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Abstract

This paper introduces a novel type of
query, what we name Spatio-temporal Pattern
Queries (STP). Such a query specifies a spatio-
temporal pattern as a sequence of distinct
spatial predicates where the predicate tempo-
ral ordering (exact or relative) matters. STP
queries can use various types of spatial pred-
icates (range search, nearest neighbor, etc.)
where each such predicate is associated (1)
with an exact temporal constraint (a time-
instant or a time-interval), or (2) more gen-
erally, with a relative order among the other
query predicates. Using traditional spatio-
temporal index structures for these types of
queries would be either inefficient or not an
applicable solution. Alternatively, we pro-
pose specialized query evaluation algorithms
for STP queries With Time. We also present a
novel index structure, suitable for STP queries
With Order. Finally, we conduct a compre-
hensive experimental evaluation to show the
merits of our techniques.

1 Introduction

Spatio-temporal data management has received a lot
of attention recently, mainly due to the emergence of
location based services and advances in telecommuni-
cations (cheap GPS devices, ubiquitous cellular net-
works, RFIDs, etc.) As a result, large amounts of
spatiotemporal data is produced daily, typically in the
form of trajectories. The need to efficiently analyze
and query this data requires the development of so-
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phisticated techniques. Previous research has concen-
trated on various spatio-temporal queries, mainly fo-
cusing on range searches and nearest neighbor varia-
tions [18, 19, 9, 16, 14], or mining tasks like extracting
patterns and periodicities from spatiotemporal trajec-
tories [17, 11]. This paper introduces a novel problem,
what we term Spatio-temporal Pattern Queries (STP).
Given a large collection of spatiotemporal trajectories,
an STP query retrieves all trajectories that follow user
defined movement patterns in space and time.

There are many practical applications where STP
queries appear. For example, “Identify all vehicles that
were very close to all three sniper attacks in Maryland
(the locations and times of the attacks are known)” or
“Locate products that left the factory a month ago,
were stored in one of the warehouses near the dock,
and loaded on a ship (locations can be tracked by us-
ing RFIDs)”. While there have been various previ-
ous works addressing the problem of pattern discovery
[17, 11], to the best of our knowledge, there has been
no previous work on the orthogonal problem, the STP
queries.

We represent a spatio-temporal pattern as a se-
quence of distinct spatio-temporal predicates, where
the temporal ordering (exact or relative) of the pred-
icates matters. STP queries can have arbitrary types
of spatial predicates (e.g., range search, nearest neigh-
bor, etc.), where each predicate may be associated (1)
with an exact temporal constraint that is either a time-
instant or a time-interval (STP Queries With Time), or
(2) more generally, with a relative order (STP Queries
With Order).

An STP query With Time example is: “Find ob-
jects that crossed through region A at time T1, came
as close as possible to point B at a later time T2 and
then stopped inside circle C some time during interval
(T3, T4)”. An STP query With Order is: “Find ob-
jects that first crossed through region A, then passed
as close as possible from point B and finally stopped
inside circle C”. Here only the relative order of the
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spatial predicates is important, independently of when
exactly they occur in time.

The straightforward approach for answering STP
queries is to evaluate the query pattern on all trajec-
tories one by one using a linear scan on a sequentially
stored archive. Clearly, this approach has prohibitive
cost and in some cases might be infeasible due to very
large database sizes and due to the expensive nature of
the distance function used for STP queries With Or-
der (as will be seen later on). When considering STP
queries With Time, another straightforward approach
would be to use a traditional spatio-temporal index
structure [18, 19, 21, 9] to index the trajectories and
utilize the index to evaluate the query predicates in-
dividually; respective answers can be combined in the
end. When these STP queries consist only of range spa-
tial predicates such a solution might work well in var-
ious practical cases. Nevertheless, this approach does
not work for spatial predicates that need to be eval-
uated conjointly, like nearest neighbors. Consider the
following example: “Find the object trajectory that
crossed as close as possible from point A at time T1

and then, as close as possible from point B at a later
time T2”. Individually evaluating each predicate can-
not provide the trajectory that minimizes the distance
from both points. Alternatively, we show how to adapt
the traditional best first search approach with a com-
bined distance function (e.g., the sum of distances of
each trajectory from the query points) to answer STP
queries With Time. With careful evaluation strategies
we can guarantee that each needed page from the in-
dex is loaded only once, during the evaluation of all
predicates.

Nevertheless, traditional spatio-temporal index
structures would be a very inefficient solution for an-
swering STP queries With Order. Since only the rel-
ative order of the predicates is significant, the spatio-
temporal index will have to retrieve the whole temporal
evolution of each object. For such queries, we propose
a novel indexing technique that enables efficient eval-
uation by storing ‘order’ information inside the index.

To summarize, the contributions of this paper are
the following: (1) We introduce and formalize a novel
query type (STP) that combines general spatial pred-
icates with temporal constraints (STP queries With
Time) and/or relative ordering (STP queries With Or-
der). (2) We propose specialized query evaluation al-
gorithms for these two types of STP queries, as well as
a novel index structure, suitable for STP queries With
Order. (3) Finally, we present an extensive experimen-
tal evaluation of the proposed techniques.

2 Problem Definition

Consider a large archive of object trajectories and a
well-defined trajectory representation such that the lo-
cation of the objects can be computed for any given
time (the framework that will be presented is indepen-
dent of the underlying trajectory representations). An
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Figure 1: An example STP query With Time.

STP query is expressed as a sequence Q of arbitrary
length m of ordered spatio-temporal predicates of the
form

Q = {(Q1, T1), (Q2, T2), . . . , (Qm, Tm)}
where in each pair (Q,T ), Q represents a spatial pred-
icate and T a temporal constraint. For simplicity but
without loss of generality, in the rest, Q will express ei-
ther a range (R) or a nearest neighbor (NN) query. As
will become clear, our framework can be adapted easily
to handle other spatial predicates as well. T is either
a time-instant (t), a time-interval (∆t) or empty (∅).
Inherently the temporal constraints impose a strict or-
dering on the spatial predicates. When a temporal
constraint is empty, ordering will be implied by the ac-
tual position of the associated predicate in the query
sequence. An alternative query expression mechanism
appeared in [3], where regular expressions were used to
represent mobility patterns. More details and limita-
tions of this approach appear in the related work.

We say that a trajectory satisfies an STP query if it
satisfies all spatio-temporal predicates at once:

• A range predicate is trivially, and individually,
satisfied by a trajectory if the object is contained
inside the given range anytime during the specified
temporal constraint.

• A nearest neighbor predicate is satisfied only with
respect to all other NN searches as well. We say
that a trajectory satisfies the NN predicates if it
minimizes the sum of the distances from those
predicates during the given temporal constraints.

An example STP query With Time is shown
in Figure 1. The query depicted is Q =
{(NN(q1), t1), (NN(q2), t2), (R(r), [t3, t4))}, and is
satisfied by the trajectory that minimizes the sum of
distances from points q1, q2 at times t1, t2, respectively,
and crosses region r anytime between [t3, t4).

3 STP Query Algorithms

For ease of exposition we first present our solutions for
STP Queries With Time, i.e., STP queries that con-
tain spatial predicates with non-empty temporal con-
straints. Subsequently, we discuss solutions for the
more general STP Queries With Order, i.e., queries
that are ordered sequences of spatial predicates with-
out temporal constraints.
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Figure 2: Approximating a trajectory with multiple
MBRs.

3.1 STP Queries With Time

Given that these queries contain both spatial and tem-
poral constraints, they can be answered using special-
ized evaluation strategies on existing spatio-temporal
index structures. The spatio-temporal index can serve
as a filtering step that will reduce the number of ac-
cesses to raw trajectory data by pruning trajectories
that do not satisfy the pattern and improving query
performance (against the linear search) by orders of
magnitude.

For simplicity we adopt a general trajectory index-
ing scheme. Nevertheless, the algorithms that will be
presented do not make any assumptions about the un-
derlying index, as long as it can answer efficiently near-
est neighbor and range queries . Without loss of gener-
ality, we assume that the trajectories are approximated
using a large number of Minimum Bounding Rectan-
gles [19, 9], which are then indexed using a spatio-
temporal index structure like the R-tree [8, 18] or the
MVR-tree [21, 9]. With minor modifications to our
framework, other approximation techniques are appli-
cable as well. Every MBR inserted in a leaf level of the
tree is associated with the identifier of the trajectory
that it belongs to, and bounds a small time-interval of
the object’s movement history. An example of this in-
dexing scheme is shown in Figure 2, where a trajectory
has been approximated using a total of three MBRs.

For the rest of this section we assume that the MBRs
are indexed using a secondary spatio-temporal index
structure, with data entries pointing to the raw trajec-
tory data on disk. Raw data is stored on sequential
data pages per trajectory.

Among STP queries with time, we first discuss
queries that contain multiple range predicates, since
they can be evaluated in a straightforward way. We
then consider queries with multiple NN predicates
and present various algorithmic approaches to evalu-
ate them. Finally we discuss queries that consist of
combinations of range and NN predicates.

3.1.1 Range Predicate Evaluation

Assuming a pattern query that contains only range
spatio-temporal predicates, there are two obvious eval-
uation strategies to consider. The first approach pro-
duces the candidate results of all predicates concur-
rently using the index, and then loads from storage
only the trajectories that belong to the intersection of
the partial answer sets. The second strategy evaluates
the most selective predicate first (assuming selectivity
information is available), then the raw trajectory data

is loaded from storage and the rest of the range predi-
cates are answered in main memory, using the retrieved
data. Which approach is better depends on the actual
selectivities of the queries and the size of the trajecto-
ries.

3.1.2 Nearest Neighbor Predicate Evaluation

Consider an STP query that contains only nearest
neighbor predicates. The basic idea behind our ap-
proach is to use the index structure and the trajectory
MBRs to compute approximate object distances that
will enable fast pruning of many trajectories, without
having to load the raw trajectory data. Our technique
runs one best-first-search algorithm per query pred-
icate that returns, successively, the object with the
smaller distance from that predicate. The total dis-
tance of a single trajectory from the query can be com-
puted as the sum of individual distances from all pred-
icates. Intuitively, by utilizing the trajectory MBRs
we can compute both upper and lower-bounds of the
actual distance of a trajectory from a given predicate,
as shown in Figure 2. By combining approximate dis-
tances for all query predicates we will be able to prune
trajectories that have lower-bounding distances larger
than any known upper-bound.

A simple 1-dimensional example is shown in Fig-
ure 3(a). This STP query is expressed as Q =
{(NN(0), 1), . . . , (NN(0), 5)}. Conceptually, it can be
thought of as a time-interval nearest neighbor pattern:
“Locate the object that stays closer to the origin dur-
ing time-interval [1, 5]”. Trajectory P1 is the answer to
this query since it minimizes the sum of distances from
all five points, with distance D(Q,P1) = 5.5. Trajec-
tory P3 does not qualify since it partially intersects the
query lifetime and has infinite distance for some time-
instants. Using this simple example, we will illustrate
two evaluation strategies, called lazy and eager, and
will discuss their advantages.
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Figure 3: (a) Three trajectories and an STP query. For
each query point the 1-NN MBRs (solid gray) are retrieved.
(b) The MBRs belonging to P1 cover the query, while those
of P2 do not cover points 4 and 5. Given D(Q, P1) = 5.5
and LBD(Q, P2) ≥ 5.7, trajectory P2 can be pruned (any
missing MBRs for points 4 and 5 should be at least as far
as D(q4,5, P1) = 1 unit from the query).

Let D(Q, P ) denote the actual distance of trajec-
tory P from Q. Also, let LBD(Q, P ) (UBD(Q, P ))
denote a lower-bound (upper-bound) distance of P
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from Q computed by using the distances of the MBR
approximations of P from the query predicates. A
threshold Λ needs to be computed so that all trajec-
tories with LBD(Q, P ) > Λ can be pruned. In order
to achieve this we incrementally locate the 1-NN, 2-
NN, etc. MBRs individually for each query predicate.
These MBRs should also contain the predicate in the
temporal dimension. After a number of MBRs have
been reported per qi, for every discovered trajectory
P (i.e., a trajectory for which at least one MBR has
been reported) there are two cases: (1) the union of
P ’s MBRs contain all query points in the time dimen-
sion and we say that P covers the lifespan of Q, or (2)
some points of Q are not covered. For example, in Fig-
ure 3(a) the 1-NN MBRs for each point are reported
first (solid gray rectangles). At this step, no discovered
trajectory MBRs cover all query points. In Figure 3(b)
the 2-NN MBRs are retrieved. This time, the MBRs
belonging to trajectory P1 cover all query predicates.

In the first case both LBD(Q, P ) and UBD(Q, P )
can be computed without having to access the raw
trajectory data. The upper-bound can be used as a
pruning threshold Λ. The lower-bound can be used
to prune the trajectory according to an already com-
puted Λ. In the second case, a pessimistic approx-
imation of LBD(Q, P ) can be computed. For each
query predicate qi that is covered by P the partial
lower-bounding distance is equal to D(qi, P ). For the
query points that are not covered by P the maximum
such distance D(qi, P

′) is used, regardless of which
trajectory it corresponds to. Referring back to Fig-
ure 3(b), points 4 and 5 are not covered by P2, thus:
LBD(Q, P2) ≥

∑3
i=1 D(qi, P2)+D(q4, P1)+D(q5, P1).

Due to the incremental discovery of trajectory MBRs,
the computed approximation is still a lower-bound of
the actual distance. By discovering trajectory MBRs
incrementally and continuously improving the com-
puted bounds, the number of raw trajectory data that
need to be loaded from storage is reduced substantially.
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Figure 4: Evaluating time-interval predicates.

In order to evaluate time-interval temporal predi-
cates, for every query predicate qi we need to locate the
nearest MBRs considering all time-instants contained
in the given interval. An example is shown in Figure
4, for δt = ±1. In order to perform correct pruning,
the value of D(q, P ) should be set to the closest MBR
to qi in ∆t. This MBR is the one that minimizes the
distance from the multi-dimensional region outlined by
the query predicate when conceptually sweeping time-

Algorithm 1 Lazy Nearest Neighbor STP queries
With Time
Input: Query Q = {(NN(q1), t1), . . . , (NN(qn), tn)}
Output: Nearest neighbor PB

1: Structure S ← ∅ , Set U ← ∅, PQ1,...,n ← ∅
2: Dq1,...,qn = 0, Λ =∞, k = 1, PB = ∅
3: Initialize priority queues PQi

4: while true do
5: ConcurrentBestFirstSearch(k, Q, PQi, U,S, Dqi)
6: for P in S do
7: if LBD(Q, P ) > Λ then S.remove(P ),

U .enqueue(P )
8: else if Q Covers P then
9: PD = GetTrajectoryData(P )

10: if D(Q, PD) < Λ then Λ =
D(Q, PD), PB = P

11: else S.remove(P ), U .enqueue(P )
12: for P in S do
13: if LBD(Q, P ) < Λ then stop = false
14: elseS.remove(P ), U .enqueue(P )
15: if stop then break
16: k+ = 1
17: end while
18: Return PB

interval ∆t (e.g., the 2-dimensional line AB shown in
Figure 4) and, thus, the search can be performed as a
traditional NN search with an MBR query predicate.

Given the secondary index assumption, the cost of
accessing the raw data is equivalent to one random disk
access per trajectory. ∗ In that case it is reasonable
to postpone the data reads as much as possible and
utilize lower-bounds instead, such that a smaller can-
didate trajectory set can be populated first. That way,
we reduce the total number of accesses to the raw data
storage, which means that query performance will de-
pend mostly on the index access cost (depending on the
size of the final candidate set). We call this the Lazy
strategy. On the other hand, an alternative strategy
is to eagerly load the raw trajectory information when
evaluating each individual predicate, and directly com-
pute the actual distance of each trajectory from the
STP query. We can use the actual distances as tighter
pruning thresholds that will help prune other trajecto-
ries using lower-bounds, very efficiently. We call this
the Eager strategy. The best strategy to use depends
on the characteristics of the dataset (how many pages
are occupied per trajectory) and the query properties.

The lazy algorithm is shown in Algorithm 1. † All
reported MBRs are probed into structure S after be-
ing removed from the priority queues during the NN
searches. The structure is responsible for keeping up-
dated the current lower-bounds of each trajectory and
the query predicate coverage information. For that

∗We assume that individual trajectories are stored sequen-
tially on disk if they occupy more than one page.

†The algorithm for the eager strategy needs only simple mod-
ifications and is thus omitted.
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Algorithm 2 Concurrent Best First Search
Input: k, Q, PQn, U,S, Dq1,...,qn

1: for i = 1 to n do
2: while PQi not empty do
3: Entry N = PQi.top
4: if N is a node then
5: for j such that PQj .contains(N) do
6: PQj .remove(N)
7: for C in N do
8: if C not in U and C covers qj then
9: PQj .enqueue(C, D(Q, C))

10: else if N is a data entry then
11: S.insert(N)
12: Update Dqi

13: if k-NN is discovered, continue from 1
14: end for

purpose a hash table indexed by trajectory identifiers
is constructed. The hash table contains one entry per
trajectory. Each entry stores the current lower-bound
distance and a bit vector, one bit per query predi-
cate, indicating which predicates have not been cov-
ered yet by the trajectory MBRs. Every time a new
MBR is discovered, the corresponding trajectory entry
is retrieved, the appropriate bits are set and the lower-
bound distance is updated. Examining if a trajectory
covers the query is a binary AND operation on the bit
vector. For trajectories that cover the query, the ac-
tual distance D(Q, P ) is computed and stored as the
lower-bound. For other trajectories, the appropriate
D(qi, P ) values are used.

The function ConcurrentBestFirstSearch (Algo-
rithm 2) utilizes the best first search nearest neighbor
algorithm to find the k-NN of every query point. The
search is incremental so that the priority queues can
be preserved and reused between subsequent execu-
tions. Array D(qi) is maintained by storing for each
query point the distance from the last entry removed
from the top of the corresponding priority queue. Both
functions can be straightforwardly modified to sup-
port time-interval predicates as well as top-k searches,
where more than one trajectories are retrieved. For
completeness, we use the extended algorithm for our
experimental evaluation, but present the simpler ver-
sions here for ease of exposition.

Since the algorithm runs a number of concurrent
NN searches, it is unavoidable that some tree nodes
will be retrieved more than once for a number of dif-
ferent predicates, even though each best first search
will access the minimum required number of nodes in-
dividually [10]. In cases where there are no memory
constraints LRU buffering can be used. Since many
NN searches will have similar priority queues that share
many common entries, especially for query predicates
that lie close in space and time, locality of reference en-
sures that LRU buffering techniques will have a high
hit ratio after the buffer becomes hot. Alternatively,
the NN searches can be performed in a round robin

fashion, and every time a node is retrieved from the
top of one priority queue, the rest of the queues are
scanned and if the node is already contained in any of
them, then it is directly replaced with its children. It
can be shown easily that due to the sequence of inser-
tions in the queues, this strategy will guarantee that
every node that is ever accessed by any predicate, will
need to be accessed only once for all queues.

3.1.3 Combinations

For STP Queries With Time that contain combina-
tions of range and NN searches, the evaluation order
of the predicates is restricted, by construction, since
the satisfiability of the NN predicates depends on the
satisfiability of all the range searches. There are two al-
ternatives: (1) Evaluate some or all of the range pred-
icates first and then proceed with nearest neighbors
evaluation and (2) evaluate all nearest neighbors first,
by taking into account the satisfiability of the range
searches whenever a candidate for updating threshold
Λ is retrieved. If the selectivity of any range predicate
is known to be very small then, after evaluating this
predicate, all qualifying trajectories can be loaded from
storage and the rest of the queries can be processed in
main memory. Otherwise, all range predicates can be
evaluated in advance and the disqualified trajectories
can be pinned in set U .

3.2 STP Queries With Order

Assume now that the user is not interested in the ex-
act times that the spatial predicates were satisfied, but
only in the order in which they did. Hence these STP
queries can be expressed as ordered sequences of spa-
tial predicates of the form Q = {Q1, Q2, . . . , Qn}. Let
SQm(P, tk) denote the fact that trajectory P , during
its lifetime, satisfied predicate Qm at time-instant tk.
A single trajectory may satisfy any given predicate for
multiple time-instants. Formally, we say that trajec-
tory P satisfies query Q if there exists an n-length se-
quence SQ1(P, t1), . . . , SQn(P, tn) such that ti ≤ tj , for
all 1 ≤ i < j ≤ n. Note that the time-interval between
any two consecutive ti, tj can be arbitrary.

A solution that utilizes existing spatio-temporal in-
dex structures (as in the previous section) will certainly
be inefficient for STP queries with order, since no tem-
poral constraints are specified. In order to evaluate
a single predicate, the complete evolution of the in-
dex on the temporal dimension will have to be exam-
ined. That is, a range query will need to encompass
the whole lifespan of the dataset on its temporal di-
mension (which for large trajectory archives becomes
prohibitively expensive). Instead, we propose efficient
solutions to STP queries With Order by using special-
ized index structures.

3.2.1 Range Predicate Evaluation

Instead of using a (3-dimensional) spatio-temporal in-
dex one could project out the temporal dimension from
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each trajectory and index the resulting objects with a
2-dimensional spatial index. A spatial range query can
then easily retrieve all trajectories that satisfy it, irre-
spective of the time that they did so. Intuitively, to
find if a trajectory satisfies the STP query, all range
predicates would be evaluated first, the intersection of
the individual result sets would be computed, and the
remaining trajectories would be retrieved in order to
check if they really do satisfy the predicates in the cor-
rect order.

There are however clear disadvantages with this so-
lution. First, this structure does not inherently pre-
serve order. Moreover, the quality of the 2-dimensional
index is expected to be worse than the 3-dimensional
spatio-temporal one, due to increased overlapping of
projected MBRs.

Ideally, we would like to have an index structure
that maintains the order with which each trajectory
satisfies an arbitrary sequence of range predicates. One
way to accomplish this would be to create a ‘pred-
icate index’, that is, an index on the range predicate
themselves, instead of the object trajectories. For each
range predicate rm, the structure associates an ordered
list of Srm(Pl, tk) entries that contains all trajectories
that satisfy the predicate. Entries in such list are or-
dered by trajectory identifier (Pl). Since a trajectory
can satisfy predicate rm many times throughout its
duration, the entries of the same trajectory are fur-
ther ordered by time (tk). Then, given an STP query
Q = {R(r1), R(r2), . . . , R(rn)}, all range predicates
can be evaluated concurrently using an operation simi-
lar to a “merge-join” among the n lists associated with
these predicates. Using this structure the correct an-
swers are retrieved in sorted trajectory identifier order.

There are two cases where entries from the lists can
be skipped (thus resulting in faster processing of the
merge-join). First, whenever in a given predicate list
rm a trajectory identifier (say Ps) is encountered that
is larger than all the trajectory identifiers currently at
the top of the other lists, entries from these lists cor-
responding to trajectories Pr (r < s) can be effectively
skipped. Essentially, predicate rm cannot be satisfied
by any of the trajectories with smaller identifiers (sim-
ply because such identifiers did not appear in the list
of rm). Second, the time-instant at which a trajec-
tory satisfied a corresponding predicate, would assist
in skipping list entries whenever the ordering of the
query predicates was not obeyed.

Clearly not all possible (ad hoc) spatial range pred-
icates can be indexed. Instead, a space partitioning
grid can be used such that an arbitrary range query
can be represented with reasonable accuracy as a list
of cells. Predicate list are created for each cell, storing
the trajectories that intersect with the cell.

For ease of exposition assume that a regular grid is
used to partition the space. Each cell is represented
with a unique cell identifier. An illustrative example

Algorithm 3 Range STP queries With Order
Input: Query Q = {R(r1), . . . , R(rn)}
Output: Trajectories satisfying the predicates
1: for i = 1 to n do
2: Li = combined list of cells intersected by ri

3: Candidate set U ← ∅
4: for i = 1 to n do
5: for j = 1 to n do
6: if L1[i].id 6∈ Lj then break
7: else
8: Let k be the first entry for L1[i].id in Lj

9: while L1[i].id = Lj [k].id
V

L1[i].t > Lj [k].t
do k+ = 1

10: if L1[i].id 6= Lj [k].id then break
11: U = U ∪ L1[i].id
12: end for
13: Retrieve trajectories in U and verify the results

is shown in Figure 5. Trajectory P3 crossed cell B at
time-instant 3. At time-instant 4 trajectory P1 entered
the cell. Trajectory P2 followed at time-instant 9 and
returned at time-instant 13. For simplicity, in this ex-
ample we assumed that each trajectory remained in
the cell for a single time-instant. Then the list for cell
B becomes {(P1, 4), (P2, 9), (P2, 13), (P3, 3)}.

B CA

,5),( P2 ,8)

P1 ,4),(P2 ,9),(P2 ,13),(P3 ,3)B:(

C:( P2 ,4),(P ,10),(P32 ,2)

P2
D
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,3),(P1

1
2

...
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P

Figure 5: A uniform partitioning and the representation
of cells as lists of sorted trajectory identifiers.

The proposed approach is shown in Algorithm 3. If
a range predicate is contained within a cell, we over-
estimate the result by using the cell’s list instead. If
a range predicate is larger than the cell size, we ap-
proximate it by the smallest enclosing range of cells.
In order to use the above join algorithm a sorted list
needs to be materialized first for the combined cells,
which requires time linear to the total number of en-
tries in the lists since they are already sorted. With
this approach a verification step is needed to remove
false positives that are not actually contained in the
original range predicate. A fine grid granularity will
lead to a small number of such false positives. Using
a grid resolves the overlapping issues of the traditional
MBR indices while it also prunes many object trajec-
tories from the search by preserving temporal order-
ing. Moreover, the elimination of trajectories that do
not satisfy some of the predicates can happen without
having to access the raw data from storage, contrary
to the available alternatives for spatio-temporal index
structures. Furthermore, it achieves substantial space
savings since it maintains small representations of tra-
jectories, approximated within the grid granularity. At
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the same time, it discretizes the space, keeping only a
fixed number of lists.

Even though in the preceding analysis we use uni-
form grids for simplicity, in practice, we do not need
to maintain a simple regular grid over the data. Alter-
natively, we may use any dynamic space partitioning
structure like the adaptive grid files, kdb-trees, etc. [6].
This would guarantee that all the cells of the structure
contain approximately the same number of data, and
the corresponding lists have similar sizes.

3.2.2 Nearest Neighbor Predicate Evaluation

We now consider STP queries With Order that con-
tain only nearest neighbor predicates. An object tra-
jectory satisfies the query if it minimizes the sum of
the distances from the query predicates and in the cor-
rect order. One straightforward approach is to use the
incremental ranking nearest neighbor algorithm intro-
duced for STP queries With Time with two needed
modifications: (1) The pruning threshold Λ needs to
be updated only if a candidate trajectory truly min-
imizes the distance in the correct order and not ar-
bitrarily; and (2) the best first search queues should
be populated even with entries that do not contain
the predicates in the temporal dimension. However,
this solution is expected to yield poor query perfor-
mance since it does not inherently prune using predi-
cate ordering but needs to postpone ordering verifica-
tions until a trajectory is loaded from storage. Also,
the increased number of nodes that will be inserted
in the queues will slow down execution, intensify the
search cost, and increase the memory requirements.
Moreover, similar with the case of range predicates, an
approach that first uses a 2-dimensional projection to
eliminate the temporal dimension will not improve per-
formance. Finally, all discovered MBRs during evalu-
ation need to be retained, since they might be part of
the best overall answer given the ordering of the pred-
icates, even if they lie farther than other MBRs from
a specific query predicate. This means that trajectory
lower-bounds cannot be incrementally improved during
evaluation, thus, no trajectories can be pruned unless
a truly small Λ is computed. Hence, this technique will
need to load an excessive number of MBRs in order to
prune all candidates and terminate the search. This is
corroborated by our experimental evaluation.

On the other hand, the space partitioning index
structure proposed in the previous section can be used
to speed up the execution of these queries as well. Once
more, we utilize the incremental ranking algorithm de-
scribed above. However, instead of using the best first
search strategy per query predicate, the algorithm iter-
atively en-queues and examines all the cells adjacent to
the cell containing the query. For every query predicate
qm a sorted queue of satisfiability predicates Sqm(P, ti)
is maintained. This queue is populated with all the
entries contained in adjacent cells. In each phase, the
process increases the number of adjacent cells exam-

ined by moving one cell further away from the query
in every direction (in the beginning it examines the
cell containing the query, then the eight cells adja-
cent to the query, and so on). For all new entries
Sqm

(P, ti) that are added in the queue at each step,
the lower-bound distance LBD(qi, P ) is computed pes-
simistically; i.e., assuming that the actual trajectory
would be as close as possible to the query.

Then, all the predicates are evaluated in order. For
every new cell added in any query predicate queue, the
algorithm joins it with the queues of all other pred-
icates. Trajectories that visit the predicates in the
correct order are loaded from storage as soon as they
have appeared in all queues, and the exact distances
are computed. The pruning threshold Λ is updated
accordingly. The exact distance computation is post-
poned for trajectories that do not follow the right or-
der. Next, the lower bound distance from the query
needs to be computed for all candidate trajectories that
appear in at least one of the queues. Assume that a
trajectory entry Sqm

(P, t) exists in the queue for qm.
The minimum partial distance of P from qm is equal
to MinDist(qm, C), where C is the cell that contains
P at time-instant t. Assume that no entries for tra-
jectory P are contained in the queue of predicate qm.
Then, P has not been discovered yet for qm, thus it
has to lie at least as far as the farthest explored point
for qm in every direction. This distance is equal to
the minimum of the distances of qm from the sides of
the rectangle defined by the perimeter of the explored
cells. Given the total lower bounding distance of each
trajectory from the query and Λ, trajectories can be
safely pruned in every step.
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Figure 6: An example of the incremental nearest neighbor
algorithm.

The actual algorithm is omitted since the modifi-
cations can be straightforwardly applied in Algorithm
1. The en-queue, join and merge procedure is shown
in Algorithm 4. We further illustrate the details of
the algorithm using an example. Figure 6 depicts an
STP query with two NN predicates q1, q2 in that or-
der, a 6× 4 grid, and three trajectories. The grid cells
have identifiers A,B, . . . ,X, Y starting from the lower
left corner (not all cell identifiers are depicted). In
the first phase of processing, the combined list of q1

consists only of the entries in cell H, which contains
element Sq1(P2, 8). Similarly, the list of q2 contains
entry Sq2(P3, 7). The partial distance of P2 from q1

is set to 0, while the pessimistic distance from q2 is
equal to the minimum distance of q2 from the sides
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Algorithm 4 En-queue, Join and Merge Operation
Input: l, Q, CLn,S, Dq1,...,qn

1: for i = 1 to n do
2: Locate next level of cells l
3: for each new cell list L do
4: for T ∈ L do
5: S.insert(T )
6: Join with lists CLj , j 6= i to see if T sat-

isfies the order (similarly to the range
query algorithm), and if yes tag it in S
for subsequent retrieval

7: Insert T in list CLi

8: Update Dqi

9: end for

of cell R. The total lower bound LBD(Q, P2) from
the query is thus equal to 0 + MinDist(q2, R) (simi-
larly LBD(Q, P3) = 0 + MinDist(q1,H)). In the next
phase the algorithm evaluates all cells adjacent to q1

and q2. Starting with q1 the process merges the lists
of cells A,B, . . . , N,O (the shaded region around q1),
with the list of q1 (cell H). Before the merging opera-
tion, each cell is joined with q2, and entries that follow
the query ordering are loaded from storage for verifica-
tion. For example, consider cell B being merged with
query list q1. The list of B contains element SB(P2, 9).
First, we join B with q2 and deduce that there is no
entry in q2 with the same identifier yet, so no action
needs to be taken. Likewise, when merging cell N ,
element SN (P3, 2) is probed into list q2, where it is
already contained with a satisfiability predicate cor-
responding to time-instant 7. Thus, P3 satisfies the
order and, in addition, it has appeared in the lists of
all predicates, so it is loaded from storage for an exact
distance computation and Λ is updated accordingly.

Trajectories for which the computed lower bounds
are larger than Λ can be safely pruned (none in this
case yet). The rest of the cells are merged in the
same way. The list for q1 becomes (P1, 3− 8), (P2, 6−
9), (P3, 2−4). In the same phase, when merging cell X
with query q2, we join element SX(P2, 1) with the list of
q1, where four entries for P2 are already present. Since
all entries are associated with time-instants larger than
1, we deduce that no sequence of satisfaction predicates
follows the order of the query, so no action needs to be
taken. After all cells around q2 have been merged, the
new partial distances of all trajectories can be com-
puted. For trajectory P3 the exact distance is known.
For the rest of the trajectories, since they did not sat-
isfy the order, the partial distance is equal to the min-
imum distance of the query point from the sides of the
rectangle corresponding to the perimeter of the newly
added cells (the far side of cell K in this case as shown
with the arrow). The intuition is that since the points
found so far do not satisfy the ordering yet, any point
that does must be at least as far as this distance from
the query After computing the new lower bounds it can
be deduced that trajectories P1 and P2 can be pruned

given the current Λ, and the algorithm stops.
Another interesting problem is computing the min-

imum ordered distance of a trajectory from a given
query efficiently. Assuming discrete time or approxi-
mate trajectory representations, one way is to exhaus-
tively check all possible sequences of locations. A bet-
ter way is to use the Threshold Algorithm (TA) [4].
Given a query Q and a trajectory P , the n-length se-
quence of locations that minimizes the distance from
all predicates and also satisfies the query order can
be found by using the incremental top-k ranking con-
cept of TA. Our algorithm will perform even better,
since whenever the actual query to trajectory distance
needs to be evaluated, the following information is al-
ready computed: (1) That the trajectory definitely sat-
isfies the predicate order, and (2) that all the trajectory
points that are candidates for minimizing the total dis-
tance are already available. Given the above and the
expensive nature of this distance function, it is clear
that our technique will offer substantial improvement
over the exhaustive search or any other technique that
needs to evaluate this distance from scratch.

3.2.3 Combinations

Using our proposed grid structure combinations of
range and nearest neighbor STP queries can be an-
swered as well. The same approach as with STP
queries With Time can be utilized. The incremental al-
gorithm can be modified to take into account the range
predicates during the joining phase of the lists. More
specifically, in the beginning, for every range predicate
we create a combined list of the entries of the con-
stituent cells which remain fixed throughout execution.
Then, while evaluating the NN predicates, every time
a new cell is added in the list of a specific predicate,
we join the sorted list of the cell with all other lists
of nearest neighbor and range predicates and instantly
prune the entries that do not satisfy any of the range
predicates with the correct order. The added benefit of
the algorithm is that, depending on the selectivity of
the range queries, it is expected that the candidate en-
tries for inclusion in the lists will decrease substantially
during evaluation.

4 Experimental Evaluation

We proceed with a comprehensive experimental eval-
uation of the proposed algorithms. We run various
experiments with synthetic datasets to test the behav-
ior of each technique under different settings. All ex-
periments were run on an Intel Pentium-4 2.4 GHz
processor running Linux, with 512 MBytes main mem-
ory. We generated synthetic datasets of moving object
trajectories. The dataset represents the freeway net-
work of Indiana and Illinois. The 2-dimensional spatial
universe is 1,000 miles long in each direction and con-
tains up to 500,000 objects. Object velocities follow
a Normal distribution with mean 60 mph, and stan-
dard deviation 15 mph. We run simulations for 400
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minutes (time-instants). To illustrate the generality of
our framework, we index the data using two different
indexing techniques, the R-tree and the MVR-tree.

4.1 STP Queries With Time

For this type of queries trajectories were split into mul-
tiple MBRs and then indexed using an R-tree and an
MVR-tree. For our experiments we approximated the
datasets using on average 20 MBRs per trajectory (for
a total of approximately 6,000,000 MBRs) [9]. We set
the page size for all indices to 4 KBytes, and used a
256 pages LRU buffer (e.g., in comparison to a total
of 61,477 pages present in an R-tree indexing 300,000
trajectories). For clarity we present the results only for
the R-tree in the graphs, but very similar conclusions
were drawn for the MVR-tree as well.

We use four query sets: RandomPattern, Rel-
evantPattern, CombinedPattern and Interval-
Pattern. All query sets contain sets of NN predicates
only, except from the CombinedPattern that con-
tains combinations of NN and range predicates. All
sets have 100 queries and each query consists of a
number of predicates at increasing time instants. For
all queries we provide the top-20 results. Queries in
the RandomPattern set have predicates that lie on
consecutive nodes of the network, reachable from each
other given the maximum velocity of objects and the
temporal constraints of the query. The Relevant-
Pattern set contains queries that are formed from
partial segments of object trajectories already con-
tained in the dataset, slightly skewed in time and space
from the original, with random location/time-instant
tuples dropped in-between. With the CombinedPat-
tern set, we evaluate the algorithms using query sets
that are a mix of NN and range predicates. In partic-
ular, we randomly replace a number of NN predicates
with range searches centered at the same positions.
Finally, the IntervalPattern set is generated simi-
larly to the RelevantPattern, and includes only NN
predicates but with time-interval temporal constraints.

Comparison vs. Linear Scan. Since our query
sets contain NN predicates, we can only compare
against a linear trajectory scan (since the traditional
search algorithms for spatial index structures cannot
be applied). We compared the linear scan against our
techniques for all subsequent experiments. Although,
since the total I/O of this straightforward approach
was, on average, three orders of magnitude higher than
the other algorithms, we exclude it from the graphs in
order to preserve detail. Hence in the rest we concen-
trate on the relative performance of the lazy and eager
algorithms.

Performance vs. Number of Predicates. We
test our algorithms for queries with increasing number
of predicates. The results are shown in Figure 7 for the
RandomPatterns and Figure 8 for the Relevant-
Patterns, where we plot the index I/O, the trajectory
I/O and the total I/O for each technique. Clearly,

for RandomPatterns and numerous predicates the
lazy algorithm deteriorates substantially. Many index
nodes need to be accessed before a tight threshold can
be computed, hence, the NN searches become very ex-
pensive. On the contrary, for RelevantPatterns all
algorithms remain practically unaffected, since a near-
est neighbor is discovered fast and the searches termi-
nate faster.

In terms of average trajectory loads (LR-T and ER-
T), for RandomPatterns all algorithms need to load
an increasing number of trajectories, as the number
of predicates increases. In order to find the top-20
results the probability that many trajectories satisfy
the query decreases proportionately and the searches
start expanding correspondingly, thus many trajecto-
ries are being discovered. The eager algorithm loads a
larger number of trajectories in all cases. Assuming one
random I/O per trajectory access, the eager achieves
the best performance overall, balancing the trajectory
accesses and the index overhead, especially for large
numbers of predicates, where the searches become ex-
pensive. For RelevantPatterns all algorithms load
the same number of candidate trajectories. Since there
exist many trajectories similar to the given query, the
top-20 candidates are found very fast, and only few
extra trajectories cannot be pruned using the lower
bounds.
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Performance vs. Dataset Size. Next, we run
scale-up experiments with increasing numbers of tra-
jectories. Figures 9 and 10 summarize the results. We
used both RandomPattern and RelevantPattern
query sets with 10 predicates per query. As expected,
we observe that for all index structures the average
number of node accesses per query increases, since the
total number of nodes in the structures increases as
well, and the trees become deeper. The total number
of trajectory accesses remains stable for Relevant-
Patterns, since the top-20 results per query are dis-
covered very fast, irrespective of the total number of
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objects in the dataset. On the contrary, for Random-
Patterns there is a linear increase in the number of
trajectory access, since with a larger dataset size and
looser thresholds, more trajectories are discovered dur-
ing the NN searches. In terms of total I/O the eager
algorithm is once more the best choice overall, provid-
ing better results for the RandomPatterns.
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Query Runtime vs. Number of Predicates.
Figure 11 reports the average computational cost (as
the total wall-clock time, averaged over a number of
executions) for top-20 queries of various numbers of
predicates. Doubling the number of predicates dou-
bles the amount of time required to answer the Ran-
domPattern queries, as expected due to lack of good
candidates. In contrast, the number of predicates does
not affect RelevantPattern queries, which are eas-
ier to answer.
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Performance vs. Buffer Size. Figure 12 plots
the effect of the buffer size on query performance. We
use 10 predicates per query and top-20 nearest neigh-
bors. Since we run multiple NN searches concurrently
we expect some searches to access the same nodes at
approximately the same time. Larger buffer sizes help
alleviate the problem of loading these nodes multiple
times. We can see from the graph that an 1 Mbyte
buffer is adequate for eliminating most superfluous
node accesses. As expected, the lazy algorithm ben-
efits the most, since it is the one with the heaviest
index access cost.
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Interval Queries. We performed experiments us-
ing the IntervalPattern queries. We used a fixed
time-interval ∆t equal to ten time-instants for all query
predicates. For comparison purposes Figure 13 shows
the results of the eager algorithm for queries with time-
instant predicates and interval predicates (IER) (the
same set of queries was used, where each time-interval
constraint was replaced with a time-instant). As ex-
pected, interval queries have the larger index access
cost in comparison with time-instant queries, due to
the larger number of nodes that intersect with the tem-
poral constraints of the predicates. A surprising result
is that interval queries load much fewer candidate tra-
jectories from storage. Intuitively, the time-interval
algorithm locates very similar trajectories to the query
a lot faster, by performing a more robust searching
on the time dimension, thus a very tight threshold is
computed earlier during the evaluation process.
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Combined Queries. Finally, we tested our algo-
rithms for CombinedPattern queries that contain
both NN and range predicates. Figure 14 shows the
effect of increasing the range query selectivity to the
index and trajectory access cost, when using top-20
queries. Line ER-I corresponds to the cost of answer-
ing a query that contains only NN predicates. RER-1
and RER-2 correspond to answering the same query,
where one NN predicate has been replaced with a range
predicate. Clearly, for very small range queries that do
not contain the actual nearest neighbors of the origi-
nal query, the remaining NN searches need to expand
the search substantially in order to retrieve their clos-
est candidates that also satisfy the range predicate.
Here, the cost for range query side 2.5 has being clipped
in order to preserve the detail in the graph. The ac-
tual cost is 3,000 index I/Os on average. The problem
is exacerbated since a large number of nearest neigh-
bors (twenty in this case) is requested. As the range
query increases in size, since the original twenty near-
est neighbor trajectories are all contained in the range,
the rest of the searches discover them very fast. In this
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case, the index cost for RER-1 increases due to the ex-
tra cost for answering the range query in the beginning.
On the contrary, the trajectory access cost decreases
since many new trajectories discovered during the NN
searches can be pruned, given the answer of the range
query. Alternative RER-2 gave similar results to the
original query, as expected, since the range predicate
has no effect on the execution of the ranking algorithm,
pruning entries only after they have been loaded from
storage.
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Conclusion. In general our algorithms yielded very
efficient pruning for STP queries, especially when con-
sidering that the only available alternative is the linear
scan. The eager strategy performed the best overall,
in all cases, balancing the trajectory access cost and
the index overhead.

4.2 STP Queries With Order

For this type of queries we selected a 100×100 uniform
grid and created the corresponding sorted lists per cell,
as described in Section 3.2. We compare our grid based
index against the straightforward approach of using a
2-dimensional R-tree.

4.2.1 Range Queries

For this experiment we created a query set that con-
tains only range predicates. The queries were created
similarly to the RelevantPatterns set, by replacing
the NN predicates with range predicates. For the R-
tree index, assuming that the selectivity of the pred-
icates is not known, all predicates were evaluated in
sequence and the intersection of the individual result
sets was returned.

Performance vs. Number of Predicates. First,
we evaluate the techniques using varying numbers
of range predicates, given a fixed range query side
length equal to 15 miles (with the universe size being
1, 000× 1, 000 miles). The results are shown in Figure
15. The CellList in the graph corresponds to our pro-
posed technique, and the R-tree to the 2-dimensional
R-tree approach. The CellList has significantly re-
duced index I/O, due to more efficient pruning during
the list join step. Moreover, another benefit of our ap-
proach is the reduced number of raw trajectory data
that need to be retrieved. Our approach yields from
two up to three orders of magnitude less trajectory ac-
cesses than the R-tree (the graph shows the results in
a logarithmic scale). This is expected, since the R-tree
has no way of pruning trajectories due to predicate or-

dering constraints; it does not store such information
in the index.
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Performance vs. Range Selectivity. The next
experiment evaluates the performance with respect
to increasing range predicate selectivity. Figure 16
presents the results. As expected, when the size of
the range increases the index I/O rises proportionately,
since a larger number of candidates are retrieved. Sim-
ilar observations hold for trajectory accesses as well.
Clearly, the CellList can answer STP queries With Or-
der, by far more efficiently than the R-tree, and with
a structure that is smaller in size
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4.2.2 Nearest Neighbor Queries

For these queries we used the RelevantPatterns to eval-
uate the CellList both using the lazy and the eager
strategies. We also run a simple eager algorithm on a
2-dimensional R-tree, with the ranking algorithm de-
scribed in Section 3.2.2. We compared each technique
for an increasing number of predicates. The results
are reported in Figure 17. The lazy strategy worked
the best in this case, requiring a small number of index
accesses as well as a very small number of trajectory ac-
cesses. Naturally, delaying trajectory retrieval in this
case is beneficial due to the double pruning based both
on lower-bounds and the predicate ordering. It is ev-
ident that, contrariwise, the eager strategy has three
orders of magnitude more trajectory accesses, since it
unnecessarily retrieves trajectories that do not satisfy
the order. The R-tree approach, as predicted in Sec-
tion 3.2.2, deteriorated to almost a sequential scan of
both the index structure and the trajectory storage,
especially for larger numbers of predicates.

For STP Queries with Order, the CellList is a robust
solution with excellent performance, both for range
and nearest neighbor predicates. In particular, the lazy
strategy for these queries works the best, in contrast
to STP queries With Time, where the eager strategy
was the best alternative.
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5 Related Work

Modelling and expressing complex spatio-temporal
queries has been investigated in [7]. In this paper we
use a very general expression mechanism, that can uti-
lize any previous definition of spatio-temporal predi-
cates. Applying the incremental ranking algorithms for
answering STP queries with NN predicates has been
inspired by the Threshold Algorithm (TA) proposed
in [4]. The TA algorithm is used for ranking objects
with multiple features given any monotonic preference
function. Here, we show how this algorithm can be ap-
plied in the case of spatio-temporal data using index
structures instead of materialized sorted lists. Tradi-
tional nearest neighbor queries have been addressed
in previous work including [1, 5, 10, 20]. None of
these approaches has focused on efficient evaluation of
combinations of NN predicates (with the exception of
GNN queries [16]). To the best of our knowledge, no
work has appeared for answering combinations of spa-
tial predicates with order and without temporal con-
straints.

Related to the STP range queries with order (after
the grid reduction) is the work in [12] which consid-
ers non-contiguous pattern queries on string sequences.
However, our structures are more suitable for spatio-
temporal data and can answer more general queries.
Mouza and Rigaux [3] introduced mobility pattern
queries, where patterns are expressed using regular ex-
pressions. This work is a special case of STP queries,
concentrating on STP queries With Order and Range
predicates. The techniques introduced therein cannot
handle distance based predicates, neither explicit tem-
poral constraints. Furthermore, the patterns are lim-
ited to predefined ranges, which have been determined
in advance by partitioning the space into areas of in-
terest. In contrast, here we present more general tech-
niques that can handle arbitrary query ranges, distance
based predicates, and temporal constraints.

Any trajectory indexing scheme that can answer
nearest neighbor, range queries, and other spatial pred-
icates can be used with the STP query algorithm de-
scribed here [22, 15, 2, 13, 18, 21]. were there is an in-
herent uncertainty in moving object trajectories [23].

6 Conclusions

We introduced and formalized a novel type of spatio-
temporal pattern query for trajectories. We designed
specialized spatio-temporal index structures and algo-
rithms to effectively reduce the computation and I/O

operations per query, when compared with existing ap-
proaches. Finally, we presented a thorough experimen-
tal evaluation. For future work we plan to extend the
techniques for answering pattern queries that impose
constraints between groups of predicates, and for in-
cluding relative temporal constraints.
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