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Abstract Sal
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The largest databases in use today are so large g8 =2 SeEERE=TS
that answering a query exactly can take minutes, Joe, $31K
hours, or even days. One way to address this Sam $19K
problem is to make use of approximation algo- John, $13K
rithms. Previous work on online aggregation has Susan, $36K U6 of total detasp
considered how to give online estimates with ever- Fred, $45K
increasing accuracy for aggregate functions over E Tim s23K
relational join and selection queries. However, Janet, $7K
no existing work is applicable to online estima- tana, $18K ——
; ; . Kate, $42K ™ Area added by additional samples
tion oversubset-base8QL queries—those queries Tom $31K 4 P
with a correlated subquery linked to an outer Frank, $25K
query via aNOT EXISTS NOT IN, EXISTS, Mary, $28K

or IN clause (other queries such BXCEPTand

INTERSECT can also be seen as subset-based

queries). In this paper we develop algorithms for

online estimation over such queries, and consider Figure 1: Evaluating a ripple join.
the difficult problem of providing probabilistic ac-

curacy guarantees at all times during query execu-  data warehouses are basedrandomization Randomiza-

tion. tion has the overwhelming benefit of facilitating query pro-
cessing algorithms that do not perform monolithic, days-
1 Introduction long calculations, but rather give immediate feedback. Im-

mediately after a query is issued, the system can come back
With an initial guess of the form “wit5% probability, the

fihal answer to the query will be withif12.4 of 127.4.”

time goes on and the system is able to process more
a, the query error shrinks, and the user can stop the
uery evaluation as soon as he or she is happy with the
ccuracy. Pioneering work in the design of such a system

! ; . ._“has been undertaken by Hellerstein, Haas and their various
still requires hours or even days to answer certain queries,.iaborators [2, 10, 4, 5], resulting in a series of papers on

Qne promi_sing way to adc_iress this problem s to " online aggregationusing random sampling techniques.
design analytic query processing systems so that the largest Despite the breadth and depth of the seminal research in

* Material in this paper is based upon work supported by the Nationalthis area, much work remains if randomization-based data
Science Foundation under Grant No. 0347408. warehousing systems are to become practical and widely-
Permission to copy without fee all or part of this material is granted pro- used. One of the most obvious areas where the state-of-the-

vided that the copies are not made or distributed for direct commercialgrt is lacking is in an understanding of how to design and

advantage, the VLDB copyright notice and the title of the publication and: ; . :
its date appear, and notice is given that copying is by permission of theImplement online, sampllng based algorlthms that can be

Very Large Data Base Endowment. To copy otherwise, or to republishUS€d with commonsubset-base8QL queries. Bysubset-

Despite the best efforts of software and hardware designer,
the largest data warehouses are now so massive that it
impossible to guarantee interactive speeds when answeri
ad-hoc, analytic style queries. A close examination of thedat
latest TPC-H benchmark results [8] makes it clear that i
is possible to spend millions of dollars on hardware an
software, only to construct a multi-terabyte warehouse th

requires a fee and/or special permission from the Endowment. based we refer to those queries having a correlated inner
Proceedings of the 31st VLDB Conference, query that is related to the outer query through a check for
Trondheim, Norway, 2005 the existence (or lack thereof) of a tuple with a desired
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property—that is, we are interested only in a subset of the
tuples from the outer quenEXISTS, NOT EXISTS IN,
andNOT IN queries are examples of subset-based queries.
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We focus specifically on the case where both the outer Joe, $31K
guery and the inner query reference a massive table that sam $19K
is too large to fit in memory, and where evaluating the John, $13K
query exactly is a time-consuming computation. The de- Susan, $36K Original dataspace ™
sign of online approximation algorithms for such queries is Fred, $45K 4
a daunting task; this task is at the heart of this paper. B Tim s23K
Janet, $7K
1.1 Why Are Subset-Based Queries Hard? tana, $18K ——
Kate, $42K ™~ Area added by additional samples _|
Certain operations like join and selection lend themselves Tom $31K
to sampling and randomization because it is obvious how Frank, $25K
to “scale-up” the answer to a query that is obtained over a Mary, $28K

sample, in order to obtain an unbiased estimate for the final
answer to the quety For example, imagine that we wish
to estimate the answer to a query of the form: Figure 2: Adding a new tuple that increases the total.
SELECT SUM (Emp.Salary)

FROM Emp, Sal

WHERE pred (Emp.Name, Sal.Name);

from Sal . In this case, there is no corresponding, straight-
forward way to scale-up the current answer to the query
like there is in the case of a join. As we see more and more
) ) tuples fromEmpandSal , the current value for the query
_If Empand Sal are stored in a randomized order on gngyer careither shrink or grow, depending on the char-
disk, and the query engine has loaded and joined one-haf teristics of the data, even if the attribute values that are
of the tuples fromEmpand one-third of the tuples from , e aggregated over are strictly positive. This means that
Sal and joined all of those tuples to produce a “current by simply scaling up the current answer to compensate for

query answey, then(1/2 x 1/3)~'y = 6u is an unbi-

unseen tuples, in general we could be going in either the

ased estimate for the eventual result of the query. The i”fight or wrong direction. For example:

tuition behind this is pictured in Figure 1. Since we have

explored one-sixth of the join’s data space, our eventual to- e Sometimes, processing the whole database will cause

tal should be approximately six times as large as the current
total. Thus, at all times the current answer to a query over
a sample can be “scaled up” to produce a high-quality esti-
mate for the eventual answer to the query. This is the basic
idea behind the well-knowripple join online aggregation
algorithm of Haas and Hellerstein [2].

Unfortunately, most subset-based SQL queries do not
have such structure. Imagine that instead of the previous
join, we are asked to answer the following, subset-based

query:

SELECT SUM (Emp.salary)
FROM Emp

WHERE NOT EXISTS ( °

SELECT *
FROM Sal
WHERE Emp.Name = Sal.Name);

If the relationEmplists all of a company’s employees
and the relatiorsal lists all of the company’s sales (with
Sal.Name listing the employee responsible for the sale),
then this query asks: “What is the total salary of all em-
ployees who have not generated any sales?”

Suppose that the query engine has loaded and processed
one-half of the tuples frorBmpand one-third of the tuples

1“Unbiased” means that if the estimator were repeated an infinite num-

the current answer tehrink since with each addi-
tional tuple we have a greater and greater chance to
find tuples fromSal that will match a given tuple
Emp Reconsider Figure 1. At the current point during
the execution of the query, the answer over all tuples
read from disk isp13K + $45K + $23K = $81K.

If we were to read one more tuple froBmpand one
more tuple fromBal and incorporate these tuples into
the query evaluation, then the current answer shrinks
to $75K. The answedecreaseslue to the fact that
we found a match fodohn in Sal , which caused
John 's salary to beemovedrom the total.

However, under different conditions, the current result
cangrow. If we have already seen an employee name
from Sal , then additionaBal tuples with that name
will not remove additionaEmptuples from consider-
ation. Such a situation is depicted in Figure 2. At the
current point the answer 31K + $13K + $45K +
$23K = $112K. Incorporating one more tuple from
each relation inflates the current answer$tiloK .
The answer actuallincreasesecause we have added
the salary associated witlanet into the total, and
seeing anotheBamtuple inSal does not remove any
Emptuples from the total.

This erratic behavior makes it impossible to come up

ber of times, the average would be equal to the correct answer to the querwith a one-size-fits-all rule for scaling up or scaling down
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the answer to the query. to extend the algorithms in this paper to additional subset-
based queries, and Section 8 describes the related work.
1.2 Our Contributions The paper is concluded in Section 9.

In this paper, we carefully consider the problem of produc-2 A Simple Estimator for Subset Queries
ing accurate, online estimatesgobset-basedueries. By

subset-basedve mean those queries of the form: It is actually quite easy to define a very simple and easy-
to-implement estimator for the type of subset query con-
SELECT SUMf(e) sidered in this paper. However, as we will discuss in this
FROM Emp A% Section, this estimator is likely to have unacceptable per-
WHERE NOT EXISTS ( formance under common circumstances.
SELECT *
FROM Sal as s 2.1 AnIndexed Estimator

WHEREpred(e, s)); It is most natural to begin the quest for any sampling-based

estimator by asking: “Can the problem be reduced to esti-
mating the total value of a population by simply sampling
without replacement from that population?” While it may
not always be possible to develop such an estimatorigf it
possible, this represents the easiest solution.

In the case of the subset-based SQL queries considered
in this paper, such a simple estimator does actually exist,
given the following two reasonable assumptions:

Note that the functiory can encode any mathematical
function over tuples fronEmp in particular it can encode
a relational selection predicatgred is any boolean pred-
icate over tuple pairs fronEmpand Sal . This type of
query is general enough that it can encode BXYSTS,
NOT EXISTS IN, or NOT IN query over two relations, as
well as the set-basdti TERSECTandEXCEPTSQL op-
erations. Ratio-based aggregate queries suck\vdscan
be answered by making use of our algorithms along with
Bonferroni’s inequality (i.e., the “union bound”).

The specific contributions of our research are as follows:

1. First, we assume that the predicated(e, s) contains
an equality condition on one or more of the attributes
of the two relations. The other predicate conditions, if

. , . any, should be in conjunction with the equality condi-
1. In this work we develop online, sampling-based al- tion (for examplepred(e, s) might be a conjunction

gorithms for answering such queries, which rely on of several conditions, includingName= s.Name.
reading the relationEmpandSal in a randomized
input order. The algorithms arenline in the sense 2. Second, we assume that an index is available on the
that at all times, they produce an estimate that can be  attribute from theSal relation on which the equal-
updated continuously and presented to the user. ity check is performed. In our example, a B+-Tree or
hash table indexin§al.Name would suffice.

2. The paper includes a statistical analysis of the proper-
ties of our estimators, as well as a performance study |f these assumptions do hold, then Algorithm 1 (here-
documenting the feasibility of our approach. We showafter referred to as the “Indexed Algorithm”) gives a nat-
that the convergence rate of our approach can be fastejral, online estimate for the query of Section 1.2 (a dis-
than that achieved through the obvious, index-base@ussion of the implications if they do not hold is given in
alternative. Section 6). In the Indexed Algorithm and in the remainder

of the paper, we useg to denote the size of a s€t and we

3. Our algorithms greatly extend the class of queries thagiefine a functiorone(e, S) that evaluates ta if and only

can be efficiently processed using online, samplingf there existss € S wherepred(e, s) is true (and0 other-

based methods. wise). Also, we assume thEmpis stored in a randomized
order on disk.
1.3 Paper Organization Algorithm 1: Indexed Subset Query Estimation

In Section 2, we describe an index-based sampling alg
rithm for online, approximate answering of subset-based
SQL queries. The problem with this algorithm is that it may
be extremely slow to converge to a good estimate due to th
large number of random disk I/Os required. Section 3 der
scribes an algorithm that is much more efficient in terms of
the 1/0O required, but that may provide an extremely biased
estimate for the query result. Sections 4 and 5 discuss how
a

1. Lettot =0

e2' Fori = 0 t0 ngmpdo:

3. Read théth tuplee; from Emp

4. Perform an indexed search throughl to eval-
uateone(e;, Sal )

5. tot = tot + (1 — one(e;, Sal )) x f(e;)

6. Output = (nemp/?) X tot as the current

these two flawed estimators may be combined to provide .
estimate

single, high quality estimator that can adapt to the under
lying characteristics of the data. Section 6 discusses ho
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Not only is the online estimatqgi unbiased, but at all to the ripple join [2]? Thus, the estimate for the final query
times we can easily compute an unbiased estirét@) answer will be nothing but a “scaled-up” current answer.

for the variance of: [13]: This section formally describes and mathematically evalu-
] ates such an algorithm. Of course, anecdotal evidence was
52(j1) = ”Empf b g2 given in the Introduction that such an algorithm is likely to
ngmg =~ M have significant associated problems for subset-based SQL
where: gueries. Though it will prove to be unsuitable by itself, the

algorithm will still be an important component of the more
complete solution we describe in Section 4.

3

1 .
8;22 = (’L _ 1) Z(’I’LEmrj(ej)(l - one(ej, Sal )) - /’L)Q
j=1 3.1 The Concurrent Sampling Algorithm

In this expressions?, is the sample variance of the tuples Algorithm 2 (subsequently referred to as the “Concurrent
seen thus far, and it can be calculated incrementally as nefy/gorithm?) formally describes the process illustrated in
tuples are encountered. If we make the assumption;that Figure 1 and Figure 2. In the Concurrent Algorithm, it is
is normally distributed (this assumption is reasonable duéssumed thaEmpandSal are clustered in a statistically
to the central limit theorem [12]), then it is easy to use thisrandom order on disk. Also, it is assumed that each loop
variance estimate to provide confidence boundg asing  iteration (or “sampling step” [2]) loademp blocks from
standard techniques [13]. Empandbsy blocks fromSaI , Wherebgmp and by are
Note that this simple estimator is very closely related toParameters to_the algorithm. In the Concurrent Algorithm
the estimators developed by Hellerstein, Haas, and Wan(nd the remainder of the papemg refers to the subset
for estimates over relational selection predicates [4], th@f Empthat has been sampled thus far, @8l ' is the
only differences being that (1) we make use of sampling@nalogous subset f&@al .
without replacement (which is generally more accurate Algorithm 2: Concurrent Sampling
than sampling with replacement), and (2) we make use of
an index on th&al relation in order to evaluate the predi-

cateone(e;, Sal ). 1. Letactive = Empg =Sal ' = {}; tot =0; cnt =0
2. WhileEmg # EmpandSal ’ # Sal :

2.2 So, What's the Problem? 3. Add bgmp blocks fromEmpto Emp
Though very simple and attractive at first glance, the In{ 4. Addbsy blocks fromSal to Sal /
dexed Algorithm can be prohibitively slow to converge due 5. For each newly added tupiérom Emg do:
to the large number of random disk I/Os that may be re 6. cnt = cnt + 1/
quired, specifically because of the extensive reliance on in- 7.1f ~3s € Sal " wherepred(e, s) then:
dex lookups to perform the estimation. 8. tot = tot + f(e)

If the Sal relation is very large, every single execution 9. active = active U {e} .
of line (4) of the Indexed Algorithm probably requires at 10. For each newly added tupiérom Sal * do:
least two random disk 1/0Os: one random 1/O to perform 11. For each tuple from active do:
a lookup in the index, and a second random /O to access 12. If pred(e, s) then:
the potential matches froi8al (assuming that the index 13. active = active — {e}
on Sal is a secondary index). In reality, many more ran- 14. tot = tot — f(e) _
dom I/Os would be required in the case where potentia] 19+ OUtPUlnEmp X tot)/ent as the current estimate

matches fronSal are scattered all over the disk, and the

index lookup for each; returns many tuples froigal that . . ..
must all be retrieved. In a manner very similar to a ripple join, the Concurrent

This is problematic because, if every iteration of the”lg0rithm loads a number of sampled records from each

loop requires at least two random disk I/Os at around 1¢€lation into memory, and then processes them in such a
milliseconds each, as is usually the case, we can only exXVay that the value ofot is always equivalent to the output
amine at most 3000 tuples froEmpper minute per disk. of the original query, had it been run over the tuples that
As a result, the Indexed Algorithm is only suitable for use'@d been sampled thus far froBmpand Sal . Assum-

with very well-behaved queries and databases. ing that the setictive of “active” tl_JpIes fromEmpaIways
remains small enough to store in main memory and that

. : the predicatered(e, s) contains an equality check on the
3 A Concurrent, Sampling-Based Estimator attributeName then it would make sense to indgal ’ us-
Since the obvious, indexed solution is likely to be unac-ing an in-memory hash table or self-balancing binary tree
ceptably slow, we now return to the alternative describedhat organizes the tuples currentlySal ' over theirName

in the Introduction: what if we assume that both relationsvalues. This would allow steps (5)-(9) of the Concurrent
are clustered randomly on disk, and just scan them concuAlgorithm to be efficiently executed. Likewise, assuming
rently, evaluating the query as we go, in a manner similathat Emp remains small enough to fit in memory, it would
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also make sense to ind&mg in the same way to facilitate of total sizen tuples having onlyk tuples with a certain

an efficient implementation of steps (10)-(14). property that we are interested in. Then using the hyper-
geometric distribution, we have:

3.2 So How Accurate Is It?

This Section considers the problem of formally determin- _(n—k n
T .  of for ety = (") ()
g exactly how (in)accurate the estimator implemented by m m

the Concurrent Algorithm is expected to be.

In the remainder of the paper, we let denote the frac- Functiony can be computed essentially in constant time
tion (nemg — i)/ (nemp — i). «; is the probability that an  if we express it in terms of the Gamma function, for which
arbitrary tuplee € Empis also inEmpg, given the knowl-  series-based algorithms are readily available. Given this,
edge that tuples that are nat have already been selected we have:
for Emp. Note that ifi is 0, then this is merely the prob-
ability that an arbitrary tuple is in Emg. We also define
a series of Bernoulli (zero/one) random variables, where E[N] = Z f(e)e(nsa ,nsa +, ent(e, Sal ))

X, governs whether or not thi¢h tuple fromEmpis found c€Emp

in Emg (note that the probability thaX; is one is simply

ap). Given this notation, the following random variable is wherecnt (e, Sal ) counts the number of tuples ine Sal
exactly equwalen_t to the estimate given in line (15) of the¢y, \which e pred(e, ) evaluates tdrue.

Concurrent Algorithm:

1 3.3 The Really Bad News
N=— Y Xf(e:)(1— one(e;, Sal "))

Qo Note that thecorrectanswer to the query is:

e; €Emp
Recall from Section 2.1 thate(e, S) evaluates td if and 1— |
only if there existss € S wherepred(e, s) is true (and0 Z F(e)(1 = one(e, Sal )

. €Em
otherwise). eeEmp

When trying to answer the question *How accurate isThoygh at first glance this looks rather similar to the for-
N7?" the first place to start is to determine if there is anymy|a for E[V], it turns out that 1 — one(e, nsa )) is equiv-
biasin the estimate provided by (that is, on expectation, gjent to(nsal ; nsal , cnt(e, Sal )) only if e will eventu-
does a trial overV resultin the correct answer to the query? 51y survive theNOT EXISTSclause of the query, or if we
See Johnson et al. [6] Chapter 1 for a nice introduction tgaye seen enough tuples fr@al that we are guaranteed
moments and expectation). Taking the expectation of bothyt it isimpossibleto miss any tuples € Sal for which
sides of the equation fa¥, we have: pred(e, s) istrue. As aresult, the estimator of the Concur-

rent Algorithm is typically not correct on expectation (that

1 , is, NV is biased. Furthermore, the bias can be arbitrarily
E[N] = E[OTO > Xif(e:)(1 - one(e;, Sal )] large. For example, if each tuptefrom Emphas exactly
ei €EMp ones € Sal for whichpred(e, s) is true, then the prob-

ability that we will not finds may be almost one. In this
case, the bias would be equivalent to the sunfi(@f) over
all of the tuples inEmg As a result, we must search for a
better estimator.

SinceaiU is a constant and the sampling Bmpand Sal
are independent, we have:

BNl = — 3 E[X.Jf(e) El(1 — one(e:, Sal /)]
@0 ¢ /'cEmp 4 A Combined Estimator
1
= — > aof(e)E[(1 - one(e, Sal '))] Though the Concurrent Algorithm may produce an esti-
U ccEmp mate with a large bias, thearianceof this estimate should
_ Z F(e)E[(1 — one(e, Sal "))] plecrease quickly with time, since the estlma.te can quickly
cCEmp incorporate a large number of tuples by using a fast, se-

guential scan of the input relations. As long as the bias can
Note that(1 — one(e,Sal ’)) is a zero/one random vari- be corrected for, the estimator may be salvageable. Thus,
able that evaluates to if and only if a tuples such that in this Section we consider the problem of correcting Algo-
pred(e, s) is true was found irBal . The expected value rithm 2’s bias. The basic strategy is to combine the estima-
of any zero/one random variable is simply the probabilitytor computed by the Concurrent Algorithm with an estima-
that a trial over the variable results in a one. két, m, k) tor that is very similar to the one computed by the Indexed
denote the probability that we will fail to select any interest- Algorithm, in order to develop a combined estimator that is
ing tuples, if we selecitn tuples at random from a relation superior to either individual estimator.
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4.1 The Indexed Solution Revisited perform this task. Most of the work will be done by the
fast, sequential sampling performed by the Concurrent Al-
gorithm, with just enough information added using index-
based samples that we can accurately unbias the Concur-
E[U] = Z f(e)(1 — onele, Sal )— rent Algorithm’s estimate. The resulting algorithm is Algo-
rithm 3 (hereafter referred to as the Combined Algorithm).

Imagine that we developed an estimatbwhere:

ecEmp
v(nsal , nsa 7, cnt(e,Sal ))) Algorithm 3: A Combined Algorithm
Then we know from the linearity of expectation that:
1. LetE ={}
BN +U] = z f(e)(1 —one(e, Sal )) Procedure PreSample (int numSam,)
e€Emp 2. Fori = 1 tonumSam do:
This implies thatV 4+ U would be an unbiased estimate for 3. Randomly sample from Emp _
the result of the query. In other words, we could simply 4. Perform indexed lookup of matches foin Sal
addU to the estimate produced at every execution of ling 5.E = EU{(e, cnt(e, Sal ))}
(15) in the Concurrent Algorithm in order to correct for the . o .
algorithm’s bias. Function UnBias (int samSize)

A natural way to provide an estimator liké would be 6.tot =0
to sample a number of tuples froBmp For each tuple | 7+ Foreacke, cnt) € E do:
e that is sampled, we compute and sum the exact value of 8- If (ent > 0) then: _
f(e)(1 —one(e,Sal ) - p(nsal , nsal +, cnt(e, Sal ))), and 9. tot = tot — f(e)p(nsa , samSize, cnt)
then scale up the result accordingly. 10. Return(nemp/|E]) x tot

The difficulty of providing such an estimator is that . ) .
it would require that we have good information about| I’rocedure CombinedAlg (int preSamsSize)
how many tuples irSal correspond with each tuple sam- 11. Call PreSample (preSamSize)
pled from Emp (that is, we need to be able to compute 12. Invoke a modified version of the Concurrent

cnt(e, Sal ) for an arbitrary tuple fronEmp. One direc- Algorithm, with line (15) changed to output
tion to solve this problem would be estimating the quantity (nemp X tot) /ent + UnBias(nsa ) as the
ent(e, Sal ) itself. However, simply obtaining aestimate current estimate for the query answer

for eachent(e, Sal ) is not good enough, because it must

be used as an argument for Plugging a value intg that _
is an estimate is problematic for two reasons: In the remainder of the paper, we assume that the sam-

pling performed in lines (3) and (12) of the Combined Al-
1. ¢ is a complicated nonlinear function. If the input pa- gorithm are independent. To enforce this, our implemen-
rameters are themselves estimates, then the output &tion of the Combined Algorithm performs the sampling
¢ becomes an estimate. The complexity of the func-required by line (3) by seeking to a random location in
tion would make the quality of the output extremely Empto sample each record; since each record obtained by
difficult to reason about statistically. PreSample likely requires two or more additional random
. ] ) I/Os already to perform the index lookup of line (4), this ex-
2. ptakes only discrete values as input. Since most natugra random 1/0 is not too costly. A fast sequential scan of
ral estimators are not integer-valued, they cannot eashe Emprelation to perform the sampling required by line

ily be used in conjunction witkp. If we apply a nat-  (12) will then produce a sample that is independent of the
ural solution like truncation or rounding to the input sample drawn by line (3).

parameters, this would make the quality of the output
that much more difficult to reason about. 4.2 Analysis and Statistical Bounds

Given that the input te should be an exact value, the Simply knowing that the Combined Algorithm provides an
natural way to computent(e, Sal ) would be to rely on  unbiased estimate is not enough: it is crucial to associate
an index overSal , just like the Indexed Algorithm. Of confidence boundwith the estimates produced by the al-
course, the problem discussed in Section 2 was that thigorithm, so that a user can be kept informed of the accuracy
tactic will be slow if we need to computsit(e, Sal ) for  of the algorithm’s estimate. Aonfidence bound an as-
everye contained in a large sample frdBmp sertion of the form “With probability, the exact answer to

However, making use of such index-based sampling ighe query is within the rangew to high”. The probability
much less of a problem in this context because this indexp is typically supplied by the user, and thenw andhigh
based sampling will only be used asapplemento the are computed by the system.
information gathered by the Concurrent Algorithm. As  The first step in developing a confidence bound for the
a result, we may not need many index-based samples testimate [V + U) is to derive thevarianceof this estimator
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(denotedr?(N + U)). Since, as described above, we forceUsing the independence of the sampling froBmp
N andU to be independent, we know that(N + U) = and Sal and the fact thatE[(1 — one(e;, Sal ') (1 —
0?(N) + o2(U). SinceU is an estimation of a population one(e;, Sal ’)] is p(nsal , nsa +, cnt(e; Ue;, Sal )), the re-
sum from a random subset of the population, a consisterdult follows after algebraic manipulation. |j

: 5 : X i . _
estimator foro#(U) can be obtained using standard formu Note that this Theorem gives us a way to compute the

las, similar to those given in Section 2.1. Specifically:

A (U) = (FE) s}
NEmPE

wheres?7 is the sample variance of the values used to com

puteU. If U is the current estimate of tiénBias proce-
dure of the Combined Algorithm, the% is as follows:

s2 = !
5 =

Z (nempf(e)(1 — one(e, Sal )—

np —1 (e,i)EE

SO(”SaI ; Nsal Mi)) - U>2

However, a derivation of?(N) is not so straightforward.

We know from the definition of variance that:

0?(N) = E[N?] — E*[N]

exact variance ofV, but it requires that we know the val-
ues of the varioup terms as well as the value ¢fe) for
every tuple in theemprelation. Clearly, this is not practi-
cal. Thus, as is standard practice in statistics, we will esti-
mate E[N] and E[N?] from the segment of the population
for which we have exact information; specifically, we can
compute the required sums only over those tuples for which
we obtained exact information during te-eSample pro-
cedure of the Combined Algorithm, and then scale up the
result accordingly [7, 13] (though care must be taken so that
the estimate foZ?[ V] obtained fromE[N] is not biased).
Since we now have a high-quality estimator §6( N +
U), itis then an easy matter to derive confidence bounds as-
suming either a normal distribution for the error [12] (jus-
tified by the central limit theorem), or a more conservative
distribution-free bound such as the one provided by Cheby-
shev’s inequality [1]. Such techniques are fairly standard in

Recall thatE[N] was derived in Section 3.2, and so it is giatistics [12, 13].
an easy matter to square this value and plug the result into ’

the above formula. However, deriving a formula oV 2]
is another matter. The formula f&#[N?] (i.e., thesecond
moment ofN) is the paper’s central theoretical result.

Theorem 4.1 Second moment oN. Let(e; U e;) denote
any tuple matching eithet; or e;. That is,(e; U e;) de-
notes any tuple for which eitherpred(t, e;) or pred(t, e;)

evaluates to true. Then:

E[N? =

2a 1
D g1 (€)p(nsar nsai, ent(e, Sal )+
ecEmp 1

> fle)f(es)p(nsal ,nsa s, ent(e; Ue;, Sal )}

{ei,e;}CEmp

&)

Proof We know from Section 3.2 that:
N=L > Xif(e;)(1 — one(e;, Sal )
@0 e, €EEmp

Thus:

1
N? = 2 Z Z XiX;f(e:)f(ej)x

0 e; EEmpe; €Emp

(1 — one(e;, Sal ))(1 — one(e;,Sal ')

And so:

E[N? = (j%{ Z E[X;f?(e;)(1 — one(e;, Sal )]+
U e,€Emp

Z 2E[X; X f(e;) f(e;)(1 — one(e;, Sal ') x
{ei,e; }CEmp
(1 — one(ej, Sal )]}
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5 Increasing the Accuracy

This Section considers the question of how to fine-tune the
Combined Algorithm to maximize its performance.

5.1 Are Two Always Better Than One?

It is useful to begin with an intuitive discussion of why the
estimate of the Combined Algorithm may be worse than
the estimate of the Indexed Algorithm, and why it may be
better, even if both algorithms are given the same amount
of time for query processing. This will provide the back-
ground needed to motivate the development of the remain-
der of the Section.

It is fairly obvious why the estimatéN + U) is usu-
ally better thanV alone: N may have severe bias, which
is corrected by the addition df. However, it is far less
obvious why index-based sampling performed by the In-
dexed Algorithm can be helped through the additiorvof
Why not just rely on the Indexed Algorithm, and forgo the
complexity of the Combined Algorithm? Two observations
supporting this position are:

1. The indexed sampling performed by the Combined
Algorithm is potentially more expensive than the
indexed sampling performed by the Indexed Algo-
rithm, since the Combined Algorithm needs access
to cnt(e,Sal ) for every tuplee obtained during the
PreSample routine, whereas the Indexed Algorithm
only needs access tme(e, Sal ). If the query predi-
catepred(e, s) has low filtering power, computing the
latter may be far less expensive than the former. This
means that the Combined Algorithm must make do
with a smaller indexed sample than the Indexed Algo-
rithm.



2. Both algorithms produce unbiased estimators, so the .
error of both algorithms is related only to the variance | Function UnBias (int samSize)
of the algorithms’ estimators. As discussed above, the | 6.tot =0

Combined Algorithm uses the estimatéywhich typ- 7. For(e,cnt) € E do:

ically makes use of a smaller index-based sample than 8. If (ent > 0) then:

the sample used by the Indexed Algorithm. This, 9.tot = tot — f(e)wp(nsa , samSize, cnt)
should have higher variance than the Indexed Algo- 10. Else:

rithm’s estimator. Furthermore, variances are additive. 11.tot = tot + (1 — w)

The Combined Algorithm must add the estimafér 12. Return(ngmp/ng) x tot

to U, which should increase the variance of the Com-
bined Algorithm’s estimator even more.

_ _ Then, every time line (15) of the Concurrent Algorithm is
These factors may indeed render the Indexed Algorithmpyoked by the Combined Algorithm, we output:
more accurate than the Combined Algorithm in certain sit-

uations. However, the Combined Algorithm may still be
preferable because it is so tremendously costly to perform ) . ]
every index-based sample, and the Combined Algorithn®S the current estimate of the Combined Algorithm.

does not rely exclusively on indexed sampling for its accu- What we have done via this modification is to allow
racy. In general, the variance of will shrink much more ~ for a relative weighting of the components of the estimator
quickly than the variance df , becauseV does notuse an (IV + U). If the variance ofV is relatively large, then we
index. Thus, very quickly all of the variance (and hencec@n usew = 0 to give us an estimate that is totally equiv-
all of the error) of the Combined Algorithm’s estimator is alent to what we would have obtained using the Indexed
related toU. Critically, the estimato¥’ differs from the In-  Algorithm. Usingw = 0 eliminatesN from the estimate
dexed Algorithm’s estimator in that its variance may shrinkat the same time that we eliminate the bias correction pro-
over timeregardlessof whether or not additional index- Vided by UnBias. On the other hand, if the variance of

based samples are taken. Note that the fundtiemBias 1V iS relatively small, then we can use a value dothat is
returns the following value as the estimatér larger than 1; this will tend tancreasethe variance ofV

at the same time that decreaseshe variance of/. By
carefully choosing a value fap, we end up with an esti-
f(e) mator whose error is always upper bounded by the error of
Z o (1-one(e, Sal )~¢(nsa , nsai v, cnt(e, Sal ) he naive Combined Algorithm, and that will typically be
ccEmy far superior.

w(negmp X tot)/cnt + UnBias(nsa /)

As  ¢(nsal ,nsa ,cnt(e,Sal )) approaches 1
one(e, Sal ), the variance ot/ approaches zero (since all
terms in the summation are always zero in this case). As &ortunately, there is a closed-form formula for the opti-
result, the largensy + (that is, the more tuples fror8al mal value ofw. To derive this formula, we differentiate
are used to comput®’) the lower the variance df, and  o*(N + U) with respect tav and then solve for the zero.
the variance ot/ is reduced over time without any costly The process is tedious but straightforward. We begin the
indexed samples. In many cases, it will be reduced enoughrocess withJ. Note that with the addition ol into the
that the varianc& + U is actually lower than the variance Combined Algorithm, the formula for?, from Section 4.2
of the Indexed Algorithm’s estimator. becomes:

5.3 Optimizing the Weight Parameterw

1

5.2 Weighting the Combined Estimator sp = p—1 > (nempf(e)(1 — one(e, Sal )—
(e,i)ER

The previous Subsection gave some justification as to why ) .

(N 4 U) can be a better estimator than the estimator of the wp(nsal ,nsal /1)) — U)

Indexed Algorithm. However, this justification does not

hold in all situations. Ifp(nsal , nsal -, cnt(e, Sal )) is not

a good approximation t¢l — one(e, Sal ), then the vari- 1 NEmp— NE

ance ofU may not be sufficiently reduced to compensate® — ng—1° Nemgim

for the addition ofN. o .o )
Fortunately, it is possible to modify the computations b= Z nempf” (€)(1 — one(es, Sal ))p(nsal , nsal v, 7)

performed by our algorithms in order to automatically re- (e;)eE

duce the variance di by effectively increasing the vari- . _ 2 g2 2 L

ance ofN, while still guaranteeing thaV + U is unbiased. c= 2 meml ()¢ (nsa msa i)

By carefully optimizing this trade-off, the overall estimator

can be improved substantially. Given a weightwe first d = Z ngmpf” (€)(1 — one(e,, Sal )

modify theUn Bias routine as follows: (e,i)€E

Then let:

(e)EE
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U= > nemf(e)(1— one(es, Sal )) 6 Discussion

(e:0)eB Now that we have defined a complete algorithm for answer-
Ugr = Z nempf (€)¢(nsal s Nsal 7, %) ing a specific class dNOT EXISTSSQL queries, there
(ed)EE are a few additional issues that warrant further discussion.
e How can the algorithms be extended to handle other
With this, we have: query types? As discussed in the Introduction, our al-

gorithms are also suitable fdEXISTS, IN, NOT IN,
_ 1 INTERSECT, andEXCEPTqueries. Each of these query
U= @(UL — wUR) types can evaluated using variations on the methods de-
9 2779 scribed in this paper. For example, NOT IN query
UL — 2wULUR + w UR}) or an EXCEPTquery over two relations can trivially be
nE re-written as aNOT EXISTS query. Evaluation of an
EXISTS query is more complicated and requires modifi-
(we used the fact thaf}" | (z; — 2)* = 37, a7 —nZ®)  cation of our algorithms, but the changes required are not
Now putting the condition for extremum of the variance radical. Rather than summing ovér — one(e, Sal ’))
of wN + U, 3(02(U)25rw202(N>) — 0 and solving the first for all ¢ in Emp, the estimatorV will instead sum over
degree equation im, we obtain as the optimal value far  (one(e, Sal *)) for all e. Since this will change the bias of
N, the correction provided by must be changed, but the
ab— aULUg/ng fanalysis and algorithms are very §imilar to the results given
72 (N) — alUZ /np + ac in the paper foNOT EXISTSquerles. _ .
RITYE OnceEXISTS has been implemented, it becomes possi-
ble to evaluate alNTERSECTor IN query via a straight-
5.4 Optimizing the Reading forward transformation into aBXISTS query.
e What if there is not an equality check withined or
In the previous two Sections we assumed that the samplge lack an index orSal ? The indexed solution used in
E used by the combined estimator was not altered during\igorithm 3 is no longer suitable. Our algorithms must be
the estimation process. Clearly, this is an overly restrictivemodified slightly to handle this case. In order to implement
assumption. We also note that the rate at which relationgreSample, we would first samplenumSam records
EmpandSal are scanned can be changed depending on thfom Emp and then scai$al to obtaincnt(e, Sal ) for
query and the data set. Since we have these extra degreesgeich record in the sample. After this scan is completed, the
freedom in how we execute the query, itis natural to ask thegorithm could output its first estimate, and begin a block-
question: what are good choices for these reading rates? nested-loops ripple join over both relations, updating the
This question can be answered by solving an optimiza€urrent estimate in an online fashion.
tion problem which minimizes the variance of the Com- In this case our algorithms require a complete scan of
bined Algorithm’s estimator after a total execution time of Sal before we can output any results. While this is clearly

o?(U) = a(d — 2wb + w?c —

Wopt =

t. Specifically, given a set of tim&gmp, tsa , aNdtingex not desirable, we point out that without an equality check
required to access, process, and add a single tufgenfp  in pred, anySQL query engine will have a hard time evalu-
Sal , and E' respectively, we wish to choosgmg, nsa ating the query efficiently. In general, the only way to eval-
andn g so as to minimizer?(wN + U) subject to the con-  uate such a quergxactlyis with a quadratic cost, nested-
straint that = temgiemp + tsal nsal 7 + tindex NE- loops-style algorithm. Our algorithm in this case would use

By choosing such optimal reading rates, we can produc@ Similar evaluation technique, but would have the added
a fully optimized version of the Concurrent Algorithm. In benefit that after the initial scan &al , we would be able
our implementation of the optimized version of the Con-to offer online estimates throughout query execution.
current Algorithm, we begin with an initial invocation of e What if there are joins in the outer query or in the
the PreSample procedure withnumSam = 100. We  subquery?As long as only one table is sampled from in
then determine the optimal reading rates using a steepette inner query and one table is sampled from in the outer
descent method with random restarts [9]. Once the optimadiuery (and all other tables are buffered in memory or can
values ofngmy, nsa - andng have been computedern,  be read quickly in their entirety), multi-table outer or inner
andbsy from lines (2) and (3) of the Concurrent Algo- subqueries can be handled with little modification of our
rithm are chosen so that the numbers of tuples read froralgorithms. To handle multiple tables in the outer query, it
EmpandSal are proportional to:gmg andns, - respec-  would first be necessary to join the non-sampled relations
tively. After every iteration the current estimate is output with each sampled tuple, and then treat all of the resulting
in the normal fashion. The final modification is that after tuples as samples froEBmp(nemp must then be scaled up
each iteration of line (2) of that algorithm has completed,accordingly in the estimate and variance calculations). A
the loop from line (2) of the Combined Algorithm is then similar tactic can handle joins in the inner query.
executed so that the number of tuples added tat each The more difficult case is when, due to the size of the
step is proportional ta . input relations, more than one table must be sampled in ei-
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ther the inner or the outer subquery. The statistical analysis
presented in this paper is not applicable to such a situation.
It seems possible to support joins over multiple sampled re-
lations in the outer query using algorithms very similar to
those in this paper, with only some additional analysis re-
quired to develop the analog of Theorem 4.1 for the multi-
table case. This will be an interesting direction for future
work. The much more difficult case is when more than
one table in thénner query must be sampled from. We
doubt that an appropriate statistical analysis of any suitable
algorithm is possible in this case. The problem is that it
becomes very difficult to evaluate exactly for any set of
tuples from the outer query if there is a complex join in
the inner query (see Section 4.1 for a detailed discussion of
this).

7 Experiments

The section details the results of a set of experiments de-
signed to test our methods. First, we test the efficiency of
our algorithms in a realistic environment by running fully-
functional, disk-based implementations of the paper’s al-
gorithms over several multi-gigabyte data sets. Second, we
test the statistical properties of the Combined Algorithm
by repeating the algorithm hundreds of thousands of times
over some small, synthetic data sets.

7.1 Large-Scale Experiments

The first set of experiments has several goals. First, we
wish to test whether any of these algorithms can produce
suitably accurate estimates in realistic cases. Next, we wish
to test whether it is actually the case that the Combined Al-
gorithm is able to produce a more accurate estimate than
the Indexed Algorithm over a large, disk-resident database.
Finally, we wish to test the ability of the optimization de-
scribed in Section 5.4 to further increase the speed of con-
vergence of the estimator produced by the Combined Al-
gorithm over a large, disk-resident database. Note that we
do not experimentally evaluate the Concurrent Algorithm
because there is no way to give online confidence bounds
with this method; the algorithm has an arbitrarily large bias
that cannot easily be computed online without resorting to
indexed sampling. This renders any sort of online accuracy
guarantees given by the other methods difficult or impossi-
ble to provide.

In this Section, we make use of three pairs of
synthetically-generated data sets to answer a query of the
form:

SELECT SUM (e.A) FROM Emp AS e

WHERE e.B AND NOT EXISTS
(SELECT * FROM Sal AS s
WHERE s.C AND s.D = e.A)

For each data set pair tested, the data Betp is
5GB in size and made of 100B records; the Sat is
25GB in size and also made of 100B records. The sets
were generated as follows:
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e Intest] e.A is produced using Zipf distribution with and that the advantage of the Combined Algorithm gen-
parameten.8, ande.B is true50% of the time. The erally decreases as the skew in the data set decreases. In
number of occurrences of eaehA is also Zipfian particular, sincaestlandtest2are very similar except for
with a parameter 0.8, as is the number of matches e.A , it appears that ie.A has a great degree of skew, the
for eache.A in Sal . s.C is true10% of the time.  Indexed Algorithm is essentially unusable. On the other
The average record froEmphas1 13 matching tuples  hand, for the relatively well-behavedA in test3 both the
in Sal (though only10% are accepted by th HERE Combined and Indexed Algorithms were roughly equiva-
clause of the subquery). lent (though the estimate of the Indexed Algorithm was

) ) ~ slightly better). It is also interesting to note that the ex-

e IntestZ e.A is generated using a normal distribution periments seem to indicate that the optimization to deter-

with with mean0 and standard deviatiol®; the sign  mine the optimal sampling rates is an absolute necessity.

of all negative values foe.A is inverted, ane.B wjthout optimization, the Combined Algorithm can easily
is true 50% of the time. The number of occurrences perform far worse than the Indexed Algorithm.

of eache.A in Sal is also generated with a normal
distribution having meafi and standard deviatiolb; 7.2 Properties of the Combined Algorithm

a negative value indicates a tuple with no matches in_. . .
Sal . The number of repeats @A in Empis sim- Given that the Combined Algorithm performed far better

ilarly distributed. The average tuple froEmphas5 for some of the tests of the previous Section, it seems to

matches irsal , and again an average % of those be_a natural qhoice for.the queries_gonsidered _in this paper.
are accepted by th&HERElause of the subquery. This Subsection describes an additional experimental eval-

uation of the Combined Algorithm, aimed at evaluating the
e Intest3e.A is generated similarly teest2 but a stan- ~ statistical properties of the algorithm. There are two goals
dard deviation ofl is used. Agaire.B is true50% of  of these tests. First, we wish to obtain some experimen-
the time. As intest] the number of occurrences of tal evidence that the mathematical derivations of expected
eache.A is Zipfian, as is the number of matches for value, variance, and bias correction of the Combined Algo-
eache.A in Sal , but with a milder skew 06.4. The  rithm described in the paper are in fact correct. Second, we
average tuple fronEmphas14 matches irSal , and  wish to obtain an experimental validation that the normal-
again an average df% of those are accepted by the ity assumption used to compute the confidence bounds in
WHERElause of the subquery. the previous Subsection is valid.
To test the statistical properties of the Combined Algo-
In each caseEmpandSal are clustered randomly on rithm, we ran a series of tests using the following setup.
disk and a secondary B+-Tree index is createahD . Smaller versions of the two relatiosmpand Sal were
We test three options for estimating the answer to the querycreated synthetically using methods very similar to those
the Indexed Algorithm, the Combined Algorithm with no described in the previous Subsection, with each result-
optimization (equal time is spent sampling far, Empg, ing relation having 1000 tuples. Much smaller relations
and Sal /), and the Combined Algorithm with full opti- than those tested previously were used in order to facil-
mization. The optimization is set so as to minimize theitate a very large number of algorithm repetitions during
variance after 100 seconds of query execution. All experitesting. We began each test by pre-sampling 100 tuples
ments are performed with a cold disk buffer using a 15,000rom Emp We then retrieved the exact counts for those tu-
RPM SCSiI disk and a 2.4GHz Pentium machine with 1GBples fromSal , and then ran the Combined Algorithm over
RAM. For each data set, each algorithm is run for 300 secEmpand Sal using identical sampling rates for both re-
onds. For each experiment, the current confidence intervdhtions. The process was repeated 100,000 times for each
width at a 95% confidence level is plotted as a function ofpair of data sets. These 100,000 runs were then used to
time in Figures 3, 4 and 5. In order to normalize the re-compute empirically-observed values t61(wN + U) and
sults across plots, the width is reported as a fraction of thé&[wN + U].
current estimate. Thus, a confidence interval width of 0.3
means that the span of the 95% confidence interval is 30%@iscussion

as large as the current estimate. The width is computegy e several different data sets, after 200 samples from
assuming each estimator is normally distributed. EmpandSal , we observed the following:

Discussion e The difference between the theoretical and observed
values for o?(wN + U) ranged from0.04% to
0.1%. Given that the variance of such experimentally-
observed variances is often relatively large in prac-
tice, this is strong evidence for the correctness of our
derivations.

In general, the Combined Algorithm performs as well as
the Indexed Algorithm for all three data sets, and in par-
ticular produced confidence bounds that are roughly two
orders of magnitude better than the Indexed Algorithm for
the most skewed data sét$t]).

Note that the three data sets are ordered according to e The difference between the theoretical and observed
the amount of skew in the attribute that is aggregated over, values forE[wN + U] was always less thah01%.
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2 2 0 We have considered the problem of performing online es-
%0 150 200 250 a0 350 400 %340 360 330 400 420 440 460 480 500 520 540 timation over a very genel’a| class of subset-based SQL
Valoe of Estinate valoe of Estinate queries (queries with an inner query that is correlated to an

outer query via a check for set membership). This greatly
extends the class of queries that are amenable to sampling-
based, online estimation. We have presented a formal sta-
Again, this is good evidence of the correctness of outtistical analysis of our estimators, and give a strong ex-
derivations. perimental argument for their utility with very large, disk-
resident databases. The experiments verify that our estima-
Our experiments also strongly indicate that it is accept+tors are able to quickly give accurate answers, especially
able to assume that the estimate given by the Combined AlNhen Compared to the Simp|e, index-based solution.
gorithm is normally distributed when deriving confidence
bounds using the variance estimates produced by our algReferences
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