REED: Robust, Efficient Filtering and Event Detection

in Sensor Networks
Daniel J. Abadi, Samuel Madden, and Wolfgang Lindner
MIT CSAIL
{dna, madden, wolfgang}@csail.mit.edu

Abstract rent readings of sensors and thus cannot be usetity

This paper presents a set of algorithms for effitye condition-based monitoring and compliance applosei
evaluating join queries over static data tablesen- For example, we have been talking with Intel engine
sor networks. We describe and evaluate three algo- deploying wireless sensornets for condition basedhte-

rithms that take advantage of distributed join tech nance in Intel’s chip fabrication plants who re[:that_ they
niques. Our algorithms are capable of runningrim i have thousands of sensors spread across hundrpase$

. e of equipment that are each involved in a numbedifbér-
ited amounts of RAM, can distribute the storage bur ent manufacturing processes that are charactebiyedif-
den over groups of nodes, and are tolerant to eéapp

ferent modes of behavior [13,14].

packets and node failures. REED is thus suitaire f In this paper, we present REED, a system for Rodust
a wide range of event-detection applications &t t Efficient Event Detection in sensor networks thadresses
ditional sensor network database and data collectio thjs |imitation, enabling the deployment of sensetworks
systems cannot be used to implement. for the types of applications described above. BEE
1. Introduction based on TinyDB, but extends it with the abilitysiapport

joins between sensor data and static tables hutitice the

detecti h I twork of nodes i 410 id sensor network. This allows users to express esidhiat
eteclion where a largé network of noCes 1S used 10 10€Ng, 1, qe complex time and location varying predisateer

tify regions or resources that are experiencinge&s@ie- ..\ mper of conditions using join predicates avese
nomenon of particular concer to the user. ExaB- o rent attributes. The key idea behind REERoistore
clude cond|t|on-based maintenance mgjus}nal .pl.ants filter conditions in tables, and then to distribthese tables
[14]’ where engineers are co_ncerned with |gj¢ntgy|ma- throughout the network. Once these tables have Hee
chines or processes that are in need of repaidjastnent, seminated, each node joins the filters to its regaliby
process compliancén food and drug manufacturing [25], cpecking each tuple of readings it produces agaitiif
where strict regulatory requirements requiré COMg®RID o hredicates, outputting a list of predicates tha tuple
certify that their products did not exceed ceriviron- oaisfies This list of satisfying predicateshert transmit-
mental parameters during processing, and applmxatlo ted out of the network to inform the user of coiadis of
centered aroynd h‘?m.e'a”d security, where shippees Ainterest. Though this process is logically simtlara stan-
concerned with verifying that their packages anates 54 relational join, we show that join processimgensor
were not tampered with in some unsavory manner. oy uorks introduces a substantial set of new achital
A natural approach to implementing such systents is challenges and optimization opportunities.
use an existing query-based data collection systersen- By performing this join in-network, REED can draiat
sor networ_ks: Through queries, a user can askhbpl&ta cally reduce the communications burden on the nétwo
he or she is interested in _Nlthout concern forttahnical topology, especially when there are relatively featisfy-
details of how that data will be retrieved or presed. A oy bles, as is typically the case when idemidyfailures
number of research projects, including Cougar [3} j,"condition-based monitoring or process compliaape
rected Diffusion [12], and TinyDB [19,20] have adabed i aiions. Reducing communication in this way stizu-
a query-based interface to sensornets, and sewepi- | important in many industrial scenarios whetatively
mentations of query systems have been built antbyies. high data rate sampling (e.g., 100’s of Hertz)eiguired to
_Unfortunately, these existing query systems dopmot perform the requisite monitoring [10]Table 1shows an
vide an efficient way to evaluate the complex pratds oo h1e of the kinds of tables which we expectaogmit
these event-detection applications require bectneselack _ in this case, the filtration predicates vary withe, and
ajoin operator that would naturally be used to express thi,|,4e conditions on both the temperature and Hityni
checking of a large number of predicates agairstctr- o giscyssions with various commercial companées.

Permission to copy without fee all or part of tmterial is granted Honeywell and ABB) involved in process control segg

A widely cited application of sensor networks dgent-

provided that the copies are not made or distriduter direct commer- that these kinds of predicates are representafiv@amy
cial advantage, the VLDB copyright notice and titie of the publica- sensor-based monitoring deployments in the realdwor
tion and its date appear, and notice is given tt@ying is by permis- | inalv. both TinvDB [19 dC 311 4ni
sion of the Very Large Data Base Endowment. To otipgrwise, or to) nterestingly, : C_)t TnyDl [19] an ougar [] Hni
republish, requires a fee and/or special permissimm the Endow- tially eSC.heweC.j joins in thell‘.CIL.Jel’y Ie}nguagesrmryau-
ment. thors believed joins were of limited utility; REEDovides
Proceedings of the 31st VLDB Conference, an excellent counter-example to this point of viein fact,
Trondheim, Norway, 2005 we have added support for joins between exterridesa

769

and sensor readings to TinyDB; users can now wuike- timizations in traditional databases and othersctvhi

ries of the form: we have developed to address the particular priegert

. o of sensor networks.

SELECT s. nodei d, a.condition_type » We describe our initial integration of REED and &or

FRCM sensors AS s, alert_table AS a alis and show an example illustrating how Borecdis

WHERE s.tenp > a.tenp_thresh L .

AND s. humidity > a. humi d_t hresh push join operators into the sensornet. _

AND s.time = a. tine - Before describing the details of our approach, wefly

SAVPLE PERI OD 1s review the syntax and semantics of sensor netwoekigs

Here, we use TinyDB syntax, whesensor s refers to and the capabilities of current generation sensdnaed-
the live sensors readings (produced once per sedottds ware.
case). In REED, the exterrall ert _t abl e (similar, for .
example, torable) will be pushed into the network along 2. Background: Sensor Networks and Motes
with the query. The filter conditions will be euated by Sensor networks typically consist of tens to huddref
having each node join treensor s tuples that it produces small, battery-powered, radio-equipped nodes. &hes
with the conditions in the table, with matches pidg nodes usually have a small, embedded microprogessor
tuples of the form modei d, condition_type>that running at a few Mhz, with a small quantity of RAd a
are then transmitted to the user. larger Flash memory. The Berkeley mica2 Mote ®pu-
Because storage on sensor network devices is tlypica lar sensor network hardware platform designed at UC
at a premium (e.g., Berkeley motes have just a Kiov Berkeley and sold commercially by Crossbow Corporat
bytes of RAM and half a megabyte of Flash), REEDved It has a 7 Mhz processor, a 38.6Kbps radio withC-fbot
these predicate tables to be partitioned and stacedss range, 4KB of RAM and 512KB flash, runs on AA batte
several sensors. It also can transmit just a feagrof the ies and uses ~15 mA in active power consumption-&rd
predicate table into the network, forcing readimdgch do HA when asleep.
not have entries in the table to be transmitted afuthe = Storage:The limited quantities of memory are of particular
network and joined externally. REED attempts teede concern for query processing, as they severelyt lifmé
mine which predicates are most important to setmitile sizes of join and other intermediate result tablakhough
network based on historical observations of pradia future generations of devices will certainly havenewhat
which commonly are not satisfied. more RAM, large quantities of RAM are problematie- b
Finally, to facilitate the integration with extetndata- cause of their high power consumption. Non-vadafish
bases, we have integrated REED into the Boreaksust can make up for RAM shortages to some extent, laghf
processing engine [3]. This allows us to issueriggeat a Writes are quite slow (several milliseconds peregpagith
centralized processor, which extracts relevantctiele typical pages less than 1 KB) and consume largeuatso
predicates and joins and pushes them into the mietwo of energy — almost as much as transmitting dataffhe
when the optimizer believes such push-down willhe¢p- mote [28]. Hence, memory efficient algorithms ari-

ful. cally important in sensornets.

Table 1: Example of a Table of Predicates used indd- Sensors:Mica2 motes include a 51-pin expansion slot that
dition-based Monitoring accommodates sensor boards. Commonly available sen
_ _ _ sors measure light, temperature, humidity, vibrataccel-
Condition # Time | Temp thresh | Humid_thresh eration, and position (via GPS or ultrasound).

1 9 pm > 100 C > 95 %

Communication: Radio communication tends to be quite

; 12 pm | >110C > 90 % lossy — without retransmission, motes drop sigaiiic
pm | >115C >87%
numbers of packets. At very short ranges, losssratay
. be as low as 5%; at longer ranges, these rateslicain to
1.1.Contributions 50% or more [30]. Though retransmission can migiga
In summary, the major contributions of this work:ar these losses somewhat, nodes can still fail, moey aor

« We show how complex filters can be expressed a_ge subject to radio interference that makes thenpdoear-
tables of conditions, and show that those conditionily unable to communicate with some or all of their
can be evaluated using relational join operations. neighbors. Thus, any algorithm that runs insida sénsor

« We describe the REED system and our sensor netwofketwork must tolerate and adapt to some degreemwf ¢
filtration algorithms, which are tailored to proeido- ~ Munication failure. . _
bustness in the face of network loss and to havetie ~ TinyOS: Motes run a basic operating system called
limited memory resources. TinyOS [12], which provides a suite of softwarerdibes

« We provide experimental results showing the substanfor sending and receiving messages, organizing sriote
tial performance advantages that can be obtained tgd-hoc, multihop routing trees, storing data to rmoin
executing complex join-based filters inside thessen flash, and acquiring data from sensors.
network, through evaluation in both simulation amd ~ Power: Because sensors are battery powered, power con-
a real, mote-based sensor network. sumption is of utmost concern to application design

« We discuss a number of variants and optimizatidns oPower is consumed by a number of factors; typicaléns-

our approach, some of which are motivated by jgin o ing and communicating dominate this cost [19,24] this
paper, we focus on algorithms that minimize comrmami

770

tion, as any join algorithm that includes all nodes net-
work will pay the same cost for running sensorse héte
that if careful power management is not used, tys of
listening to the radio will actually dominate thest of
transmitting, as sending a message takes only anféliv
seconds, but the receiver may need to be on canishy
waiting for a message to arrive. TinyDB and Tiny&$&
dress this issue by using a technique cdtbedpower lis-
tening[23].

2.1.Background: Data Model and Semantics

3. Applications and Query Classification

In this section, we describe some applications BER.
We use these applications to derive a classifinatfgjoins
that motivate the join algorithms presented in Bect.

3.1. Query Types

REED extends the query language of TinyDB by alfayvi
tables of filter predicates to appear in the FROMise. In
this section, we show the syntax of several exampézies
and describe their basic behavior.

Industrial Process Control. Chemical and industrial

REED adopts the same data model and query semastics manufacturing processes often require temperaturajd-

TinyDB. Queries in TinyDB, as in SQL, consist 0SB-

ity, and other environmental parameters to remairai

LECT- FROM VHERE clause supporting selection, projec- small, fixed range that varies over time [11]. Stothe

tion, and aggregation. REED extends this list pérators
with joins. TinyDB treats sensor data as a sirglele

temperature fall outside this range, manufactumesk
costly failures that must be avoided. Thus, theyently

(sensors) with one column per sensor type. Results, Olemploy a range of wired sensing to avoid such sl
tuples are appended to this table periodically, at well-[25,13]_ Interestingly, companies in this areag(eGE,

defined intervals that are a parameter of the quawgci-
fied in the SAMPLE PERI OD clause. The period of time
from the start of each sample interval to the sththe next
is known as aepoch Consider the query:

SELECT nodeid, light, tenp

FROM sensors

SAMPLE PERI OD 1s FOR 10s

This query specifies that each sensor should refsoown
id, light, and temperature readings once per sefonten
seconds. Thus, each epoch is one second long.

2.2.Data Collection in TinyDB

Query processing in the original TinyDB implemeitat
works as follows. The query is input on the us&gG, or

basestation This query is optimized to improve execution;

currently, TinyDB only considers the order of sélat
predicates during optimization (as the existingsicar does
not support joins). Once optimized, the queryanslated
into a sensor-network specific format and injedtgd the
network via a gateway node. The query is sentl tooales
in the network using a simple broadcast flood (DBy
also implements a form of epidenggiery sharingwhich
we do not discuss).

As the query is propagated, nodes learn about their

neighbors and assemble intocaiting tree in TinyDB, this
is implemented using a standard TinyOS servicelaino

what is described in the work by Waa al [30]. Each
node in the network picks one node apésentthat is one
network hop closer to the root than it is. A nadigpthis

simply the number of radio hops required for a ragesit
sends to reach the basestation.

As a node produces query answers, it sends thdta to
parent; in turn, parents forward data to their pteuntil
answers eventually reach the root. For some cuéaied
in our join implementation), parents will combireadings
from children with local data to partially procegseries
within the network. The basestation assembledgbag-
sults from nodes in the network, completes quepcess-
ing, and displays results to the user.

771

Honeywell, Rockwell, ABB, and others) are aggreslyiv
pursuing the use of mote-like devices to provideeless
connectivity, which is cheaper and safer than pedeso-
lutions as motes don't require expensive wires ¢oirb
stalled and avoid the risks associated with runriigh-
voltage wires through volatile areas. Of course,\fire-
less solutions to be cost-effective, they must g®wmany
months of battery life as well as equivalent levasnfor-
mation to existing solutions. Thus, the power aochmu-
nications efficiency of a system like REED is pdiglfy of
great interest.

It is easy to write a REED query that filters rewyi
from sensors located at various positions with raeti
indexed table of predicates that encodes, for el@nabh
lowable temperature ranges in a process contrdhget
Should the temperature ever fall outside the regluiange,
users can be alerted and appropriate action casakes.
Such a query might look like:

SELECT a. atenp
FROM schedul e_table AS t,
sensors AS a
WHERE a.ts > t.tsnmn AND
a.ts < t.tsnmax AND
atenp > t.tenpmin AND
atenp < t.tenpmax AND
nodeid = t.nodeid

(1

a.
a.
a.

Here, results are produced only when an exceptional

condition is reached (the temperature is outsiéeddsired
range), and thus relatively few tuples will matdie note
that this is dow selectivityquery, indicating that it outputs
(selecty a small percentage of the original sensor tuples.

As mentioned above, our discussions with engingers
industrial settings suggest that each sensor may bav-
eral alarm conditions associated with it, and theey be
hundreds or thousands of sensors in a single factbr a
typical deployment such as Intel’s, there couldskgeral
thousand filters, each of which consists of a tiauege, a
minimum and maximum sensor value, and a node igh- S
posing these numbers require 16 bytes to storetottad:
join table in the case of the Intel deployment migle
100KB or larger.

Failure and Outlier Detection. One of the difficulties
of maintaining a large network of battery-poweredgke-
less nodes is that failures are frequent. Somstithese

network. We may also be unable to push a join tht®
network if the size of the predicate table excetba@sstor-
age of a single node or a group of nodes acrosstwthie

failures ardfail-fast for example, a node’s battery dies andtable may be partitioned.

it stops reporting readings. At other times, hoarethese
failures are more insidious: a node’s readingws/siarift
away from those of sensors around it, until they raean-
ingless or useless. Of course, there are tinfenvguch
de-correlated readings actually represent an istiegs
highly localized event (i.e., an outlier). In athcase,
however, the user will typically want to be infordhabout
the readings. We have implemented a basic apiplicat
that performs both these tasks in REED. It workdad
lows: we build a list of the values that each ncden-
monly produces during particular times of day frbis-
torical data and periodically update this list otiere. We
then use this list to derive a set of low-prob&piiralue
ranges that never occur or that occur with somestiold

Thus, in REED, we differentiate between the follogyi
types of joins:
- Smalljoin tables that fit in the RAM of a single node.
- Intermediatejoin tables that exceed the memory of a
single node, but can fit in the aggregate memory of
small group of nodes.

- Largejoin tables that exceed the aggregate memory of a

group of nodes.

We have developed join algorithms that are suitédle
all three classes of tables; we describe theseitdges in
Sections 3 and 4 below.

For small join tables, REED always chooses to push
them into the network if their selectivity is snaallthan
one. For intermediate tables, the REED query dpé&m

probability € or less frequently. Then, we run a querymakes a decision as to whether to push the jom tim¢

which detects these unusual values. For exammefal-
lowing query detects outlier temperatures:

SELECT s. nodeid, s.tenp

FROM sensors AS s, outlier_tenp AS o
VWHERE s. tenp

BETWEEN o. 1l ow_tenp AND o. hi _tenp
AND s.roomo = a.roomo

This query reports all of the readings that aréhiwian
outlier range in a given room number. Note thatdint -

network based on the estimated selectivity of tregligate
(which may be learned from past performance oregath
statistics, or estimated using basic query optitionatech-
nigues [28]) and the average depth of sensor nodése
network. It uses a novel algorithm to store sdveopies
of the join table at different groups of neighbgrimodes in
the network, sending each sensor tuple to oneeoftbups
for in-network filtration.

For large joins, as well as intermediate joins tREED
chooses not to place in-network, REED can empldyird

I'i er _tenp table may be quite large in this case, but thaket of algorithms that send a subset of the jditetmto the

the selectivity of this query is also low.

network. REED tags this subset with a logical prath

Power Scheduling. As a third example, consider a set that defines which sensor readings it can filtendtwork.

of sensors in a remote environment where powerezgas
tion is of critical importance. To minimize powasrsump-
tion in such scenarios, it is desirable to balamogk across
a group of sensors where each sensor only transsits
light reading some small fraction of the time. \d&n do
this with an external table as well; for example:

SELECT sensors. nodei d, sensors.|ight
FROM sensors, roundrobin

VWHERE sensors. nodei d = roundrobi n. nodei d
AND sensors.ts % | nodes| = roundrobin.ts

For this query, theroundrobin table is small £
| nodes| entries), and can likely fit on one node. Thitefil
also has a low selectivity, as only one or two rsosiatisfy
the predicate per time step.

3.2.Query Classes and Optimizer Tradeoffs

These queries allow us to make several observatibast
how and where we should execute joins. In gendrad,
advantageous to perform joins with low selectivitythe
sensor network. This is because there will be nfemer
results than original data and thus a smaller nunafe
transmissions needed to get data to the basestation
There are situations, however, when we might preder
to push a join into the network; for example, i tloin has
a relatively high selectivity, and the size of theedicate
table is very large, the cost of sending the jato ithe net-
work may exceed the benefit of applying the joisidie the

772

For example, for Query (1) above, a join-table stibsight
be tagged with a predicate indicating it is vabd fiodes 1-
5 at times between 5 am and 5 pm. For readings fhese
nodes in this time period, joins can be applietetwork;
other readings will have to be transmitted out e het-
work and joined externally. We describe algorithfos
these kinds opartial joinsin Section 5. If REED chooses
not to apply partial joins, all nodes transmit thedadings
out of the network where they are joined externally

In the following section, we present two algorithntke
first is a single-node algorithm for small join k. The
second shows how to generalize this single-nodetqeae
to a group of nodes that work together to collegivstore
the filter table. We show that these algorithmesrabust to
failures and changes in topology as well as efficig
terms of communication and processing costs.

4. Basic Join Algorithms

Once the query optimizer has decided to push a REED

query into the network, we need an algorithm foplging

our joins efficiently; in this section, we describer ap-
proach for performing this computation. We focusdis-

tributing and executing our filters throughout thetwork
in a power-efficient manner that is robust in tlee of
dropped packets and failed nodes. Logically, dgon-a
rithms can be thought of asrested-loops joirbetween
current sensor readings and a table of static gaesh.

Nested-loops joins are straightforward to implemard
sensornet, as shown by the following algorithm:

Joi n(Predicate q)
for each tuple t, in sensors do
for each tuple ts in predicates do
if g(t:, ts) is satisfied
add t, O ts to result set r
return r

There are two things to note about this algorithimst,
low selectivity filters might cause there to be &whan
one result (on average) per element of the outep,lo
though it is in general possible for each tuplenttch with
more than one predicate. As in any database sysi#im
these properties, it is advantageous to apply itterd as
close as possible to the data source in a sensaorhe
since this would reduce the total number of daasmis-
sions in the network. Second, elementsprédicatesare
independent of each other. Thysedicatescan behori-

zontally partitionednto a number of non-overlapping sub-

tables, each of which can be placed on separatesndd
long as the table partitions are disjoint, the anad the
results of the filter on the independent nodesirsgoparti-
tions of the table is equal to the results of tifterfif the
entire static table was stored at one location.

These two observations motivate our algorithms. Th

join is applied as close as possible to the datacso For
the case where the static table fits on one semste, the
static table is sent to every sensor node (usiagrthyDB
query flood mechanism) and the filter is perfornmd a
sensor node as soon as the data is produced. &matie
where the static table does not fit on one node,pitedi-

cates table) is horizontally partitioned into n disjoint

segments,;, s, ..., S (=s:0s,0...0s,). Eachs is sentto a
member of a group of sensor nodes in close proyitoit
each other formed specially to apply the join. Egadup is
sent a copy of the predicates table. When a seshetar
tuple is generated, it is sent to each node intBxaoe of
these groups to join with every partitiog) (of the predi-
cate table.

In Section 4.1 we describe in more detail the wesere
the predicates table fits on one node. In Secti@) we
extend this basic algorithm with a distributed i@msfor
the case where the table is too big to fit on coeen

4.1.Single Node Join
Our join algorithm leverages the existing routimget to

send control messages and tuples between the @odes

the root. When a query involving a join is receiadthe

join table tuple with the storage capacity the nizdeilling
to allocate to the query).

If the node’s storage capacity is sufficient torstthe
filter predicates table, the node simply sends asage to
the root, requesting the table and indicating thattends
to store the entire table locally. The root assuthasthere
will likely be other nodes that can also store ¢imgire ta-
ble, so it floods each tuple of the table throughbe sen-
sornet. Once the entire table is received, the wadebegin
to perform the join locally, transmitting the jaiesults

Root (0)

Neighbor list

[3,1,4] [413]

Join Group

Join Group

Figure 1: REED routing and join tree with group ovelays

father than the original data. Before then, nadesa na-

ive join algorithm, where sensor tuples are serihéoroot
of the network to be joined externally.

A simple optimization that can be performed is that
the result of the join consists of more than or@etuthe
node can simply send the original sensor tuple. jdimefor
this tuple can then be performed at the basestatios
technique is equivalent semi-joins4].

4.2. Distributed Join

In this section, we describe our in-network joigaithm
in detail. Our algorithm consists of three distipdttases:
group formation, table distribution, and query @s&ing.

4.2.1. Algorithm Overview

When the predicates table does not fit on one njmiles
can no longer be performed strictly locally. Instethe
table must be horizontally partitioned. A tuple camly
immediately join with the local partition at the de and
must be shipped to other nodes to complete the (@ite
the original tuple has reached every node thatatosita
partition of the table, it can be dropped and tsscén be
forwarded to the root. Nodes thus organize thevasedhto
groups that cumulatively store the entire tablegrghall

basestation, a message announcing the query iglefoo group members are within broadcast range of edwr ot

down to all the nodes. This announcement (actuatly
plemented as a set of messages) is an extendddrvefs

Figure 1 shows the setup of such a distributed join

query. The figure shows a multi-hop routing treeewveh

the TinyDB “new query” messages, and include_:s thquples are passed to their parents on their pathegoot
schema of the sensor data tuples, the name, sk, apasestation. For example, a tuple produced by moie

schema of the join table, the schema of the rdaples,
and a set of expressions that form the join preeiddpon
receiving the complete set of these messages, eoelg in
the sensor network knows whether it is participgiim the
query (by verifying that it contains the senso fhroduce
the fields in the schema) and how many tuples efjtin
table can be locally stored (by comparing the sizeach

773

sent to node 5 which then sends the tuple to nodhiéh
sends the tuple to the basestation. Our join dlyorivorks
by overlaying groups (shown as large circlefigure) on
top of this routing tree. The numbers in bracketthe fig-
ure represent the set of nodes in broadcast resrgthdt
particular node. A tuple that needs to be joiretbrioad-

cast from a node to the other members of its grodpch
member sends any joined results up the originatimgu
tree. For example, if node 7 produces a tuple tmined, it
broadcasts it to nodes 5 and 6. If node 5 contituple in
the table that successfully joins with 7’s tuplesends the
result up to node 2 which forwards it to the root.

Note that when node 7 produces a tuple that joiitis w

the static table, three transmissions result; ihithe same
as if the original data was sent up the routing fre the
naive or single-node case. In the worst casee thewuld

have been two extra tuples: if node 5 producedpetu

which joined with a tuple on node 7 a total of dnsmis-
sions would have been performed.

Since our experimental results (Section 6.1.1) sti@mwthe

group formation overhead is negligible compareattoer

communication required by the query, optimizationshe

group formation algorithm should focus on maximgthe

number of nodes that are members of a group, ratiaer
trying to minimize the number of messages requit@d
form a group.

A master node initiates the creation of a grousdryd-
ing out an announcement and nodes within broadaage
respond with their neighbor lists and capacitidge Taster
then attempts to take an intersection of neightsts (ac-
counting for asymmetric links in the process) aluset of

In general, noemo nodes from which it has heard, such that the riesuttet of

than 2 +depthtransmissions will be required, as any pairnodes have enough capacity to store the origirdé tdf

of nodes in the same group differ by no more thamlevel
(by definition). For joins with predicates of loselectivity
there are many cases where no element of the jaible
with the original data. When this occurs, perforgnitihe
join in the group rather than sending the tuplekbacthe
root provides savings proportional to the depththudt

group (instead of hops to get the data to the root, only 1

transmission of the original data is made).

We now describe the algorithm that each node paor

when it receives a join query with a predicatesetathose
size is too large to fit on that node.

4.2.2. Group Formation

If a node calculates that it does not have enotmlage
capacity for the table, it initiates the group fation algo-
rithm. To minimize the number of times an origitaple
must be transmitted to make it available to evegminer
of a group, we require that all nodes in the grargwithin
broadcast range of each other. A second requireplepty
of a group is that it must have enough cumulatieeage
capacity to accommodate the table of predicatethd$e
requirements can not be met, the join classificaiisee
Section 3.2) is nointermediatebut ratherarge, and only
the algorithms described in Section 5 can be uGedup
formation is a background task that happens cootisly
throughout the lifetime of the join query as nodeme and
go and network connectivity changes. Every group loa
uniquely identified by its groupid and the queryid.

such an intersection exists, the master contacsrabt
node and the table is partitioned and distributednby
across the nodes in the group (taking into conataer
space constraints on individual nodes). A node move
through phases in this algorithm by transitionihgotigh
states in a finite state machine which is showRigure 2.

4.2.3. Message Loss and Node Failure

The group formation algorithm deals with messags lo
by allowing every state in the finite state machiodime
out while having a minimal effect on other nodesr Ex-
ample, if a master node does not hear back fronugno
neighbors, it will time out (shown as TO in Figuteand
transition back into théleed Groupstate. Nodes that had
responded to the master cannot respond to any thster
until they hear back from the current one. If tineyer hear
back, they time out and go back to theed Groupstate.
The algorithm adds some optimizations to speed soime
the steps along; for example, if a master timesaodttran-
sitions back to théNeed Groupstate, it sends out an an-
nouncement that it will do so. Nodes that recehie &n-
nouncement (and were waiting for this master) cansi-
tion back as well without having to time out.

Groups are not permanent. A node might choosesto di
solve the group if it senses that a node has ceaseg
spond (node failure) or if the message loss peagentrom
a node in the group rises above the desired thicecsNode
failure is detected using the periodic advertisemsate-

Every node maintains a global, periodically refezsh scribed in Section 4.2.2 as heartbeats to detesiiriess. In

list of neighbors that are within broadcast ranger each
neighbor, an estimate of incoming link quality emputed

such a scenario each node that was a member gfdlp
must attempt to find a new group to join. In therent

by snooping on messages sent by surrounding nddes. implementation of our system, current groups doaaoept

neighbor node is placed on the neighbor list if tbeeive
percentage is above some threshold (defaulting58b)7
This snooping algorithm we use is similar to thgoaithm
used for measuring link quality in the TinyOS mudp
radio stack [30].

We give a brief overview of a group formation algo-

rithm here, and refer the reader to our techniepbrt [1]
for a more detailed account of how the algorithnrksolt
is important to note that there exist multiple atidns on
the algorithm we present; for example, while we rad
allow a node to belong to more than one group etieno
fundamental reason why this is not possible arfddhthis
might allow for fewer copies of the static tablelte sent
into the network, optimizing table disseminationstso

774

new members, even if that member is in broadcasferaf
every member of the group. As a result, many néaes a
failed group often end up reforming a new grouphuwiitt
the node that caused the group to disband.

4.2.4. Operation

Sensor data tuples that need to be processed bgieaare
generated either by the sensors on the node iseté-
ceived from children in the REED routing tree. Nedee
responsible for forwarding child sensor data tumésll
times during the query, whether or not they ararractive

join group. Until a node transitions to BnGroup state, all

data tuples are forwarded up to the parent nodéhén
REED tree. If all nodes along the way to the roat ot

NoTOC,
Do Nothing

‘A

NoTO, TO, TO,
Reannounce Re-request Re-announce

Receive
Data

TO, announce TO, Form
ffer Group
(Listen

G

roup
TO, can't™,

form group
Receive Offer

TO.
Dissolve
Possible
Member

NoTO,
Re-Reply

Receive Grp-ready,
or Join Tuple
F

Receive
Group Accept

TO, Dissolve

Longer TO,

dissolve group

Figure 2: Join Algorithm Finite State Machine. The“TO”
transitions represent timeouts, which prevent deadicks
when messages are lost or nodes fail.

members of active groups, then the network behékes
the naive join with all the original sensor datpléis being
forwarded to the root where the join is performed.

also increase the cost of disseminating the Blatier and
use up limited memory. We can apply Bloom filtarish
the group protocol, to avoid any transmission ofad&
group members, or in isolation as a locally-filgereersion
of single-node join algorithm.

5.2. Partial Joins

For situations in which there are a very large nembf
tuples in the join table, we can just disseminaferimation
that allows sensors to identify tuples that dediyitdo not
join with any predicates. Suppose we know thatetlare
no predicates on attribui in the rangea; ... &. If we
transmit this range into the network, then a sensple, t,
with valuet.a insidea; ... & is guaranteed to not join with
any predicates and need not be transmitted; otberwe
must transmit it to the root to check and see ig thple
joins with any predicates. Of course, for a muitidn-
sional join query, there will be many such rangethw
empty values, and we will want to send as manyhefrt
into the network as the nodes can store.

However, if a node along the way is a member of a Thus, the challenge in applying this scheme isitk p

group, then instead of forwarding the data messages
parent, it broadcasts the tuple to its group. Egoiup
member then joins that data tuple with the localigred
portion of the join table and forwards the resgjtjoined
tuples up the original REED tree; these resultesipieed
no more joining and can be output once they relaedot.

5. Optimizations

In this section, we extend the basic join algoritiole:
scribed in the previous section with several optations
that decrease the overall communication requiresneft
our algorithms and that allow us to apply in-netiwjmins
for large tables that exceed the storage of a gobupdes.

5.1. Bloom Filters

To allow nodes to avoid transmitting sensor dapdetuithat
will not join with any entries in the join table,encan dis-
seminate to every node in the network-bit Bloom filter
[5], f, over the set of values, appearing in the join col-
umn(s) of the predicates table. We also programieso

with a hash functioni, which maps values of the join at-

tributea into the range 1.k. Bits inf are set as follows:
Ovaluesyin thedomainof a

1liff.vOJ
o
(HWV) Ootherwise

Thus, if biti of f is unset, then no value whithmaps to

i is inJ. However, just because lits set does not mean

that every value which hashesités included inJ. We
apply Bloom filters as in R*[18]: when a node prods a
tuple, t, with valuev in the join columnit computesH(v)
and checks to see if the corresponding entry isndetlf it
is not, it knows that this tuple will definitely bjpin. Oth-
erwise, it must forward this tuple, asnfyjoin. Assuming
simple, uniform hashing, choosing a larger valué wiill
reduce the probability of a false positive wherseasor
tuple is forwarded that ultimately does not joimt twill

775

the appropriate ranges we send into the networkssto
maximize the benefit of this approach. If fewlagpthat
are produced by the sensors are outside of thigerane
can substantially decrease the number of tuplesnitdes
must transmit. Of course, the range of values wisizm-
monly join may change over time, suggesting thatnves
want to change the subset of the table storedeimétwork
adaptively, based on the values of sensor tupleshserve
being sent out of the network.

5.3. Cache Diffusion

The key idea of our approach is to observe the thath
sensor nodes are currently producing. We assunedsca
node contains two cache tables. The first, ldwl value
cache contains the lask tuples that a node produced.
The second table (which is organized as a priaitgue)
holds empty range descriptions (ERDs) of the joiAn
ERD is defined in the following way:

Given a set of attributes;A.. A, that are used in the join
predicates of a query, an ERD consists of a serajes in
the domain of these attributes:

{x1yd ... [Xo-ynl | %, yi O A}

such that if a tuple contains values for each egéhattrib-
utes that fall within the ranges listed in an ERDs guar-
anteed that there does not exist a predicate titlag¢walu-
ate the tuple to true. As a result, the tuple carntmedi-
ately dropped. For example, an ERD for a quergriitig
by nodei d and t enper at ure might consist of the
range [20-25] ort enper at ur e and the range [5-7] on
nodei d; a different ERD might consist of the range [23-
30] ontenperature and [1-3] onnodei d. A tuple
coming from node 6 with a temperature of 22 fallthim
the first ERD and thus can be dropped. We defieesize
of an ERD to be the product of the width of theges in
the ERD. We define amaximal ERDfor a non-joining
tuple to be the ERD of the largest size that thetwver-
laps. We currently compute the maximal ERD viaaadi
tive search at the basestation.

The cache diffusion algorithm then works as follows
Every time the root basestation receives a tup¢ does
not join, it sends the maximal ERD which that tujpiter-
sects one hop in the direction that the tuple cémm.
This node then checks its local value cache foletithat
are contained within this ERD. If one is found,sthialue
and any other values that overlap with the ERD rare
moved from the local value cache, and the ERD ieddo
the ERD cache table with priority 1. If no matchfasind,
then the ERD is also placed in the ERD cache t&ioleywe
mark it with priority 0. Priorities are used totelenine
which ERDs to evict first, as described below.

Upon receiving a tuple from a child for forwarding,
node first checks the ERD cache to see if the tfgle
within any of its stored ERDSs. If so, the nodeefit the
tuple and sends the matching ERD to the child.eurtif
nodex overhears nodg sending a tuple to node(where
nodez is not the basestation), it also checks its ERideta
for matching ERDs and, if, it finds one, forwarti$o node
y. The ERD cache is managed using an LRU policyegtxc
that low-priority ERDs are evicted first. Here ‘tase”
indicates the last time an ERD successfully fildeaetuple.

Thus, for a node of depthd, it takesd tuples that fall
within an ERD to be produced before the ERD reache
nodex. Note that thesd tuple productions do not have to
be consecutive as long as the matching ERD th&isdi$

packet directory of the TinyOS CVS repository. This
simulator is much faster (approximately 1000x) thhae
standard TOSSIM radio model but still simulateslicol
sions, acknowledgments, and link asymmetry. For the
measurements reported here, our algorithms perfomi:
larly (albeit much more slowly) when using the stard
bit-level simulator.

For the experiments below, we 500
simulate a 20x2 grid of motes wherbasestation
there are 5 feet between each of the

5fee§

20 rows and 2 feet between the 2 col- ©

O

umns. The top-left node is the bases-

tation. This is shown in Figure 3.

With these measurements, a data

transmission can reach a node of dis-

tance 1 away (horizontally, vertically,

or diagonally in Figure 3) with more

than 90% probability, of distance 2 2 fee
away with more than 50% probability_.)

and rarely at further distances. Homgf;;ﬁ)gj + Mote
ever the collision radius is much lar

ger: nodes transmitting data with dis-

tance <=5 away from a particular node can collidt& ¥hat
pode’s transmission. For the distributed (grouph jex-
periments, we set the group quality threshold dlesdr
above to 75%, which yield groups almost alwaysaostst

to nodex does not get removed from the ERD cache of itof nodes all less than 10 feet away from each otihsr

ancestor nodes on its way. Further, note that teespe
fact that it takesl tuples before node receives the ERD,
these tuples get forwarded fewer and fewer timeitevthe
ERD gets closer and closerxoln total, d + (d-1) + (d-2)

.. + 1 additional transmissions are needed beforERID
reaches node&. The advantage of this approach over di-
rectly transmitting the ERD to the node that praztlithe
non-joining tuple is twofold: first, we do not havo re-
member the path each tuple took through the netvemt-
ond, we do not have to transmit every ERDops — only
those which filter several tuples in a row.

Once an ERD (or set of ERDs) arrive at nadéhen as
long as node produces data within the ERD, no transmis-
sions are needed. Thus, for joins with low selétgtion
sensor attributes of high locality, we expect tashe dif-
fusion algorithm to perform well, even for very dar ta-
bles.

6. Experiments and Results

We have completed an initial REED implementation fo
TinyOS. Our code runs successfully on both realesaind
in the TinyOS TOSSIM [16] simulator. We use the sam
code base for both TOSSIM and the motes, simplypidlem
ing the code for a different target. Most of thperimen-
tal results in this section are reported from thayDS
TOSSIM simulator, which allows us to control theesand
shape of the network topology and measure scalirayio
algorithms beyond the small number of physical sode
have available. We demonstrate that our simulaésults
closely match real world performance by comparimgnt
to numbers from a simple five-mote topology.

We are running TOSSIM with the packet level radio
model that is currently available in theet a/ TOSSI M

776

chose this topology because it allows us to easilyeri-
ment with large depths so that nodes towards ek of
the network can still reliably send data to theelstegion
while not requiring the TinyOS link layer to penforre-
transmissions during data forwarding. We have a&zo
perimented with grid topologies (such as 5x5) tofcm
that the algorithm still performs correctly undeffetent
topologies (as long as the network is dense ensoghat
groups can form).

Ouir first set of experiments will examine the disited
(REED) join algorithm. We evaluate this algorithhorey
two metrics: power savings and result accuracye We
number of transmissions as an approximation of powe
savings as justified in Sectidh We compare those results
to a naive algorithm that simply transmits all riegd to
the basestation and performs the join outside #die/ark.
We measure accuracy to determine whether our prtstoc
have a significant effect on loss rates over anodut
network join. We also show how combining this aitjon
with a predication filter (such as Bloom) can fenthim-
prove our metrics. In these experiments, we siraukat
Bloom filter that accurately discards non-joiningples
with a fixed probability. We analyze the dimensidhat
contribute to this probability in later experiments

For experiments of the distributed join, we useoia j
query like the industrial process control Query (B-
scribed in Section 2 above, except that we useséme
schedule at every node (so our query does notdechi
join onnodei d). Our schedule table has 62 entries, repre-
senting 62 different times and temperature comggaiOn
our mica2 motes with 4K of RAM, each mote has suffi
cient storage for about 16 tuples — the remaindeth®

RAM is consumed by TinyDB and forwarding buffers in
the networking stack. We have also experimenteith wi
several other types of join queries and found simik-
sults: irrespective of the query, join-predicagdestivity
and average node depth have the largest effectuenyq
execution cost for the distributed join algorithm.

For all graphs showing results for the distribuied al-
gorithm, we show power utilization and result aeoyr at
steady state, after groups have formed and nodepear
forming the join in-network. We do not include taldis-
tribution costs in the total transmission numbevge
choose to do this for two reasons:

First, efficient data dissemination in sensor neksds
an active, separate area of research [17,26]. Arthase
algorithms can be used to disseminate the preditatde
to the network. We use the most naive of dissetoimat
algorithms: flooding the table to the network. Femery
tuple sent into the network, each node will recetvence
and rebroadcast it once. Thus, if thereodes in the net-
work, and the table contaikgpredicates, then there will be
n-k transmissions per table dissemination. Howeveesin
multiple tables are disseminated (one per groum) haive
dissemination algorithm requiresk-gtransmissions where
g is the number of groups. A simple optimization Vdoloie
to wait until all groups had been formed and traibghe
table just once; doing this is non-trivial as gresumay
break-up and reform over the course of the algoriti-or

6.1.Distributed Join Experiments

The next two experiments examine how two indepehden
variables affect the metrics of power savings arcligacy

for each join algorithmjoin predicateselectivityandaver-
age node depthFor all experiments, data is collected once
the system reaches steady state for 500 epochstable
contains 62 predicates and each node has spadé foe-
sulting in groups of size 4 being created. Diffénemmbers
and combinations of groups form in different tniahs, so
each data point is taken by averaging three tuiasrError
bars on graphs display 95% confidence intervals.

6.1.1. Selectivity

For this set of experiments, we varied the selagtof the
join predicate and observed how each join algoriffen
formed. We model the benefit of the Bloom filtgstioni-
zation described in Sectidh.1 by inserting a filter that
discards non-joining tuples with some probabilityWe
can directly varyp for the test query via an oracle which
can determine whether or not a tuple will join, giis
convenient for experimentation purposes. We wilbvgh
later how in practice, the value pttan be obtained.

Figure 4 shows that for highly selective predicdtes
predicate selectivity), both the REED algorithm ahe
Bloomjoin optimization provide large savings in the
amount of data that must be transmitted in the odtw
The naive algorithm is unaffected by selectivitgdogse it

the experiments we run, we found that on averageé 30must send back all of the original data to the biation

transmissions are made per predicate in the tableur 40
node network (sincg is on average 7.7). Thus, for the 60
predicate table we used, 18K transmissions werdatke
Second, applications of our join algorithm tendhb®
long running continuous queries. For this reasoe, ane
more interested in how the algorithm performs ia lbng
term, and we expect that these set up costs withirher-
tized over the duration of a query. For example&s00 ep-
ochs (the duration of our experiments below), wealy
accrue up to 160K transmissions - well above th& 18
transmissions needed to disseminate the table.

before the data is analyzed and joined. The REHKj0-al
rithm does not have this same requirement: thoskeso
that are in groups can determine whether a prodtugad
will join with the predicates table without havirtg for-
ward it all the way to the basestation. Thus, tarngs of
the algorithm is linear in the predicate selecdfiviThe
Bloomjoin algorithm improves these results even emor
since nodes no longer always have to broadcagpla ta
its group (or to its parent if not in a group) todf out if a
tuple will join. In these experiments we filter %0of the
non-joining tuples in the Bloom filter.

Our second set of experiments analyzes and comparesTo better understand the performance of these algo-

the Bloom Filter and Cache Diffusion algorithms. alty
we use the number of transmissions as the evatuatit-
ric. We observe how the join attribute domain sind data
locality are good ways to decide which algorithnuse.

NN

120

80 —— Naive

(=2}
o

—=— REED

I
o

»+~ REED +
Bloom (.5) |_|

Total Transmissions (1000s)

N
o

o

0.2 0.4 0.6 0.8

Join Predicate Selectivity

Figure 4: Total Transmissions vs. Selectivity

7

rithms, we broke down the type of transmissions fotur
categories: (1) the transmission of the origingiipduced
tuple (to the node’s parent if not in a group; otise to
the group), (2) the first transmission of any jairteples,
(3) any further transmissions to forward either ¢higinal
tuple or a joined result up to a parent in a groufo a bas-
estation, and (4) transmissions needed as patheobver-
head for the group formation and maintenance dlyos.
Figure 5 displays this breakdown for the REED atbar
over varying selectivity. In this figure, the omgi tuple
transmissions remain constant at approximately ZIdKs
is because every tuple needs to be transmittezhat bnce
in the REED algorithm: if the node is not in a goothe
tuple is sent to the node’s parent; otherwise #eist to the
group. Once a tuple is sent to a group, no furttarsmis-
sions are needed if the tuple does not join with predi-
cate. For the 20-hop node topology used in thigergent,
the forwarded messages dominate the cost. It isvatsth
noting that the figure shows that the group managgm

—e— Original Tuple
Transmissions

—=— Group Management
Overhead

| —a— Forwarded Messages

Join Results

—¥— Total /
/H —
g

T T
0 002 01 02 03 04 05 06 07 08 09 1

Number of Transmissions (1000s)

¢ ¢ * g A g \ g > g & > 4

\ g
. - -

- 2

STt
T T T T T T T

Selectivity

Figure 5. Breakdown of Transmission Types for Distributed
Join with Varying Selectivity

overhead (at steady state) is negligible comparig any
of the other types of transmissions.

Since Figure 5 shows that the reason why the REED r
duces the number of transmissions is becauseltesdhe
number of forwarded messages that need to be ceet,
possible explanation for this could be that theodthm
causes more loss in the network and messages deget t
dropped before reaching the basestation (so theynado
have to be forwarded). To affirm that this is nog¢ tase,
we measured the number of tuples that reach thestzas
tion at varying selectivities and compared eacloradgm.
These results are shown in Figure 6. As can be, s#kn
algorithms perform similarly; however the naivealthm
has slightly less loss at high selectivities aned BEED
algorithms have slightly less loss at low seletitgi. This
can be explained as follows: group processing efjtin
occasionally requires 1-2 extra hops. This is t&eovhen

9
—e— Naive
j A
e a —= REED (s = .5)
4 _
3'%{ —— —a—REED (s = .1)
N
1
0 = REED+Bloom
12z 14 16 18 2 22 2.4
(p=.5s=.1)
160
@ 140 ad
o
2 120 //)./
g 100 -
g 80 o
a
= 60 3
=
S 40 =
=20 e
0 -"f""‘f(. . .
1 3 5 7 9 11
Average Node Depth

Figure 7: Total Data Transmissions for Varying
Average Sensor Node Depths

a nodex that stores a partition of the predicates tabét th
will join with a particular tuple produced by nogandx is
located at the same depthyasr 1 node deeper. The former
case requires 1 extra hop, the latter 2 extra hafith each
extra hop, there is extra probability that a tugde be lost.
This explains why there is more loss at high jaiedicate

778

|| —— Naive

—8— REED (s = .5)

REED+Bloom (p = .5,
s=.1)
No Loss

Tuples Received Per Epoch

0.5
Join Predicate Selectivity

Figure 6: Received Tuples vs. Selectivity for Disitouted
Join Algorithm

selectivities. However, at low selectivities, thiggative
impact of REED is outweighed by its reduction ire th
number of transmissions and thus network contention
Since fewer messages are being sent in the netwueie

is an increased probability that each message bdll
transmitted successfully.

6.1.2. Average Node Depth

For this set of experiments, we fixed the join jicatk se-
lectivity at 0.5 and 0.1 and varied the topologyit# sen-
sor network (in particular varying average nodetdepnd
observed each how join algorithm performed. Weaedar
node depth by subtracting leaf nodes from the 20pdI-
ogy described earlier. The baseline 20x2 topology &a
average depth of 10.26 (each node’s parent is figelde
the node above it in the network except for thertgpt
node which has the basestation as its parent). ke e
nated the bottom 6 nodes to achieve an averagd aépt
8.76, another 6 nodes to achieve an average dépti2®,
etc. to achieve depths of 5.76, 4.26, and 2.78;thex the
bottom pairs for nodes to achieve average depttsa¥,
1.80, and 1.33. The number of transmissions foh e&the
three join algorithms is given in Figure 7.

4000
—— Actual Results |[—

FromMotes
—=&— Simulated
Results

3000

2000

Total
Transmissions

1000

0

0.4 0.6
Data Selectivity

0 0.2 0.8

Figure 8: Simulated vs. Real World Results

These results show that the average depth neceksary
REED (without using a Bloom filter) to perform betthan
the naive algorithm is 1.8. The reason why REEDopers
worse than the naive algorithm at low depths isfoldo
The less significant reason is the small group &fom and
maintenance overhead incurred by REED. The more sig
nificant reason is that, as explained above, jogtessing
occasionally requires 1-2 extra hops. At large lepthese
extra hops get made up for in the saved forwardsast
missions, but for depths less than 2, this is het ¢ase.
However, if a reasonably selective Bloom filterused,
REED always outperforms the naive algorithm.

6.2. Real World Results

In order to vary attribute domain size we simplydulo

Although we expected that TOSSIM would be an adeura these values by the desired domain size of eachiaé.

simulation for TinyOS code, we verified for oursedvthat
our join algorithm worked on a simple five-node dmep
network. We tracked the number of transmissionpdms-
ing this number with each result tuple (in order get
enough data back to the basestation at small séfied,
25% of the tuples are sent using the naive alguritther
than being broadcast to a group). We ran our REIgD-a
rithm without the Bloom optimization for 500 epocA%e
results of this experiment in simulation and onl raates
are displayed in Figure 8. Simulation and practieeform
similarly; however the non-simulated results halightly
decreased number of transmissions due to a sligigher
amount of loss than was modeled in simulation.

6.3. Bloomjoin vs. Cache Diffusion

Although the Bloomjoin and Cache Diffusion (CD) alg
rithms described above can help optimize the REED-a
rithm, they also can be applied independently wtien
predicate table is too large to fit on even a grofipodes.

We now explore the tradeoff between these algosdthm

studying cases when one outperforms the otherthese
experiments, we allocated 90 bytes space for tteesteuc-
tures needed by each algorithm. For the Bloomjdjgo-a
rithm, this allowed a 720 bit Bloom filter to bestibuted
and for CD, this allowed 9 tuples or ERDs to behealc

We found that the two most important dimensiong tha

distinguish these algorithms are domain size ana ldaal-
ity, and thus we present our results using thesedsions
as independent variables. The query used to rusetbg-
periments is the outlier detection query preseie8ec-
tion 2.1 except that we add light as sensor prodiutza.
In order to vary data locality as an independemtatiée,
we generated data for each node using matlab wkeack

The size of the domain of the whole tuple is simiig
product of the domain sizes of each componentbatti
Due to lack of space, we do not show the graphttier
Bloomjoin and CD algorithms with varying selectjuitin
short, we found that domain size did not affect @Dw-
ever, this could be query dependent), but that Bjom
was greatly affected. If light was allowed to vémgtween
only 64 values and temperature between 32 (reguitira

domain size of 2048), Bloomjoin approached the @aiv

algorithm in terms of number of transmissions. Tikige-

cause the size of the domain was much larger than t

number of bits allocated to the filter (720) so tag¢e of
false positives increased rapidly. But for smatlemains,
Bloomjoin performed extremely well. Thus, Bloomjdm
preferred over CD when joining only one attribuiat CD
is preferred over Bloomjoin when the domain is d¢arthan
one attribute and there is some locality to thesgedata.

7. Integration of REED into Borealis

We have begun to integrate REED into the Bore#leam
processing system [3] to allow query processing ayiit
mization between the two database systemsproky op-
erator is responsible for accepting queries on Ibebfa
REED. Borealis passes the query plan to the prakych
removes the portions of the plan that can be puéhted
REED and returns the remainder to Borealis, asribest
in [2]. The objective of the proxy is to optimiZeet execu-
tion of the Borealis query plan for energy consuomt

In our initial implementation, the proxy alwapsishes
selections into REED. When confronted with a joe
tween sensor data and a static table, the proxye®do
push the join into the network when it computeg the
energy savings of applying the join in-network wollit-

ings for a sensos were produced by sampling a normal weigh the costs of running the REED algorithm (wendt
distribution, N, with variable variance in the range [0,1] consider the costs of sending in the join tableshés is a
and mearu randomly selected from a uniform distribution one-time cost that is amortized over the life o tiuery
over the range [0,1]. We define locality in thesgaxi- anytime the selectivity of the join is less tharegn Ac-
ments to be 1/(variance) &f; -- larger variances lead to cording to Figure 4, for the network we simulatézbwe,

less locality in values. Figure 9 shows how totahsmis-
sions for a 5 node network of average depth=2 ngqifor
2500 epochs varies with data locality of the Blooimjand

CD algorithms.

Bloomjoin is 25000 |
insensitive to data| ,, 20000 —
locality because | § 15000 ¢ Bloomomn
each node has the g 10000 < —=a— Cache Diffusion
same Bloom filter g 5000 —~a

(the decrease in| g 0 :

total transmissions = 0 50 100
at low localities Data Cocality

occurs in this ex-
periment because theFigure 9: Transmissions vs. Locality
same few bits in the

Bloom filter get continually queried and it happensbe
the case that these few bits have a small amoufdlsd
positives). Cache Diffusion sends appropriate ER®s
each node and thus works better when localitydh.hi

779

this selectivity threshold is about .95. In our reat im-
plementation, selectivity is measured adaptivehpugh a
simple estimated-moving window average.

Query
e running . i
g L in Borealis _F”.."s.hEd LEEE
3 i join into network i
=
5 il LA
7 | SSEE SR |
3 Q initiall i —
a ||[=HE R irMaY, iin mmnll
X ‘ injected

Time

Join completely
in-network

Begin moving
join into network

Figure 10: Borealis GUI output for Live Data

Figure 10 shows output from a real 5 mote REED
work integrated with Borealis. It shows what Boreaal-
culates to be the expected lifetime of the netvaantaputed
on-the-fly as a join query is executed (here weecblsta-

tistics once per second about the number of message

transmitted and query selectivity and use commuioicas

a stand-in for total lifetime.). Initially the whelquery is
running within Borealis. When the query is stariddtime
decreases as the query is disseminated througtetherk.
After some time, based on observed selectivity,eBlis
decides to move théoin into the sensornet, which again
incurs some cost as groups are formed. Once éhip $s
complete, expected lifetime improves significantly.

8. Related Work

Epsteinet al. [9] introduced an algorithm for the retrieval
of data from a distributed relational database widmmu-
nication traffic as a cost criteria for which nodgsould
perform joins. Bernsteimet al. [4] introduced a semi-join
algorithm which reduces the communication overhefd
performing distributed joins by taking the intersec of
the schemas of the tables to be joined, projet¢tiagesult-
ing schema on one of the tables, sending this esmedr-
sion of the table to the node containing the otable and
joining at this node, and then sending this resatk to the
node containing the original table and joining agaihis
semi-join technique is an interesting possible rojzation,
though our Bloom-filter approach subsumes and yiloeit-
performs it, for the same reasons as described [A8.

Determining how to horizontally partition a joinbta
amongst a set of servers is a classic problem tabdae
systems. The Gamma[8] and R* [15] systems bottliesti
this problem in detail, analyzing a range of alééive tech-
niques for allocating sets of tuples to serversugjin both
sought to minimize total query execution time ratti@n
communication or energy consumption.

TinyDB [19,20,21] and Cougar [31] both present rgea
of distributed query processing techniques for ¢basor
networks. However, these papers do not descrikistibe
uted join algorithm for sensor networks.

There are a large number non-relational query syste
that have been developed for sensor networks, nedny
which include some notion of correlating readingsnf
different sensors. Such correlation operationgmide
joins, though their semantics are typically lesd defined,
either because they do not impose a particular chatdel
[12], or because they are probabilistic in natifjeahd thus
fundamentally imprecise.

The work that comes closest to REED is the worknfro
Bonfils and Bonnet [6], which proposes a schemgdir-
operator placement within sensor networks. Theirkw
however, focuses on joins of pairs of sensors,erathan
joins between external tables and all sensors.y @benot
address the join-partitioning problem that we foons

9. Conclusion

REED extends the TinyDB query processor with faedi
for efficiently executing multi-predicate filtratio queries
inside a sensor network. Our algorithms are capalbl
running in limited amounts of RAM, can distributhket
storage burden over groups of nodes, and are iléoa
message loss and node failures. REED is thush$miifar
a wide range of event-detection applications treatitional
sensor network database systems cannot be usetple-i
ment. Moving forward, because REED incorporategr g
eral purpose join processor, we see it as the pieee of

780

an integrated query processing framework, in wisiehsor
networks are tightly integrated into traditionaltalzases,
and users are presented with a seamless querfaoeer

Acknowledgements and References

This work was supported by the National Sciencenéau
tion under NSF Grant number [1S-0325525.

[1] D. Abadi, et al. REED: Robust, Efficient Filleg and Event Detection
in Sensor Networkdn technical reportMIT-LCS-TR-939 2004.

[2] Daniel Abadi, et al. An Integration Framewordr fSensor Networks
and Data Stream Management System&roc. of VLDB2004.

[3] Daniel Abadi, et al. The Design of the BoreadBteam Processing
Engineln Proc. of CIDR2005.

[4] Philip A. Bernstein, Dah-Ming W. Chiu, Using 18&Joins to Solve
Relational Querieslournal of the ACM28(1):25-40, 1981.

[5] Burton Bloom. Space/time trade-offs in hash ingdwith allowable
errors.Communications of ACM 3(7):422-426, 1970.

[6] Boris Jan Bonfils and Philippe Bonnet. Adaptigad Decentralized
Operator Placement for In-Network Query ProcesdimgPSN 2003.

[7] M. Chu, et al. Scalable information-driven senguerying and routing
for ad hoc heterogeneous sensor netwdrits Journal of High Perform-
ance Computing2002.

[8] D. J. Dewitt, et al. The Gamma Database Maclingect. InIEEE
TKDE, 2(1):44-62, 1990.

[9] R. Epstein, M.R. Stonebraker, and E. Wong, riisted Query Proc-
essing in a Relational Database SystenRriic. of ACM SIGMOD1978.
[10] Mick Flanigan, Personal Communication. Aug@§t03.

[11] Hausman, M. Temperature Control Gets Sr@&emical Processing
Magazine Aug., 2002.

[12] C. Intanagonwiwat, et al. Directed diffusiof:scalable and robust
communication paradigm for sensor networks?tac. MobiCOM 2000.
[13] W. Iverson. Heading off Breakdownsutomation WorldOct. 2003.
[14] M. Lepedus. Intel Harnesses Wireless SensorsGhip-Equipment
Care.TechWebOctober, 2003. http://www.techweb.com/wire/26882
[15] Philip Levis et al. The Emergence of NetworkiAbstractions and
Techniques in TinyOS. IRroceedings of NSDR00A4.

[16] P. Levis, N. Lee, M. Welsh, and D. Culler. T8IBI: Accurate and
Scalable Simulation of Entire TinyOS Applicatioirs SenSys2003.

[17] P. Levis et al. Trickle: A Self-Regulating Algthm for Code
Propagation and Maintenance in Wireless Sensor déksyNSDI, 2004.
[18] L. F.Mackert and G. M. Lohman. R* Optimizer hdation and Per-
formance Evaluation for Distributed QueriesPlroc. of VLDB 1986.

[19] S. Madden, M. Franklin, J. Hellerstein, and Méng. The design of
an acquisitional query processor for sensor netsvimkSIGMOD 2003.
[20] S. Madden, M. J. Franklin, J. M. Hellersteamd W. Hong. TAG: A
Tiny AGgregation Service for Ad-Hoc Sensor NetworlksOSDI, 2002.
[21] Samuel Madden et al. Supporting aggregate iegiasver ad-hoc
wireless sensor networks. WMCSA 2002.

[22] D. Maier, Jeffrey D. Ullman and Moshe Y. Var®n the founda-
tions of the universal relation model. ACM TODS 9(2):283-308, 1984.
[23] Joseph Polastre. Design and implementatiowigfless sensor net-
works for habitat monitoringviaster’s thesis, UC Berkelg2003.

[24] G. Pottie and W. Kaiser. Wireless integratedwork sensorsCom-
munications of the ACMI3(5):51 — 58, May 2000.

[25]Rockwell Automation. Pharmaceutical ManufaatgriOptimization.
2002http://domino.automation.rockwell.com/applioas/gs/region/gtswe
bst.nsffiles/pmo.pdf/$file/pmo.pdf

[26] Stanislav Rost, Hari Balakrishnan. Lobcasteli&le Dissemination
in Wireless Sensor Networks. In submission, 2005.

[27] P. Selinger et al. Access Path Selection iRedational Database
Management System. IRroeedings of ACM SIGMOD, 1979.

[28] Victor Shnayder, et al. Simulating the Pow&n€umption of Large-
Scale Sensor Network Applicatior&oc. ACM SenSy2004.

[29] M. Stonebraker and G. Kemnitz. The POSTGRE&tNGeneration
Database Management SystémComm. of the ACM34(10), 1991.

[30] A. Woo, T. Tong, and D. Culler. Taming the enlging challenges
of reliable multihop routing in sensor networksPlroc. of SenSy2003.
[31] Yong Yao and Johannes Gehrke. Query processirggnsor net-
works. In Proceedings @&IDR, 2003.

