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Abstract

In this paper, we address issues related to sharing
information in a distributed system consisting of
autonomous entities, each of which holds a private
database. Semi-honest behavior has been widely
adopted as the model for adversarial threats. How-
ever, it substantially underestimates the capabil-
ity of adversaries in reality. In this paper, we
consider a threat space containing more power-
ful adversaries that includes not only semi-honest
but also those malicious adversaries. In partic-
ular, we classify malicious adversaries into two
widely existing subclasses, called weakly mali-
cious and strongly malicious adversaries, respec-
tively. We define a measure of privacy leakage
for information sharing systems and propose pro-
tocols that can effectively and efficiently protect
privacy against different kinds of malicious adver-
saries.

Introduction

not impossible, for the existence of such an entity in real
systems. Therefore, we focus on the information sharing
problem in a system without a trusted third party.

In this case, the problem is usually formulated as a vari-
ation of the secure multiparty computation (SMC) prob-
lem, which has been extensively studied in the literature
[10]. Although a general solution to SMC problems has
been proven to exist [11, 26], it has a high computational
overhead and thus cannot be efficiently used in practice.
By making a tradeoff between generality and efficiency,
various solutions have been proposed to solve a wide va-
riety of information sharing problems including intersec-
tion [1, 2,9, 12, 18], equijoin [1, 2], association rule min-
ing [14,22], classification [6,15, 16, 23], tdpqueries [24],
and statistical analysis [5].

As with many SMC protocols, most solutions share a
common assumption that all entities are honest or semi-
honest [10]. That is, all entities are well disciplined to
follow the protocol properly, with the only exception that
an adversary may keep a record of all intermediate com-
putation. This assumption substantially underestimédies t
capability of adversaries on compromising the privacy of

In this paper, we address issues related to sharing inform&ther entities, and thus does not always suffice for real sys-
tion in a distributed system consisting of autonomous entiie€ms.

ties, each of which holds a private database. The entitiesar Some work has been shown to remove the semi-honest
willing to share information across their databases. Neverassumption (e.g., [9]). However, a weaker assumption is

theless, no entity is willing to disclose its private data tothen taken: the size of the database of each entity is known
other entities due to privacy concern. Typical applicagion by all entities as pre-knowledde This assumption tacitly

of privacy preserving information sharing problem include eliminates from consideration a class of adversaries which
document sharing, shared medical databases, etc[2].  remove real data from or insert forged data into their data-

Various solutions have been proposed to preserve pribases. Note that by changing (the size of) its database, an
vacy in distributed information sharing systems. In [13], adversary can infer considerable private information from
an architecture was proposed to share information usinghe (legitimate) result of information sharing. Thus, thss
the trusted third party services. However, since the thirdsumption also ignores some privacy intrusion attacks that
party has to be trusted by all entities, it may be difficult, if may be launched by adversaries.

In this paper, we remove the constraints on the behavior
of entities. In our system setting, an adversary may de-
viate from the protocol and/or manipulate its database for
the purpose of privacy intrusion. We also allow an hon-
est entity to do the same for certain defensive countermea-
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its date appear, and notice is given that copying is by pesimisof the
Very Large Data Base Endowment. To copy otherwise, or tohlegty
requires a fee and/or special permission from the Endowment
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1Besides, the work in [9] is based on the client-server modelanly
requires one entity (client) to know the information shgriesult.
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sures. Since behavior can no longer be used to differentiat@re capable of preserving privacy without compromising
adversaries, we classify honest entities and adversayies lthe accuracy of information sharing result. We design a
their willingness to share information and/or compromiseprotocol which indeed outperforms this lower bound with
the privacy of other entities. As in common cases, we asthe tradeoff of little privacy disclosure. We evaluate the
sume that all entities are rational in that they make deciamount of privacy disclosure when our protocol is used and
sions (e.g., attacking methods, defensive countermessureshow that the privacy of the defending entity is effectively
etc) based on their intent to optimize their individual bene preserved.
fits. For strongly malicious adversaries, as we will show in
In this paper, we propose a formal model of adversariesthis paper, a tradeoff has to be made between privacy pro-
In particular, we identify two classes of adversaries whichtection and accuracy of information sharing result. As
widely exist in real systems. such, we propose a game theoretic formulation of the sys-
tem based on the attacking methods and defensive coun-
compromise the privacy of the other entities but will equilibrium of the game, which is a state in which both the
only do so if 1) they will not be convicted as adver- adyersary and the defending entity achieve their optimal
saries by the other entities, and 2) the informationstrategies (i.e., attacking methods or defensive courstarm
sharing will still succeed. We refer to this class of syres). Neither entity can benefit by unitarily changing its
adversaries aseakly malicious adversaries strategy. Thus, to benefit their own interests, both estitie
Semi-honest adversaries are in this class. Neverthdlave to adopt the strategies defined by the Nash equilib-
less, an adversary in this class may not necessariljium. We evaluate the performance of defensive counter-
be semi-honest. We note that while semi-honest agmeasure in this state and show that with an acceptable loss

versaries are required to follow the protocol properly,of accuracy, the privacy of the defending entity can be ef-
weakly malicious adversaries may deviate from thefectively preserved in many systems.
protocol and/or manipulate its database as long as by Our results are significant as this is the first effort to re-
doing so, the above two conditions are still met. move the restriction on adversary behavior and design sim-
ple solutions for information sharing problems by either 1)
2. The second class of adversaries are those that will doonstraining the adversary goal to be weakly malicious, or
whatever they can to compromise the privacy of the2) allowing a tradeoff between accuracy and privacy.
other entities. In particular, they may even not share The rest of the paper is organized as follows: We in-
any data but manipulate an input database and use ftoduce the system model in Section 2. In Section 3, we
to compromise private information. We refer to this introduce our model of adversaries. We present two pro-
class of adversaries agongly malicious adversaries tocols: Protocol A designed for systems with weakly mali-
] ) . cious adversaries, and Protocol B for systems with strongly
In this paper, we will address both classes of adversariesnajicious adversaries, respectively in Section 4. Théeoret
Compared with classifying adversaries based on their b&sg| analysis on the performance of Protocol A is presented
havior, our intent-based classification is more tractable f ;, section 5. For systems using Protocol B, we propose
system designers. In real-world applications of informati 5 game theoretic formulation of the system and derive a
sharing (€.g., sharing information across cooperating-Comyash equilibrium of the game in Section 6 and Section 7. A
panies or government agencies whose objectives are eagymerical performance evaluation of our protocols is pro-

to assess), it is relatively easy to identify whether or notjged in Section 8, followed by final remarks in Section 9.
an entity has the need to share information. However, it is

rather hard to determine if an entity has the capability to
change its input database or deviate from the protoco] (i.e2 System Models
if it is appropriate to model the entity as semi-honest). 21 Parties

In this study, we focus on the intersection problem, in
which two entities collaborate to share the intersection ofLet there be two entitie®, and P; in the system that we
their databases. Intersection is one of the most importarrefer to as parties. In this paper, unless otherwise inelitat
problems in information sharing. Intersection protocolswe assume tha®; intends to compromise the privacy Bf
have been widely used as a primitive in many informa-while P, does not have such intension. Thus, we égla
tion sharing applications including classification, assoc defending party an@; an adversary. Neither party knows
tion rule mining, etc. Nevertheless, we would like to re-if the other party is an adversary.
mark that our goal in this paper is not to design solutions for  Each partyP; has a private datasé&f which contains
specific information sharing problems. Rather, we are usnumerous data. Since the parties are supposed to share the
ing the intersection problem as an example to demonstrati@tersection of their datasets, we assume that no data value
our methodology to deal with adversaries without behaviomppears more than once in the same dataset. As is com-
restriction. monly assumed in the literature, each data pointins

For weakly malicious adversaries, we derive a lowerchosen independently and randomly from a (much larger)
bound on the communication complexity of protocols thatsetV = {v1,...,v,}. We usep;; to denote the probabil-
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ity that a data point; € V appears inV;. For the sim- 2.4 Strategies
plicity of discussion, we assume that for ak {0, 1} and
j € [1,m], there isp;; = p. Both parties know” andp.
Nevertheless, neither party knows the size or content of the e the input from the party to its local processing module,
dataset of the other party.

In the system, each party needs to choose

o the (possibly revised) local processing module of the
party.

. . . . BT In addition, an adversary also needs to deliver a datéset
In an ideal situation, both parties should obt Vi and that contains all data points that the adversary believes to

nothing else at the end of the information sharing procesg, 1P
0 -

In reality, this requirement is often relaxed. A common As such. the attacking method of an adversarv is to
compromise s to aliow each party to learn the size of thechoose a cbmbination ofgthe methods of mani ulailin its
dataset of the other party after information sharing [2]. As. P 9

such, we say a systemdecurdf after information sharing, grzltjitnd%[asseitr,] g;o:l g)élfr;gmlj(?gal p;)tcedsos g;gn?toigtj e!ﬁ’datgigr?r:-
both parties obtain, N V4, the size of the dataset of the 9. g party

. : . promise privacy, the defensive countermeasure of a defend-
OPtOh:; party, and nothing else. We defineftiiacyof party ing party is limited to the former two methods. The attack-

ing methods and defensive countermeasures will be further
addressed later in this paper.

2.2 Problem Statement

Ve =Vo\(Vo N V1) = Vo\ V1. Q)
Note that whenP; changes its input dataset ¥, the pri- 2.5 Performance Measurements
vacy of Py doesnot change because we defilig’ based Given the attacking method and the defensive countermea-
on thereal datasets instead of th@putdatasets. For exam- sure, we need to measure the accuracy of information shar-
ple, whenP; is a malicious adversary with no data to shareing result and the amount of privacy disclosure in informa-
(i.e., V1 = ¢), the privacy of should always bé, no  tion sharing.
matter what datasd®?; manipulates to be its input dataset
to the information sharing. 2.5.1 Accuracy Measurement

The objective of information sharing is to let both par- ¢t the attacking method of the adversary and the defen-
ties knowVy M Vi and makeVy’ free from unauthorized  gjye countermeasure of the defending partys hendsp,
intrusion by P . respectively. We propose @tcuracy measurg (sa, sp)

as follows to indicate the success of information sharing.

2.3 System Infrastructure
. . . . . 1, if both parties obtaify N V7,
There is an information sharing protocol jointly agreed by la(sa;sp) = 0, otherwise (2)

all parties. We assume that for each party, there is a local

processing module that processes the dataset of the pargys 2 privacy Measurement

and exchanges information with (the local processing mod- - _

ule of) the other party. The information sharing protocol Recall thatly is the set of data points that the adversary
is implemented by the processing of and communicatiorPelieves to be i/y” and uses to perform unauthorized in-
between the local processing modules of the two partiedrusion against the defending party. As such, a straightfor
Figure 1 shows an information sharing system under thigvard measure of privacy disclosure is the number of private
framework. As in common cases, we assume that the delata pointsir/y. LetExpl[-] be the expected value of a ran-
fending party will quit the protocol immediately if it can dom variable. Sinc&, may be randomly generated by the

prove that the other party is an adversary. adversary, we formalize this measure as
R R Vo N VP
0
—V0> Local Local <V1_ a(sa,sp) = Exp Tplo ) 3)
< Processmg Processing—> Vo 0

Vo N V1 Module Module Vo n V1

which is the expected percentage of private data points in-
cluded inV;. This measure is also referred torasall in
Figure 1: System Infrastructure information retrieval [3]. Readers may raise a question of
why we do not measure the maximum number of private
Nevertheless, as we mentioned in Section 1, we do nadata points inj,. We believe that it is not effective to mea-
impose any obligatory behavior restriction on either party sure such a worst case situation. The reason is as follows:
We say that a party changes its input dataset if the partgonsider an attacking method which randomly generdjes
manipulates a dataset as the input to its local processinigom V. For any given system, it is always possible for the
module. We say a party revises its local processing moduladversary to generatié, = V. As such, the worst case
if the party deviates from the protocol by other means.  privacy disclosure is alwayd)0% of the private data.
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Since the defending party may also change its inputi(v) < 0 for anyv ¢ V% because otherwise the adversary
dataset, we note that there may also exist data points iwill always include such in V;,. We define system setting
Vo which are notini; (i.e., false positives). As such, there parametey: as
is another measure of privacy disclosure

_ |Exp[o(v)[v & Vo]

. =l 5

(snsp) = Bxp | L0 " Bl € Vo v

A = 5
’ Vol

Vo

(4)

Based on the system setting parameter, we can derive a
lower bound on3(sa, sp) to makeVy meaningful for the
This measure is also referred to@ecisionin information  adversary.

retrieval [3]. For the same reason@3a, sp), we measure . .
the expected value instead of the worst case situation. NotEheorem 2.1. The profit obtained by the adversary from
thatB(sa, sp) is also very important for measuring privacy the unauthorized intrusion is no less th@uif and only if

disclosure because if only(sa, sp) is used to measure the m

vacy di imum privacy di - Blsasp) = —= (6)
privacy disclosure, the maximum privacy disclosure (i.e., Ay9D) = n+1
a(sa, sp) = 1) is achieved when the adversary generates _ ) _ o
Vo =V. This theorem can be easily proved using our definition

As we can see, the amount of private information ob-Of #- AS we can see, whedl(sa,sp) < p/(u + 1), the
tained by the adversary cannot be determined by either return from unauthor_lzed intrusion using is less tharo.
or 3(-) unitarily, but can be determined by the combinationSince the adversary is rational, the adversary préfgrs
of them. This results in a problem comparing the amount to the Vi, generated bya. WhenV, = ¢, the amount
of privacy disclosure in two cases if one has a largey ~ Of privacy disclosure is. As such, we define therivacy
while the other one has a largé¢-). Such comparison de- disclosure measures follows.

pends on the system setting, as is shown by the following a(sa,sp), if B(sa,sp) > p/(u+1)
example. Ip(sa,sp) = { 0 ’ ’ otherwise - ’
Suppose that the defending party always uses a coun- ’ @

termeasuresp. Let sp be an attacking method with
a(sa,sp) = 100% and3(sa, sp) = 30%. Lets), bean  As we can see, the smallgf(sa, sp) is, the less private

attacking method withy(s'y , sp) = 5% and(s)y,sp) =  datais obtained by the adversary and used to perform unau-
100%. We will show the comparison between the amountthorized intrusions against the defending party.
of privacy disclosure whes, ands), are used in two sys-  We would like to make a few remarks on the relation-

tem settings. First, consider asystem where the two partiegmp between our privacy measure and the Security mod-
are two online retailers. The data pointsiinare the tele-  g|s (e.g., statistically indistinguishable) commonlydige
phone numbers of the customersiof The adversary uses cryptography. The major difference is that while the com-
the compromised telephone numbers to make unauthorizeglonly used security models measure whether the private
advertisement to the customers. In this system setting, thigformation isabsolutelysecure against privacy intrusion,
adversary prefers, because a wrong phone call (using we intend to use a continuous value to measure the privacy
v € Vp\Vyy) costs the adversary little. As suchy should  protection level when absolute security cannot be achieved
have a higher privacy disclosure measure. As we will show in the paper, when the adversary behav-
We now consider another system where the two partieor is not restricted, absolute security can only be achieve
are two consulting firms. Each data pointlifis an un-  with expensive computational cost (for weakly malicious
published profit expectation of a company. The adversaradversaries) or cannot be achieved at all (for strongly ma-
uses the compromised financial data to make investment ditious adversaries). As such, to design practical sohstio
a high-risk stock market against the benefit of the defendagainst such adversaries, we need to measure the amount
ing party. The profit from a successful investment (usingof privacy disclosure by a continuous value.
v € V) is huge. Nonetheless, a failed investment (using
v E VO\VOP) costs the adversary five times larger than the3 ~ Adversary Space
profit from a successful investment. In this system setting
the adversary prefesd, because i, is used, the expected
return from an investment is less th@ui.e., the adversary

Recall that an adversary wants to compromise the private

information of the other party and may or may not want to

would rather generaté, — ¢). Thus, s, should have a a_lccompllsh th(_a mformaitlon sharln_g_ (i.e., letting both-par
ties know the intersection). Specifically, we assume that

higher privacy disclosure measure in this system setting. the obiecti  the ad ot e the followi
As we can see from the above example, we need to in- € objective ot the adversary IS to maximize the fotiowing
objective function.

troduce the system setting to the measure of privacy dis-
closure. Letd(v) be the profit obtained by the adversary
from an unauthorized intrusion based one V. Since

the adversary intends to compromise the privacgfwe  wherel,(-) andl,(-) are defined in (2) and (7), respectively.
haved(v) > 0 for all v € V. Note that there must be Note that this model covers a wide range of adversaries. In

ua(sa,sp) = (1 —o0)la(sa, sp) + 0lp(sa,sp)  (8)
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the case where = 1, the adversary has no interest in ac- e Systems with strongly malicious adversaries. Adver-
complishing the information sharing. When= 0, the ad- saries in these systems can be semi-honest, weakly
versary has no intention to compromise private information malicious, or strongly malicious.

and hence becomes a defending party. Generally speaking,

the higher is, the more desire the adversary has to intruded  |[nformation Sharing Protocols

privacy even at the expense of a failed information sharing,

The lowero is, the more desire the adversary has to shard/e NOW propose protocols for systems with weakly mali-
information rather than to compromise the privacy of thet1OUS aFjversarles and strongly maI.|C|ou_s adversgrles. we
other party. In particular, we define two classes of adver!Vould like to remark that our goal in this paper is not to
saries based on the valueohs follows. promote specific protocols, but to demonstrate that when
the adversary behavior is not restricted, simple solutions
Definition 1. An adversary is weakly malicious if and only information sharing problems still exist if we 1) constrain

if the adversary is not semi-honest and lflas o < 1/2.  the adversary goal to be weakly malicious, or 2) make a
An adversary is strongly malicious if and only if the adver- tradeoff between accuracy and privacy.

sary is not semi-honestand hag < o < 1.

We now provide an intuitive explanation for our defin- 4-1 Design Goals of Protocols
ition of weakly malicious adversaries. Consider the caseefore presenting our protocols, we first show that absolute
when the information sharing fails. Thereligsa,sp) =  accuracy and security (which we will explain below) can be
0. For a weakly malicious adversary, we have achieved if the adversaries are weakly malicious or semi-
©) honest, but cannot be achieved if strongly malicious adver-

saries exist in the system.

Note thatl — o is a lower bound om (s 4, sp) when both When only weakly malicious adversaries exist in the
parties keep honest (i.e., neither revise their local m®ce system, there exist protocols which are strictly securb-wit
ing modules or change their input datasets). Recall that weut loss of accuracy of information sharing result. Con-
assume all parties to be rational in that they make decisionsider a protocol in which for each pair of data points in the
to maximize their objective functions. Thus, when the de-two input datasets (i.e¥[vo, v1] such thatv, € V; and
fending party is honest, a weakly malicious adversary willv; € V), the two parties call a protocol for Yao's mil-
not intrude privacy if a successful intrusion of privacylwil lionaire problem [25] as a subroutine to determine if the
always result in at least one of the following two outcomes:data points are equal. If the protocol for Yao's millionaire
1) the adversary will be convicted as an adversary by th@roblem is secure against malicious adversaries, the inter
other party, or 2) at least one party cannot obigm V;. section protocol is secure against weakly malicious adver-

With the introduction of weakly and strongly malicious saries. Basically, the reason is that if only the adversary
adversaries, we can represent the population of advessarisuccessfully compromises a private data point of the de-
in a two-dimensional space as is shown in Figure 2. Notdending party, the information sharing result obtained by
that wheno = 0, the adversary is reduced to a defendingthe defending party will always be wrong. As such, a
party. weakly malicious adversary will choose a strategy to keep
honest. As we can see, the protocol satisfies the following

ua(sa,sp) =0+ olp(sa,sp) <o <1l—o.

A behavior ..
two conditions:
: properly follow e (absolute accuracy) The optimal defensive counter-
honest semi-honest . .
the protocol measure for the defending party is to keep honest.
_ Thus, when both parties are defending parties, the in-
may revise local f . hari | d
defending | weakly strongly processing ormation sharing always succeeds.
party malicious malicious module and/or i . . X
change input e (absolute security) After information sharing, the
_ weakly malicious adversark; obtainsVy N Vi, |Vol,
et ©=0  O<o<— <os<i and nothing else.
2 2

Given the presence of such protocol, the objective of a pro-
Figure 2: Adversary Space tocol designed for systems with weakly malicious adver-
saries is to protect privacy without loss of accuracy of in-
Given the adversary space, we consider three kinds dbrmation sharing result.
systems in this paper. For strongly malicious adversaries, such a protocol does

e Systems with semi-honest adversaries. Parties in thed®! exist. Consjder a strongly malicious _advergary with
systems are honest or semi-honest o = 1. A possible (though not necessarily optimal) at-
' tacking method for the adversary is not to revise its lo-

e Systems with weakly malicious adversaries. Ad-cal processing module, but always to insert one data point
versaries in these systems are either semi-honest ar ¢ V; into its input dataset. Since the defending party
weakly malicious. does not know the exact size df, either the malicious
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adversary compromiseswhenv € Vj, or another honest Since a party may change its input dataset, to avoid con-
party cannot obtain the correct information sharing resulfusion, we us€|V/|, V//) to denote the input fron®; to its
when it happens to have a dataset equalita {v}. As local processing module. If a parfy; detects an inconsis-
such, tradeoff has to be made between privacy protectiotency between the two input from the other party (thereby
and accuracy of information sharing result. Thus, the goatonvicts the other party as an adversary), the local precess
for designing a protocol for systems with strongly mali- ing module ofP; terminates execution immediately and ex-
cious adversaries is to achieve an optimal tradeoff betweeits the information sharing process.

privacy protection and accuracy of information sharing re-

sult. 1: Secretly exchange input dataset diZg| and|V/|,
2. If |Vg| > [V{], P, becomesP; and P, becomesF,
4.2 Protocols and vice versa. IfVj| = |V/|, P, and P, are assigned

asP and P, randomly.
P, sendsE,. (V) to Ps,
P sendsF,(E.(V))) to P, using the order of,. (1),
5. Ps; sendsF,(V/)) to P.,
6: P computesE (Es(Vg NnVY)). SinceE,(E.(V)) re-
ceived byP. in Step 4 is in the same order & (V)
1. E; is computable in polynomial time. Givel;, there generated byP, in Step 3,F. can thereby finds the
exists a corresponding decryption functién(-) = correspondinglyy N VY. P. then send¥; NVj to P;.
E;*(-) which is also computable in polynomial time.

We now present our protocols designed for systems with
weakly malicious adversaries and strongly malicious ad—
versaries, respectively. In both protocols, we use commuta 4
tive encryption functions [7,21F,(-) andE;(-) onv € V

that satisfy the following properties.

Fi 3: Protocol A: D d for Syst ith Weakl
2. Eyp and By have the same value range. Suppose tha&/:gllljéﬁ)us A(rjc\)/:r(fs%nes esigned for Systems wi caxty

cis chosen umformly at random from the value range
of E;(-). For anyv,v" € V which satisfiesy # v/,

no polynomial time algorithmd with time complexity
O(k) can generate output {0, 1} such that

=

: Secretly exchange input dataset §igg| and|V7|,
: Exchange encrypted input datag&t(V;) andE; (V7),
3: Encrypt the received message and secretly exchange

N

’ / , 1
PI‘{.A('U, Ei(v)7 v 7Ei(v )) = A(Uv Ei(v)7 v 76)} - 5 EO(El (‘/1/)) andE1 (Eo(‘/ol)),
1 4: Each party now obtainB, (E; (Vy NVY)) and decrypts
> o) (10) it. Both parties exchang®, (VyNV}) andEy (VyNVy).

where poly(-) is a polynomial function. Using the Figure 4: Protocol B: Designed for Systems with Strongly
terms in cryptography, we say thatand E;(v') is  Malicious Adversaries

c9mputat|onally Indistinguishable given £ (v), and Figure 3 and Figure 4 show the pseudo-code for our Pro-

v tocol A and Protocol B, which are designed for systems
3. Eo(EL(-)) = E1(FEo(-)). with weakly malicious adversaries and strongly malicious
adversaries, respectively. In both protocols, we use alsimu

An example of commutative encryption function is Pohlig- taneous secret exchange primitive which exchanges two se-

Hellman exponentiation cipher [19], cret messages from two (possibly malicious) parties such
_ that either both parties know the secret of the other party,
E;i(v) = (h(v))* mod p, (11)  or no party can know the secret of the other party. This

, ) ) . primitive has been realized by many protocols [4,8,17,20].
with the corresponding decryption function

(12) 5 Analysis of Protocol A

We first show that Protocol A is secure when both parties
wherep is a prime number; andd; are keys that satisfy gre honest or semi-honest.

e;d; =1 mod (p—1), andh is a strong-collision-resistant

hash function froni/ to all quadratic residues modujo Theorem 5.1. When Protocol A is used, if both parties are
For a dataseY; and encryption functiot®Z;, we define  honest or semi-honest, each party leaigs V1, the size

E;(V;) to be the set ofF;(v|v € V;), which is represented of the dataset of the other party, and nothing else after in-

by a sequence of al;(v|v € V;) with lexicographical formation sharing.

order. Given Property 3 df;, we have

Di(c) = ¢ mod p,

Proof. (sketch) Since all parties follow the protocol strictly

E(Eo(Vo)) N Eo(E1 (V1)) without changing their input datasets, we h&je=V;.
_ In the protocol,P, receivegV,|, E.(V.), andV, N V7,
=Eo(E1 (Vo)) N Eo(E1 (V1)) (13) P, receives V.|, E(E.(V.)) and E4(V,). We will prove
=Eo(Er(Vo N V1)). (14)  thatthe view of either party in the protocol (the informatio
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it receives from the other party) is computationally indis-  Since|V{/| and V/ have to be consistent, the attacking
tinguishable from a view generated from its own datasetmethod is to generaté/ such thal; C V;. We now com-
Vo N V1 and the size of the dataset of the other party. putel,(sa, s). Note that V]| has to be determined before
Let C be a sequence d¥,| lexicographically-ordered |Vj|is known byP;. Thus, the optimglV/| must maximize
random variables chosen uniformly from the value rangeExpy; [l (s, s9)]. We have
of E;(-). We can construct a view|V.|,C,V, N V1) VAV (V6
based onV,| andV, N V;. Due to property 2 off;(-), 0y _ , 1\vV1) MV
o ) k] EL vyt e ot (5305 = PRIV < VB |{EEGE 0
tationally indistinguishable. Thug, learnsV, N V4, V.|, (15)
and nothing else after information sharing.
We now construct a view to simulate the view Bf. ~ With some mathematical manipulation, we have
LetC, be a set of |V | — Vo N V1 |) data points chosen uni- Iy (sa, s%) < v/p/V]. O
formly from V\V,. Let E’ be a commutative encryption

function (whose key is) randomly generated such fhat The above theorem indicates that when the defending

and £/, also satisfy the three properties s and £;,. We party keeps honest, the privacy leakage of our protocol is

construct a view(| V.|, B (E.(V..)), E.((Vo N V4) U C. r_elatively small _forweakly maliciou_s adve_rs_aries. In prac
based onVj, N ‘V/\fl Vl asn(d|1S| ))Dué(gooprople)rty 2 )t>he tice, |V | can be in the order af0® while |V;| is in the order

) (3] S| 1 3 . .
constructed view is computationally indistinguishable to©f 10°. In this case, the expected number of dat? points
(Vi Es(Eo(V2)), E5(V,)). Thus,P, learnsVy N Vi, | V| compromised by the adversary is in the ordet@f*-°> or
and nothing else after information sharing. O less.

o Theorem 5.3. The communication overhead of our proto-
We now analyze the cases where weakly malicious adeo| is |V |+ |V; [+min(|Vo|, [Vi|)+|VonVi|+k) log([V])
versaries exist in the system. L&} be a defensive coun- \yherek is a constant value.

termeasure which will neither change the input dataset nor

revise the local processing module (i.e., to keep honest). Compared to that of the most efficient existing proto-

We derive an upper bound on the amount of privacy disclocol which is secure against semi-honest adversaries ], th

sure as follows. overhead of our protocol is onlilog(|V|) more, which
occurs in the first step.

Theorem 5.2. When the adversary is weakly malicious, We now compare the communication overhead of our

let so be the optimal attacking method for the adversary.protocol with that of the protocols which are both ab-

When Protocol A is used, there ig(sa,s}) = 1 and  solutely accurate and absolutely secure against weakly ma-

Ip(sa,sY) < +/p/|V], wherep is the probability that a  licious adversaries. A lower bound on the communication

data pointv € V appears inV;. overhead of such protocols is derived as follows.

Proof. (sketch) Since the defending party keeps honest, wd heorem 5.4. There does not exist any protocol which sat-
haveV; = Vj. First, we show that the adversary cannotisfies all the following three conditions simultaneously.
compromise any private information when it becontgs
in the protocol. As we can se€; receivesk,. (V) in step
3andVj NV} in step 6. The adversary cannot compromise
privacy fromE. (V) due to the property of the encryption
function E.(-). We note that ifP; can infer private infor-
mation fromVy N VY (i.e., V" N (Vg NVY) # ¢), the infor- 2. The communication overhead of the protocol is less
mation sharing fails becaug® does not obtain the correct than2(|Vy| + [V{]) log(|V]),
intersection. Following the definition of weakly malicious o _
adversary,P, would prefer keeping honest. Thus, the ad- 3. For any weakly malicious adversary, there is
versary cannot compromise any private information when  lp(sa,sp) = 0, wheres, is the optimal attacking
it becomesP,. method for the adversary.

We now show that the adversary can only compromise
private information in((Vy\ Vo) N V1) when it becomeg’..
In the protocol P, sends ouf. (V) in step 3and;NVy in
step 6. In order to compromise private informatién may
perform either one or both of the following two intrusions:
1) changing its input datas&f, and 2) deviate from the
protocol in step 6. After step &. does not receive any .
more information. Thus, the only private informatidf 6 Analysis of Protocol B
can obtain ig(V/\V,) N V;). Note that ifi,, C V!, P.can  We first show that Protocol B is secure when both parties
still computeV. NV, = V.N(V/NV;) and send this correct are honest, semi-honest, or weakly malicious. Since no
intersection set t@; in step 6. protocol can achieve both absolute accuracy and absolute

1. If both parties follow the protocol properly without
changing their input datasets, at the end of the exe-
cution of the protocol, both parties obtaifg N7, the
dataset size of the other party, and nothing else,

Please refer to [27] for the proof of this theorem. As
we can see, whell;| and|V| are large, our protocol has

a communication overhead substantially lower than these
protocols (by at leastmax(|Vp|, |V1|) log(|V])) with little
privacy disclosure introduced.
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security when strongly malicious adversaries exist, we anhave
alyze the tradeoff between accuracy and privacy when Pro-
tocol B is used in a system with strongly malicious adver- ua(sa,5D) = lp(sa, D). (16)

saries.
In order to define the utility function for the defending

party, we first need to identify the goals of the defending
party. The defending party has two goals in information
sharing. One goal is to share information and obigim
Theorem 6.1. When Protocol B is used, if both parties Vi. We assume that the defending party has to guarantee a
are honest, semi-honest, or weakly malicious, each partguccess probability of — ¢ for the information sharing if
learnsV, N V7, the size of the dataset of the other party andthe other party is also a defending party. The other goal is
nothing else after information sharing. to prevent its private data il from being compromised

by the adversary. As such, we define the utility function for
Proof. (sketch) We first consider the case when both parthe defending party as
ties are honest or semi-honest. In this case, since all par-

6.1 Systems with Semi-honest and Weakly-malicious
Adversaries

ties follow the protocol strictly without changing theipiat un (54, 50) = —00, if Pr{l.(sp,sp) =0} >c¢,
datasets, we havié’ = V;. The protocol is symmetric in Ar°D —lp(sa,sp), otherwise
that each party learns exactly the same information about (17)

the dataset of the other party. Without loss of generality,
we consider the information obtained Y. P, receives wherel,(sp, sp) is the accuracy measure when both par-
Vol, Eo(Vo), Eo(E1(V4)), andEq (Vo NV4) after informa-  ties are defending parties.
tion sharing. In the proof of Theorem 5.1, we proved that Our goal is to derive a Nash equilibrium of the game
the view of |V, Eo(Vo), Eo(E1(V1))) can be simulated which contains both the optimal attacking method and the
by a view constructed froy N V4, V4, and|V,|. Aswe  optimal defensive countermeasure. In order to do so, we
can seef; (Vp N V1) can also be generated frar N V3. need to formulate the space of all possible attacking meth-
Thus, the view ofP; is computationally indistinguishable ods and defensive countermeasures. Recall that as we men-
to a view constructed froriy N V4, V4, and|V;|. As such,  tioned in Section 2, both attacking methods and defensive
when the Protocol B is used, each party ledrps V1, the  countermeasures need to determine the (possible changed)
size of the dataset of the other party and nothing else aftanput dataset and the (possibly revised) local processing
information sharing. module. Besides, an attacking method also needs to gen-
When weakly malicious adversaries exist in the systemeratel;, based on the information obtained in information
an adversary; can only infer private information from the sharing. In this section, we first consider a simple case
dataset it receives in step 4 (i.€;(Vo N V1)). Aswe can  where both attacking methods and defensive countermea-
see, both parties obtaii, (E1 (Vo N V1))| = [Vo N Vy|  sures do not revise the local processing module. We derive
after step 3. As such, if the adversary can infer privatea Nash equilibrium of the game based on this simple case.
information fromE;(V, N V4), it cannot obtain the correct In the next section, we will prove that neither party can
intersectionVy N V4. Thus, when Protocol B is used, the benefit by revising its local processing module. As such,
system is secure against weakly malicious adversarigls. the Nash equilibrium derived in this section will not change
when the parties are allowed to revise their local procgssin

As we demonstrated in Section 4, tradeoff has to benodules.
made between accuracy and privacy when strongly mali-
cious adversaries exist in the system. In order to analyz6-3 Simple Attacking Methods and Defensive Coun-
such tradeoff, we propose a game theoretic formulation of ~ termeasures
the information sharing system as follows. 6.3.1 Simple Attacking Methods

Due to our classification of adversaries, a strongly mali-
cious adversary hak/2 < ¢ < 1. Nevertheless, we con-

To deal with the systems with strongly malicious adver-sider the worst cases where the adversaryhasl. That
saries, we model the information sharing system as a noris, the only goal of the adversary is to intrude the privacy
cooperative gamé'(Sa, Sp, ua, up ) between the two par-  of the defending party.

ties whereS, andSp are the set of attacking methods and ~ Since Protocol B is secure if the adversary is semi-
defensive countermeasures, respectively, apdand up honest, in order to compromise the privacy of the other
are the utility functions (i.e., objective functions) fdret  party, the adversary must change its input dataset. Since
adversary and the defending party, respectively. The gami@e intersection set may contain data points manipulated by
is non-cooperative as neither party knows whether the othdhe defending party, the adversary also needs to decide if a
party is an adversary. The utility function for the adveysar data pointinVj N V7 should be included iiit. We analyze

is the objective function we defined in Section 3. In par-the attacking methods for determinifig andV, respec-
ticular, for a strongly malicious adversary with= 1, we tively as follows.

6.2 Game Theoretic Formulation
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e Change input dataset. The advers&yycan compro-
mise the private information iV by changing its

(ko([Vol), f(Vo, [V{1)) s

input dataset td/y. As we can see, if the defending — k,(|vp|) = { Vol +h, i h+g(|Vol +h) <€V
party keeps honest, the adversary will obtain the pri- Val, otherwise
vate information iV, N VY after information sharing. (18)
Due to Protocol B|V/| has to be determined before _
any information about;, can be obtained. Without VoUUV\Vo, h),if k= |Vo| + h,
loss of generality, we assume thet | is a functionof ~ f(Vo, [Vi]) = Vo.if k = [Vp| and|V]| < Ng,
V1|, denoted byk; (|V4]). Due to our system assump- U(Vo, Ns - [Vol/[V{]), otherwise
tion, the adversary has no previous knowledge about (29)
any data point iriy. As such, the optimal method for -
the adversary to generait@ is to choosé’/ randomly ~ Wherey(+) satisfies
from V'\ V4. Without loss of generality, we model the %
attacking method on changing the input datasetasto  ¢(;) = ZPY{Wd' =4} - Exp[|f(Va, i)\ Va|+
determinek(|V4]). pust

[Va\f(Va, 9], (20)

Generatd/, from VN Vy. Since neither party may re- 7(y, ) is the set ofj data points chosen uniformly at ran-

vise its local processing module, the only information gom from”, and Ny is the largest integer that satisfies
that an adversary can obtain from information sharing

is Vg N V{. To benefit its own interest, the adversary Vi ( i o—plV]
N p[V])e Nsg
has only two methods to generafg g(IVol) + Z [ 7 (1- ko(j)) Vol | < €[V
j=Ns ’
. (21)
- Vo=V{nVj. _ . :
An optimal attacking metho#, (|V1|) is k1(|V1|) = Ns.
B 7 The above optimal attacking method and defensive coun-

termeasure form a Nash equilibrium of the game.

Proof. (sketch) We will prove the theorem in three steps.

That is, V either contains all data points in the in- it e will prove that the error rate does not exceed the
tersection set, or none of them. This can be eas'lyupperbound. Second, we will show that when (|Vo|) =
observed from the definition @f(sa, sp).

[Vo| + h, we havd, = 0. In the last step, we will prove the
optimality of the strategy wheky (|Vo|) = Vol

6.3.2 Simple Defensive Countermeasures

The defensive countermeasure contains the method of

changing the two input§V{j|, V;;) to the local processing
module. Due to the protocdll/j| has to be determined be-
fore any information about; can be obtained. Without
loss of generality, we assume thg}| is a function ofi 14|,
denoted by (|V5]). The only information thaf?, can ob-
tain before choosing is the size of the input dataset of
Py. As such, we assume thgf is a function oflf, and|V/|
and is represented b§(Vo, |V/|) wheref(Vp, |V{]) C V
and |f(Vo, VYD = ko([Vo])]. We model the defensive
countermeasure d&(|Vo1), f (Vo, [V/])).

6.4 Theorem of Nash Equilibrium
Leth = [|[Vo|/p] + 1. LetV; be a dataset with the same
distribution ag/;. Recall thap is the probability that a data

point in V appears irt;. We derive the Nash equilibrium
of the game as follows.

Theorem 6.2. The optimal defensive countermeasure
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o Error rate is controlled below
We first consider the case whép(|Vy|) = |Vo| + h.
In this case, no matter what,| is, we have

fVo, ) = Vo UUV\ Vo, h). (22)

If P, is a defending party, sind®| > |5, the error
rate is

P+ Exp[[VAAW] + [Vi\V]]

€0 v (23)
h+g([Vo| + h)
=" 7/ (24)
14
<e. (25)
That is, the error rate is no more than
Whenky (|Vo|) = [Vo|, the error rate is
1 V|
€0~ m(g(lVol)Jr > [Pr{|vi| =4} (26)
j=Ns
(1 = Ns/ko(5)) - [Vol]) (27)
<e. (28)

Thus, the error rate is also no more than



e Whenko(|Vo|) = |Vo| + h, I, = 0. which will be decrypted taF; (V§ N V/) and sent toP;
When ko([Vol) = |Vl + h, we haveVy = Vj U in step 4. Thus, we only need to prove that by changing

o E(Ey(V])), the adversary cannot increase
U(V\Vy, h). Recall thatVj is eitherVj N V/ or an 1(Eo (Vo)) v y !

empty set. I, = VJ NV, we have \BL(VL OV = | Bo (B (Vi A VD)
Vo N V{| =|E1(Eo(Vy)) N Eo(Er(V7))]. (32)
a(SAaSD) = T =1, (29)
0

Recall that the adversary cannot change(Ey(Vy))| be-
(30) cause by doing so, the defending party will detect an in-
consistency betweefF; (Ey(Vy))| and|Vj| and quit the
information sharing. As such, we need to prove that the ad-
As such, we have 4 < 0. Thus, the adversary has to versary cannot chande, (Ey(vo|vo € Vj)) to collide with
choosély = ¢. That is, we haveé, = 0. Eo(F1(v1]vr € VY)). This can be inferred from property 2
of the commutative encryption function. O
e Whenky(|Vy|) = |V, the attacking method and the
defensive countermeasure form a Nash equilibrium. 7 o pefending Party

The basic idea of the proof is to show that when therpegrem 7.2 When Protocol B is used, the defending
defending party does not change its defensive countelyaty cannot increase the expected value of its utility func
measure, the adversary cannot compromise any morg, by revising its local processing module.
private information by using a manipulated dataset
with size larger thanVs, which can be easily ob- proof. (sketch) First, the defending party will not deviate
served fromf (Vo, |V{[). When the adversary does not from the protocol in step 1 and 2 because it can change
change its attacking method, the defending party canits input instead. We remark that the defending party also
not preserve more private information because otherwsill not revise step 3 because by doing so, it cannot obtain
wise the error rate would be larger thams such, the  the information sharing result (i.6/) N'V/). As such, we
state defined in the theorem is a state where no partjiow prove that the defending party will not deviate from
can benefit by changing its attacking method or defenthe protocol in step 4.
sive countermeasure unitarily. The detailed proof of | step 4, the defending parf, sendsE; (V] N V) to
this step is mainly mathematical manipulations. Duethe adversary?. P; then decrypts?; (V) N V{) to V{ N
to space limitations, we omit the detailed proof here. v/ which is the result of information sharing. Since the
defending party obtaind//| before step 2, we only need to
- prove that before step 4, the defending party does not know
anything more thanVy| aboutV/. If so, the defending
7 Extensions to Complicated Methods _par';y ng not revise step 4. Rather, it will change its input
in step 2.
In this section, we will prove that when Protocol B is used, Asr\)/ve can see, the defending party has recelgd’/)
neither the adversary nor the defending party can benefit bynd g, (Eo(V{])) since step 2. Thus, we need to prove that
revising its local processing module. givenVy, Eo(), |Vy], E1(V/), andE; (Eo(VY)), there does
not exist any polynomial time algorithm with time com-
7.1 Adversary plexity O(k) and outpub € V such that

Vo \Vol <
17

B(SAaSD) - 1 -

Theorem 7.1. When Protocol B is used, the adversary can- . \d 1
not increase the expected value of its utility function by re Pr{ve V{} - V] > Ok (33)
vising its local processing module. pory

wherepoly(-) is a polynomial function. This can be in-

Proof. (sketch) First, the adversary will not deviate from : - )
the protocol in step 1 and 2 because by doing so, the adve}i%r;ed from property 2 of the commutative encryptmnéunc

sary is actually changing its input dataset. Recall that we
assume all parties are rational. As such, the adversary will .
not revise step 4 either. The reason is that after this steg Numerical Results

the adversary cannot obtain any more information about thg , merical measurement has not been commonly used to

dgtaset of the other party. We now show that the adversaryemonstrate system security because all possible attack-
will not deviate from the protocol in step 3'/ ing methods cannot be exhausted in a simulation. Never-

In step 3, the adversar sendsEl(b;o(Vo)) tothede-  iheless, we propose to use numerical measurements in our
fending partyPy. P then used, (Eo(Vy)) to compute case. The reason is that in the theoretical analysis, we al-
, , , , ready derive the Nash equilibrium of the game, which is a
Ev(Eo(Vp)) N Eo(EL(V)) = Eo(Ex(Vg N VY)), (31)  state where neither party can benefit by unitarily changing
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IVl = 100, e =0 closure is shown in Figure 6. As we can see from the fig-
ure, the highetV| or p is, the less private data points are
compromised by the adversary. In particular, no privacy
disclosure occurs whem > 2 and|V| > 1000.

9 Conclusion

O sO) ()

In this paper, we have addressed issues related to privacy
protection in information sharing, which has become an
important and common application in distributed systems.
Most of the previous studies investigated the problem and
300 325 350 proposed solutions based on the assumption that all parties
are honest or semi-honest. While it is sometimes useful,
this assumption substantially underestimates the capabil

of adversaries and thus does not always hold in practical
situations. We considered a space of more powerful ad-

20.00 2.25 2.50 2.75
log, (V1)

Figure 5: Weakly malicious adversaries

1000 Vol =100, £=0.1 versaries which include not only honest and semi-honest
o0 Sowet adversaries but also those who are weakly malicious and
ol _ ﬁzm strongly malicious. For weakly malicious adversaries, we

design an efficient protocol and show that the protocol can
preserve privacy effectively. For strongly malicious adve
saries, we propose a game theoretic formulation of the sys-
tem and derive a Nash equilibrium of the game. We eval-

701
60

50

(5555 (%)

401 AN uate the performance of defensive countermeasure in the
30f \\\ Nash equilibrium and show that with an acceptable loss of
20| Y accuracy, the privacy of the defending entity can be effec-
w0} N tively preserved in many systems.
Qoo 3 a0 o \‘37;0 T Again, we would like to remark that in this paper, we
log, (V) are not promoting specific protocols. Instead, we show that
simple and efficient solutions can be developed to deal with
Figure 6: Strongly malicious adversaries malicious adversaries. Specifically, we show simple solu-

tions can be effective if we 1) constrain the adversary goal
its attacking method or defensive countermeasure. The nude be weakly malicious, or 2) allow making a tradeoff be-
merical results shown actually demonstrate the privacy distween accuracy and privacy.
closure in this state, and thus can be used to demonstrate Many extensions to our work exist, including 1) extend-

the real privacy protection performance of systems usingng the information sharing function from intersection to

our protocols. other operations, and 2) dealing with multiple parties in
We evaluate the system performance in terms of thehe system, including dealing with correlated attacks from

maximum expected number of private data compromisednultiple adversaries. Our results can be readily applied

by the adversary, which i§,(sa, sp), Wheresy andsp  to some information sharing functions including equijoin

are the optimal attacking strategy and the optimal defen¢Vj, 0« V) and scalar producif - ;). We are currently in-

sive countermeasure, respectively. The error rate of-inforvestigating the privacy preserving protocols for sum, anio

mation sharing when both parties are defending parties iand other information sharing functions.

fixed to bee = 0 for systems with weakly malicious ad-

versaries and = 0.1 for systems with strongly malicious
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