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Abstract

A fundamental concern of information integration
in an XML context is the ability to embed one or
more source documents in a target document so
that (a) the target document conforms to a tar-
get schema and (b) the information in the source
document(s) is preserved. In this paper, informa-
tion preservation for XML is formally studied, and
the results of this study guide the definition of a
novel notion of schema embedding between two
XML DTD schemas represented as graphs. Schema
embedding generalizes the conventional notion of
graph similarity by allowing an edge in a source
DTD schema to be mapped to a path in the target
DTD. Instance-level embeddings can be defined
from the schema embedding in a straightforward
manner, such that conformance to a target schema
and information preservation are guaranteed. We
show that it is NP-complete to find an embedding
between two DTD schemas. We also provide ef-
ficient heuristic algorithms to find candidate em-
beddings, along with experimental results to eval-
uate and compare the algorithms. These yield the
first systematic and effective approach to finding
information preserving XML mappings.

1 Introduction

A central technical issue for the exchange, migration and
integration of XML data is to find mappings from docu-
ments of a source XML (DTD) schema to documents of a
target schema. While one can certainly define XML map-
pings in a query language such as XQuery or XSLT, such
queries may be large and complex, and in practice it is of-
ten needed that XML mappings (1) guarantee type-safety
and (2) preserve information.
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It is clearly desirable that the document produced by an
XML mapping conforms to a target schema, guaranteeing
type safety. But this may be difficult to check for mappings
defined in XQuery or XSLT [4]. Further, since in many ap-
plications one does not want to lose the original informa-
tion of the source data, a mapping should also preserve in-
formation. Criteria for information preservation include:
(1) invertibility [16]: can one recover the source document
from the target? and (2) query preservation: for a particular
XML query language, can all queries on source documents
in that language be answered on target documents? We now
illustrate these concepts with an example.

Example 1.1: Consider two source DTDs S0, S1 and a tar-
get DTD S represented as graphs in Fig. 1 (we omit the
str–PCDATA– child under cno, credit, title, year, term, in-
structor, gpa in Fig. 1(c)). A document of S0 contains in-
formation of classes currently being taught at a school, and
a document of S1 contains student data of the school. The
user wants to map the document of S0 and the document of
S1 to a single instance of S, which is to collect data about
courses and students of the school in the last five years.
Here we use edges of different types to represent different
constructs of a DTD, namely, solid edges for a concatena-
tion type (a unique occurrence of each child), dashed edges
for disjunction (one and only one child), and star edges
(edge labeled ‘∗’) for Kleene star (zero or more child). 2

In this example, invertibility asks for the ability to re-
construct the original class and student documents from an
integrated school document, while query preservation re-
quires the ability to answer XML queries posed on class and
student documents using the school document. Two natu-
ral questions are: (a) can one determine whether an XML

mapping is information preserving? (b) is there an efficient
method to find information-preserving XML mappings?

While type safety and information preservation are
clearly desirable, an additional feature is the ability to map
documents of DTDs that have different structures. A given
source DTD may differ in structure from a desired target
DTD. This is typical in data integration, where the target
DTD needs to accommodate data from multiple sources and
thus cannot be similar to any of the sources; see, e.g., the
class, student DTDs and the school DTD in Fig. 1.

Background. While information preservation has been
studied for traditional database transformations [3, 16, 27,
28], to our knowledge, no previous work has considered it
for XML mappings. In fact, a variety of tools and models
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Figure 1: Example: source and target schemas

have been proposed for finding XML mappings at schema-
or instance-level [13, 22, 24, 25, 26, 29]; however, none
has addressed invertibility and query preservation for XML.
Most tools either focus on highly similar structures, or
adopt a strict graph similarity model like bisimulation (see,,
e.g., [1]) to match structures, which is incapable of map-
ping DTDs with different structures such as those shown in
Fig. 1, and can ensure neither invertibility nor query preser-
vation w.r.t. XML query languages. Another issue is that it
is unclear that mappings found by some of these tools guar-
antee type safety when it comes to complex XML DTDs.

Contribution. To this end we study information preserving
XML mappings, and make the following contributions.

First, as criteria for information preservation we revisit
the notions of invertibility and query preservation [3, 16,
27, 28] for XML mappings (Section 2). While the two no-
tions coincide for relational mappings w.r.t. relational cal-
culus [16], we show that they are in general different for
XML mappings w.r.t. XML query languages. Furthermore,
we show that it is undecidable to determine whether or not
an XML mapping defined in a simple fragment of XQuery
(or XSLT) is information preserving (Section 3).

Second, to cope with the undecidability result, we intro-
duce an XML mapping framework based on a novel notion
of schema embeddings. A schema embedding is a natural
extension of graph similarity in which an edge in a source
DTD schema may be mapped to a path, rather than a single
edge, in a target DTD. For example, the source DTDs S0

and S1 of Fig 1 can both be embedded in S, while there is
no sensible mapping from them to S based on graph sim-

ilarity. From a schema embedding, an instance-level XML

mapping can be directly produced that has all the prop-
erties mentioned above. In particular, such mappings are
invertible, query preserving w.r.t. regular XPath (an exten-
sion of XPath introduced in [23]), and ensure type safety.
As with schema-mapping techniques for other data models,
by automatically producing this mapping the user is saved
from writing and type-checking a complex mapping query.
Moreover, we show that the inverse and query rewriting
functions for the mapping are efficient (Section 4).

Third, we provide algorithms to compute schema em-
beddings. We show that it is NP-complete to find an em-
bedding between two DTDs, even when the DTDs are nonre-
cursive. Thus algorithms for finding embeddings are nec-
essarily heuristic. A building block of our algorithms is
an efficient algorithm to find a local embedding for indi-
vidual productions in the source schema. Based on this,
we develop three heuristic algorithms to compute embed-
dings. The first two algorithms repeatedly attempt to as-
semble local embeddings into a schema embedding (using
a random or quality-specific order of the local embeddings,
respectively), and when conflicts arise, attempt to gener-
ate new, non-conflicting local embeddings. The third algo-
rithm generates a candidate pool of local embeddings, and
then uses a heuristic solution to Maximum-Independent-
Set to assemble a valid schema embedding (Section 5).

Finally, we have implemented our algorithms and con-
ducted an experimental study based on mapping schemas
taken from real-life and benchmark sources to copies of
these schemas with varying amounts of introduced noise.
These experiments verify the accuracy and efficiency of our
heuristics on schemas up to a few hundred nodes in size
(Section 6), and suggest that schema embeddings will lead
to a promising tool for automatically computing informa-
tion preserving XML mappings. We discuss related work in
Section 7. Proofs are in the full version [8] of this paper.

To the best of our knowledge, this work is the first to
study information preservation in the XML context, and it
yields a systematic and effective approach to defining and
finding information preserving XML mappings.

2 DTDs, XPath, Information Preservation
In this section we review DTDs and (regular) XPath, and
revisit information preservation [16, 28] for XML.

2.1 XPath and Regular XPath

We consider a class of regular XPath queries proposed and
studied in [23], denoted by XR and defined as follows:

p ::= ε | A | p/text() | p/p | p ∪ p | p∗ | p[q],

q ::= p | p/text() = ‘c’ | position() = k

| ¬q | q ∧ q | q ∨ q.

where ε is the empty path (self), A is a label (element type),
‘∪’ is the union operator, ‘/’ is the child-axis, and ∗ is the
Kleene star; p is an XR expressions, k is a natural number,
c is a string constant, and ¬,∧,∨ are the Boolean negation,
conjunction and disjunction operators, respectively.
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An XPath fragment of XR, denoted by X , is defined by
replacing p∗ with p//p in the definition above, where // is
the descendant-or-self axis.

A (regular) XPath query p is evaluated at a context node
v in an XML tree T , and its result is the set of nodes (ids)
of T reachable via p from v, denoted by v[[p]].

2.2 DTDs

We consider DTDs of the form (Ele, P, r), where Ele is a
finite set of element types; r is a distinguished type in Ele,
called the root type; P defines the element types: for each
A in Ele, P (A) is a regular expression of the form:

α ::= str | ε | B1, . . . , Bn | B1 + . . . + Bn | B∗

where str denotes PCDATA, ε is the empty word, B is a
type in Ele (referred to as a child of A), and ‘+’, ‘,’ and
‘∗’ denote disjunction (with n > 1), concatenation and
the Kleene star, respectively. We refer to A → P (A) as
the production of A. Note that this form of DTDs does not
lose generality since any DTDs S can be converted to S ′

of this form (in linear time) by introducing new element
types, and (regular) XPath queries on S can be rewritten
into equivalent (regular) XPath queries on S ′ in PTIME [7].

Schema Graphs. We represent a DTD S as a labeled graph
GS , referred to as the graph of S. For each element type
A in S, there is a unique node labeled A in GS , referred to
as the A node. From the A-node there are edges to nodes
representing child types in P (A), determined by the pro-
duction A → P (A) of A. There are three different types of
edges indicating different DTD constructs. Specifically, if
P (A) is B1, . . . , Bn then there is a solid edge from the A
node to each Bi node; it is labeled with a position k if Bi

is the k-th occurrence of a type B in P (A) (the label can
be omitted if Bi’s are distinct). If P (A) is B1 + . . . + Bn

then there is a dashed edge from the A node to each Bi

node (w.l.o.g. assume that Bi’s are distinct in disjunction).
If P (A) is B∗, then there is a solid edge with a ‘∗’ label
from the A node to the B node. Note that a DTD is recur-
sive if its graph is cyclic. When it is clear from the context,
we shall use the DTD and its graph interchangeably, both
referred to as S; similarly for A element type and A node.

For example, Fig. 1 shows graphs representing three
DTDs, where Figs. 1(a) and 1(c) depict recursive DTDs.

An XML instance of a DTD S is a node-labeled tree that
conforms to S. We denote by I(S) the set of all instances
of S. A DTD S is consistent if it has no useless element
types, i.e., each type of S has an instance. In the sequel
we only consider consistent DTDs, w.l.o.g. since any DTD

S can be converted to a consistent S ′ in O(|S|2) time such
that I(S′) = I(S), by dropping all useless types from S.

2.3 Invertibility and Query Preservation

For XML DTDs S1 and S2, a (data) instance mapping
σd : I(S1) → I(S2) is invertible if there exists an inverse
σ−1

d of σd such that for any XML instance T ∈ I(S1),
σ−1

d (σd(T )) = T , where f(T ) denotes the result of apply-
ing a function (or mapping, query) f to T . In other words,

the composition σ−1

d ◦σd is equivalent to the identity map-
ping id, which maps an XML document to itself.

For an XML query language L, a mapping σd is query
preserving w.r.t. L if there exists a computable function F :
L → L such that for any XML query Q ∈ L and any T ∈
I(S1), Q(T ) = F (Q)(σd(T )), i.e., Q = F (Q) ◦ σd.

In a nutshell, invertibility is the ability that the origi-
nal source XML document can be recovered from the target
document; query preservation w.r.t. L indicates whether or
not all queries of L on any source T of S1 can be effec-
tively answered over σd(T ), i.e., the mapping σd does not
lose information of T when L queries are concerned.

The notions of invertibility and query preservation are
inspired by (calculus) dominance and query dominance
that were proposed in [16] for relational mappings and later
studied in [3, 27, 28]. In contrast to query dominance,
query preservation is defined w.r.t. a given XML query lan-
guage that does not necessarily support query composition.
Invertibility is defined for XML mappings and it only re-
quires σ−1

d to be a partial function defined on σd(I(S1)).
We say that a mapping σd : I(S1) → I(S2) is infor-

mation preserving w.r.t. L if it is both invertible and query
preserving w.r.t. L.

3 Information Preservation
In this section we establish basic results for separation
and equivalence of the invertibility and query preservation
of XML mappings, as well as complexity of determining
whether a given XML mapping is information preserving.

Invertibility and Query Preservation. It was shown [16]
that calculus dominance and query dominance are equiva-
lent for relational mappings. In contrast, invertibility and
query preservation do not necessarily coincide for XML

mappings and query languages. Recall the class X of
XPath queries defined in Section 2, which supports neither
query composition, nor identify mapping, nor the ability to
navigate a recursive DTD based on certain patterns that are
expressible in terms of the Kleen closure p∗.

Theorem 3.1: There exists an invertible XML mapping
that is not query preserving w.r.t. X ; and there exists an
XML mapping that is not invertible but is query-preserving
w.r.t. the class of X queries without position() qualifier. 2

We identify sufficient conditions for the two to coincide:
the definability of the identity mapping, and query com-
posibility (i.e., for any Q1, Q2 in L, Q2 ◦ Q1 is in L).

Theorem 3.2: Let L be any XML query language and σd

be a mapping from I(S1) → I(S2).

• If the identity mapping id is definable in L and σd is
query preserving w.r.t. L, then σd is invertible.

• If L is composable, σd is invertible and σ−1

d is ex-
pressible in L, then σd is query preserving w.r.t. L. 2

Recall the class XR of regular XPath queries defined
in Section 2. Although the identity mapping id is not
definable in XR, we show below that query preservation
w.r.t. XR is a stronger property than invertibility: every
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node in a source document can uniquely identified by an
XR query on the target document, and thus can be retracted.

Theorem 3.3: If an XML mapping σd is query preserving
w.r.t. XR, then σd is invertible. Conversely, there exists σd

that is invertible but is not query preserving w.r.t. XR. 2

Complexity. It is common to find XML mappings defined
in XQuery or XSLT. A natural and important question is
to decide whether or not an XML mapping is invertible or
query preserving w.r.t. a query language L. Unfortunately,
this is impossible for XML mappings defined in any L that
subsumes first-order logic (FO, or relational algebra–RA),
e.g., XQuery, XSLT, even when L consists of projection
queries only. Thus it is beyond reach to answer the question
for XQuery or XSLT mappings.

Theorem 3.4: It is undecidable to determine, given an
XML mapping σd defined in any language subsuming FO,
whether or not (a) σd is invertible; and (b) σd is query pre-
serving w.r.t. projection queries. 2

This can be verified by reduction from the equivalence
problem for RA queries. The undecidability suggests that
we start with languages simpler than XQuery and XSLT
when studying information preserving XML mappings. In-
deed, understanding (regular) XPath query preservation is
a necessary step toward a full treatment of XML mappings
defined in XQuery or XSLT, in which XPath is embedded.

4 Schema Embeddings for XML
The negative results in Section 3 tell us that it is already
hard to determine whether or not an XML mapping is infor-
mation preserving, not to mention finding one. This moti-
vates us to look for a class of XML mappings that are guar-
anteed to be information preserving.

We approach this problem by specifying XML mappings
at the schema level embeddings, and providing an auto-
mated derivation of instance-level mappings from these
embeddings. Our notion of schema embeddings is novel,
and extends the conventional notion of graph similarity by
allowing edges in a source DTD schema to be mapped to a
path in a target DTD with a “larger information capacity”.
For example, a STAR edge can only be mapped to a path
with at least one STAR edge.

In this section we define XML schema embeddings,
present an algorithm for deriving an instance-level map-
ping from a schema embedding, and verify that the result-
ing mappings ensure information preservation.

4.1 Schema Level Embeddings

Consider a source XML DTD schema S1 = (E1, P1, r1)
and a target DTD S2 = (E2, P2, r2). In a nutshell, a schema
embedding σ is a pair of functions (λ, path) that maps each
A type in E1 to a λ(A) type in E2, and each edge (A, B)
in S1 to a unique path(A, B) from λ(A) to λ(B) in S2,
such that the S2 paths mapped from sibling edges in S1 are
sufficiently distinct to allow information to be preserved.
To define λ and path we first introduce a few notations.

A

B C
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B C
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B

*

A

B C

A

B C

(d)(c)(b)(a) (e)
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21

Figure 2: Path mappings for DTDs

XR Paths. An XR path over a DTD S = (E, P, r) is an
XR query of the form ρ = η1/ . . . /ηk, where k ≥ 1, ηi is
of the form A[q], and q is either true or a position() qual-
ifier, such that ρ is a path in S and it carries all the posi-
tion labels on the path. An XR path is called an AND path
(resp. OR path, and STAR path) if it is nonempty and con-
sists of only solid or star edges (resp. of solid edges and
at least one dashed edge, and of solid edges and at least
one edge labeled ∗). Referring to Fig. 1(c), for example,
basic/class/semester/title is an AND path as well as a STAR

path, and mandatory/regular is an OR path.

Name Similarity. A similarity matrix for S1 and S2 is an
|E1| × |E2| matrix att of numbers in the range [0, 1]. For
any A ∈ E1 and B ∈ E2, att(A, B) indicates the suitabil-
ity of mapping A to B, as determined by human domain ex-
perts or computed by an existing algorithm, e.g., [5, 13, 21].

Type Mapping. A type mapping λ from S1 to S2 is a (total)
function from E1 to E2; it maps the root of S1 to the root
of S2, i.e., λ(r1) = r2. A type mapping λ is valid w.r.t. a
similarity matrix att if for any A ∈ E1, att(A, λ(A)) > 0.

Path Mapping. A path mapping from S1 to S2, denoted by
σ : S1 → S2, is a pair (λ, path), where λ is a type mapping
and path is a function that maps each edge (A, B) in S1 to
an XR path path(A, B) that is from λ(A) to λ(B) in S2.

For a particular element type A in E1, we say that σ is
valid for A if the following conditions hold, based on the
production A → P1(A) in S1:

• if P1(A) = B1, . . . , Bl, then for each i, path(A, Bi)
is an AND path from λ(A) to λ(Bi) that is not a prefix
of path(A, Bj) for any j 6= i;

• if P1(A) = B1 + . . .+Bl, then for each i, path(A, Bi)
is an OR path from λ(A) to λ(Bi) that is not a prefix
of path(A, Bj) for any j 6= i 1;

• if P1(A) = B∗, then path(A, Bi) is a STAR path;

• if P1(A) = str, then path(A, str) is an AND path end-
ing with text().

The validity requires a path type condition and a prefix-free
condition, which, as will be seen shortly, are important for
deriving the instance-level mapping from σ.

Example 4.1: Consider pairs of source (on the left) and
target (on the right) DTDs depicted in Fig. 2, for which
a type mapping λ is defined as λ(X) = X ′ for X in
{A, B, C}, except in Fig. 2(c) where both λ(C) = B ′

and λ(B) = B′. Observe the following. For Fig. 2(a),
there is no valid path embedding from the source DTD to

1Abusing our normal form of DTDs, an optional type B can be spec-
ified as, e.g., A → B + ε; here path(A, Bi) simply needs to be an OR

path since ε is not an element type and thus path(A, ε) is undefined.
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the target; intuitively, B and C must coexist in a source
document while only one of B′ and C ′ exists in the target.
For Fig. 2(b), the source cannot be mapped to the target
since there are possibly multiple B elements in the source,
which cannot be accommodated by the target. For Fig. 2(c),
a valid embedding is path(A, B) = B′[position() = 1]
and path(A, C) = B′[position() = 2]. For Fig. 2(d),
there is no valid embedding since path(A, B) is a pre-
fix of path(A, C), violating the prefix-free condition. For
Fig. 2(e), a valid embedding is path(A, B) = A′/B′ (by
unfolding the cycle once) and path(A, C) = B ′/C ′. 2

Finally, we define XML schema embeddings as follows.

Schema Embedding. A schema embedding from S1 to S2

valid w.r.t. a similarity matrix att is a path mapping σ =
(λ, path) from S1 to S2 such that λ is valid w.r.t. att, and
σ is valid for every element A in E1.

Example 4.2: Assume a similarity matrix att such that
att(A, A′) = 1 for all A in the DTD S0 of Fig. 1(a) and
A′ in S of Fig. 1(c). The source DTD S0 can be embedded
in the target S via σ1 = (λ1, path1) defined as follows:
λ1(db) = school, λ1(class) = course, λ1(type) = category,
λ1(A) = A /* A: cno, title, regular, project, prereq, str */

path
1
(db, class) = courses/current/course

path
1
(class, cno) = basic/cno

path
1
(class, title) = basic/class/semester/title

path
1
(class, type) = category

path
1
(type, regular) = mandatory/regular

path
1
(type, project) = advanced/project

path
1
(regular, prereq) = required/prereq

path
1
(prereq, class) = course

path
1
(A, str) = text() /* A for cno, title */

Note that path1(A, B) is a path in S denoting how to
reach λ1(B) from λ1(A), i.e., the path is relative to λ1(A).
For example, path1(type, project) indicates how to reach
project from a category context node in S, where category
is mapped from type in S0 by λ1. Here the similarity ma-
trix att imposes no restrictions: any name in the source can
be mapped to any name in the target; thus the embedding
here is decided solely on the DTD structures.

In contrast, one cannot map S0 to S by graph similarity,
which requires that node A in the source is mapped (simi-
lar) to B in the target only if all children of A are mapped
(similar) to children of B. In other words, graph similarity
maps an edge in the source to an edge in the target. 2

The definition of schema embedding can be extended to
support further restructuring “across hierarchies” such that
a child B of a source type A is not necessarily mapped to a
descendant of λ(A) in the target; this can be achieved via,
e.g., upward modality in path(A, B). It is also possible that
an AND edge does not have to be mapped to an AND path.
We focus on the main idea of schema embeddings in this
paper and defer the full treatment to the full version.

Embedding Quality. There are many possible metrics. In
this paper we consider only a simple one: the quality of a
schema embedding σ = (λ, path) w.r.t. att is the sum of
att(A, λ(A)) for A ∈ E1, and we say that σ is invalid if λ
is invalid w.r.t. att. We refer to this metric as qual(σ, att).

4.2 Instance Level Mapping

For a valid schema embedding σ = (λ, path) from S1 to
S2, we give its semantics by defining a (data) instance-level
mapping σd : I(S1) → I(S2), referred to as the XML

mapping of σ.
We define σd by presenting an algorithm that, given an

instance T1 of S1, computes an instance T2 = σd(T1) of
S2. In a nutshell, σd constructs T2 top down starting from
the root r2 of T2, mapped from the root r1 of T1 (recall
λ(r1) = r2). Inductively, for each λ(A) element u in T2

that is mapped from an A element v in T , σd generates a
distinct λ(B) node u′ in T2 for each distinct B child v′ of
v in T1, such that u′ is reached from u via path(A, B) in
T2, i.e., u′ is uniquely identified by the XR path from u.
More specifically, the construction is based on the produc-
tion A → P1(A) in S1 as follows.

(1) PA(A) is B1, . . . , Bn. For each child vi of v, σd creates
a node ui bearing the same id as vi. These nodes are added
to T2 as follows. For each i ∈ [1, n], ui is added to T2

by creating path(A, Bi) emanating from u to ui, such that
the path shares any prefix already in T2 which were created
for, e.g., path(A, Bj) for j < i. The definition of path()
ensures that ui and uj are not the same node in T2, since
path(A, Bi) is not a prefix of path(A, Bj) and vice versa.

(2) P1(A) is B1 + . . . + Bn. Here v in T1 must have a
unique child vi. For vi, σd creates a node ui bearing the
same id as vi, and adds ui to T2 via path(A, Bi) as above.

(3) P1(A) is B∗. By the definition of valid path function,
path(A, B) is of the form path(A, A1)/B1/path(B1, B),
where A1 is the first type defined in terms of Kleene star in
P2, i.e., P2(A1) = B∗

1 . Let [v1, . . . , vk] be the list of all the
children of v. Then σd creates u1, . . . , uk bearing the same
id’s as v1, . . . , vk, and adds these nodes to T2 as follows. It
first generates a single path(A, A1) from u to an A′ node
u′ if it does not already exist in T2, and for each i ∈ [1, k],
it creates a distinct i-th B1 child if it is not already in T2.
From the i-th Bi node it generates path(B1, B) leading to
ui, in the same way as in (1) above. Note that the order of
the children of v is preserved by σd.

(4) P1(A) is str. The treatment is the same as (1) except
the last node of path(A, str) in T2 is a text node holding
the same value as the text node in T1.

We repeat the process until all nodes in T1 are mapped
to nodes in T2. We finally complete σd(T ) by adding nec-
essary default elements such that σd(T ) conforms to S2.
Recall from Section 2 that we can assume w.l.o.g. consis-
tent DTDs. Thus for each element type A in S2, we can pick
a fixed instance IA of A and use it as A’s default element.
The choice of default elements is arbitrary since as will be
seen shortly, the inverse σ−1

d of σd exists and it can distin-
guish T2 nodes mapped from T1 from default elements.

Example 4.3: Consider the XML mapping σd of the em-
bedding defined in Example 4.2. Given an instance T1 of
S0 of Fig. 1(a), σd generates a tree T2 of S of Fig. 1(c)
as follows: σd first creates the root school of T2, bearing
the node id of the root db of T1. Then, σd creates a sin-
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gle courses child x of school, a single current child y of x,
and for each class child c of db, σd creates a distinct course
child z of y bearing the id of c, such that the course children
of y are in the same order as the class children of db. It then
maps the cno, title, type children of c to cno, title, category
descendants of z in T2, based on path1. In particular, to
map title in S0, it creates a single class child xc of the ba-
sic element, a single semester child xs under xc (although
class is defined with a Kleene star), and then a title child
under xs. For the category element w mapped from the
type child t of c, σd creates a distinct path advanced/project
under w if t has a project child, or a mandatory/regular
path otherwise, but not both. The process proceeds until
all nodes in T1 are mapped to T2. Finally, default elements
of history, credit, year, term, instructor and gpa are added
to T2 such that T2 conforms to S. At the last stage, no chil-
dren of disjunctive types category, mandatory or advanced
are added, and no children are created under history. That
is, default elements are added only when necessary. 2

We next show that σd is well defined. That is, given any
T1 in I(S1), σd(T1) is an XML tree that conforms to S2.
This is nontrivial due to the interaction between different
paths defined for disjunction types in the schema mapping
σ, among other things. Consider, for example, path(type,
regular) in Example 4.2. The path requires the existence of
a regular child under a mandatory element m, which is in
turn a child under a category element c in an instance of
S. Thus it rules out the possibility of adding an advanced
child under c or a lab child under m, perhaps requested by a
conflicting path in σ. However, Theorem 4.1 below shows
that the prefix-free condition in the definition of valid path
functions ensures that conflicting paths do not exist.

Theorem 4.1 also shows that σd is injective: it maps
distinct nodes in T1 to distinct nodes in σd(T1), a prop-
erty necessary for information preservation. Indeed, σ de-
termines an injective path-mapping function δ such that,
for each XR path ρ = A1[q1]/ . . . /Ak[qk] in S1 from r1,
δ(ρ) is path(r1, A1)[q1]/ . . . /path(Ak−1, Ak)[qk], an XR

path in S2 from r2, by substituting path(Ai, Ai+1) for each
Ai+1 in ρ. Since each node in T1 is uniquely determined
by an XR path from the root, it follows that σd is injective.

Theorem 4.1: The XML mapping σd of a valid schema
embedding σ : S1 → S2 is well defined and injective. 2

4.3 Properties of Schema Embeddings

We have shown that the XML mapping σd of a valid schema
embedding σ is guaranteed to type check. We next show
that σd and σ also have all the other desired properties.

Information Preservation. In contrast to Theorem 3.4,
information preservation is guaranteed by schema embed-
dings. Recall regular XPath XR from Section 2.

Theorem 4.2: The XML mapping σd of a valid schema em-
bedding σ : S1 → S2 is invertible and is query preserving
w.r.t. XR. More precisely, (a) there exists an inverse σ−1

d of
σd that, given any σd(T ), recovers T in O(|σd(T )|2) time;

and (b) there is a query translation function F that given
any XR query Q over S1, computes an XR query F (Q)
equivalent w.r.t. σd over S2 in O(|Q| |σ| |S1|) time. 2

Example 4.4: The XR query Q below, over S0 of Fig. 1(a),
is to find all the classes that are (direct or indirect) prereq-
uisites of CS331. It is translated to an XR query Q′ over S
of Fig. 1(c), which is equivalent w.r.t. the mapping σd given
in Example 4.3, i.e. Q(T ) = Q′(σd(T )) for any T ∈ I(S0),
when evaluated on T with the root as the context node.

Q: class[cno/text()=‘CS331’]/(type/regular/prereq/class)∗ .

Q′: courses/current/course[basic/cno/text()=‘CS331’]/
(category/mandatory/regular/required/prereq/course)∗ . 2

In contrast, the notion of graph similarity ensures neither
invertibility nor query preservation w.r.t. XR. As a sim-
ple example, the source and target schemas in Fig. 2(a) are
bisimilar by the conventional definition of graph similarity,
which does not consider cardinality constraints of differ-
ent DTD constructs. However, there exists no instance-level
mapping from the source to the target, not to mention in-
verse mappings and query translation.

Multiple sources. In contrast to graph similarity, it is pos-
sible to embed multiple source DTD schemas to a single
target DTD, as illustrated by the example below. This prop-
erty is particularly useful in data integration.

Example 4.5: The embedding σ2 = (λ2, path2) below
maps S1 of Fig. 1(b) to the target DTD S of Fig. 1(c).

λ2(db) = school
λ2(A) = A /* A: student, ssn, name, taking, cno */

path
2
(db, student) = students/student

path
2
(student, B) = B /* B: ssn, name, taking */

path
2
(taking, cno) = cno

path
2
(C, str) = text() /* C: ssn, name, cno */

Taken together with σ1 of Example 4.2, this allows us to
integrate a course document of S0 and a student document
of S1 into a single school instance of the target DTD S. 2

In general, given multiple source DTDs S1, . . . , Sn and
a single target DTD S, one can define schema embeddings
σi : Si → S to simultaneously map Si to S. Their XML

mappings σ1
d, . . . , σn

d are invertible and query preserving
w.r.t. XR as long as δi, δj are pairwise disjoint, where δi

is the path mapping function derived from σi to map XR

paths from root in Si to XR paths from root in S. The
instance-level XML mapping σd is a composition of indi-
vidual σ1

d, . . . , σn
d . Here σi

d increments the document con-
structed by σj

d’s for j < i by modifying default elements
or introducing new elements, instead of constructing a new
document of S constructed starting from scratch.

Small model property. The result below gives us an upper
bound on the length |path(A, B)|, and allows us to reduce
the search space when defining or finding an embedding.

Theorem 4.3: If there exists a valid schema embedding
σ : S1 → S2, then there exists one such that for any edge
(A, B) in S1, |path(A, B)| ≤ (k + 1) |E2|, where S2 =
(E2, P2, r2), and k is the size of the production P2(A). 2
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5 Computing Schema Embeddings
In this section we address the computation of XML schema
embeddings as defined by the following problem, stated in
terms of two XML DTD schemas S1 = (E1, P1, r1) and
S2 = (E2, P2, r2), and a similarity matrix att:

PROBLEM: Schema-Embedding
INPUT: Two DTDs S1 and S2 and matrix att.
OUTPUT: A schema embedding σ : S1 → S2 valid

w.r.t. att if one exists.

In practice, a reasonable goal is to find an embedding σ :
S1 → S2 with as high a value for qual(σ, att) as possible.
The ability to efficiently find good solutions to this problem
will lead to an automated tool that, given two DTD schemas,
compute candidate embeddings to recommend to users.

However desirable, this problem is intractable. Worse,
it remains NP-hard for nonrecursive DTDs even when they
are defined in terms of concatenation types only.

Theorem 5.1: The Schema-Embedding problem is NP-
complete. It remains NP-hard for nonrecursive DTDs. 2

In light of the intractable results we develop two ef-
ficient yet accurate heuristic algorithms for computing
schema embedding candidates in the rest of the section.

Notations. Recall that a schema embedding is a path map-
ping σ that is valid for each element type A in S1. Since the
validity conditions for A involve only A’s immediate chil-
dren, it is useful to talk about mappings local to A. A local
mapping for A is simply a partial path mapping (λ0, path0)
such that (a) λ0 and path0 are defined exactly on all the el-
ement types appearing in A’s production A → P1(A), in-
cluding A itself; and (b) it is valid, i.e., it satisfies the path
type and prefix-free conditions given in the last section.

Consider two partial mappings, σ0 = (λ0, path0) and
σ1 = (λ1, path1). We say that λ0 and λ1 conflict on A if
both λ0(A) and λ1(A) are defined, but λ0(A) 6= λ1(A),
and similarly for path0 and path1. We say σ0 and σ1 are
consistent if they do not conflict, either on λ or path. The
union of consistent partial mappings, denoted by σ0 ⊕ σ1,
is a partial embedding (λ1 ⊕ λ2, path1 ⊕ path2), where

λ1(A) ⊕ λ2(A) =

�� � λ1(A) if λ2(A) is ⊥ (undefined)
λ2(A) if λ1(A) is ⊥
λ1(A) otherwise

similarly for path1(A, B) ⊕ path2(A, B).

Outline. In the rest of the section we first present a tech-
nique for finding local embeddings, already a nontrivial
yet interesting problem. Making use of this algorithm, we
then provide three heuristics for finding embedding can-
didates. The first two are based on randomized program-
ming and the last is by reduction from our problem to the
Max-Weight-Independent-Set problem for which a well-
developed heuristic tool [10] is available.

5.1 Finding Valid Local Mappings

We start by giving an algorithm to find a local embed-
ding σ0 = (λ0, path0) when the partial type mapping λ0

Algorithm findPathsDAG (G, s, Ltar)

Input: Directed Acyclic Graph G, source node s,
a bag of target nodes Ltar = {|t1, . . . , tk|}.

Output: Paths ρ1, . . . , ρk satisfying the prefix-free condition.

1. path ρ := <empty>;
2. P = ∅;
3. marked (n) := false for all n ;
4. traverse (G, s, ρ, Ltar,P);
5. if Ltar is nonempty
6. return ∅;
7. else return P;

Figure 3: Algorithm findPathsDAG

is fixed, as this is a key building block of our schema-
embedding algorithms. We then extend the algorithm to
handle the general case when λ0 is not given. To simplify
the presentation we focus on nonrecursive DTDs, i.e., DTDs
with a directed acyclic graph (DAG) structure, but we show
that our technique also works on recursive (cyclic) DTDs.

Finding Valid Paths. Let A ∈ E1 be a source element type
with production A → P1(A), in which the element types
appearing in P1(A) are B1, . . . , Bk. Assume that the type
mapping λ0 is already given as a partial function from E1 to
E2 that is defined on B1, . . . , Bk and A. The Valid-Paths
problem is to find paths path0(A, B1), . . . , path0(A, Bk)
such that (λ0, path0) is a valid local mapping for A.

The validity conditions stated for embeddings in Sec-
tion 4.1 require that (a) target paths for each edge are of the
appropriate type (AND, OR, or STAR path), and (b) that the
target path for an edge is not a prefix of a sibling’s target
path. We abstract the second condition as a directed-graph
problem: Given a directed graph G = (V, E), a source ver-
tex s and a bag of target vertices Ltar = {|t1 . . . tk|}, find
paths ρ1, . . . , ρk such that no path is the prefix of another.
That is, for all i 6= j, ρj 6= ρi/ρij for any ρij including the
empty path. In contrast to most sub-problems of Schema-
Embedding, this can be solved in PTIME. We introduce our
solution by giving an algorithm that works only on a DAG

and discuss extending it to handle cycles below.
We present our algorithm, findPathsDAG, in Fig. 3, for

finding prefix-free paths in a DAG. The algorithm depends
on the recursive procedure traverse, shown in Fig. 4. The
intuition of this algorithm is to modify a simple (but expo-
nential) algorithm to recursively enumerate all paths in a
DAG in such a way that prefix-free paths are found, but ex-
cessive running time is avoided. In a nutshell, traverse con-
ducts a depth-first-search on the input graph G, enumerat-
ing paths from the source node s to target nodes in Ltar, and
identifies prefix-free ones. It uses a (global) boolean array
marked (n) to keep track of whether the subgraph rooted
at a node n has been searched and yielded no matches for
nodes in Ltar, and if so, it does not re-enter the subgraph.
A (local) variable ret is used to indicate whether the search
of a subgraph finds any matches to nodes in Ltar.

To see that traverse is correct, consider removing line 5
in which the algorithm returns early, and line 11 in which
nodes are marked to avoid revisiting them. It is clear that
the resulting algorithm considers every possible path lead-
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Algorithm traverse (G, n, ρ, Ltar,P)

Input: Directed Acyclic Graph G, node n,
a bag of target nodes Ltar = {|t1, . . . , tk|},
ρ, the current path to the root,
and P , the output set of prefix-free paths.

Global variables: marked: maps nodes to {true,false }
Output: a list of paths.

1. if (marked (n)) return false;
2. if (n ∈ Ltar)
3. remove n from Ltar;
4. add ρ to P
5. return true;
6. else ret = false;
7. for each edge e = (n, m) outgoing from n
8. append e to ρ;
9. ret := ret or traverse (G, m, ρ,Ltar,P);
10. remove e from ρ;
11. if (not ret) marked (n):=true;
12. return ret;

Figure 4: Algorithm traverse

ing to nodes in Ltar, and assigns one path to each n ∈ Ltar,
but it does not avoid assigning one node the prefix of an-
other path. However, the prefix-free condition is assured
by the return at line 5 without affecting correctness, since a
suffix of the path assigned to n could only be generated by
continuing the recursion from this node. Thus it remains to
argue that the algorithm is still correct if line 11 is in place.
The intuition of line 11 is simple: if no new target nodes
were found in the subtree of a node when it was explored
by the recursive calls of lines 7-10, then the current node
will not be on any path to any n′ remaining in Ltar.

Example 5.1: Consider the schema embedding problem
shown in Fig. 1. Assume that att (regular, seminar), and
att (project, advanced) in S0 are 0.75. This means that the
bag of possible target matchings for source tags {regular,
project} in S0 can be {|seminar, advanced|} from S. We
then invoke traverse with S, category, ρ (which is empty),
and Ltar as {|seminar, advanced|}. The first call to traverse
would result in all edges from category to be recursed. Say,
our algorithm first picks the edge to advanced. Line 2 of
traverse would check advanced to be in Ltar and add the
path to advanced into P . It would then return back from
the recursion and try the other edges from category in lines
7 though 10. This would result in a prefix-free path manda-
tory/seminar which would also be added to P . 2

To analyze the performance of findPathsDAG, consider
traverse as a sequence of forward and backward traversals
of edges in the graph. A forward traversal occurs at line 9
and a backward traversal at lines 1, 5 and 12. Clearly, the
number of forward traversals and backward traversals in a
run are the same. Further, observe that one returns from an
un-marked node at line 5 only on the path back from some
node newly removed from Ltar. Thus, there can be at most
|Ltar| |V | such backward steps, and at most |E| other back-
ward steps (which mark the child of the edge traversed).
Since G is a DAG, the algorithm is in O(|Ltar| |V |) time.

To use findPathsDAG in our algorithms for schema em-
bedding, we must further ensure that the paths returned

match the types needed for n ∈ Ltar. That is easy to ac-
complish, as the type of a path can be maintained incremen-
tally as it is lengthened and shortended (by storing counts
of nodes of each type), and be checked at line 2.

Schema Embeddings with a Given λ. This algorithm can
be used to directly find a schema embedding σ = (λ, path)
from S1 to S2 when the type mapping λ is a given total
function from E1 to E2. As remarked earlier, the validity
conditions for any A in E1 involve only A’s children; thus
to find path we only need to find valid paths for each A in
E1 and take the union of these valid local embeddings. This
yields an O(|S1| |S2|) algorithm to find embeddings in this
special setting, which is not so uncommon since one may
know in advance which target type a source type should
map to, based on, e.g., machine-learning techniques [13].

Handling Multiple Targets. However, to find valid local
mappings when λ is not given, we must consider that there
are multiple possible target nodes for each source node.
The general Local-Embedding problem is to find a local
embedding (λ0, path0) when λ0 may not be fixed. This
problem is no longer tractable as shown below.

Theorem 5.2: The Local-Embedding problem is NP-
complete for nonrecursive DTDs. 2

One heuristic approach to finding local embeddings is
to extend findPathsDAG as follows. We compute the set
of all pairings of source nodes A and possible matches for
A from att and pass it as Ltar. We also modify line 3 of
traverse to (a) pick an arbitrary pair with the current node
as the target from Ltar at line 2 and (b) remove all pairs as-
sociated with source node A from Ltar at line 3. While this
may work, it is essentially a greedy algorithm and may not
find a solution if one exists. To compensate for this, we ac-
tually use a randomized variant findPathsRand (not shown)
which (a) picks a random source node associated with n at
line 2 of traverse, and (b) tries outgoing edges from n at
line 7 in random order. The ability of findPathsRand to
find embeddings varies with the size of Ltar, and will be
investigated in Section 6.

Handling Cycles. Of course, schemas are frequently cyclic
(recursive), and the algorithms as presented so far only
handle DAGs. In fact, handling cycles generally is some-
what more complicated, but not hard – it is easy to see that
an arbitrary number of paths can be generated by repeated
loops around some cycle on the path to a target, and care-
ful use of these paths can guarantee the prefix-free prop-
erty (Figure 2(e) gives such an example, in which the cycle
is unfolded once to get a prefix-free path, in contrast to
Fig. 2(d)). While we present this full algorithm in [8], the
complication is not warranted here since long cyclic paths
are almost certainly semantically uninteresting. In prac-
tice, we have extended findPathsDAG once again to allow
limited exploration of cycles limited by (a) no more than
k trips through visited nodes and (b) no more than l total
path length. A bound on k and l is given in Theorem 4.3
and usually k and l are set to small numbers.

92



Algorithm Ordered (S1, S2, O, C)

Input: Schemas S1 and S2, an ordered set of source tags O,
and C, a set of local embeddings for each source tag.

Output: a schema embedding from S1 to S2 if one is found.

1. σ := empty solution (∅, ∅);
2. for A in O
3. for σA in C(A)
4. c := conflict between σ and σ A;
5. if c is null
6. σ = σ ⊕ σA; break;
7. if c is not null
8. findPathsRand (G, A, Ltar(A) − c);
9. if c is not null return ∅;
10. return σ;

Figure 5: Algorithm Ordered

5.2 Three Methods for Finding Schema Embeddings

We next give three heuristic embedding-search algorithms:
QualityOrdered, RandomOrdered and RandomMaxInd.

Finding Solutions with Ordered Algorithms. Our first
two heuristics are based on a common subroutine Ordered,
shown in Fig. 5. A key data structure is a table, C, where
C(A) is a set of known local embeddings for a source node
A. The initialization of this table is discussed later. Given
C and an ordered set O of source types, Ordered tries to
assemble a consistent mapping σ by considering each A in
O order (line 2), and trying to find a local embedding σA

in C(A) which can be merged with the existing σ without
a conflict (lines 3-8). If a conflict occurs it finds new local
embeddings for A by invoking findPathsRand (lines 7-8).

Our first Ordered-based algorithm, QualityOrdered, is
shown in Fig. 6. Here C(A) is initialized with a single
randomly chosen local embedding for each source node A,
and O is sorted by the quality of the local embedding.

In our second algorithm RandomOrdered (not shown),
C is the complete set of local embeddings discovered so far
for each source node (lines 4 and 5 in Fig. 6), while O is a
random ordering of source nodes (line 6 in Fig. 6).

A Reduction Approach. We now discuss our third heuris-
tic, RandomMaxInd. To understand this heuristic, consider
the following problem defined on the table C of local map-
pings defined above:

PROBLEM: Assemble-Embedding
INPUT: Two DTDs S1 and S2, a similarity matrix

att, and a table C.
OUTPUT: A schema embedding σ : S1 → S2, valid

w.r.t. att, formed as the union of a subset
of embeddings in C if one exists.

Composing σ from local embeddings in C is nontrivial:

Theorem 5.3: The Assemble-Embedding problem is NP-
complete for nonrecursive DTDs. 2

To cope with this, the RandomMaxInd heuristic takes the
approach of reducing the Assemble-Embeddings problem
to the problem of finding high-weight independent sets in a
graph. It uses an existing heuristic solution [10] to produce

Algorithm QualityOrdered (S1, S2)

Input: Schemas S1 and S2.
Output: a schema embedding from S1 to S2 if one is found.

1. count := 0;
2. while (count < MAX TRIES) do
3. count++;
4. for each source node A
5. C(A) := {a local embedding, σA for A

as found by findPathsRand };
6. O := All source nodes, ordered by qual(σA, att);
7. σ := Ordered (S1, S2, O, C);
8. if σ 6= ∅
9. return σ;
10. return ∅;

Figure 6: Algorithm QualityOrdered

partial or complete solutions to this problem, which can be
used to create partial or complete embeddings.

Before describing our reduction, we review the defini-
tion of Max-Weight-Independent-Set. That problem is de-
fined on an undirected graph G = (V, E) (not to be con-
fused with a schema graph) with node weights w[v], v ∈ V .
The goal is to find a subset V ′ of V such that for vi and vj

in V ′, there is no edge from vi to vj ; i.e., (vi, vj) 6∈ E and
the weight of V ′, defined as

∑
v∈V ′ w[v], is maximized.

Given an instance of the Assemble-Embedding prob-
lem, it is straightforward to construct an instance of Max-
Weight-Independent-Set. First, for each local mapping
σa ∈ C(A) for any A ∈ E1, we construct a vertex vσa

in V . Second, for each pair σa, σb of such mappings, we
construct an edge between vσa

and vσb
if σa and σb con-

flict. The weight of vσa
is given as qual(σa, att).

To complete the algorithm on the resulting graph, we use
an existing heuristic tool for Max-Weight-Independent-Set,
which returns a subset V ′ of V . Finally, we construct an
embedding σ by adding local embedding σa to σ for each
vσa

∈ V ′. The quality of σ is warranted by the heuristic
tool used, and its correctness is verified below.

Theorem 5.4: If |V ′| = |E1|, σ constructed as above is a
schema embedding from S1 to S2. 2

If σ is not a full embedding, we use findPathsRand to
generate new local mappings, if any are available, for tags
A not mapped by σ, and repeating the process until either
it finds a valid embedding or it reaches a threshold of tries.

6 Experimental Study

In this section, we present an experimental evaluation of
our schema embedding algorithms. Our approach is to vary
the difficulty of the matching task by introducing artificial
noise into a target schema, and measuring the ability of our
algorithms to find an embedding.

Our experiments are based on real-world DTDs taken
from a publicly available repository [30], plus the DTD

of the XMark benchmark [33]. Each DTD was normal-
ized into our graph representation. The XMark schema is
the largest, with 57 productions after normalization. The
XMark schema is apparently the most involved schema
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Figure 7: Varying accuracy
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Figure 9: Noise vs. time

as the others scale better (see Fig. 10), and accordingly,
we evaluate our algorithms for all the schemas but use the
XMark schema for more detailed experiments.

Generating Target Schemas. Target schemas are gen-
erated from source schemas with added complexity and
noise. As we introduce noise, we take care to preserve
this matching, but make it harder to find in a number of
ways, so as to attribute any failure to find a matching to the
algorithm rather than the data. Particular target schemas
are generated according to a probability noise in two steps:
First, for each edge in the schema, with probability noise,
the edge in the target is replaced with a path of between 1
and 5 nodes. When new nodes are added, with probability
.5, the name of the node is formed as a small mutation of
an existing name. Also, the type of the deleted edge (AND,
OR, STAR) is used as the type of the first introduced edge to
ensure that the original mapping is still possible.

In the second step, each node in the target (including
newly-added nodes) are visited again, and with probability
noise, a new subtree is added under it. The new subtree
adds between 1 and 10 nodes. After each subtree addition,
each leaf in the new subtree is visited, and with probability
.5, an edge is added to an existing leaf outside the newly-
added subtree. (This leaf may later have a subtree added
under it.) The intuition for this last step is that confusion
between different parts of the tree is more likely to arise if
the same “attributes” (leaf nodes) appear in multiple places.

Generating the att. The similarity array, att, is initial-
ized by computing pairwise string-edit distances between
source and target tags (string edit distance with unit cost
is also known as Damerau-Levenshtein distance). Further-
more, if a minimum threshold, sel, of similarity is not met
by a pair, the similarity of that pair is set to 0, and as a
result the tags cannot be matched. Note that the “simi-
lar names” introduced above range in similarity from .5
for short strings to over .8 for longer strings, and will be
counted as potential matches in many experiments. There
are also similar names in the schemas themselves, caused
by the conversion of the schema to our graph format.

Clearly, sel, referred to as the selectivity of att, is an
important parameter, as it directly determines the size of
the candidate pool of target tags matching each source tag.
Larger selectivities make the problem easier, and for our
experimental data if sel is 1.0 (exact matches only), finding
a schema embedding reduces to finding valid prefix-free
paths for each local embedding in the source schema.

A second important parameter is the accuracy of att.
This matters greatly for heuristic algorithms, since the valid

embedding in our generated data always has the highest
average quality. Accuracy is implemented with a parameter
c, which varies between 0 and 1. Each entry m in att is
replaced by cm+(1−c)rnd, where rnd is a random number
from 0 to 1. A low accuracy tends to mislead heuristics that
rely heavily on att. Combining a low accuracy with a very
low selectivity makes the problem very difficult to solve.

Experimental Setting. Experiments are conducted by
copying the source schema, adding some amount of
noise based on the parameter noise, and adjusting the
att according to sel and c. Then the three algorithms
given in Section 5 (RandomOrdered, QualityOrdered and
RandomMaxInd) are used to try to find embeddings. For
the ordered algorithms, the set C is initialized by finding 3
random mappings for each A , and discarding the two with
the lowest qual ratings. When not otherwise stated, exper-
iments are run with sel = 0.6, c = 0.75 (accuracy) and
noise = 0.25. Since all algorithms (and the noise introduc-
tion) have a random component, they are repeated with 40
different random seeds, and an average is used.

The software is written in Java, except for the external
heuristic for maximum independent sets [9], which is an
optimized C program. Experiments are run on a variety
of machines with Pentium III processors running at either
933MHZ or 1.0GHZ, with 256MB of RAM.

Accuracy Results. Figure 7 shows how the three algo-
rithms perform while varying accuracy, with noise = 0.25.
The y axis shows the percentages of runs for which a suc-
cessful embedding is found. For this noise amount, the
target schema is approximately three times as large as the
source schema. This graph shows that QualityOrdered is
extremely sensitive to the quality of the att values. It uses
att extensively in its search pattern, and thus cannot find
solutions unless att is accurate. Figure 7 also shows that
RandomOrdered finds correct solutions more frequently
than RandomMaxInd. While RandomOrdered takes into
account att when it is seeking its solution set, it tries to
find alternative solutions based on the conflicts it detects,
independent of the att values. RandomMaxInd seeks alter-
native solutions for nodes based solely on their weights, as
defined by att. It does not use conflicts to guide its search.

Varying Target Schema Size. We also consider tar-
get schemas with different numbers of erroneous nodes
and edges introduced. These results are shown in
Fig. 8. Because this graph shows results when accuracy
is 0.75, QualityOrdered does not do well, as expected.
RandomOrdered and RandomMaxInd both find the correct

94



 0

 5

 10

 15

 20

 25

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

S
ec

s

Noise

xmark
sigmod

psd
mondial

reed

Figure 10: Time required for different source schemas

solution the majority of the time, decreasing somewhat as
noise increases. The running times are shown in Fig. 9.

Different Source Schemas. We also run tests with dif-
ferent source schemas. We vary noise over five differ-
ent source schemas, using RandomOrdered and accuracy=
0.75. Figure 10 shows the running times for the various
source schemas. For all runs across the different schemas, a
solution was found more than 90% of the time (not shown).

Varying Selectivity. We also run experiments with dif-
ferent values of selectivity. Both RandomOrdered and
RandomMaxInd find solutions less frequently as selectiv-
ity decreases (not shown). QualityOrdered is relatively in-
different to the selectivity level, finding approximately the
same number of solutions at sel = 0.3 as at sel = 0.7. The
running time increases dramatically, however, once sel falls
below 0.4. The results are shown in Fig. 11.

Discussion. Our experimental results show that, when a
feasible matching exists, it is likely to be almost com-
pletely found for schema sizes of up to a few hundred
nodes. While this does not demonstrate that similar results
can be obtained with differing target schemas and the use
of real-world tools to produce att, it is certainly promis-
ing. Further, we found that the randomized algorithm
RandomOrdered performs better than RandomMaxInd,
and that QualityOrdered only does well with a highly ac-
curate att. Based on these results, we plan to integrate
RandomOrdered and RandomMaxInd, since the external
independent set heuristic is very fast in practice. Finally,
we note that QualityOrdered may be important in practice,
where the att values may in fact be reliable.

7 Related Work

A wide variety of techniques have been developed to solve
different forms of schema matching for relational, ER and
object-oriented models (e.g., [5, 12, 18, 21, 31]; see [32]
for a recent survey). While these are not focused on XML

DTD schema matching, some techniques, such as linguis-
tic analyses and machine learning, are useful for finding
name/label similarity, which our algorithms take as input.

Closer to XML schema matching are [6, 13, 22, 24, 25,
26, 29]. LSD [13] proposes machine-learning techniques
that make use of instance-level information to determine
XML DTD tag mapping. Systems of [22, 24, 25] target
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a wide class of schemas and can be tailored to a variety
of data models. The similarity flooding algorithm of [24]
provides a novel schema matching tool based on graph-
similarity. Cupid [22] is a generic system that encompasses
a variety of techniques such as linguistic analyses and con-
text dependencies. Rondo [25] proposes a powerful set
of model mapping operators. For structure-level schema
matching, these systems adopt graph similarity to map a
single source schema to a target. TransScm [29] considers
instance-level mappings based on schema matching, and
uses a semi-automatic mechanism to match highly simi-
lar schemas. Clio [26] also focuses on deriving instance
translation from schema mappings. The recent work [6]
studies invertible XML-to-relation mappings that guarantee
the source XML document remains valid in the presence
of updates to the mapped relations. To our knowledge, no
previous work has considered information preservation for
XML DTD schema mappings. Our notion of schema embed-
ding extends graph similarity and allows multiple source
DTD schemas to be mapped to a single structurally differ-
ent target DTD. Furthermore, from a schema embedding an
instance mapping can be automatically derived and it guar-
antees both invertibility and query preserving w.r.t. reg-
ular XPath queries. The ability of finding information-
preserving XML mappings is important for data integration
(see, e.g., [19]) and P2P systems (e.g., [14, 17, 34]).

Information preservation has been studied for nested re-
lational and complex data models (e.g., [3, 16, 27, 28]).
[16] proposed several notions of dominance and studied
their relationships, which were revisited in [27]. The fo-
cus of [3, 28] has mainly been on the information capacity
of type constructs and structural transformation rules. Our
study of information preservation is inspired by the prior
work: our notions of invertibility and query preservation
are mild extensions of calculus dominance and query dom-
inance [16]. We revise these notions and study their basic
properties for XML DTD schemas and XML queries, and our
focus is to develop the notion of DTD schema embedding
that preserves information by ensuring both effective in-
vertible mapping and efficient XML query translation.

Query preservation is related to query rewriting using
views, which has been extensively studied for conjunc-
tive and datalog queries for relational databases and regu-
lar path queries on semistructured data (e.g., [2, 11, 20];
see [15, 19] for surveys). View-based query rewriting
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mainly studies whether a given query on the source can be
answered using materialized data from a set of views (loss-
less), by translating the query to an equivalent query in a
particular language on the views. In contrast, query preser-
vation deals with the issue whether all queries in an (infi-
nite) query language on an XML source can be rewritten to
equivalent queries over XML target (view). Moreover, the
focus of this work is to generate XML “views” that automat-
ically preserves all the queries in an XML query language,
rather than to determine the losslessness of views. Note
that Theorem 3.2 establishes a connection between invert-
ibility and query rewriting; e.g., if the query language L
includes the identity query id, then a view σd is invertible
and σ−1

d is in L iff id has a rewriting in L using σd.

8 Conclusions
We have revised information-preservation criteria for XML

mappings and established separation, equivalence and
complexity results. We have introduced a novel notion of
schema embedding for XML DTD schemas, from which an
instance-level XML mapping is automatically derived and
is guaranteed to be information preserving, type checking,
and able to accommodate multiple source schemas. While
we show that finding a schema embedding is NP-complete,
we have provided heuristic algorithms to compute embed-
dings, which are efficient and accurate as shown by our
experimental results. These yield a practical approach to
computing lossless XML data migration and integration.

We plan to extend the notion of schema embedding to
(a) accommodate more general XML schemas with con-
straints and inheritance, (b) allow one source type to map to
different target types in different contexts, (c) allow certain
queries in XQuery in the path function, and (d) preserve
XQuery fragments as query languages.
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