
Distributed Privacy Preserving Information Sharing

Nan Zhang Wei Zhao

Department of Computer Science, Texas A&M University
College Station, TX 77843

USA
{nzhang, zhao}@cs.tamu.edu

Abstract

In this paper, we address issues related to sharing
information in a distributed system consisting of
autonomous entities, each of which holds a private
database. Semi-honest behavior has been widely
adopted as the model for adversarial threats. How-
ever, it substantially underestimates the capabil-
ity of adversaries in reality. In this paper, we
consider a threat space containing more power-
ful adversaries that includes not only semi-honest
but also those malicious adversaries. In partic-
ular, we classify malicious adversaries into two
widely existing subclasses, called weakly mali-
cious and strongly malicious adversaries, respec-
tively. We define a measure of privacy leakage
for information sharing systems and propose pro-
tocols that can effectively and efficiently protect
privacy against different kinds of malicious adver-
saries.

1 Introduction
In this paper, we address issues related to sharing informa-
tion in a distributed system consisting of autonomous enti-
ties, each of which holds a private database. The entities are
willing to share information across their databases. Never-
theless, no entity is willing to disclose its private data to
other entities due to privacy concern. Typical applications
of privacy preserving information sharing problem include
document sharing, shared medical databases, etc [2].

Various solutions have been proposed to preserve pri-
vacy in distributed information sharing systems. In [13],
an architecture was proposed to share information using
the trusted third party services. However, since the third
party has to be trusted by all entities, it may be difficult, if
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not impossible, for the existence of such an entity in real
systems. Therefore, we focus on the information sharing
problem in a system without a trusted third party.

In this case, the problem is usually formulated as a vari-
ation of the secure multiparty computation (SMC) prob-
lem, which has been extensively studied in the literature
[10]. Although a general solution to SMC problems has
been proven to exist [11, 26], it has a high computational
overhead and thus cannot be efficiently used in practice.
By making a tradeoff between generality and efficiency,
various solutions have been proposed to solve a wide va-
riety of information sharing problems including intersec-
tion [1, 2, 9, 12, 18], equijoin [1, 2], association rule min-
ing [14,22], classification [6,15,16,23], top-k queries [24],
and statistical analysis [5].

As with many SMC protocols, most solutions share a
common assumption that all entities are honest or semi-
honest [10]. That is, all entities are well disciplined to
follow the protocol properly, with the only exception that
an adversary may keep a record of all intermediate com-
putation. This assumption substantially underestimates the
capability of adversaries on compromising the privacy of
other entities, and thus does not always suffice for real sys-
tems.

Some work has been shown to remove the semi-honest
assumption (e.g., [9]). However, a weaker assumption is
then taken: the size of the database of each entity is known
by all entities as pre-knowledge1. This assumption tacitly
eliminates from consideration a class of adversaries which
remove real data from or insert forged data into their data-
bases. Note that by changing (the size of) its database, an
adversary can infer considerable private information from
the (legitimate) result of information sharing. Thus, thisas-
sumption also ignores some privacy intrusion attacks that
may be launched by adversaries.

In this paper, we remove the constraints on the behavior
of entities. In our system setting, an adversary may de-
viate from the protocol and/or manipulate its database for
the purpose of privacy intrusion. We also allow an hon-
est entity to do the same for certain defensive countermea-

1Besides, the work in [9] is based on the client-server model and only
requires one entity (client) to know the information sharing result.
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sures. Since behavior can no longer be used to differentiate
adversaries, we classify honest entities and adversaries by
their willingness to share information and/or compromise
the privacy of other entities. As in common cases, we as-
sume that all entities are rational in that they make deci-
sions (e.g., attacking methods, defensive countermeasures,
etc) based on their intent to optimize their individual bene-
fits.

In this paper, we propose a formal model of adversaries.
In particular, we identify two classes of adversaries which
widely exist in real systems.

1. The first class of adversaries are those that intend to
compromise the privacy of the other entities but will
only do so if 1) they will not be convicted as adver-
saries by the other entities, and 2) the information
sharing will still succeed. We refer to this class of
adversaries asweakly malicious adversaries.

Semi-honest adversaries are in this class. Neverthe-
less, an adversary in this class may not necessarily
be semi-honest. We note that while semi-honest ad-
versaries are required to follow the protocol properly,
weakly malicious adversaries may deviate from the
protocol and/or manipulate its database as long as by
doing so, the above two conditions are still met.

2. The second class of adversaries are those that will do
whatever they can to compromise the privacy of the
other entities. In particular, they may even not share
any data but manipulate an input database and use it
to compromise private information. We refer to this
class of adversaries asstrongly malicious adversaries.

In this paper, we will address both classes of adversaries.
Compared with classifying adversaries based on their be-
havior, our intent-based classification is more tractable for
system designers. In real-world applications of information
sharing (e.g., sharing information across cooperating com-
panies or government agencies whose objectives are easy
to assess), it is relatively easy to identify whether or not
an entity has the need to share information. However, it is
rather hard to determine if an entity has the capability to
change its input database or deviate from the protocol (i.e.,
if it is appropriate to model the entity as semi-honest).

In this study, we focus on the intersection problem, in
which two entities collaborate to share the intersection of
their databases. Intersection is one of the most important
problems in information sharing. Intersection protocols
have been widely used as a primitive in many informa-
tion sharing applications including classification, associa-
tion rule mining, etc. Nevertheless, we would like to re-
mark that our goal in this paper is not to design solutions for
specific information sharing problems. Rather, we are us-
ing the intersection problem as an example to demonstrate
our methodology to deal with adversaries without behavior
restriction.

For weakly malicious adversaries, we derive a lower
bound on the communication complexity of protocols that

are capable of preserving privacy without compromising
the accuracy of information sharing result. We design a
protocol which indeed outperforms this lower bound with
the tradeoff of little privacy disclosure. We evaluate the
amount of privacy disclosure when our protocol is used and
show that the privacy of the defending entity is effectively
preserved.

For strongly malicious adversaries, as we will show in
this paper, a tradeoff has to be made between privacy pro-
tection and accuracy of information sharing result. As
such, we propose a game theoretic formulation of the sys-
tem based on the attacking methods and defensive coun-
termeasures. Based on this formulation, we derive a Nash
equilibrium of the game, which is a state in which both the
adversary and the defending entity achieve their optimal
strategies (i.e., attacking methods or defensive countermea-
sures). Neither entity can benefit by unitarily changing its
strategy. Thus, to benefit their own interests, both entities
have to adopt the strategies defined by the Nash equilib-
rium. We evaluate the performance of defensive counter-
measure in this state and show that with an acceptable loss
of accuracy, the privacy of the defending entity can be ef-
fectively preserved in many systems.

Our results are significant as this is the first effort to re-
move the restriction on adversary behavior and design sim-
ple solutions for information sharing problems by either 1)
constraining the adversary goal to be weakly malicious, or
2) allowing a tradeoff between accuracy and privacy.

The rest of the paper is organized as follows: We in-
troduce the system model in Section 2. In Section 3, we
introduce our model of adversaries. We present two pro-
tocols: Protocol A designed for systems with weakly mali-
cious adversaries, and Protocol B for systems with strongly
malicious adversaries, respectively in Section 4. Theoreti-
cal analysis on the performance of Protocol A is presented
in Section 5. For systems using Protocol B, we propose
a game theoretic formulation of the system and derive a
Nash equilibrium of the game in Section 6 and Section 7. A
numerical performance evaluation of our protocols is pro-
vided in Section 8, followed by final remarks in Section 9.

2 System Models

2.1 Parties

Let there be two entitiesP0 andP1 in the system that we
refer to as parties. In this paper, unless otherwise indicated,
we assume thatP1 intends to compromise the privacy ofP0

while P0 does not have such intension. Thus, we callP0 a
defending party andP1 an adversary. Neither party knows
if the other party is an adversary.

Each partyPi has a private datasetVi which contains
numerous data. Since the parties are supposed to share the
intersection of their datasets, we assume that no data value
appears more than once in the same dataset. As is com-
monly assumed in the literature, each data point inVi is
chosen independently and randomly from a (much larger)
setV = {v1, . . . , vm}. We usepij to denote the probabil-
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ity that a data pointvj ∈ V appears inVi. For the sim-
plicity of discussion, we assume that for alli ∈ {0, 1} and
j ∈ [1, m], there ispij = p. Both parties knowV andp.
Nevertheless, neither party knows the size or content of the
dataset of the other party.

2.2 Problem Statement

In an ideal situation, both parties should obtainV0∩V1 and
nothing else at the end of the information sharing process.
In reality, this requirement is often relaxed. A common
compromise is to allow each party to learn the size of the
dataset of the other party after information sharing [2]. As
such, we say a system issecureif after information sharing,
both parties obtainV0 ∩ V1, the size of the dataset of the
other party, and nothing else. We define theprivacyof party
P0 as

V p
0 = V0\(V0 ∩ V1) = V0\V1. (1)

Note that whenP1 changes its input dataset toV ′
1 , the pri-

vacy of P0 doesnot change because we defineV p
0 based

on thereal datasets instead of theinputdatasets. For exam-
ple, whenP1 is a malicious adversary with no data to share
(i.e., V1 = φ), the privacy ofP0 should always beV0 no
matter what datasetP1 manipulates to be its input dataset
to the information sharing.

The objective of information sharing is to let both par-
ties knowV0 ∩ V1 and makeV p

0 free from unauthorized
intrusion byP1.

2.3 System Infrastructure

There is an information sharing protocol jointly agreed by
all parties. We assume that for each party, there is a local
processing module that processes the dataset of the party
and exchanges information with (the local processing mod-
ule of) the other party. The information sharing protocol
is implemented by the processing of and communication
between the local processing modules of the two parties.
Figure 1 shows an information sharing system under this
framework. As in common cases, we assume that the de-
fending party will quit the protocol immediately if it can
prove that the other party is an adversary.

0P
0V

0P
0V

0 1V V∩
Local
Processing
Module

network
Local
Processing
Module

1V

0 1V V∩

1P

Figure 1: System Infrastructure

Nevertheless, as we mentioned in Section 1, we do not
impose any obligatory behavior restriction on either party.
We say that a party changes its input dataset if the party
manipulates a dataset as the input to its local processing
module. We say a party revises its local processing module
if the party deviates from the protocol by other means.

2.4 Strategies

In the system, each party needs to choose

• the input from the party to its local processing module,

• the (possibly revised) local processing module of the
party.

In addition, an adversary also needs to deliver a datasetṼ0

that contains all data points that the adversary believes to
be inV p

0 .
As such, the attacking method of an adversary is to

choose a combination of the methods of manipulating its
input dataset, modifying local processing module, and gen-
eratingṼ0. Since a defending party does not intend to com-
promise privacy, the defensive countermeasure of a defend-
ing party is limited to the former two methods. The attack-
ing methods and defensive countermeasures will be further
addressed later in this paper.

2.5 Performance Measurements

Given the attacking method and the defensive countermea-
sure, we need to measure the accuracy of information shar-
ing result and the amount of privacy disclosure in informa-
tion sharing.

2.5.1 Accuracy Measurement

Let the attacking method of the adversary and the defen-
sive countermeasure of the defending party besA andsD,
respectively. We propose anaccuracy measurela(sA, sD)
as follows to indicate the success of information sharing.

la(sA, sD) =

{

1, if both parties obtainV0 ∩ V1,
0, otherwise. (2)

2.5.2 Privacy Measurement

Recall thatṼ0 is the set of data points that the adversary
believes to be inV P

0 and uses to perform unauthorized in-
trusion against the defending party. As such, a straightfor-
ward measure of privacy disclosure is the number of private
data points iñV0. LetExp[·] be the expected value of a ran-
dom variable. SincẽV0 may be randomly generated by the
adversary, we formalize this measure as

α(sA, sD) = Exp
Ṽ0

[

|Ṽ0 ∩ V p
0 |

|V p
0 |

]

, (3)

which is the expected percentage of private data points in-
cluded inṼ0. This measure is also referred to asrecall in
information retrieval [3]. Readers may raise a question of
why we do not measure the maximum number of private
data points iñV0. We believe that it is not effective to mea-
sure such a worst case situation. The reason is as follows:
consider an attacking method which randomly generatesṼ0

from V . For any given system, it is always possible for the
adversary to generatẽV0 = V p

0 . As such, the worst case
privacy disclosure is always100% of the private data.
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Since the defending party may also change its input
dataset, we note that there may also exist data points in
Ṽ0 which are not inV0 (i.e., false positives). As such, there
is another measure of privacy disclosure

β(sA, sD) = Exp
Ṽ0

[

|Ṽ0 ∩ V p
0 |

|Ṽ0|

]

. (4)

This measure is also referred to asprecisionin information
retrieval [3]. For the same reason asα(sA, sD), we measure
the expected value instead of the worst case situation. Note
thatβ(sA, sD) is also very important for measuring privacy
disclosure because if onlyα(sA, sD) is used to measure the
privacy disclosure, the maximum privacy disclosure (i.e.,
α(sA, sD) = 1) is achieved when the adversary generates
Ṽ0 = V .

As we can see, the amount of private information ob-
tained by the adversary cannot be determined by eitherα(·)
or β(·) unitarily, but can be determined by the combination
of them. This results in a problem comparing the amount
of privacy disclosure in two cases if one has a largerα(·)
while the other one has a largerβ(·). Such comparison de-
pends on the system setting, as is shown by the following
example.

Suppose that the defending party always uses a coun-
termeasuresD. Let sA be an attacking method with
α(sA, sD) = 100% andβ(sA, sD) = 30%. Let s′A be an
attacking method withα(s′A, sD) = 5% andβ(s′A, sD) =
100%. We will show the comparison between the amount
of privacy disclosure whensA ands′A are used in two sys-
tem settings. First, consider a system where the two parties
are two online retailers. The data points inVi are the tele-
phone numbers of the customers ofPi. The adversary uses
the compromised telephone numbers to make unauthorized
advertisement to the customers. In this system setting, the
adversary preferssA because a wrong phone call (using
v ∈ Ṽ0\V

p
0 ) costs the adversary little. As such,sA should

have a higher privacy disclosure measure.
We now consider another system where the two parties

are two consulting firms. Each data point inVi is an un-
published profit expectation of a company. The adversary
uses the compromised financial data to make investment on
a high-risk stock market against the benefit of the defend-
ing party. The profit from a successful investment (using
v ∈ V P

0 ) is huge. Nonetheless, a failed investment (using
v ∈ Ṽ0\V

p
0 ) costs the adversary five times larger than the

profit from a successful investment. In this system setting,
the adversary preferss′A because ifsA is used, the expected
return from an investment is less than0 (i.e., the adversary
would rather generatẽV0 = φ). Thus,s′A should have a
higher privacy disclosure measure in this system setting.

As we can see from the above example, we need to in-
troduce the system setting to the measure of privacy dis-
closure. Letδ(v) be the profit obtained by the adversary
from an unauthorized intrusion based onv ∈ V . Since
the adversary intends to compromise the privacy ofP0, we
haveδ(v) > 0 for all v ∈ V P

0 . Note that there must be

δ(v) < 0 for anyv 6∈ V P
0 because otherwise the adversary

will always include suchv in Ṽ0. We define system setting
parameterµ as

µ =

∣

∣

∣

∣

Exp[δ(v)|v 6∈ V0]

Exp[δ(v)|v ∈ V0]

∣

∣

∣

∣

. (5)

Based on the system setting parameter, we can derive a
lower bound onβ(sA, sD) to makeṼ0 meaningful for the
adversary.

Theorem 2.1. The profit obtained by the adversary from
the unauthorized intrusion is no less than0 if and only if

β(sA, sD) ≥
µ

µ + 1
. (6)

This theorem can be easily proved using our definition
of µ. As we can see, whenβ(sA, sD) < µ/(µ + 1), the
return from unauthorized intrusion using̃V0 is less than0.
Since the adversary is rational, the adversary prefersṼ0 =
φ to the Ṽ0 generated bysA. WhenṼ0 = φ, the amount
of privacy disclosure is0. As such, we define theprivacy
disclosure measureas follows.

lp(sA, sD) =

{

α(sA, sD), if β(sA, sD) ≥ µ/(µ + 1),
0, otherwise.

(7)

As we can see, the smallerlp(sA, sD) is, the less private
data is obtained by the adversary and used to perform unau-
thorized intrusions against the defending party.

We would like to make a few remarks on the relation-
ship between our privacy measure and the security mod-
els (e.g., statistically indistinguishable) commonly used in
cryptography. The major difference is that while the com-
monly used security models measure whether the private
information isabsolutelysecure against privacy intrusion,
we intend to use a continuous value to measure the privacy
protection level when absolute security cannot be achieved.
As we will show in the paper, when the adversary behav-
ior is not restricted, absolute security can only be achieved
with expensive computational cost (for weakly malicious
adversaries) or cannot be achieved at all (for strongly ma-
licious adversaries). As such, to design practical solutions
against such adversaries, we need to measure the amount
of privacy disclosure by a continuous value.

3 Adversary Space
Recall that an adversary wants to compromise the private
information of the other party and may or may not want to
accomplish the information sharing (i.e., letting both par-
ties know the intersection). Specifically, we assume that
the objective of the adversary is to maximize the following
objective function.

uA(sA, sD) = (1 − σ)la(sA, sD) + σlp(sA, sD) (8)

wherela(·) andlp(·) are defined in (2) and (7), respectively.
Note that this model covers a wide range of adversaries. In
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the case whereσ = 1, the adversary has no interest in ac-
complishing the information sharing. Whenσ = 0, the ad-
versary has no intention to compromise private information
and hence becomes a defending party. Generally speaking,
the higherσ is, the more desire the adversary has to intrude
privacy even at the expense of a failed information sharing.
The lowerσ is, the more desire the adversary has to share
information rather than to compromise the privacy of the
other party. In particular, we define two classes of adver-
saries based on the value ofσ as follows.

Definition 1. An adversary is weakly malicious if and only
if the adversary is not semi-honest and has0 < σ < 1/2.
An adversary is strongly malicious if and only if the adver-
sary is not semi-honest and has1/2 ≤ σ ≤ 1.

We now provide an intuitive explanation for our defin-
ition of weakly malicious adversaries. Consider the case
when the information sharing fails. There isla(sA, sD) =
0. For a weakly malicious adversary, we have

uA(sA, sD) = 0 + σlp(sA, sD) ≤ σ < 1 − σ. (9)

Note that1−σ is a lower bound onuA(sA, sD) when both
parties keep honest (i.e., neither revise their local process-
ing modules or change their input datasets). Recall that we
assume all parties to be rational in that they make decisions
to maximize their objective functions. Thus, when the de-
fending party is honest, a weakly malicious adversary will
not intrude privacy if a successful intrusion of privacy will
always result in at least one of the following two outcomes:
1) the adversary will be convicted as an adversary by the
other party, or 2) at least one party cannot obtainV0 ∩ V1.

With the introduction of weakly and strongly malicious
adversaries, we can represent the population of adversaries
in a two-dimensional space as is shown in Figure 2. Note
that whenσ = 0, the adversary is reduced to a defending
party.

semi-honesthonest

defending

party

weakly 

malicious

strongly 

malicious

σ = 0 0 < σ < ≤ σ ≤ 1
2

1

2

1

properly follow 

the protocol

may revise local 

processing

module and/or 

change input

behavior

intent

Figure 2: Adversary Space

Given the adversary space, we consider three kinds of
systems in this paper.

• Systems with semi-honest adversaries. Parties in these
systems are honest or semi-honest.

• Systems with weakly malicious adversaries. Ad-
versaries in these systems are either semi-honest or
weakly malicious.

• Systems with strongly malicious adversaries. Adver-
saries in these systems can be semi-honest, weakly
malicious, or strongly malicious.

4 Information Sharing Protocols
We now propose protocols for systems with weakly mali-
cious adversaries and strongly malicious adversaries. We
would like to remark that our goal in this paper is not to
promote specific protocols, but to demonstrate that when
the adversary behavior is not restricted, simple solutionsfor
information sharing problems still exist if we 1) constrain
the adversary goal to be weakly malicious, or 2) make a
tradeoff between accuracy and privacy.

4.1 Design Goals of Protocols

Before presenting our protocols, we first show that absolute
accuracy and security (which we will explain below) can be
achieved if the adversaries are weakly malicious or semi-
honest, but cannot be achieved if strongly malicious adver-
saries exist in the system.

When only weakly malicious adversaries exist in the
system, there exist protocols which are strictly secure with-
out loss of accuracy of information sharing result. Con-
sider a protocol in which for each pair of data points in the
two input datasets (i.e.,∀[v0, v1] such thatv0 ∈ V0 and
v1 ∈ V1), the two parties call a protocol for Yao’s mil-
lionaire problem [25] as a subroutine to determine if the
data points are equal. If the protocol for Yao’s millionaire
problem is secure against malicious adversaries, the inter-
section protocol is secure against weakly malicious adver-
saries. Basically, the reason is that if only the adversary
successfully compromises a private data point of the de-
fending party, the information sharing result obtained by
the defending party will always be wrong. As such, a
weakly malicious adversary will choose a strategy to keep
honest. As we can see, the protocol satisfies the following
two conditions:

• (absolute accuracy) The optimal defensive counter-
measure for the defending party is to keep honest.
Thus, when both parties are defending parties, the in-
formation sharing always succeeds.

• (absolute security) After information sharing, the
weakly malicious adversaryP1 obtainsV0 ∩ V1, |V0|,
and nothing else.

Given the presence of such protocol, the objective of a pro-
tocol designed for systems with weakly malicious adver-
saries is to protect privacy without loss of accuracy of in-
formation sharing result.

For strongly malicious adversaries, such a protocol does
not exist. Consider a strongly malicious adversary with
σ = 1. A possible (though not necessarily optimal) at-
tacking method for the adversary is not to revise its lo-
cal processing module, but always to insert one data point
v 6∈ V1 into its input dataset. Since the defending party
does not know the exact size ofV1, either the malicious
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adversary compromisesv whenv ∈ V0, or another honest
party cannot obtain the correct information sharing result
when it happens to have a dataset equal toV1 ∪ {v}. As
such, tradeoff has to be made between privacy protection
and accuracy of information sharing result. Thus, the goal
for designing a protocol for systems with strongly mali-
cious adversaries is to achieve an optimal tradeoff between
privacy protection and accuracy of information sharing re-
sult.

4.2 Protocols

We now present our protocols designed for systems with
weakly malicious adversaries and strongly malicious ad-
versaries, respectively. In both protocols, we use commuta-
tive encryption functions [7,21]E0(·) andE1(·) onv ∈ V
that satisfy the following properties.

1. Ei is computable in polynomial time. GivenEi, there
exists a corresponding decryption functionDi(·) =
E−1

i (·) which is also computable in polynomial time.

2. E0 andE1 have the same value range. Suppose that
c is chosen uniformly at random from the value range
of Ei(·). For anyv, v′ ∈ V which satisfiesv 6= v′,
no polynomial time algorithmA with time complexity
O(k) can generate output in{0, 1} such that����Pr{A(v, Ei(v), v′

, Ei(v
′)) = A(v, Ei(v), v′

, c)} −
1

2

����
>

1

poly(k)
, (10)

wherepoly(·) is a polynomial function. Using the
terms in cryptography, we say thatc and Ei(v

′) is
computationally indistinguishable givenv, Ei(v), and
v′.

3. E0(E1(·)) = E1(E0(·)).

An example of commutative encryption function is Pohlig-
Hellman exponentiation cipher [19],

Ei(v) = (h(v))ei mod p, (11)

with the corresponding decryption function

Di(c) = cdi mod p, (12)

wherep is a prime number,ei anddi are keys that satisfy
eidi ≡ 1 mod (p−1), andh is a strong-collision-resistant
hash function fromV to all quadratic residues modulop.

For a datasetVi and encryption functionEi, we define
Ei(Vi) to be the set ofEi(v|v ∈ Vi), which is represented
by a sequence of allEi(v|v ∈ Vi) with lexicographical
order. Given Property 3 ofEi, we have

E1(E0(V0)) ∩ E0(E1(V1))

=E0(E1(V0)) ∩ E0(E1(V1)) (13)

=E0(E1(V0 ∩ V1)). (14)

Since a party may change its input dataset, to avoid con-
fusion, we use〈|V ′

i |, V
′
i 〉 to denote the input fromPi to its

local processing module. If a partyPi detects an inconsis-
tency between the two input from the other party (thereby
convicts the other party as an adversary), the local process-
ing module ofPi terminates execution immediately and ex-
its the information sharing process.

1: Secretly exchange input dataset size|V ′
0 | and|V ′

1 |,
2: If |V ′

0 | > |V ′
1 |, P0 becomesPs andP1 becomesPc,

and vice versa. If|V ′
0 | = |V ′

1 |, P0 andP1 are assigned
asPs andPc randomly.

3: Pc sendsEc(V
′

c ) to Ps,
4: Ps sendsEs(Ec(V

′
c )) to Pc using the order ofEc(V

′
c ),

5: Ps sendsEs(V
′
s )) to Pc,

6: Pc computesEc(Es(V
′
0 ∩ V ′

1)). SinceEs(Ec(V
′
c )) re-

ceived byPc in Step 4 is in the same order asEc(V
′
c )

generated byPc in Step 3,Pc can thereby finds the
correspondinglyV ′

0 ∩V ′
1 . Pc then sendsV ′

0 ∩V ′
1 to Ps.

Figure 3: Protocol A: Designed for Systems with Weakly
Malicious Adversaries

1: Secretly exchange input dataset size|V ′
0 | and|V ′

1 |,
2: Exchange encrypted input datasetE0(V

′
0 ) andE1(V

′
1 ),

3: Encrypt the received message and secretly exchange
E0(E1(V

′
1 )) andE1(E0(V

′
0 )),

4: Each party now obtainsE0(E1(V
′
0 ∩V ′

1 )) and decrypts
it. Both parties exchangeE1(V

′
0∩V ′

1 ) andE0(V
′
0∩V ′

1 ).

Figure 4: Protocol B: Designed for Systems with Strongly
Malicious Adversaries

Figure 3 and Figure 4 show the pseudo-code for our Pro-
tocol A and Protocol B, which are designed for systems
with weakly malicious adversaries and strongly malicious
adversaries, respectively. In both protocols, we use a simul-
taneous secret exchange primitive which exchanges two se-
cret messages from two (possibly malicious) parties such
that either both parties know the secret of the other party,
or no party can know the secret of the other party. This
primitive has been realized by many protocols [4,8,17,20].

5 Analysis of Protocol A
We first show that Protocol A is secure when both parties
are honest or semi-honest.

Theorem 5.1. When Protocol A is used, if both parties are
honest or semi-honest, each party learnsV0 ∩ V1, the size
of the dataset of the other party, and nothing else after in-
formation sharing.

Proof. (sketch) Since all parties follow the protocol strictly
without changing their input datasets, we haveV ′

i = Vi.
In the protocol,Ps receives|Vc|, Ec(Vc), andV0 ∩ V1,

Pc receives|Vs|, Es(Ec(Vc)) andEs(Vs). We will prove
that the view of either party in the protocol (the information
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it receives from the other party) is computationally indis-
tinguishable from a view generated from its own dataset,
V0 ∩ V1 and the size of the dataset of the other party.

Let C be a sequence of|Vc| lexicographically-ordered
random variables chosen uniformly from the value range
of Ei(·). We can construct a view〈|Vc|, C, V0 ∩ V1〉
based on|Vc| andV0 ∩ V1. Due to property 2 ofEi(·),
〈|Vc|, C, V0 ∩ V1〉 and〈|Vc|, Ec(Vc), V0 ∩ V1〉 are compu-
tationally indistinguishable. Thus,Ps learnsV0 ∩ V1, |Vc|,
and nothing else after information sharing.

We now construct a view to simulate the view ofPc.
Let Cs be a set of(|Vs|− |V0∩V1|) data points chosen uni-
formly from V \Vc. Let E′

s be a commutative encryption
function (whose key is) randomly generated such thatEc

andE′
s also satisfy the three properties asE0 andE1. We

construct a view〈|Vs|, E
′
s(Ec(Vc)), E

′
s((V0 ∩ V1) ∪ Cs)〉

based onV0 ∩ V1, Vc, and |Vs|. Due to property 2, the
constructed view is computationally indistinguishable to
〈|Vs|, Es(Ec(Vc)), Es(Vs)〉. Thus,Pc learnsV0 ∩ V1, |Vs|,
and nothing else after information sharing.

We now analyze the cases where weakly malicious ad-
versaries exist in the system. Lets0

D be a defensive coun-
termeasure which will neither change the input dataset nor
revise the local processing module (i.e., to keep honest).
We derive an upper bound on the amount of privacy disclo-
sure as follows.

Theorem 5.2. When the adversary is weakly malicious,
let sA be the optimal attacking method for the adversary.
When Protocol A is used, there isla(sA, s0

D) = 1 and
lp(sA, s0

D) ≤
√

p/|V |, wherep is the probability that a
data pointv ∈ V appears inVi.

Proof. (sketch) Since the defending party keeps honest, we
haveV ′

0 = V0. First, we show that the adversary cannot
compromise any private information when it becomesPs

in the protocol. As we can see,Ps receivesEc(V
′
c ) in step

3 andV ′
0 ∩V ′

1 in step 6. The adversary cannot compromise
privacy fromEc(V

′
c ) due to the property of the encryption

functionEc(·). We note that ifP1 can infer private infor-
mation fromV ′

0 ∩V ′
1 (i.e.,V P

0 ∩ (V ′
0 ∩ V ′

1) 6= φ), the infor-
mation sharing fails becauseP0 does not obtain the correct
intersection. Following the definition of weakly malicious
adversary,P1 would prefer keeping honest. Thus, the ad-
versary cannot compromise any private information when
it becomesPs.

We now show that the adversary can only compromise
private information in((V ′

0\V0)∩V1) when it becomesPc.
In the protocol,Pc sends outEc(V

′
c ) in step 3 andV ′

0∩V ′
1 in

step 6. In order to compromise private information,Pc may
perform either one or both of the following two intrusions:
1) changing its input datasetVc, and 2) deviate from the
protocol in step 6. After step 6,Pc does not receive any
more information. Thus, the only private informationPc

can obtain is((V ′
c \Vc) ∩ Vs). Note that ifVc ⊆ V ′

c , Pc can
still computeVc∩Vs = Vc∩(V ′

c ∩Vs) and send this correct
intersection set toPs in step 6.

Since|V ′
1 | andV ′

1 have to be consistent, the attacking
method is to generateV ′

1 such thatV1 ⊆ V ′
1 . We now com-

putelp(sA, s0
D). Note that|V ′

1 | has to be determined before
|V ′

0 | is known byP1. Thus, the optimal|V ′
1 | must maximize

ExpV0
[lp(sA, s0

D)]. We have

lp(sA, s0
D) = Pr{|V ′

1 | < |V0|}ExpV0

[

|(V ′
1\V1) ∩ V0|

|V0|

]

.

(15)

With some mathematical manipulation, we have
lp(sA, s0

D) ≤
√

p/|V |.

The above theorem indicates that when the defending
party keeps honest, the privacy leakage of our protocol is
relatively small for weakly malicious adversaries. In prac-
tice, |V | can be in the order of109 while |Vi| is in the order
of 103. In this case, the expected number of data points
compromised by the adversary is in the order of10−4.5 or
less.

Theorem 5.3. The communication overhead of our proto-
col is(|V0|+|V1|+min(|V0|, |V1|)+|V0∩V1|+k) log(|V |),
wherek is a constant value.

Compared to that of the most efficient existing proto-
col which is secure against semi-honest adversaries [2], the
overhead of our protocol is onlyk log(|V |) more, which
occurs in the first step.

We now compare the communication overhead of our
protocol with that of the protocols which are both ab-
solutely accurate and absolutely secure against weakly ma-
licious adversaries. A lower bound on the communication
overhead of such protocols is derived as follows.

Theorem 5.4. There does not exist any protocol which sat-
isfies all the following three conditions simultaneously.

1. If both parties follow the protocol properly without
changing their input datasets, at the end of the exe-
cution of the protocol, both parties obtainV0∩V1, the
dataset size of the other party, and nothing else,

2. The communication overhead of the protocol is less
than2(|V ′

0 | + |V ′
1 |) log(|V |),

3. For any weakly malicious adversary, there is
lp(sA, s0

D) = 0, wheresA is the optimal attacking
method for the adversary.

Please refer to [27] for the proof of this theorem. As
we can see, when|V0| and|V | are large, our protocol has
a communication overhead substantially lower than these
protocols (by at leastmax(|V0|, |V1|) log(|V |)) with little
privacy disclosure introduced.

6 Analysis of Protocol B
We first show that Protocol B is secure when both parties
are honest, semi-honest, or weakly malicious. Since no
protocol can achieve both absolute accuracy and absolute
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security when strongly malicious adversaries exist, we an-
alyze the tradeoff between accuracy and privacy when Pro-
tocol B is used in a system with strongly malicious adver-
saries.

6.1 Systems with Semi-honest and Weakly-malicious
Adversaries

Theorem 6.1. When Protocol B is used, if both parties
are honest, semi-honest, or weakly malicious, each party
learnsV0∩V1, the size of the dataset of the other party and
nothing else after information sharing.

Proof. (sketch) We first consider the case when both par-
ties are honest or semi-honest. In this case, since all par-
ties follow the protocol strictly without changing their input
datasets, we haveV ′

i = Vi. The protocol is symmetric in
that each party learns exactly the same information about
the dataset of the other party. Without loss of generality,
we consider the information obtained byP1. P1 receives
|V0|, E0(V0), E0(E1(V1)), andE1(V0 ∩V1) after informa-
tion sharing. In the proof of Theorem 5.1, we proved that
the view of〈|V0|, E0(V0), E0(E1(V1))〉 can be simulated
by a view constructed fromV0 ∩ V1, V1, and|V0|. As we
can see,E1(V0 ∩ V1) can also be generated fromV0 ∩ V1.
Thus, the view ofP1 is computationally indistinguishable
to a view constructed fromV0 ∩ V1, V1, and|V0|. As such,
when the Protocol B is used, each party learnsV0 ∩ V1, the
size of the dataset of the other party and nothing else after
information sharing.

When weakly malicious adversaries exist in the system,
an adversaryPi can only infer private information from the
dataset it receives in step 4 (i.e.,Ei(V0 ∩ V1)). As we can
see, both parties obtain|E0(E1(V0 ∩ V1))| = |V0 ∩ V1|
after step 3. As such, if the adversary can infer private
information fromEi(V0 ∩ V1), it cannot obtain the correct
intersectionV0 ∩ V1. Thus, when Protocol B is used, the
system is secure against weakly malicious adversaries.

As we demonstrated in Section 4, tradeoff has to be
made between accuracy and privacy when strongly mali-
cious adversaries exist in the system. In order to analyze
such tradeoff, we propose a game theoretic formulation of
the information sharing system as follows.

6.2 Game Theoretic Formulation

To deal with the systems with strongly malicious adver-
saries, we model the information sharing system as a non-
cooperative gameG(SA, SD, uA, uD) between the two par-
ties whereSA andSD are the set of attacking methods and
defensive countermeasures, respectively, anduA and uD

are the utility functions (i.e., objective functions) for the
adversary and the defending party, respectively. The game
is non-cooperative as neither party knows whether the other
party is an adversary. The utility function for the adversary
is the objective function we defined in Section 3. In par-
ticular, for a strongly malicious adversary withσ = 1, we

have

uA(sA, sD) = lp(sA, sD). (16)

In order to define the utility function for the defending
party, we first need to identify the goals of the defending
party. The defending party has two goals in information
sharing. One goal is to share information and obtainV0 ∩
V1. We assume that the defending party has to guarantee a
success probability of1 − ǫ for the information sharing if
the other party is also a defending party. The other goal is
to prevent its private data inV0 from being compromised
by the adversary. As such, we define the utility function for
the defending party as

uD(sA, sD) =

{

−∞, if Pr{la(sD, sD) = 0} > ǫ,
−lp(sA, sD), otherwise,

(17)

wherela(sD, sD) is the accuracy measure when both par-
ties are defending parties.

Our goal is to derive a Nash equilibrium of the game
which contains both the optimal attacking method and the
optimal defensive countermeasure. In order to do so, we
need to formulate the space of all possible attacking meth-
ods and defensive countermeasures. Recall that as we men-
tioned in Section 2, both attacking methods and defensive
countermeasures need to determine the (possible changed)
input dataset and the (possibly revised) local processing
module. Besides, an attacking method also needs to gen-
erateṼ0 based on the information obtained in information
sharing. In this section, we first consider a simple case
where both attacking methods and defensive countermea-
sures do not revise the local processing module. We derive
a Nash equilibrium of the game based on this simple case.
In the next section, we will prove that neither party can
benefit by revising its local processing module. As such,
the Nash equilibrium derived in this section will not change
when the parties are allowed to revise their local processing
modules.

6.3 Simple Attacking Methods and Defensive Coun-
termeasures

6.3.1 Simple Attacking Methods

Due to our classification of adversaries, a strongly mali-
cious adversary has1/2 ≤ σ ≤ 1. Nevertheless, we con-
sider the worst cases where the adversary hasσ = 1. That
is, the only goal of the adversary is to intrude the privacy
of the defending party.

Since Protocol B is secure if the adversary is semi-
honest, in order to compromise the privacy of the other
party, the adversary must change its input dataset. Since
the intersection set may contain data points manipulated by
the defending party, the adversary also needs to decide if a
data point inV ′

0 ∩V ′
1 should be included iñV0. We analyze

the attacking methods for determiningV ′
1 and Ṽ0 respec-

tively as follows.
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• Change input dataset. The adversaryP1 can compro-
mise the private information inV P

0 by changing its
input dataset toV ′

1 . As we can see, if the defending
party keeps honest, the adversary will obtain the pri-
vate information inV0 ∩ V ′

1 after information sharing.
Due to Protocol B,|V ′

1 | has to be determined before
any information aboutV0 can be obtained. Without
loss of generality, we assume that|V ′

1 | is a function of
|V1|, denoted byk1(|V1|). Due to our system assump-
tion, the adversary has no previous knowledge about
any data point inV0. As such, the optimal method for
the adversary to generateV ′

1 is to chooseV ′
1 randomly

from V \V1. Without loss of generality, we model the
attacking method on changing the input dataset as to
determinek(|V1|).

• GeneratẽV0 fromV ′
0∩V ′

1 . Since neither party may re-
vise its local processing module, the only information
that an adversary can obtain from information sharing
is V ′

0 ∩ V ′
1 . To benefit its own interest, the adversary

has only two methods to generateṼ0.

– Ṽ0 = V ′
0 ∩ V ′

1 .

– Ṽ0 = φ.

That is, Ṽ0 either contains all data points in the in-
tersection set, or none of them. This can be easily
observed from the definition oflp(sA, sD).

6.3.2 Simple Defensive Countermeasures

The defensive countermeasure contains the method of
changing the two inputs〈|V ′

0 |, V
′
0〉 to the local processing

module. Due to the protocol,|V ′
0 | has to be determined be-

fore any information aboutV1 can be obtained. Without
loss of generality, we assume that|V ′

0 | is a function of|V0|,
denoted byk0(|V0|). The only information thatP0 can ob-
tain before choosingV ′

0 is the size of the input dataset of
P1. As such, we assume thatV ′

0 is a function ofV0 and|V ′
1 |

and is represented byf(V0, |V
′
1 |) wheref(V0, |V

′
1 |) ⊆ V

and |f(V0, |V
′
1 |)| = k0(|V0|)|. We model the defensive

countermeasure as〈k(|V0|), f(V0, |V
′
1 |)〉.

6.4 Theorem of Nash Equilibrium

Let h = ⌊|V0|/µ⌋ + 1. Let Vd be a dataset with the same
distribution asVi. Recall thatp is the probability that a data
point in V appears inVi. We derive the Nash equilibrium
of the game as follows.

Theorem 6.2. The optimal defensive countermeasure

〈k0(|V0|), f(V0, |V
′
1 |)〉 is

k0(|V0|) =

{

|V0| + h, if h + g(|V0| + h) ≤ ǫ|V |
|V0|, otherwise

(18)

f(V0, |V
′
1 |) =







V0 ∪ U(V \V0, h), if k = |V0| + h,
V0, if k = |V0| and|V ′

1 | < NS ,
U(V0, NS · |V0|/|V

′
1 |), otherwise

(19)

whereg(·) satisfies

g(i) =

|V |
∑

j=1

Pr{|Vd| = j} · Exp[|f(Vd, i)\Vd|+

|Vd\f(Vd, i)|], (20)

U(V, j) is the set ofj data points chosen uniformly at ran-
dom fromV , andNS is the largest integer that satisfies

g(|V0|) +

|V |
∑

j=NS

[

(p|V |)je−p|V |

j!
(1 −

NS

k0(j)
) · |V0|

]

≤ ǫ|V |.

(21)

An optimal attacking methodk1(|V1|) is k1(|V1|) = NS .
The above optimal attacking method and defensive coun-
termeasure form a Nash equilibrium of the game.

Proof. (sketch) We will prove the theorem in three steps.
First, we will prove that the error rate does not exceed the
upper boundǫ. Second, we will show that whenk0(|V0|) =
|V0|+h, we havelp = 0. In the last step, we will prove the
optimality of the strategy whenk0(|V0|) = |V0|.

• Error rate is controlled belowǫ.

We first consider the case whenk0(|V0|) = |V0| + h.
In this case, no matter what|V ′

1 | is, we have

f(V0, ·) = V0 ∪ U(V \V0, h). (22)

If P1 is a defending party, since|V | ≫ |V0|, the error
rate is

ǫ0 ≈
h + Exp[|V ′

1\V1| + |V1\V
′
1 |]

|V |
(23)

=
h + g(|V0| + h)

|V |
(24)

≤ ǫ. (25)

That is, the error rate is no more thanǫ.

Whenk0(|V0|) = |V0|, the error rate is

ǫ0 ≈
1

|V |
(g(|V0|) +

|V |
∑

j=NS

[Pr{|V1| = j}· (26)

(1 − NS/k0(j)) · |V0|]) (27)

≤ ǫ. (28)

Thus, the error rate is also no more thanǫ.

897



• Whenk0(|V0|) = |V0| + h, lp = 0.

When k0(|V0|) = |V0| + h, we haveV ′
0 = V0 ∪

U(V \V0, h). Recall thatṼ0 is eitherV ′
0 ∩ V ′

1 or an
empty set. IfṼ0 = V ′

0 ∩ V ′
1 , we have

α(sA, sD) =
|V0 ∩ V ′

0 |

|V0|
= 1, (29)

β(sA, sD) = 1 −
|V ′

0\V0|

|V ′
0 |

<
µ

µ + 1
. (30)

As such, we haveuA < 0. Thus, the adversary has to
chooseṼ0 = φ. That is, we havelp = 0.

• Whenk0(|V0|) = |V0|, the attacking method and the
defensive countermeasure form a Nash equilibrium.

The basic idea of the proof is to show that when the
defending party does not change its defensive counter-
measure, the adversary cannot compromise any more
private information by using a manipulated dataset
with size larger thanNS , which can be easily ob-
served fromf(V0, |V

′
1 |). When the adversary does not

change its attacking method, the defending party can-
not preserve more private information because other-
wise the error rate would be larger thanǫ. As such, the
state defined in the theorem is a state where no party
can benefit by changing its attacking method or defen-
sive countermeasure unitarily. The detailed proof of
this step is mainly mathematical manipulations. Due
to space limitations, we omit the detailed proof here.

7 Extensions to Complicated Methods

In this section, we will prove that when Protocol B is used,
neither the adversary nor the defending party can benefit by
revising its local processing module.

7.1 Adversary

Theorem 7.1.When Protocol B is used, the adversary can-
not increase the expected value of its utility function by re-
vising its local processing module.

Proof. (sketch) First, the adversary will not deviate from
the protocol in step 1 and 2 because by doing so, the adver-
sary is actually changing its input dataset. Recall that we
assume all parties are rational. As such, the adversary will
not revise step 4 either. The reason is that after this step,
the adversary cannot obtain any more information about the
dataset of the other party. We now show that the adversary
will not deviate from the protocol in step 3.

In step 3, the adversaryP1 sendsE1(E0(V
′
0 )) to the de-

fending partyP0. P0 then usesE1(E0(V
′
0)) to compute

E1(E0(V
′
0 )) ∩ E0(E1(V

′
1)) = E0(E1(V

′
0 ∩ V ′

1)), (31)

which will be decrypted toE1(V
′
0 ∩ V ′

1 ) and sent toP1

in step 4. Thus, we only need to prove that by changing
E1(E0(V

′
0 )), the adversary cannot increase

|E1(V
′
0 ∩ V ′

1)| = |E0(E1(V
′
0 ∩ V ′

1))|

=|E1(E0(V
′
0)) ∩ E0(E1(V

′
1))|. (32)

Recall that the adversary cannot change|E1(E0(V
′
0 ))| be-

cause by doing so, the defending party will detect an in-
consistency between|E1(E0(V

′
0 ))| and |V ′

0 | and quit the
information sharing. As such, we need to prove that the ad-
versary cannot changeE1(E0(v0|v0 ∈ V ′

0)) to collide with
E0(E1(v1|v1 ∈ V ′

1)). This can be inferred from property 2
of the commutative encryption function.

7.2 Defending Party

Theorem 7.2. When Protocol B is used, the defending
party cannot increase the expected value of its utility func-
tion by revising its local processing module.

Proof. (sketch) First, the defending party will not deviate
from the protocol in step 1 and 2 because it can change
its input instead. We remark that the defending party also
will not revise step 3 because by doing so, it cannot obtain
the information sharing result (i.e.,V ′

0 ∩ V ′
1 ). As such, we

now prove that the defending party will not deviate from
the protocol in step 4.

In step 4, the defending partyP0 sendsE1(V
′
0 ∩ V ′

1 ) to
the adversaryP1. P1 then decryptsE1(V

′
0 ∩ V ′

1) to V ′
0 ∩

V ′
1 , which is the result of information sharing. Since the

defending party obtains|V ′
1 | before step 2, we only need to

prove that before step 4, the defending party does not know
anything more than|V ′

1 | aboutV ′
1 . If so, the defending

party will not revise step 4. Rather, it will change its input
in step 2.

As we can see, the defending party has receivedE1(V
′
1 )

andE1(E0(V
′
0 )) since step 2. Thus, we need to prove that

givenV ′
0 , E0(·), |V ′

1 |, E1(V
′
1 ), andE1(E0(V

′
0)), there does

not exist any polynomial time algorithm with time com-
plexity O(k) and outputv ∈ V such that

∣

∣

∣

∣

Pr{v ∈ V ′
1} −

|V ′
1 |

|V |

∣

∣

∣

∣

>
1

poly(k)
, (33)

wherepoly(·) is a polynomial function. This can be in-
ferred from property 2 of the commutative encryption func-
tion.

8 Numerical Results

Numerical measurement has not been commonly used to
demonstrate system security because all possible attack-
ing methods cannot be exhausted in a simulation. Never-
theless, we propose to use numerical measurements in our
case. The reason is that in the theoretical analysis, we al-
ready derive the Nash equilibrium of the game, which is a
state where neither party can benefit by unitarily changing
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its attacking method or defensive countermeasure. The nu-
merical results shown actually demonstrate the privacy dis-
closure in this state, and thus can be used to demonstrate
the real privacy protection performance of systems using
our protocols.

We evaluate the system performance in terms of the
maximum expected number of private data compromised
by the adversary, which islp(sA, sD), wheresA and sD

are the optimal attacking strategy and the optimal defen-
sive countermeasure, respectively. The error rate of infor-
mation sharing when both parties are defending parties is
fixed to beǫ = 0 for systems with weakly malicious ad-
versaries andǫ = 0.1 for systems with strongly malicious
adversaries. With|V0| = 100, we demonstrate the relation-
ship between the amount of privacy disclosure and the size
of the population set (i.e.,|V |).

For systems with weakly malicious adversaries, the
maximum amount of privacy disclosure when Protocol A
is used is shown in Figure 5. As we can see from the fig-
ure, the privacy leakage of our protocol is very small when
|V | is large. In particular, when|V | is in the order of103,
the expected number of data points compromised by the
adversary is no larger than1.

For systems with strongly malicious adversaries, when
Protocol B is used, the maximum amount of privacy dis-

closure is shown in Figure 6. As we can see from the fig-
ure, the higher|V | or µ is, the less private data points are
compromised by the adversary. In particular, no privacy
disclosure occurs whenµ ≥ 2 and|V | ≥ 1000.

9 Conclusion

In this paper, we have addressed issues related to privacy
protection in information sharing, which has become an
important and common application in distributed systems.
Most of the previous studies investigated the problem and
proposed solutions based on the assumption that all parties
are honest or semi-honest. While it is sometimes useful,
this assumption substantially underestimates the capability
of adversaries and thus does not always hold in practical
situations. We considered a space of more powerful ad-
versaries which include not only honest and semi-honest
adversaries but also those who are weakly malicious and
strongly malicious. For weakly malicious adversaries, we
design an efficient protocol and show that the protocol can
preserve privacy effectively. For strongly malicious adver-
saries, we propose a game theoretic formulation of the sys-
tem and derive a Nash equilibrium of the game. We eval-
uate the performance of defensive countermeasure in the
Nash equilibrium and show that with an acceptable loss of
accuracy, the privacy of the defending entity can be effec-
tively preserved in many systems.

Again, we would like to remark that in this paper, we
are not promoting specific protocols. Instead, we show that
simple and efficient solutions can be developed to deal with
malicious adversaries. Specifically, we show simple solu-
tions can be effective if we 1) constrain the adversary goal
to be weakly malicious, or 2) allow making a tradeoff be-
tween accuracy and privacy.

Many extensions to our work exist, including 1) extend-
ing the information sharing function from intersection to
other operations, and 2) dealing with multiple parties in
the system, including dealing with correlated attacks from
multiple adversaries. Our results can be readily applied
to some information sharing functions including equijoin
(V0 ⊲⊳ V1) and scalar product (V0 ·V1). We are currently in-
vestigating the privacy preserving protocols for sum, union,
and other information sharing functions.
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