Shuffling a Stacked Deck: The Case for Partially
Randomized Ranking of Search Engine Results

Sandeep Pandey
Carnegie Mellon University
spandey@cs.cmu.edu

Junghoo Cho
UCLA

Sourashis Roy
UCLA
roys@cs.ucla.edu

Christopher Olston
Carnegie Mellon University
olston@cs.cmu.edu

Soumen Chakrabarti

[IT Bombay

cho@cs.ucla.edu soumen@cse.iitb.ac.in

Abstract

In-degree, PageRank, number of visits and other
measures of Web page popularity significantly in-
fluence the ranking of search results by modern
search engines. The assumption is thapular-

ity is closely correlated witlguality, a more elu-
sive concept that is difficult to measure directly.
Unfortunately, the correlation between popularity
and quality is very weak for newly-created pages
that have yet to receive many visits and/or in-
links. Worse, since discovery of new content is
largely done by querying search engines, and be-
cause users usually focus their attention on the top
few results, newly-created but high-quality pages
are effectively “shut out,” and it can take a very
long time before they become popular.

We propose a simple and elegant solution to
this problem: the introduction of a controlled
amount of randomness into search result ranking
methods. Doing so offers new pages a chance
to prove their worth, although clearly using too
much randomness will degrade result quality and
annul any benefits achieved. Hence there is a
tradeoff betweemexplorationto estimate the qual-
ity of new pages andxploitationof pages already
known to be of high quality. We study this tradeoff
both analytically and via simulation, in the con-
text of an economic objective function based on
aggregate result quality amortized over time. We
show that a modest amount of randomness leads
to improved search results.

* This work was performed while the author was visiting CMU.

1 Introduction

Search engines are becoming the predominant means of
discovering and accessing content on the Web. Users ac-
cess Web content via a combination of following hyper-
links (browsing) and typing keyword queries into search
engines (searching). Yet as the Web overwhelms us with
its size, users naturally turn to increased searching and re-
duced depth of browsing, in relative terms. In absolute
terms, an estimategR5 million search queries are received
by major search engines each day [18].

Ideally, search engines should present query result pages
in order of some intrinsic measure gfiality. Quality can-
not be measured directly. However, various notiongay-
ularity, such as number of in-links, PageRank [16], number
of visits, etc., can be measured. Most Web search engines
assume that popularity is closely correlated with quality,
and rank results according to popularity.

1.1 The Entrenchment Problem

Unfortunately, the correlation between popularity and qual-
ity is very weak for newly-created pages that have few
visits and/or in-links. Worse, the process by which new,
high-quality pages accumulate popularity is actually in-
hibited by search engines. Since search engines dole out
a limited number of clicks per unit time among a large
number of pages, always listing highly popular pages at
the top, and because users usually focus their attention on
the top few results [11, 13], newly-created but high-quality
pages are “shut out.” This increasing “entrenchment effect”
has witnessed broad commentary across political scientists,
the popular press, and Web researchers [7-9, 14, 19, 21]
and even led to the teri@ooglearchy In a recent study,
Cho and Roy [5] show that heavy reliance on a search en-
gine that ranks results according to popularity can delay
widespread awareness of a high-quality page by a factor

Permission to copy without fee all or part of this material is granted pro- of over 60, compared with a simulated world without a
vided that the copies are not made or distributed for direct commercialgegrch engine in which pages are accessed through brows-
advantage, the VLDB copyright notice and the title of the publication .amding alone
its date appear, and notice is given that copying is by permission of the N . . . .

Very Large Data Base Endowment. To copy otherwise, or to republish, EVeN if we ignore the (contentious) issue of fairness,
requires a fee and/or special permission from the Endowment. there are well-motivated economic objectives that are pe-
Proceedings of the 31st VLDB Conference, nalized by the entrenchment effect. Assuming a notion of
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0.40 this paper [17]). We created our own small Web community
consisting of several thousand Web pages, each containing
a joke/quotation gathered from online databases. We de-

‘g 030 cided to use “funniness” as a surrogate for quality, since
2 users are generally willing to provide their opinion about
5 020+ how funny something is. Users had the option to rate the
<] funniness of the jokes/quotations they visit. The main page
-% of the Web site we set up consisted of an ordered list of
@ 0104 links to individual joke/quotation pages, in groups of ten at

atime, as is typical in search engine responses. Text at the
top stated that the jokes and quotations were presented in
Withodt rank With'rank descending order of funniness, as rated by users of the site.
promotion  promotion A total of 962 volunteers participated in our study over a
period of45 days. Users were split at random into two user
groups: one group for which a simple form of rank pro-
motion was used, and one for which rank promotion was

ideal search engine would bias users toward visiting thosg)c(’t gﬁ;%njiztiomﬁ;i%dnzwagk g;oimﬁqtg;;;’; usgﬁ)\;\? rta?rlli
pages of the highest quality at a given time, regardless of <P P pag y

: . . _position 20. For each user group we measured the ratio
popularity. Relying on popularity as a surrogate for qual of funny votes to total votes during this period. Figure 1

ity sets up a vicious cycle of neglect for new pages, evenrhows the result. The ratio achieved using rank promo-

as entrenched pages collect an increasing fraction of us X ; )
clicks. Given that some of these new pages will gener-'o.n was a_pproxmatelgo% larger than that obtained using
) trict ranking by popularity.

ally have higher quality than some entrenched pages, pur%

popularity-based ranking clearly fails to maximize an ob- . : :
jective based on average quality of search results seen ti'y4 Design of Effective Rank Promotion Schemes

0.00

Figure 1. Improvement in overall quality due to rank pro-
motion in live study.

users. In the search engine context it is probably not appropriate
to insert promoted pages at a consistent rank position (lest
1.2 Entrenchment Problem in Other Contexts users learn over time to avoid them). Hence, we propose a

h h bl b . h simplerandomized rank promotioscheme in which pro-
T eb entrenhc ment problem may not E’i unlqugdto tNenoted pages are assigned randomly-chosen rank positions.
Web search engine context. For example, consider rec- Still, the question remains as to how aggressively one

ommendation systems [12], which are widely used in €-should promote new pages. Manv new bages on the Web
commerce [20]. Many users decide which items to view P Pages. y bag

based dati but th K are not of high quality. Therefore, the extent of rank pro-
ased on recommendations, but these systems make reCofainn has to be limited very carefully, lest we negate the

_rpr?ndgtior;s 'tiasled dontust(ra]r evalllIJaktions Olf ditetmst the%/ VieWenefits of popularity-based ranking by displacing pages
| IS mrgg arlly Ie'I? IS OI edwe ) nowr;]o ~Startprob-— 1 nown to be of high quality too often. With rank promotion
em, and Is also likely to lead to entrenchment. there is an inherent tradeoff betweerplorationof new

Indeed, Web search engines can be thought of as reg;, 465 anexploitationof pages already known to be of high
ommendation systems that recommend Web pages. THg ajity. We study how to balance these two aspects, in the
entrenchment problem is particularly acute in the case Ofyntext of an overarching objective of maximizing the av-

Web search, because the sheer size of the Web forces USeiSige quality of search results viewed by users, amortized

to rely very heavily on search engines for locating contenty,er time. In particular we seek to answer the following
Therefore, in this paper, we specifically focus on d'm'n'Sh'questions:

ing the entrenchment bias in the Web search context.

_ e Which pages should be treated as candidates for ex-
1.3 Our Key Idea: Rank Promotion ploration, i.e., included in the rank promotion process

. L i i ?
We propose a very simple modification to the method of S0 as to receive transient rank boosts®

ranking search results according to popularity: promote a ¢ \which pages, if any, should be exploited uncondition-

small fraction of unexplored pages up in the_resul'g list. A ally, i.e., protected from any rank demotion caused by
new page now has some chance of attracting clicks and promotion of other pages?

attention even if the initial popularity of the page is very
small. If a page has high quality, the rank boost gives the ¢ What should be the overall ratio of exploration to ex-
page a chance to prove itself. (Detailed definitions and al-  ploitation?
gorithms are given later in the paper.)

As an initial test for effectiveness, we conducted a real- Before we can begin to address these questions, we must
world study, which we now describe briefly (a complete model the relationship between user queries and search en-
description is provided in the extended technical version ofjine results. We categorize the pages on the Web into dis-
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joint groups bytopic, such that each page pertains to ex-ommend and evaluate a robust recipe for randomized rank
actly one topic. LetP be the set of pages devoted to a promotion.
particular topicT’ (e.g., “swimming” or “Linux”), and let
U denote the set of users interestgd in tcﬁjQNe say that 2 Related Work
the userg/ and page® corresponding to topi€’, taken to-
gether make up ®eb community(Users may participate The entrenchment effect has been attracting attention for
in multiple communities.) For now we assume all usersseveral years [7-9, 14, 19, 21], but formal models for and
access the Web uniquely through a (single) search enginanalysis of the impact of search engines on the evolution
(We relax this assumption later in Section 8.) We furtherof the Web graph [4] or on the time taken by new pages to
assume a one-to-one correspondence between queries dmtome popular [5] are recent.
topics, so that each query returns exactly the set of pages A few solutions to the entrenchment problem have been
for the corresponding community. proposed [3, 6, 22]. They rely on variations of PageRank:
Communities are likely to differ a great deal in terms of the solutions of [3,22] assign an additional weighting factor
factors like the number of users, the number of pages, thbased on page age; that of [6] uses the derivative of PageR-
rate at which users visit pages, page lifetimes, etc. Thesenk to forecast future PageRank values for young pages.
factors play a significant role in determining how a given  Our approach, randomized rank promotion, is quite dif-
rank promotion scheme influences page popularity evoluferent in spirit. The main strength of our approach is its
tion. For example, communities with very active users aresimplicity—it does not rely on measurements of the age
likely to be less susceptible to the entrenchment effect thanr PageRank evolution of individual Web pages, which are
those whose users do not visit very many pages. Consaeilifficult to obtain and error-prone at low sample rates. (Ul-
guently, a given rank promotion scheme is bound to creatémately, it may make sense to use our approach in conjunc-
quite different outcomes in the two types of communities.tion with other techniques, in a complementary fashion.)
In this paper we provide an analytical method for predict- The exploration/exploitation tradeoff that arises in our
ing the effect of deploying a particular randomized rankcontext is akin to problems studied in the field of reinforce-
promotion scheme in a given community, as a function ofment learning. However, direct application of reinforce-
the most important high-level community characteristics. ment learning algorithms appears prohibitively expensive
at Web scales.

1.5 Experimental Study

We seek to model a very complex dynamical system in—3 Model and Metrics

volving search engines, evolving pages, and user actiongy this section we introduce the model of Web page popu-
and trace its trajectory in time. It is worth emphasizing |arity, adopted from [5], that we use in the rest of this paper.
that even if we owned the most popular search engine iffFor convenience, a summary of the notation we use is pro-
the world, “clean-room” experiments would be impossible.vided in Table 1.) Our model makes a number of simpli-
We could not even study the effect of different choices offying assumptions that are not perfect, but that we believe
a parameter, because an earlier choice would leave larggreserve the essence of the dynamic process we seek to un-
scale and indelible artifacts on the Web graph, visit ratesgerstand.
and popularity of certain pages. Therefore, analysis and Recall from Section 1.4 that in our model the Web is
simulations are inescapable, and practical experiments (asategorized into disjoint groups by topic, such that each
in Section 1.3) must be conducted in a sandbox. page pertains to exactly one topic. [Rbe the set of pages
Through a combination of analysis and simulation, wedevoted to a particular topif, and let// denote the set of
arrive at a particular recipe for randomized rank promo-users interested in topi€. Letn = |P| andu = |U|
tion that balances exploration and exploitation effectively,denote the number of pages and users, respectively, in the
and yields good results across a broad range of communityommunity.
types. Robustness is desirable because, in practice, com-
munities are not disjoint and therefore their characteristics; 1 Page Popularity
cannot be measured reliably.
In our model, time is divided into discrete intervals, and

1.6 Outline at the end of each interval the search engine measures the

' popularity of each Web page according to in-link count,
In Section 3 we present our model of Web page popularPageRank, user traffic, or some other indicator of popu-
ity, describe the exploration/exploitation tradeoff as it ex-larity among users. Usually it is only possible to measure
ists in our context, and introduce two metrics for evaluat-popularity among a minority of users. Indeed, for in-link
ing rank promotion schemes. We then propose a randontount or PageRank, only those users who have the abil-
ized method of rank promotion in Section 4, and supply arity to create links are counted. For metrics based on user
analytical model of page popularity evolution under ran-traffic, typically only users who agree to install a special
domized rank promotion in Section 5. In Sections 6—8 wetoolbar that monitors Web usage, as in [1], are counted.
present extensive analytical and simulation results, and red-et i4,,, C U/ denote the set ahonitored usersover which
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| Symbol | Meaning
P Set of Web pages in community exploitation loss
n =|P| PrTTTTmmmsmssopesmsssosssssssssossossoses
u Set of users in community :
u = U] .
U, Set of monitored users in community © : exploration | ***"" with rank promotion
m = [Upn| w : benefit —— without rank promotion
P(p,t) | Popularity among monitored users of page > :
at timet :
V.(p,t) | Number of user visits to page :
during unit time interval at :
V(p,t) | Number of visits top by monitored users at H
t 0 Time |
Uy Total number of user visits per unit time _ _ o
v Number of visits by monitored users per unit Figure 2: Exploration/exploitation tradeoff.
time o )
A(p,t) | Awareness among monitored users of page In our modgl page.populanty isa r_nonotonlcally nonde-
at timet creasing function of time. Therefore if we assume nonzero
Q) Intrinsic quality of page page viewing probabilities, for a page of infinite lifetime
l Expected page lifetime lim; 0o P(p, 1) = Q(p).
Table 1: Notation used in this paper. 3.2 Rank Promotion

page popularity is measured, and tet= |U/,,|. We as- !f pages are rankeq strictly according t_o current popularity,
sumel4,,, constitutes a representative sample of the overalit can take a long time for the popularity of a new page to
user populatio/. approach its quality. Artificially promoting the rank of new
Let the total number of user visits to pages per unit timePages can potentially accelerate this process. One impor-
be fixed at,,. Further, let» denote the number of visits per tant objective for rank promotion is to minimize the time
unit time by monitored users, with = v, - 2. The way It takes for a new high-quality page to attain its eventual
these visits are distributed among page®iis determined ~ Popularity, denoted BP for “time to become popular.” In
largely by the search engine ranking method in use; we wilthis paper we measure TBP as the time it takes for a high-
come back to this aspect later. For now we simply provideduality page to attain popularity that excees of its
a definition of the visit rate of a pagec P. quality level.
Figure 2 shows popularity evolution curves for a partic-
Definition 3.1 (Visit Rate) The visit rate of pageat time ~ ular page having very high quality created at tithaith
t, V(p,t), is defined as the number of timess visited by  lifetime , both with and without rank promotion. (It has
any monitored user within a unit time interval at tirhe been shown [5] that popularity evolution curves are close
to step-functions.) Time is plotted on the x-axis. The y-
Similarly, let V,,(p,t) denote the number of visits by axis plots the number of user visits per time unit. Note that
any user inl{ (monitored and unmonitored users alike) while the page becomes popular earlier when rank promo-
within a unit time interval at timet. We require that tion is applied, the number of visits it receives once popu-
Vt, > pep Vu(ps t) = v, andvt, Zpep V(p,t) = v. Once laris somewhat lower than in the case without rank promo-
a user visits a page for the first time, she becomes “awaretion. That is because systematic application of rank promo-
of that page. tion inevitably comes at the cost of fewer visits to already-
popular pages.
Definition 3.2 (Awareness) The awareness level of page
at timet, A(p, ), is defined as the fraction of monitored 33 Exploration/Exploitation Tradeoff and
users who have visiteglat least once by time Quality-Per-Click Metric

We define the popularity of page at timet, P(p,t) € The two shaded regions of Figure 2 indicate the positive
[0,1], as follows: and negative aspects of rank promotion. Ex@loration
benefitarea corresponds to the increase in the number of
additional visits to this particular high-quality page during
P(p,t) = A(p,t) - Q(p) (1) its lifetime made possible by promoting it early on. The
ploitation lossarea corresponds to the decrease in visits due
whereQ(p) € [0,1] (page quality denotes the extent to to promotion of other pages, which may mostly be of low
which an average user would “like” pagéf she was aware quality compared to this one. Clearly there is a need to bal-
of p. ance these two factors. The TBP metric is one-sided in this
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respect, so we introduce a second metric that takes into ac-
count both exploitation and exploitatioguality-per-click
or QPC for short. QPC measures the average quality of
pages viewed by users, amortized over a long period of
time. We believe that maximizing QPC is a suitable ob-
jective for designing a rank promotion strategy.

We now derive a mathematical expression for QPC in
our model. First, recall that the number of visits by any user
to pagep during time intervat is denoted’,,(p, t). We can

express the cumulative quality of all pagesfhrviewed at
[ ]

theuniformpromotion rule, in which every page is in-
cluded inP, with equal probability-, and (b) these-
lectivepromotion rule, in which all pages whose cur-
rent awareness level among monitored users is zero
(i.e., A(p,t) = 0) are included inP,, and no others.
(Other rules are of course possible; we chose to focus
on these two in particular because they roughly cor-
respond to the extrema of the spectrum of interesting
rules.)

Starting point (k): All pages whose natural rank is

timetas)_ .p Vu(p,t) - Q(p). Taking the average across
time in the limit as the time duration tends to infinity, we
obtain:

better thank are protected from the effects of pro-
moting other pages. A particularly interesting value is
k = 2, which safeguards the top result of any search
query, thereby preserving the “feeling lucky” property
that is of significant value in some situations.

S5 (Valp ) - QW)

t1=0 peP

tlim

e Degree of randomization ¢): Whenk is small, this
parameter governs the tradeoff between emphasiz-
ing exploration (large) and emphasizing exploitation
(smallr).

By normalizing, we arrive at our expression for QPC:

Z;:o Zpep (Vu(pa t) - Q(p))
Z:iz=0 ( ZPEP V“(p7 tl))

4 Randomized Rank Promotion

QPC = lim

t—oo

Our goal is to determine settings of the above parameters
that lead to good TBP and QPC values. The remainder of
this paper is dedicated to this task. Next we present our
analytical model of Web page popularity evolution, which

We now describe our simple randomized rank promotionye yse to estimate TBP and QPC under various ranking
scheme (this description is purely conceptual; more effiyethods.

cient implementation techniques exist).

Let P denote the set af responses to a user query. A ;
subset of those pageB, C P is set aside as th@omotion 5 Analytical Model
pool, which contains the set of pages selected for rank proOur analytical model has these features:
motion according to a predetermined rule. (The particular
rule for selectingP,, as well as two additional parameters,
k > 1 andr € [0,1], are configuration options that we
discuss shortly.) Pages #, are sorted randomly and the

e Pages have finite lifetime following an exponential
distribution (Section 5.1). The number of pages and
the number of users are fixed in steady state. The qual-

result is stored in the ordered lis},. The remaining pages

(P — Pp) are ranked in the usual deterministic way, in de- ®
scending order of popularity; the result is an ordered list
L4. The two lists are merged to create the final resultdist

ity distribution of pages is stationary.

The expected awareness, popularity, rank, and visit
rate of a page are coupled to each other through a com-
bination of the search engine ranking function and the

according to the following procedure: bias in user attention to search results (Sections 5.2

and 5.3).

1. The topk — 1 elements ofC,; are removed froncC,
and inserted into the beginning Gfwhile preserving

their order.

Given that (a) modern search engines appear to be
strongly influenced by popularity-based measures while
ranking results, and (b) users tend to focus their attention
primarily on the top-ranked results [11,13], it is reasonable
to assume that the expected visit rate of a page is a function

2. The element to insert int8 at each remaining posi-
tioni = k,k + 1,...,n is determined one at a time,
in that order, by flipping a biased coin: with probabil- of its current popularity (as done in [5]):
ity r the next element is taken from the top of Ii&f;
otherwise it is taken from the top df,. If one of £,

Vip,t) F(P(p,t)) )
or L, becomes empty, all remaining entries are taken . ,
fromdthe nonemptypli);t At the enc? botfy, and £ where the form of functiorf'(z) depends on the ranking
will be empty, and. wili contain one entry for eapch method in use and the bias in user attention. For example,

: if ranking is completely random, theli(p, ¢) is indepen-
of then pages ir. dent of P(p, t) and the same for all pages, B¢z) = v- L.
(Recall thatv is the total number of monitored user visits
per unit time.) If ranking is done in such a way that user
e Promotion pool (P,): In this paper we consider two traffic to a page is proportional to the popularity of that
rules for determining which pages are promoted: (a)page,F'(z) = v - %, whereg is a normalization factor; at

The configuration parameters are:
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steady-statep = ZpE’P P(p,t). If ranking is performed 08

the aforementioned wa§0% of the time, and performed 2 1 o Norandomization

randomly50% of the time, ther”(z) = v-(0.5-£40.5-1). 5 95

For the randomized rank promotion we introduced in Sec- 8 04

tion 4 the situation is more complex. We defer discussion T 02] ]

of how to obtainF'(x) to Section 5.3. 0.0 sl
. 1.0

5.1 Page Birth and Death > 0.8 __ Selectiverandomization

The set of pages on the Web is not fixed. Likewise, we as- % 06]  (=02k=1)

sume that for a given community based around td@pithe < 044

setP of pages in the community evolves over time due to T o]

pages being created and retired. To keep our analysis man- 00 | | | | |

ageable we assume that the rate of retirement matches the 00 02 gﬁarm&g 08 10

rate of creation, so that the total number of pages remains
fixed atn = |P|. We model retirement of pages as a Pois-
son process with rate parameterso the expected lifetime

of a page id = % (all pages have the same expected life-

time'). When a page is retired, a new page of equal qualityrheorem 1 Among all pages i whose quality ig;, the

is created immediately, so the distribution of page qualityf4ction that have awareness = - (fori = 0,1,...,m)
values is stationary. When a new page is created it has injz m T

Figure 3: Awareness distribution of pages of high quality
under randomized and nonrandomized ranking.

s:
tial awareness and popularity values of zero.
A Y Faj_1-q)
stribut flailg) = - 3)
5.2 Awareness Distribution A+ F(0)-(1—a) e A+ F(a;-q)
We derive an expression for the distribution of page aware- . L )
ness values, which we then use to obtain an expression fé¥nerer (z) is the function in Equation 2.
quality-per-click (QPC). We analyze the steady-state Scel_:’roof: See Appendix A. 0

nario, in which the awareness and popularity distributions "~ o
have stabilized and remain steady over time. Our model Figure 3 plots the steady-state awareness distribution for

may not seem to indicate steady-state behavior, becauf@9es Of highest quality, under both nonrandomized rank-
the set of pages is constantly in flux and the awareness ar@9 @nd selective randomized rank promotion with= 1
popularity of an individual page changes over time. To un_andr = 0.2, for our default Web community characteris-

derstand the basis for assuming steady-state behavior, coficS (S€€ Section 6.1). For this graph we used the procedure
described in Section 5.3 to obtain the functiB(i).

sider the sef; of pages created at timeand the sef; h s N .
N g Observe that if randomized rank promotion is used, in

of pages created at tinte+ 1. Since page creation is gov- _ )

erned by a Poisson process the expected sizes of the twieady-state most high-quality pages have large awareness,
sets are equal. Recall that we assume the distribution g¥nereas if standard nonrandomized ranking is used most
page quality values remains the same at all times. Therd?@9€s have very small awareness. Hence, under random-
fore, the popularity of all pages in both andC,. will ized rank p.ror.‘not'lon mo.st pages having high quality s'pend
increase from the starting value @according to the same MOst of their lifetimes with near60% awareness, yet with
popularity evolution law. At time + 1, when the pages nonrandomized ranking they spend most of their lifetimes
in C, have evolved in popularity according to the law for with near-zero awareness. Under either ranking scheme

the first time unit, the new pagesdh. ; introduced at time  Pages spend very little time in the middle of the aware-
¢ + 1 will replace the old popularity values of tigz pages. ~"€SS scale, since the rise to high awareness is nearly a step

A symmetric effect occurs with pages that are retired, refunction.

sulting in steady-state behavior overall. In the steady-state, Gven an awareness distributigiia|g), it is straightfor-

both popularity and awareness distributions are stationaryVard to determine expected time-to-become-popular (TBP)

The steadv-stat distribution is qi f Igorrgsponding toagive_n qualityyalue (formula omitted for
© steady-state awareness distribution 1S given as obreV|ty). Expected quality-per-click (QPC) is expressed as

lows.
follows:
1in reality, page lifetime might be positively correlated with popularity m ) . . .
and/or quality. Unfortunately we do not have access to data suitable forQPC — ZPGP Ei:o f(al‘Q(p» F(al Q(p)) Q(p)
measuring such correlations, so in this paper we treat lifetime as a fixed ZpeP E;’;O f(ai‘Q(p)) . F(ai . Q(p))

quantity across all pages. Interestingly, a positive correlation between life-

time and popularity seems likely to make the entrenchment problem worse i . .

than what our model predicts, whereas a positive correlation between iewherea; = . (Recall our assumption that monitored
time and quality may make the problem less severe. users are a representative sample of all users.)
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5.3 Popularity to Visit Rate Relationship

In this section we derive the functiafi(z) used in Equa- m )
tion 2, which governs the relationship betweR(p, t) and Fi(z)~1+ f <’ Qp > (5)
the expectation oF (p, t). As done in [5] we split the rela- 1) Z Z m (?)

pEP \i=1 .z P
tionship between the popularity of a page and the expected P i=lrlme/Q®)

number of visits into two components: (1) the relationship(This is an approximate expression because we ignore the
between popularity and rank position, and (2) the relationeffect of ties in popularity values, and because we neglect

ship between rank position and the number of visits. Weto discount one page of popularityfrom the outer sum-
denote these two relationships as the functibh&nd >  mation.)

respectively, and write: The formula forF; under uniform randomized ranking
is rather complex, so we omit it. We focus instead on selec-
F(z) = F(Fi(z) tive randomized ranking, which is a more effective strategy,

. . as we will demonstrate shortly. Under selective random-
where the output af’, is the rank position of a page of pop- jzeq ranking the expected rank of a page of popularity
ularity z, andF is a function from that rank to a visit rate. \ynen > 0, is given by:

Our rationale for splitting in this way is that, according

to empirical findings reported in [11], the likelihood of a

user visiting a page presented in a search result list depends/ Fi(z) if Fy(x) <k

primarily on the rank position at which the page appears. F1(z) = Fy(z) + min{ “ @k 1 otherwise
We begin withF,, the dependence of the expected num- a-r

ber of user visits on the rank of a page in a result list. AnaI—WhereF1 is as in Equation 5, and denotes the expected

ysis pfAIta\ﬁsta usage logs [5,13] reveal that the following ,  yher of pages with zero awareness, an estimate for
relationship holds quite closely which can be computed without difficulty under our steady-
state assumption. (The casef= 0 must be handled
separately; we omit the details due to lack of space.)

The above expressions 6t (x) or F}(x) each contain
a circularity, because our formula fgifa|q) (Equation 3)
containsF'(x). It appears that a closed-form solution for

0 — v F(z) is difficult to obtain. In the absence of a closed-form
Yo im32 expression one option is to determifiéx) via simulation.
The method we use is to solve féi(z) using an iterative
wherev is the total number of monitored user visits per unit procedure, as follows.
time. We start with a simple function far(x), sayF'(z) = z,

Next we turn toF}, the dependence of rank on the pop- as an initial guess at the solution. We then substitute this
ularity of a page. Note that since the awareness level ofunction into the right-hand side of the appropriate equation
a particular page cannot be pinpointed precisely (it is exabove to produce a new(z) function in numerical form.
pressed as a probability distribution), we exprésér) as  We then convert the numericAl(x) function into symbolic
theexpectedank position of a page of popularity Indo-  form by fitting a curve, and repeat until convergence oc-
ing so we compromise accuracy to some extent, since weurs. (Upon each iteration we adjust the curve slightly so
will determine the expected number of visits by applyingas to fit the extreme points correspondingato= 0 and
F, to the expected rank, as opposed to summing over the = 1 especially carefully; details omitted for brevity.) In-
full distribution of rank values. (We examine the accuracyterestingly, we found that using a quadratic curve in log-log
of our analysis in Sections 6.2 and 6.3.) space led to good convergence for all parameter settings we

Under nonrandomized ranking, the expected rank of aested, so that:
page of popularityr is one plus the expected number of
pages whose popularities surpas8y Equation 1, page logF =a- (logz)? 4 3 -logz + v
hasP(p,t) > x if it has A(p,t) > z/Q(p). From Theo-
rem 1 the probability that a randomly-chosen pagsatis-
fies this condition is:

Fy(z) = 60-27%/7? 4)

wheref is a normalization constant, which we set as:

where o, 3, and~ are determined using a curve fitting
procedure. We later verified via simulation that across a
variety of scenariod’(z) can be fit quite accurately to a

m i guadratic curve in log-log space.
> s(Llew) _ |
i=1+|mz/Q(p)] 6 Effect of Randomized Rank Promotion
By linearity of expectation, summing over alle P we and Recommended Parameter Settings
arrive at: In this section we report our measurements of the impact of
2User views were measured at the granularity of groups of ten result§anq0mlzed rar?'k_ promotion on search eng|ne_qua||t)/- V\_/e
in [13], and later extrapolated to individual pages in [5]. begin by describing the default Web community scenario
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Figure 4: Popularity evolution of a page of quality= 0.4 Figure 5: Time to become popular (TBP) for a page of qual-
under nonrandomized, uniform randomized, and selectivéty 0.4 in default Web community as degree of randomiza-
randomized ranking. tion (r) is varied.

we use in Section 6.1. Then we report the effect of ran-achieves substantially better TBP than uniform promotion.
domized rank promotion on TBP and QPC in Sections 6.Because, for smalt, there is limited opportunity to pro-
and 6.3, respectively. Lastly, in Section 6.4 we investigatenote pages, focusing on pages with zero awareness turns
how to balance exploration and exploitation, and give ourout to be the most effective method.

recommended recipe for randomized rank promotion. Figure 5 shows TBP measurements for a page of qual-
) ity 0.4 in our default Web community, for different values
6.1 Default Scenario of r (fixing & = 1). As expected, increased randomiza-

For the results we report in this paper, the defaweb  tion leads to lower TBP, especially if selective promotion
community we use is one having= 10,000 pages. The is employed.
remaining characteristics of our default Web community  To validate our analytical model, we created a simulator
are set so as to be in proportion to observed characterishat maintains an evolving ranked list of pages (the ranking
tics of the entire Web, as follows. First, we set the expectednethod used is configurable), and distributes user visits to
page lifetime tol = 1.5 years (based on data from [15]). pages according to Equation 4. Our simulator keeps track
Our default Web community has= 1000 users making a of awareness and popularity values of individual pages as
total of v, = 1000 visits per day (based on data reportedthey evolve over time, and creates and retires pages as dic-
in [2], the number of Web users is roughly one-tenth thetated by our model. After a sufficient period of time has
number of pages, and an average user queries a search @assed to reach steady-state behavior, we take measure-
gine about once per day). We assume that a search enginerifents. These results are plotted in Figure 5, side-by-side
able to monitorl 0% of its users, san = 100 andv = 100.  with our analytical results. We observe a close correspon-
As for page quality values, we had little basis for mea-dence between our analytical model and our simuldtion.
suring the intrinsic quality distribution of pages on the Web.
As the best available approximation, we used the power-
law distribution reported for PageRank in [5], with the . .
quality value of thg highest-qualgiyty page seE(I]@L (We 6.3 Effect of Randomized Rank Promotion on QPC
chose0.4 based on the fraction of Internet users who fre-

quent the most popular Web portal site, according to [18].)/V& Now turn to quality-per-click (QPC). Throughout this
paper (except in Section 8) we normalize all QPC measure-

6.2 Effect of Randomized Rank Promotion on TBP ments such tha PC' = 1.0 corresponds to the theoretical

] ] . ] upper bound achieved by ranking pages in descending or-
Figure 4 shows popularity evolution curves derived fromger of quality. The graph in Figure 6 plots normalized QPC
the awareness distribution determined analytica”y for aas we Vary the promotion rule and the degree Of random_
page of quality0.4 under three different ranking methods: ization (holding % fixed atk = 1), under our default Web
(1) nonrandomized ranking, (2) randomized ranking usingcommunity characteristics of Section 6.1. For a community
uniform promotion with the starting poirit = 1 and the  with these characteristics, a moderate dose of randomized

degree of randomization= 0.2, and (3) randomized rank-  rank promotion increases QPC substantially, especially un-
ing using selective promotion with = 1 andr = 0.2.  der selective promotion.

This graph shows that, not surprisingly, randomized rank
promotion can improve TBP by a large margin. More in-

terestingly it also indicates that selective rank promotion “Our analysis is only intended to be accurate for small values, of
which is why we only plot results for < 0.2. From a practical standpoint
3We supply results for other community types in Section 7. only small values of- are of interest.
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Figure 6: Quality-per-click (QPC) for default Web commu- Figure 7: Qualitiy-per-click (QPC) for default Web com-
nity as degree of randomization)(s varied. munity under selective randomized rank promotion, as de-

gree of randomization-§ and starting pointX) are varied.
6.4 Balancing Exploration, Exploitation, and Reality

_ _ 7 Robustness Across Different Community
We have established a strong case that selective rank pro- Types

motion is superior to uniform promotion. In this section we
investigate how to set the other two randomized rank proin this section we investigate the robustness of our recom-
motion parameters; andr, so as to balance exploration mended ranking method (selective promotion rule; 0.1,
and exploitation and achieve high QPC. For this purposé € {1,2}) as we vary the characteristics of our testbed
we prefer to rely on simulation, as opposed to analysis, folWeb community. Our objectives are to demonstrate: (1)
maximum accuracy. that if we consider a wide range of community types, amor-
The graph in Figure 7 plots normalized QPC as we varytized search result quality is never harmed by our random-
both k& andr, under our default scenario (Section 6.1). Asized rank promotion scheme, and (2) that our method im-
k grows larger, a higher value is needed to achieve high proves result quality substantially in most cases, compared
QPC. Intuitively, as the starting point for rank promotion With traditional deterministic ranking. In this section we
becomes lower in the ranked list (largex, a denser con- rely on simulation rather than analysis to ensure maximum
centration of promoted pages (larggris required to en- accuracy.
sure that new high-quality pages are discovered by users.; 4
For search engines, we take the view that it is undesir-
able to include a noticeable amount of randomization inHere we vary the number of pages in the community,
ranking, regardless of the starting point Based on Fig- While holding the ratio of users to pages fixeduat, =
ure 7, using onlyl0% randomization{ = 0.1) appears 10%, fixing the fraction of monitored users ag/'v = 10%,
sufficient to achieve most of the benefit of rank promotion,and fixing the number of daily page visits per user at
as long ag: is kept small (e.gk = 1 or2). Underl0%ran-  vu/u = v/m = 1. Figure 8 shows the result, with com-
domization, roughly one page in every group of ten querymunity sizen plotted on the x-axis on a logarithmic scale.
results is a new, untested page, as opposed to an establishEae Yy-axis plots normalized QPC for three different rank-
page. We do not believe most users are likely to notice thi$ng methods: nonrandomized, selective randomized with
effect, given the amount of noise normally present in search = 0.1 andk = 1, and selective randomized with= 0.1
engine results. andk = 2. With nonrandomized ranking, QPC declines as

A possible exception is for the topmost query result,cOmmunity size increases, because it becomes more diffi-

which users often expect to be consistent if they issue théult for new high-quality pages to overcome the entrench-
same query multiple times. Plus, for certain queries usergient effect. Under randomized rank promotion, on the
expect to see a single, “correct,” answer in the top rank poother hand, due to rank promotion QPC remains high and
sition (e.g., most users would expect the query “Carnegidairly steady across a range of community sizes.
Mellon” to return a link to the Carnegie Mellon Univer- 7 5
sity home page at positiol), and quite a bit of effort goes
into ensuring that search engines return that result at thEigure 9 shows QPC as we vary the expected page lifetime
topmost rank position. That is why we include the= 2 I while keeping all other community characteristics fixed.
parameter setting, which ensures that the top-ranked sear¢Recall that in our model the number of pages in the com-
result is never perturbed. munity remains constant across time, and when a page is
retired a new one of equal quality but zero awareness takes
Recommendation: Introduce 10% randomization start- its place.) The QPC curve for nonrandomized ranking con-
ing at rank positionl or 2, and exclusively target zero- firms our intuition: when there is less churn in the set of
awareness pages for random rank promotion. pages in the community (lardg QPC is penalized less by

Influence of Community Size

Influence of Page Lifetime
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the margin ofthe entire Web? there is significant benefit to using ran-

the entrenchment effect. More interestingly, X -
Jlomized rank promotion.

improvement in QPC over nonrandomized ranking due t
introducing randomness is greater when pages tend to live _ )
longer. The reason is that with a low page creation rat¢/-4 Influence of Size of User Population

the promotion pool can be kept small. Consequently new sty we study the affect of varying the number of users in

pages benefit from larger :?md more frequent rafﬁk boostgpe communityu, while holding all other parameters fixed:
on the whole, helping the high-quality ones get discovered, _ 10 (00, { = 1.5 years,», = 1000 visits per day, and

quickly. m/u = 10%. Note that we keep the total number of visits
per day fixed, but vary the number of users making those
7.3 Influence of Visit Rate visits. The idea is to compare communities in which most

page visits come from a core group of fairly active users to

- d . . ones receiving a large number of occasional visitors. Fig-
plotted in Figure 10. Visit rate is plotted on the x-axis on a ;
logarithmic scale, and QPC is plotted on the y-axis. Here '€ 11 shows the result, with the number of usepdotted

we hold the number of pages fixed at our default value ofbn the X-axis on a Iogarlthmlc scale, and QPC plotted on
~ e o the y-axis. All three ranking methods perform somewhat
n = 10,000 and use our default expected lifetime value of

e worse when the pool of users is large, although the perfor-
[ = 1.5 years. We vary the total number of user visits PeT hance ratios remain about the same. The reason for this
day v, while holding the ratio of daily page visits to users ; : : e
. i . trend is that with a larger user pool, a stray visit to a new
fixed atv,/u = 1 and, as always, fixing the fraction of high-quality page provides less traction in terms of overall
monitored users as/u = 10%. From Figure 10 we see gh-quality page p

first of all that, not surprisingly, popularity-based ranking awareness.
fundamentally fails if very few pages are visited by users. . . )
Second, if the number of visits is very larg@(0 visits per 8 Mixed Surfing and Searching

day to an average page), then there is no need for randoMme model we have explored thus far assumes that users
ization in ranking (although it does not hurt much). For y5ke visit to pages only by querying a search engine.

visit rates within an order of magnitude on either side of\yhje a very large number of surf trails start from search
0.1 - n = 1000, which matches the average visit rate of

search engines in general wheris scaled to the size of 5According to our rough estimate based on data from [2].

The influence of the aggregate user visit rate on QPC
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Figure 12: Influence of the extent of random surfing.

engines and are very short, nonnegligible surfing may stil
be occurring without support from search engines. We us
the following model for mixed surfing and searching:

e While performingrandom surfind16], users traverse
a link to some neighbor with probabilityy — ¢), and
jump to a random page with probability The con-
stantc is known as théeleportation probability typi-
cally set to 0.15 [10].

e While browsing the Web, users perform random surf-
ing with probabilityz. With probability (1 — x) users

beyond a certain extent, it does not help as much as it hurts
(due to the exploration/exploitation tradeoff as was the case
for randomized rank promotion).

9 Summary

The standard method of ranking search results determinis-
tically according to popularity has a significant flaw: high-
quality Web pages that happen to be new are drastically
undervalued. In this paper we demonstrated via a real-
world study that diminishing the bias against new pages
by transiently promoting them in rank can improve over-
all result quality substantially. We then introduced a new
rank promotion strategy based on partial randomization of
rank positions, and showed via extensive simulation that
sing just10% randomization consistently leads to much
gigher—quality search results compared with strict deter-
ministic ranking. Compared with previous rank promotion
methods, the randomized approach proposed here is sim-
pler and considerably more robust, since it does not rely
on fine-grain temporal measurements of the Web. Overall,
we conclude that partially randomized ranking is a promis-
ing approach that merits further study and evaluation. To
help pave the way for further work, we have developed
new analytical models of Web page popularity evolution
under deterministic and randomized search result ranking,
and introduced formal metrics by which to evaluate ranking

query a search engine and browse among results prénethods.

sented in the form of a ranked list.
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Because we consider only the pages of quajignd we  we get .
focus on steady-state behavior, we will dr@pndt from , 1— R
our notation unless it causes confusion. For example, we f(a:) =73 a0 h (q;J ) (10)
use f(a) and V(p) instead off(a|q) and V(p,t) in our f(ao) — o A Flgey)
proof. We now computef (ag). Among the pages with aware-

We consider a very short time intervél during which  pess,,, Ps(ao) fraction will stay atag afterdt. Also, Adt
every page is visited by at most one monitored user. Thagaction new pages will appear, and their awareness, is

is, V(p)dt < 1 for every pagep. Under this assumption (recall our assumption that new pages start with zero aware-
we can interprel/ (p)dt as the probability that the page  npess). Therefore,

is visited by one monitored user during the time interial
Now consider the pages of awareness= . Since flao) = f(ao)Ps(ao)(1 — Adt) + Adt  (11)
these pages are visited by at most one monitored user duifter rearrangement and ignoring the second order terms
ing dt, their awareness will either stay @t or increase to  of d¢t, we get
ai+1. We usePg(a;) andP;(a;) to denote the probability A\ A\
that that their awareness remainsabr increases from; flag) = =
to a; 1, respectively. The awareness of a page increases if F(gao) + A F(0) + A
a monitored user who was previously unaware of the pag8y combining Equations 10 and 12, we get
visits it. The probability that a monitored user visjtss
V(p)dt. The probability that a random monitored user is Fla) = 1 —ap H F(qa;—1)
aware ofp is (1 — a;). Therefore, ’ 1 —ai A+ F(qa;)

12)

_ A Z F(ga;j—1)
A+ F(0)(1—ai) i A+ F(qa;)

Pr(a;) = V(p)dt(1 —a;) = F(P(p))dt(1 — a;)
= F(qa;)dt(1 — a;) (6)
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