza-
tion approach in which each attribute is divided into
only two ranges. The number of dimensions on the
X-axis represents those which are partially specified
using these two ranges, whereas all other dimensions
are fully suppressed. On the Y -axis, we have illus-
trated the percentage of data points which maintain
2-anonymity using this generalization. We note that
all other data points (which violate the 2-anonymity
condition) would need to be suppressed. A high per-
centage of suppression is never acceptable from a data
mining point of view [14]. It is interesting to see that
while a greater number of clusters (and corresponding
skew) in the underlying data helps the anonymization,
the percentage of data points which continue to pre-
serve privacy falls off rapidly with increasing data di-
mensionality. When the data sets contained more than
45 dimensions, almost all the data points violated the
2-anonymity condition. Another interesting character-
istic of the results of Figure 3 is that for the case of
1 cluster, the shape of the corresponding curve resem-
bles that of Figure 1. The main difference is that in
this case, the rate of privacy preservation falls off much
more rapidly. This is because the results in Figure 1
only represent upper bounds on the true probability
of privacy preservation.

In Figure 4, we have illustrated the minimum infor-
mation loss for data sets of different dimensionalities.
This corresponds to the loss L(·) as defined earlier in
this paper. It is easy to see from Figure 4 that the
level of information loss increases rapidly with increas-
ing dimensionality. As in the previous case, the data
sets with a smaller number of clusters were more dif-
ficult cases. Therefore, the information loss is higher
in these cases as well. This is because the presence
of greater number of closely clustered regions in the
data helps in creating masked groups of anonymized
data with lower information loss. However, the over-

all trends show that even the clustered behavior of the
data cannot compensate for the sparsity effects in high
dimensionality. This means that either a large portion
of the attributes have to be completely masked in such
cases, or the effectiveness of the anonymization pro-
cess needs to be compromised. On the other hand, the
complete suppression of a large number of attributes
reduces the effectiveness of data mining algorithms on
the anonymized data.
We also tested the anonymization behavior with a

number of market basket data sets. These data sets
were generated using the data generator discussed in
[5], except that the dimensionality was reduced to only
100 items. This was done in order to moderate the
sparsity of the data. This is because most of the in-
teresting variations in privacy behavior are observed
within this range. For a larger number of items, the
data is too sparse to exhibit any kind of anonymiza-
tion based privacy. In order to anonymize the data,
each customer who bought an item was masked by
also including other random customers as buyers of
that item. Thus, this experiment to useful to illustrate
the effect of our technique on categorical data sets. As
a result, for each item, the masked data showed that
50% of the customers had bought it, and the other 50%
had not bought it. Using this approach, we checked
the probability of a customer preserving 2-anonymity,
when an increasing number of items were open to infer-
ence attacks. The results are illustrated5 in Figure 5.
It is clear that in each case, the fraction of customers
preserving 2-anonymity dropped off rapidly when even
15 to 20 items were open to inference attacks. In the
case of the market basket data sets the privacy reduc-
tion is much more dramatic than in the Gaussian clus-
tered data set. It is also interesting to note that while
the perturbation approach [4] has also been applied to
the market basket problem, it has not been tested for
robustness in the presence of inference attacks which
use a combination of attributes. This is an interesting
issue which we will investigate in future work.
In Figure 6, we have illustrated the minimum in-

formation loss L(·) for any condensation strategy pre-
serving 2-anonymity. The results show that an infor-
mation loss of 50 − 60% is achieved rapidly for even
cases where a small set of 50 to 60 items are open to
inference attacks. As in the previous figure, the pri-
vacy reduction is much more dramatic for the case of
the market basket data set. This is because while the
market basket data set contains correlations between
some subsets of items, an individual transaction may
contain many such independent subsets. This opens
the data to inference attacks. Thus, the results show
that the anonymity model is open to inference attacks

5The notations for the data sets in Figures 5 and 6 are the
same as those in [5], except that we have replaced T with U in
order to denote the fact that the data set contains 100 items
instead of 1000 items. Thus U20.I4.D10K represents a trans-
action with 20 items, potential basket size 4, and 10K records.
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when a large number of concepts exist in the data.
This also corresponds to a high implicit dimensional-
ity of the underlying data. The behavior of privacy
preserving data mining algorithms with increasing di-
mensionality is similar to that of other data mining al-
gorithms, which fail to perform effectively in the high
dimensional case because of data sparsity. This spar-
sity also makes the data more susceptible to inference
attacks. Thus, this paper illustrates that the curse of
high dimensionality is also relevant to the problem of
privacy preserving data mining.

4 Conclusions and Summary

This paper discusses the effects of the curse of high
dimensionality on privacy preserving data mining al-
gorithms. Since k-anonymity models attempt to re-
tain partial information about different dimensions si-
multaneously they are more open to inference attacks.
This paper shows that in many high-dimensional cases,
the level of information loss required in order to pre-
serve even 2-anonymity may not be acceptable from a
data mining point of view. This is because the specifics
of the inter-attribute behavior have a very powerful
revealing effect in the high dimensional case. We also
conjecture that in such cases, it may be more effective
to use perturbation techniques [4] which do not pre-
serve such inter-attribute information but work with
aggregate distributions on individual dimensions. An-
other possibility is to use selective information hiding
in conjunction with conceptual reconstruction tech-
niques [3]. Our future work will analyze the effective-
ness of different kinds of privacy models in the high
dimensional case.
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