
Online Estimation For Subset-Based SQL Queries∗

Christopher Jermaine Alin Dobra Abhijit Pol Shantanu Joshi

Department of Computer and Information Science and Engineering
University of Florida

Gainesville, FL, 32611 USA
{cjermain,adobra,apol,ssjoshi}@cise.ufl.edu

Abstract

The largest databases in use today are so large
that answering a query exactly can take minutes,
hours, or even days. One way to address this
problem is to make use of approximation algo-
rithms. Previous work on online aggregation has
considered how to give online estimates with ever-
increasing accuracy for aggregate functions over
relational join and selection queries. However,
no existing work is applicable to online estima-
tion oversubset-basedSQL queries–those queries
with a correlated subquery linked to an outer
query via aNOT EXISTS, NOT IN, EXISTS,
or IN clause (other queries such asEXCEPTand
INTERSECT can also be seen as subset-based
queries). In this paper we develop algorithms for
online estimation over such queries, and consider
the difficult problem of providing probabilistic ac-
curacy guarantees at all times during query execu-
tion.

1 Introduction
Despite the best efforts of software and hardware designers,
the largest data warehouses are now so massive that it is
impossible to guarantee interactive speeds when answering
ad-hoc, analytic style queries. A close examination of the
latest TPC-H benchmark results [8] makes it clear that it
is possible to spend millions of dollars on hardware and
software, only to construct a multi-terabyte warehouse that
still requires hours or even days to answer certain queries.

One promising way to address this problem is to re-
design analytic query processing systems so that the largest

∗* Material in this paper is based upon work supported by the National
Science Foundation under Grant No. 0347408.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Joe, $31K

Sam, $19K

John,$13K

Susan, $36K

Fred, $45K

Tim, $23K

Janet, $7K

Lana, $18K

Kate, $42K

Tom, $31K

Frank, $25K

Mary, $28K

J
o
e

S
a
m

F
r
a
n
k

S
u
s
a
n

J
a
n
e
t

M
a
r
y

T
o
m

M
a
r
y

J
o
h
n

L
a
n
a

M
a
r
y

J
o
h
n

1/6 of total data space

Area added by additional samples

E
m
p

Sal

Figure 1: Evaluating a ripple join.

data warehouses are based onrandomization. Randomiza-
tion has the overwhelming benefit of facilitating query pro-
cessing algorithms that do not perform monolithic, days-
long calculations, but rather give immediate feedback. Im-
mediately after a query is issued, the system can come back
with an initial guess of the form “with95% probability, the
final answer to the query will be within±12.4 of 127.4.”
As time goes on and the system is able to process more
data, the query error shrinks, and the user can stop the
query evaluation as soon as he or she is happy with the
accuracy. Pioneering work in the design of such a system
has been undertaken by Hellerstein, Haas and their various
collaborators [2, 10, 4, 5], resulting in a series of papers on
online aggregationusing random sampling techniques.

Despite the breadth and depth of the seminal research in
this area, much work remains if randomization-based data
warehousing systems are to become practical and widely-
used. One of the most obvious areas where the state-of-the-
art is lacking is in an understanding of how to design and
implement online, sampling-based algorithms that can be
used with common,subset-basedSQL queries. Bysubset-
based, we refer to those queries having a correlated inner
query that is related to the outer query through a check for
the existence (or lack thereof) of a tuple with a desired

745

property–that is, we are interested only in a subset of the
tuples from the outer query.EXISTS, NOT EXISTS, IN ,
andNOT IN queries are examples of subset-based queries.
We focus specifically on the case where both the outer
query and the inner query reference a massive table that
is too large to fit in memory, and where evaluating the
query exactly is a time-consuming computation. The de-
sign of online approximation algorithms for such queries is
a daunting task; this task is at the heart of this paper.

1.1 Why Are Subset-Based Queries Hard?

Certain operations like join and selection lend themselves
to sampling and randomization because it is obvious how
to “scale-up” the answer to a query that is obtained over a
sample, in order to obtain an unbiased estimate for the final
answer to the query1. For example, imagine that we wish
to estimate the answer to a query of the form:

SELECT SUM (Emp.Salary)
FROM Emp, Sal
WHERE pred (Emp.Name, Sal.Name);

If Empand Sal are stored in a randomized order on
disk, and the query engine has loaded and joined one-half
of the tuples fromEmpand one-third of the tuples from
Sal and joined all of those tuples to produce a “current”
query answerµ, then(1/2 × 1/3)−1µ = 6µ is an unbi-
ased estimate for the eventual result of the query. The in-
tuition behind this is pictured in Figure 1. Since we have
explored one-sixth of the join’s data space, our eventual to-
tal should be approximately six times as large as the current
total. Thus, at all times the current answer to a query over
a sample can be “scaled up” to produce a high-quality esti-
mate for the eventual answer to the query. This is the basic
idea behind the well-knownripple join online aggregation
algorithm of Haas and Hellerstein [2].

Unfortunately, most subset-based SQL queries do not
have such structure. Imagine that instead of the previous
join, we are asked to answer the following, subset-based
query:

SELECT SUM (Emp.salary)
FROM Emp
WHERE NOT EXISTS (

SELECT *
FROM Sal
WHERE Emp.Name = Sal.Name);

If the relationEmp lists all of a company’s employees
and the relationSal lists all of the company’s sales (with
Sal.Name listing the employee responsible for the sale),
then this query asks: “What is the total salary of all em-
ployees who have not generated any sales?”

Suppose that the query engine has loaded and processed
one-half of the tuples fromEmpand one-third of the tuples

1“Unbiased” means that if the estimator were repeated an infinite num-
ber of times, the average would be equal to the correct answer to the query.

Joe, $31K

Sam, $19K

John,$13K

Susan, $36K

Fred, $45K

Tim, $23K

Janet, $7K

Lana, $18K

Kate, $42K

Tom, $31K

Frank, $25K

Mary, $28K

S
a
m

S
u
s
a
n

M
a
r
y

S
a
m

M
a
r
y

Area added by additional samples

E
m
p

Sal

S
u
s
a
n

S
u
s
a
n

S
u
s
a
n

S
a
m

S
a
m

M
a
r
y

M
a
r
y

Original data space

Figure 2: Adding a new tuple that increases the total.

from Sal . In this case, there is no corresponding, straight-
forward way to scale-up the current answer to the query
like there is in the case of a join. As we see more and more
tuples fromEmpandSal , the current value for the query
answer caneither shrink or grow, depending on the char-
acteristics of the data, even if the attribute values that are
to be aggregated over are strictly positive. This means that
by simply scaling up the current answer to compensate for
unseen tuples, in general we could be going in either the
right or wrong direction. For example:

• Sometimes, processing the whole database will cause
the current answer toshrink, since with each addi-
tional tuple we have a greater and greater chance to
find tuples fromSal that will match a given tuple
Emp. Reconsider Figure 1. At the current point during
the execution of the query, the answer over all tuples
read from disk is$13K + $45K + $23K = $81K.
If we were to read one more tuple fromEmpand one
more tuple fromSal and incorporate these tuples into
the query evaluation, then the current answer shrinks
to $75K. The answerdecreasesdue to the fact that
we found a match forJohn in Sal , which caused
John ’s salary to beremovedfrom the total.

• However, under different conditions, the current result
cangrow. If we have already seen an employee name
from Sal , then additionalSal tuples with that name
will not remove additionalEmptuples from consider-
ation. Such a situation is depicted in Figure 2. At the
current point the answer is$31K + $13K + $45K +
$23K = $112K . Incorporating one more tuple from
each relation inflates the current answer to$119K .
The answer actuallyincreasesbecause we have added
the salary associated withJanet into the total, and
seeing anotherSamtuple inSal does not remove any
Emptuples from the total.

This erratic behavior makes it impossible to come up
with a one-size-fits-all rule for scaling up or scaling down

746

the answer to the query.

1.2 Our Contributions

In this paper, we carefully consider the problem of produc-
ing accurate, online estimates tosubset-basedqueries. By
subset-based, we mean those queries of the form:

SELECT SUMf(e)
FROM Emp ASe
WHERE NOT EXISTS (

SELECT *
FROM Sal as s
WHEREpred(e, s));

Note that the functionf can encode any mathematical
function over tuples fromEmp; in particular it can encode
a relational selection predicate.pred is any boolean pred-
icate over tuple pairs fromEmp and Sal . This type of
query is general enough that it can encode anyEXISTS,
NOT EXISTS, IN , or NOT IN query over two relations, as
well as the set-basedINTERSECTandEXCEPTSQL op-
erations. Ratio-based aggregate queries such asAVGcan
be answered by making use of our algorithms along with
Bonferroni’s inequality (i.e., the “union bound”).

The specific contributions of our research are as follows:

1. In this work we develop online, sampling-based al-
gorithms for answering such queries, which rely on
reading the relationsEmpandSal in a randomized
input order. The algorithms areonline in the sense
that at all times, they produce an estimate that can be
updated continuously and presented to the user.

2. The paper includes a statistical analysis of the proper-
ties of our estimators, as well as a performance study
documenting the feasibility of our approach. We show
that the convergence rate of our approach can be faster
than that achieved through the obvious, index-based
alternative.

3. Our algorithms greatly extend the class of queries that
can be efficiently processed using online, sampling-
based methods.

1.3 Paper Organization

In Section 2, we describe an index-based sampling algo-
rithm for online, approximate answering of subset-based
SQL queries. The problem with this algorithm is that it may
be extremely slow to converge to a good estimate due to the
large number of random disk I/Os required. Section 3 de-
scribes an algorithm that is much more efficient in terms of
the I/O required, but that may provide an extremely biased
estimate for the query result. Sections 4 and 5 discuss how
these two flawed estimators may be combined to provide a
single, high quality estimator that can adapt to the under-
lying characteristics of the data. Section 6 discusses how

to extend the algorithms in this paper to additional subset-
based queries, and Section 8 describes the related work.
The paper is concluded in Section 9.

2 A Simple Estimator for Subset Queries

It is actually quite easy to define a very simple and easy-
to-implement estimator for the type of subset query con-
sidered in this paper. However, as we will discuss in this
Section, this estimator is likely to have unacceptable per-
formance under common circumstances.

2.1 An Indexed Estimator

It is most natural to begin the quest for any sampling-based
estimator by asking: “Can the problem be reduced to esti-
mating the total value of a population by simply sampling
without replacement from that population?” While it may
not always be possible to develop such an estimator, if itis
possible, this represents the easiest solution.

In the case of the subset-based SQL queries considered
in this paper, such a simple estimator does actually exist,
given the following two reasonable assumptions:

1. First, we assume that the predicatepred(e, s) contains
an equality condition on one or more of the attributes
of the two relations. The other predicate conditions, if
any, should be in conjunction with the equality condi-
tion (for example,pred(e, s) might be a conjunction
of several conditions, includinge.Name= s.Name).

2. Second, we assume that an index is available on the
attribute from theSal relation on which the equal-
ity check is performed. In our example, a B+-Tree or
hash table indexingSal.Name would suffice.

If these assumptions do hold, then Algorithm 1 (here-
after referred to as the “Indexed Algorithm”) gives a nat-
ural, online estimate for the query of Section 1.2 (a dis-
cussion of the implications if they do not hold is given in
Section 6). In the Indexed Algorithm and in the remainder
of the paper, we usenS to denote the size of a setS, and we
define a functionone(e, S) that evaluates to1 if and only
if there existss ∈ S wherepred(e, s) is true (and0 other-
wise). Also, we assume thatEmpis stored in a randomized
order on disk.

Algorithm 1: Indexed Subset Query Estimation

1. Let tot = 0
2. Fori = 0 to nEmp do:

3. Read theith tupleei from Emp
4. Perform an indexed search throughSal to eval-

uateone(ei, Sal)
5. tot = tot + (1− one(ei, Sal))× f(ei)
6. Outputµ̂ = (nEmp/i)× tot as the current

estimate

747

Not only is the online estimator̂µ unbiased, but at all
times we can easily compute an unbiased estimateσ̂2(µ̂)
for the variance of̂µ [13]:

σ̂2(µ̂) = (
nEmp− i

nEmpi
)s2

µ̂

where:

s2
µ̂ =

1
(i− 1)

i∑
j=1

(nEmpf(ej)(1− one(ej , Sal))− µ̂)2

In this expression,s2
µ̂ is the sample variance of the tuples

seen thus far, and it can be calculated incrementally as new
tuples are encountered. If we make the assumption thatµ̂
is normally distributed (this assumption is reasonable due
to the central limit theorem [12]), then it is easy to use this
variance estimate to provide confidence bounds onµ̂ using
standard techniques [13].

Note that this simple estimator is very closely related to
the estimators developed by Hellerstein, Haas, and Wang
for estimates over relational selection predicates [4], the
only differences being that (1) we make use of sampling
without replacement (which is generally more accurate
than sampling with replacement), and (2) we make use of
an index on theSal relation in order to evaluate the predi-
cateone(ei, Sal).

2.2 So, What’s the Problem?

Though very simple and attractive at first glance, the In-
dexed Algorithm can be prohibitively slow to converge due
to the large number of random disk I/Os that may be re-
quired, specifically because of the extensive reliance on in-
dex lookups to perform the estimation.

If the Sal relation is very large, every single execution
of line (4) of the Indexed Algorithm probably requires at
least two random disk I/Os: one random I/O to perform
a lookup in the index, and a second random I/O to access
the potential matches fromSal (assuming that the index
on Sal is a secondary index). In reality, many more ran-
dom I/Os would be required in the case where potential
matches fromSal are scattered all over the disk, and the
index lookup for eachei returns many tuples fromSal that
must all be retrieved.

This is problematic because, if every iteration of the
loop requires at least two random disk I/Os at around 10
milliseconds each, as is usually the case, we can only ex-
amine at most 3000 tuples fromEmpper minute per disk.
As a result, the Indexed Algorithm is only suitable for use
with very well-behaved queries and databases.

3 A Concurrent, Sampling-Based Estimator
Since the obvious, indexed solution is likely to be unac-
ceptably slow, we now return to the alternative described
in the Introduction: what if we assume that both relations
are clustered randomly on disk, and just scan them concur-
rently, evaluating the query as we go, in a manner similar

to the ripple join [2]? Thus, the estimate for the final query
answer will be nothing but a “scaled-up” current answer.
This section formally describes and mathematically evalu-
ates such an algorithm. Of course, anecdotal evidence was
given in the Introduction that such an algorithm is likely to
have significant associated problems for subset-based SQL
queries. Though it will prove to be unsuitable by itself, the
algorithm will still be an important component of the more
complete solution we describe in Section 4.

3.1 The Concurrent Sampling Algorithm

Algorithm 2 (subsequently referred to as the “Concurrent
Algorithm”) formally describes the process illustrated in
Figure 1 and Figure 2. In the Concurrent Algorithm, it is
assumed thatEmpandSal are clustered in a statistically
random order on disk. Also, it is assumed that each loop
iteration (or “sampling step” [2]) loadsbEmp blocks from
EmpandbSal blocks fromSal , wherebEmp andbSal are
parameters to the algorithm. In the Concurrent Algorithm
(and the remainder of the paper),Emp′ refers to the subset
of Emp that has been sampled thus far, andSal ′ is the
analogous subset forSal .

Algorithm 2: Concurrent Sampling

1. Letactive = Emp′ = Sal ′ = {}; tot = 0; cnt = 0
2. WhileEmp′ 6= EmpandSal ′ 6= Sal :

3. AddbEmp blocks fromEmpto Emp′

4. AddbSal blocks fromSal to Sal ′

5. For each newly added tuplee from Emp′ do:
6. cnt = cnt + 1
7. If ¬∃s ∈ Sal ′ wherepred(e, s) then:

8. tot = tot + f(e)
9. active = active ∪ {e}

10. For each newly added tuples from Sal ′ do:
11. For each tuplee from active do:

12. If pred(e, s) then:
13. active = active− {e}
14. tot = tot− f(e)

15. Output(nEmp× tot)/cnt as the current estimate

In a manner very similar to a ripple join, the Concurrent
Algorithm loads a number of sampled records from each
relation into memory, and then processes them in such a
way that the value oftot is always equivalent to the output
of the original query, had it been run over the tuples that
had been sampled thus far fromEmpand Sal . Assum-
ing that the setactive of “active” tuples fromEmpalways
remains small enough to store in main memory and that
the predicatepred(e, s) contains an equality check on the
attributeName, then it would make sense to indexSal ′ us-
ing an in-memory hash table or self-balancing binary tree
that organizes the tuples currently inSal ′ over theirName
values. This would allow steps (5)-(9) of the Concurrent
Algorithm to be efficiently executed. Likewise, assuming
thatEmp′ remains small enough to fit in memory, it would

748

also make sense to indexEmp′ in the same way to facilitate
an efficient implementation of steps (10)-(14).

3.2 So How Accurate Is It?

This Section considers the problem of formally determin-
ing exactly how (in)accurate the estimator implemented by
the Concurrent Algorithm is expected to be.

In the remainder of the paper, we letαi denote the frac-
tion (nEmp′ − i)/(nEmp− i). αi is the probability that an
arbitrary tuplee ∈ Empis also inEmp′, given the knowl-
edge thati tuples that are note have already been selected
for Emp′. Note that ifi is 0, then this is merely the prob-
ability that an arbitrary tuplee is in Emp′. We also define
a series of Bernoulli (zero/one) random variables, where
Xi governs whether or not theith tuple fromEmpis found
in Emp′ (note that the probability thatXi is one is simply
α0). Given this notation, the following random variable is
exactly equivalent to the estimate given in line (15) of the
Concurrent Algorithm:

N =
1
α0

∑
ei∈Emp

Xif(ei)(1− one(ei, Sal ′))

Recall from Section 2.1 thatone(e, S) evaluates to1 if and
only if there existss ∈ S wherepred(e, s) is true (and0
otherwise).

When trying to answer the question “How accurate is
N?” the first place to start is to determine if there is any
bias in the estimate provided byN (that is, on expectation,
does a trial overN result in the correct answer to the query?
See Johnson et al. [6] Chapter 1 for a nice introduction to
moments and expectation). Taking the expectation of both
sides of the equation forN , we have:

E[N] = E[
1
α0

∑
ei∈Emp

Xif(ei)(1− one(ei, Sal ′))]

Since 1
α0

is a constant and the sampling ofEmpandSal
are independent, we have:

E[N] =
1
α0

∑
ei∈Emp

E[Xi]f(ei)E[(1− one(ei, Sal ′))]

=
1
α0

∑
e∈Emp

α0f(e)E[(1− one(e, Sal ′))]

=
∑

e∈Emp

f(e)E[(1− one(e, Sal ′))]

Note that(1 − one(e, Sal ′)) is a zero/one random vari-
able that evaluates to0 if and only if a tuples such that
pred(e, s) is true was found inSal ′. The expected value
of any zero/one random variable is simply the probability
that a trial over the variable results in a one. Letϕ(n, m, k)
denote the probability that we will fail to select any interest-
ing tuples, if we selectm tuples at random from a relation

of total sizen tuples having onlyk tuples with a certain
property that we are interested in. Then using the hyper-
geometric distribution, we have:

ϕ(n, m, k) =
(

n− k

m

)
/

(
n

m

)
Functionϕ can be computed essentially in constant time

if we express it in terms of the Gamma function, for which
series-based algorithms are readily available. Given this,
we have:

E[N] =
∑

e∈Emp

f(e)ϕ(nSal , nSal ′ , cnt(e, Sal))

wherecnt(e, Sal) counts the number of tuples ins ∈ Sal
for whiche pred(e, s) evaluates totrue.

3.3 The Really Bad News

Note that thecorrectanswer to the query is:

∑
e∈Emp

f(e)(1− one(e, Sal))

Though at first glance this looks rather similar to the for-
mula forE[N], it turns out that(1−one(e, nSal)) is equiv-
alent toϕ(nSal , nSal ′ , cnt(e, Sal)) only if e will eventu-
ally survive theNOT EXISTSclause of the query, or if we
have seen enough tuples fromSal that we are guaranteed
that it is impossibleto miss any tuples ∈ Sal for which
pred(e, s) is true. As a result, the estimator of the Concur-
rent Algorithm is typically not correct on expectation (that
is, N is biased). Furthermore, the bias can be arbitrarily
large. For example, if each tuplee from Emphas exactly
ones ∈ Sal for which pred(e, s) is true, then the prob-
ability that we will not finds may be almost one. In this
case, the bias would be equivalent to the sum off(e) over
all of the tuples inEmp! As a result, we must search for a
better estimator.

4 A Combined Estimator

Though the Concurrent Algorithm may produce an esti-
mate with a large bias, thevarianceof this estimate should
decrease quickly with time, since the estimate can quickly
incorporate a large number of tuples by using a fast, se-
quential scan of the input relations. As long as the bias can
be corrected for, the estimator may be salvageable. Thus,
in this Section we consider the problem of correcting Algo-
rithm 2’s bias. The basic strategy is to combine the estima-
tor computed by the Concurrent Algorithm with an estima-
tor that is very similar to the one computed by the Indexed
Algorithm, in order to develop a combined estimator that is
superior to either individual estimator.

749

4.1 The Indexed Solution Revisited

Imagine that we developed an estimatorU where:

E[U] =
∑

e∈Emp

f(e)(1− one(e, Sal)−

ϕ(nSal , nSal ′ , cnt(e, Sal)))

Then we know from the linearity of expectation that:

E[N + U] =
∑

e∈Emp

f(e)(1− one(e, Sal))

This implies thatN +U would be an unbiased estimate for
the result of the query. In other words, we could simply
addU to the estimate produced at every execution of line
(15) in the Concurrent Algorithm in order to correct for the
algorithm’s bias.

A natural way to provide an estimator likeU would be
to sample a number of tuples fromEmp. For each tuple
e that is sampled, we compute and sum the exact value of
f(e)(1− one(e, Sal) - ϕ(nSal , nSal ′ , cnt(e, Sal))), and
then scale up the result accordingly.

The difficulty of providing such an estimator is that
it would require that we have good information about
how many tuples inSal correspond with each tuple sam-
pled from Emp (that is, we need to be able to compute
cnt(e, Sal) for an arbitrary tuple fromEmp). One direc-
tion to solve this problem would be estimating the quantity
cnt(e, Sal) itself. However, simply obtaining anestimate
for eachcnt(e, Sal) is not good enough, because it must
be used as an argument forϕ. Plugging a value intoϕ that
is an estimate is problematic for two reasons:

1. ϕ is a complicated nonlinear function. If the input pa-
rameters are themselves estimates, then the output of
ϕ becomes an estimate. The complexity of the func-
tion would make the quality of the output extremely
difficult to reason about statistically.

2. ϕ takes only discrete values as input. Since most natu-
ral estimators are not integer-valued, they cannot eas-
ily be used in conjunction withϕ. If we apply a nat-
ural solution like truncation or rounding to the input
parameters, this would make the quality of the output
that much more difficult to reason about.

Given that the input toϕ should be an exact value, the
natural way to computecnt(e, Sal) would be to rely on
an index overSal , just like the Indexed Algorithm. Of
course, the problem discussed in Section 2 was that this
tactic will be slow if we need to computecnt(e, Sal) for
everye contained in a large sample fromEmp.

However, making use of such index-based sampling is
much less of a problem in this context because this index-
based sampling will only be used as asupplementto the
information gathered by the Concurrent Algorithm. As
a result, we may not need many index-based samples to

perform this task. Most of the work will be done by the
fast, sequential sampling performed by the Concurrent Al-
gorithm, with just enough information added using index-
based samples that we can accurately unbias the Concur-
rent Algorithm’s estimate. The resulting algorithm is Algo-
rithm 3 (hereafter referred to as the Combined Algorithm).

Algorithm 3: A Combined Algorithm

1. LetE = {}

Procedure PreSample (int numSam)
2. Fori = 1 tonumSam do:

3. Randomly samplee from Emp
4. Perform indexed lookup of matches fore in Sal
5. E = E ∪ {(e, cnt(e, Sal))}

Function UnBias (int samSize)
6. tot = 0
7. For each(e, cnt) ∈ E do:

8. If (cnt > 0) then:
9. tot = tot− f(e)ϕ(nSal , samSize, cnt)

10. Return(nEmp/|E|)× tot

Procedure CombinedAlg (int preSamSize)
11. CallPreSample (preSamSize)
12. Invoke a modified version of the Concurrent

Algorithm, with line (15) changed to output
(nEmp× tot)/cnt + UnBias(nSal ′) as the
current estimate for the query answer

In the remainder of the paper, we assume that the sam-
pling performed in lines (3) and (12) of the Combined Al-
gorithm are independent. To enforce this, our implemen-
tation of the Combined Algorithm performs the sampling
required by line (3) by seeking to a random location in
Empto sample each record; since each record obtained by
PreSample likely requires two or more additional random
I/Os already to perform the index lookup of line (4), this ex-
tra random I/O is not too costly. A fast sequential scan of
theEmprelation to perform the sampling required by line
(12) will then produce a sample that is independent of the
sample drawn by line (3).

4.2 Analysis and Statistical Bounds

Simply knowing that the Combined Algorithm provides an
unbiased estimate is not enough: it is crucial to associate
confidence boundswith the estimates produced by the al-
gorithm, so that a user can be kept informed of the accuracy
of the algorithm’s estimate. Aconfidence boundis an as-
sertion of the form “With probabilityp, the exact answer to
the query is within the rangelow to high”. The probability
p is typically supplied by the user, and thenlow andhigh
are computed by the system.

The first step in developing a confidence bound for the
estimate (N +U) is to derive thevarianceof this estimator

750

(denotedσ2(N + U)). Since, as described above, we force
N andU to be independent, we know thatσ2(N + U) =
σ2(N) + σ2(U). SinceU is an estimation of a population
sum from a random subset of the population, a consistent
estimator forσ2(U) can be obtained using standard formu-
las, similar to those given in Section 2.1. Specifically:

σ̂2(U) = (
nEmp− nE

nEmpnE
)s2

Ū

wheres2
Ū

is the sample variance of the values used to com-
puteU . If Ū is the current estimate of theUnBias proce-
dure of the Combined Algorithm, thens2

Ū
is as follows:

s2
Ū =

1
nE − 1

∑
(e,i)∈E

(nEmpf(e)(1− one(e, Sal)−

ϕ(nSal , nSal ′ , i))− Ū)2

However, a derivation ofσ2(N) is not so straightforward.
We know from the definition of variance that:

σ2(N) = E[N2]− E2[N]
Recall thatE[N] was derived in Section 3.2, and so it is
an easy matter to square this value and plug the result into
the above formula. However, deriving a formula forE[N2]
is another matter. The formula forE[N2] (i.e., thesecond
moment ofN) is the paper’s central theoretical result.

Theorem 4.1 Second moment ofN . Let (ei ∪ ej) denote
any tuple matching eitherei or ej . That is,(ei ∪ ej) de-
notes any tuplet for which eitherpred(t, ei) or pred(t, ej)
evaluates to true. Then:

E[N2] =
2α1

α0
{

∑
e∈Emp

1
2α1

f2(e)ϕ(nSal , nSal ′ , cnt(e, Sal))+∑
{ei,ej}⊂Emp

f(ei)f(ej)ϕ(nSal , nSal ′ , cnt(ei ∪ ej , Sal))}

Proof We know from Section 3.2 that:

N =
1
α0

∑
ei∈Emp

Xif(ei)(1− one(ei, Sal ′))

Thus:

N2 =
1
α2

0

∑
ei∈Emp

∑
ej∈Emp

XiXjf(ei)f(ej)×

(1− one(ei, Sal ′))(1− one(ej , Sal ′))

And so:

E[N2] =
1
α2

0

{
∑

ei∈Emp

E[Xif
2(ei)(1− one(ei, Sal ′))]+∑

{ei,ej}⊂Emp

2E[XiXjf(ei)f(ej)(1− one(ei, Sal ′))×

(1− one(ej , Sal ′))]}

Using the independence of the sampling fromEmp
and Sal and the fact thatE[(1 − one(ei, Sal ′)(1 −
one(ej , Sal ′)] is ϕ(nSal , nSal ′ , cnt(ei∪ej , Sal)), the re-
sult follows after algebraic manipulation.

Note that this Theorem gives us a way to compute the
exact variance ofN , but it requires that we know the val-
ues of the variousϕ terms as well as the value off(e) for
every tuple in theEmprelation. Clearly, this is not practi-
cal. Thus, as is standard practice in statistics, we will esti-
mateE[N] andE[N2] from the segment of the population
for which we have exact information; specifically, we can
compute the required sums only over those tuples for which
we obtained exact information during thePreSample pro-
cedure of the Combined Algorithm, and then scale up the
result accordingly [7, 13] (though care must be taken so that
the estimate forE2[N] obtained fromE[N] is not biased).

Since we now have a high-quality estimator forσ2(N +
U), it is then an easy matter to derive confidence bounds as-
suming either a normal distribution for the error [12] (jus-
tified by the central limit theorem), or a more conservative
distribution-free bound such as the one provided by Cheby-
shev’s inequality [1]. Such techniques are fairly standard in
statistics [12, 13].

5 Increasing the Accuracy
This Section considers the question of how to fine-tune the
Combined Algorithm to maximize its performance.

5.1 Are Two Always Better Than One?

It is useful to begin with an intuitive discussion of why the
estimate of the Combined Algorithm may be worse than
the estimate of the Indexed Algorithm, and why it may be
better, even if both algorithms are given the same amount
of time for query processing. This will provide the back-
ground needed to motivate the development of the remain-
der of the Section.

It is fairly obvious why the estimate(N + U) is usu-
ally better thanN alone: N may have severe bias, which
is corrected by the addition ofU . However, it is far less
obvious why index-based sampling performed by the In-
dexed Algorithm can be helped through the addition ofN .
Why not just rely on the Indexed Algorithm, and forgo the
complexity of the Combined Algorithm? Two observations
supporting this position are:

1. The indexed sampling performed by the Combined
Algorithm is potentially more expensive than the
indexed sampling performed by the Indexed Algo-
rithm, since the Combined Algorithm needs access
to cnt(e, Sal) for every tuplee obtained during the
PreSample routine, whereas the Indexed Algorithm
only needs access toone(e, Sal). If the query predi-
catepred(e, s) has low filtering power, computing the
latter may be far less expensive than the former. This
means that the Combined Algorithm must make do
with a smaller indexed sample than the Indexed Algo-
rithm.

751

2. Both algorithms produce unbiased estimators, so the
error of both algorithms is related only to the variance
of the algorithms’ estimators. As discussed above, the
Combined Algorithm uses the estimatorU , which typ-
ically makes use of a smaller index-based sample than
the sample used by the Indexed Algorithm. Thus,U
should have higher variance than the Indexed Algo-
rithm’s estimator. Furthermore, variances are additive.
The Combined Algorithm must add the estimatorN
to U , which should increase the variance of the Com-
bined Algorithm’s estimator even more.

These factors may indeed render the Indexed Algorithm
more accurate than the Combined Algorithm in certain sit-
uations. However, the Combined Algorithm may still be
preferable because it is so tremendously costly to perform
every index-based sample, and the Combined Algorithm
does not rely exclusively on indexed sampling for its accu-
racy. In general, the variance ofN will shrink much more
quickly than the variance ofU , becauseN does not use an
index. Thus, very quickly all of the variance (and hence
all of the error) of the Combined Algorithm’s estimator is
related toU . Critically, the estimatorU differs from the In-
dexed Algorithm’s estimator in that its variance may shrink
over time regardlessof whether or not additional index-
based samples are taken. Note that the functionUnBias
returns the following value as the estimatorU :

∑
e∈Emp′

f(e)
α0

(1−one(e, Sal)−ϕ(nSal , nSal ′ , cnt(e, Sal)))

As ϕ(nSal , nSal ′ , cnt(e, Sal)) approaches 1 −
one(e, Sal), the variance ofU approaches zero (since all
terms in the summation are always zero in this case). As a
result, the largernSal ′ (that is, the more tuples fromSal
are used to computeN) the lower the variance ofU , and
the variance ofU is reduced over time without any costly
indexed samples. In many cases, it will be reduced enough
that the varianceN + U is actually lower than the variance
of the Indexed Algorithm’s estimator.

5.2 Weighting the Combined Estimator

The previous Subsection gave some justification as to why
(N + U) can be a better estimator than the estimator of the
Indexed Algorithm. However, this justification does not
hold in all situations. Ifϕ(nSal , nSal ′ , cnt(e, Sal)) is not
a good approximation to(1 − one(e, Sal), then the vari-
ance ofU may not be sufficiently reduced to compensate
for the addition ofN .

Fortunately, it is possible to modify the computations
performed by our algorithms in order to automatically re-
duce the variance ofU by effectively increasing the vari-
ance ofN , while still guaranteeing thatN +U is unbiased.
By carefully optimizing this trade-off, the overall estimator
can be improved substantially. Given a weightw, we first
modify theUnBias routine as follows:

Function UnBias (int samSize)
6. tot = 0
7. For(e, cnt) ∈ E do:

8. If (cnt > 0) then:
9. tot = tot− f(e)wϕ(nSal , samSize, cnt)

10. Else:
11. tot = tot + (1− w)

12. Return(nEmp/nE)× tot

Then, every time line (15) of the Concurrent Algorithm is
invoked by the Combined Algorithm, we output:

w(nEmp× tot)/cnt + UnBias(nSal ′)

as the current estimate of the Combined Algorithm.
What we have done via this modification is to allow

for a relative weighting of the components of the estimator
(N + U). If the variance ofN is relatively large, then we
can usew = 0 to give us an estimate that is totally equiv-
alent to what we would have obtained using the Indexed
Algorithm. Usingw = 0 eliminatesN from the estimate
at the same time that we eliminate the bias correction pro-
vided byUnBias. On the other hand, if the variance of
N is relatively small, then we can use a value forw that is
larger than 1; this will tend toincreasethe variance ofN
at the same time that itdecreasesthe variance ofU . By
carefully choosing a value forw, we end up with an esti-
mator whose error is always upper bounded by the error of
the naive Combined Algorithm, and that will typically be
far superior.

5.3 Optimizing the Weight Parameterw

Fortunately, there is a closed-form formula for the opti-
mal value ofw. To derive this formula, we differentiate
σ2(N + U) with respect tow and then solve for the zero.
The process is tedious but straightforward. We begin the
process withU . Note that with the addition ofw into the
Combined Algorithm, the formula fors2

Ū
from Section 4.2

becomes:

s2
Ū =

1
nE − 1

∑
(e,i)∈E

(nEmpf(e)(1− one(e, Sal)−

wϕ(nSal , nSal ′ , i))− Ū)2

Then let:

a =
1

nE − 1
(
nEmp− nE

nEmpnE
)

b =
∑

(e,i)∈E

n2
Empf

2(e)(1− one(ex, Sal))ϕ(nSal , nSal ′ , i)

c =
∑

(e,i)∈E

n2
Empf

2(e)ϕ2(nSal , nSal ′ , i)

d =
∑

(e,i)∈E

n2
Empf

2(e)(1− one(ex, Sal))

752

UL =
∑

(e,i)∈E

nEmpf(e)(1− one(ex, Sal))

UR =
∑

(e,i)∈E

nEmpf(e)ϕ(nSal , nSal ′ , i)

With this, we have:

Ū =
1

nE
(UL − wUR)

σ2(U) = a(d− 2wb + w2c− [U2
L − 2wULUR + w2U2

R]
nE

)

(we used the fact that
∑n

i=1(xi − x̄)2 =
∑n

i=1 x2
i − nx̄2)

Now putting the condition for extremum of the variance

of wN + U , ∂(σ2(U)2+w2σ2(N))
∂w = 0 and solving the first

degree equation inw, we obtain as the optimal value forw:

wopt =
ab− aULUR/nE

σ2(N)− aU2
R/nE + ac

5.4 Optimizing the Reading

In the previous two Sections we assumed that the sample
E used by the combined estimator was not altered during
the estimation process. Clearly, this is an overly restrictive
assumption. We also note that the rate at which relations
EmpandSal are scanned can be changed depending on the
query and the data set. Since we have these extra degrees of
freedom in how we execute the query, it is natural to ask the
question: what are good choices for these reading rates?

This question can be answered by solving an optimiza-
tion problem which minimizes the variance of the Com-
bined Algorithm’s estimator after a total execution time of
t. Specifically, given a set of timestEmp, tSal , andtIndex

required to access, process, and add a single tuple toEmp,
Sal , andE respectively, we wish to choosenEmp′ , nSal ′

andnE so as to minimizeσ2(wN + U) subject to the con-
straint thatt = tEmpnEmp′ + tSal nSal ′ + tIndex nE .

By choosing such optimal reading rates, we can produce
a fully optimized version of the Concurrent Algorithm. In
our implementation of the optimized version of the Con-
current Algorithm, we begin with an initial invocation of
the PreSample procedure withnumSam = 100. We
then determine the optimal reading rates using a steepest
descent method with random restarts [9]. Once the optimal
values ofnEmp′ , nSal ′ andnE have been computed,bEmp

and bSal from lines (2) and (3) of the Concurrent Algo-
rithm are chosen so that the numbers of tuples read from
EmpandSal are proportional tonEmp′ andnSal ′ respec-
tively. After every iteration the current estimate is output
in the normal fashion. The final modification is that after
each iteration of line (2) of that algorithm has completed,
the loop from line (2) of the Combined Algorithm is then
executed so that the number of tuples added toE at each
step is proportional tonE .

6 Discussion

Now that we have defined a complete algorithm for answer-
ing a specific class ofNOT EXISTSSQL queries, there
are a few additional issues that warrant further discussion.

• How can the algorithms be extended to handle other
query types? As discussed in the Introduction, our al-
gorithms are also suitable forEXISTS, IN , NOT IN,
INTERSECT, andEXCEPTqueries. Each of these query
types can evaluated using variations on the methods de-
scribed in this paper. For example, aNOT IN query
or an EXCEPTquery over two relations can trivially be
re-written as aNOT EXISTS query. Evaluation of an
EXISTS query is more complicated and requires modifi-
cation of our algorithms, but the changes required are not
radical. Rather than summing over(1 − one(e, Sal ′))
for all e in Emp′, the estimatorN will instead sum over
(one(e, Sal ′)) for all e. Since this will change the bias of
N , the correction provided byU must be changed, but the
analysis and algorithms are very similar to the results given
in the paper forNOT EXISTSqueries.

OnceEXISTS has been implemented, it becomes possi-
ble to evaluate anINTERSECTor IN query via a straight-
forward transformation into anEXISTS query.

• What if there is not an equality check withinpred or
we lack an index onSal ? The indexed solution used in
Algorithm 3 is no longer suitable. Our algorithms must be
modified slightly to handle this case. In order to implement
PreSample, we would first samplenumSam records
from Emp, and then scanSal to obtaincnt(e, Sal) for
each record in the sample. After this scan is completed, the
algorithm could output its first estimate, and begin a block-
nested-loops ripple join over both relations, updating the
current estimate in an online fashion.

In this case our algorithms require a complete scan of
Sal before we can output any results. While this is clearly
not desirable, we point out that without an equality check
in pred, anySQL query engine will have a hard time evalu-
ating the query efficiently. In general, the only way to eval-
uate such a queryexactlyis with a quadratic cost, nested-
loops-style algorithm. Our algorithm in this case would use
a similar evaluation technique, but would have the added
benefit that after the initial scan ofSal , we would be able
to offer online estimates throughout query execution.

• What if there are joins in the outer query or in the
subquery?As long as only one table is sampled from in
the inner query and one table is sampled from in the outer
query (and all other tables are buffered in memory or can
be read quickly in their entirety), multi-table outer or inner
subqueries can be handled with little modification of our
algorithms. To handle multiple tables in the outer query, it
would first be necessary to join the non-sampled relations
with each sampled tuple, and then treat all of the resulting
tuples as samples fromEmp(nEmp must then be scaled up
accordingly in the estimate and variance calculations). A
similar tactic can handle joins in the inner query.

The more difficult case is when, due to the size of the
input relations, more than one table must be sampled in ei-

753

ther the inner or the outer subquery. The statistical analysis
presented in this paper is not applicable to such a situation.
It seems possible to support joins over multiple sampled re-
lations in the outer query using algorithms very similar to
those in this paper, with only some additional analysis re-
quired to develop the analog of Theorem 4.1 for the multi-
table case. This will be an interesting direction for future
work. The much more difficult case is when more than
one table in theinner query must be sampled from. We
doubt that an appropriate statistical analysis of any suitable
algorithm is possible in this case. The problem is that it
becomes very difficult to evaluateϕ exactly for any set of
tuples from the outer query if there is a complex join in
the inner query (see Section 4.1 for a detailed discussion of
this).

7 Experiments
The section details the results of a set of experiments de-
signed to test our methods. First, we test the efficiency of
our algorithms in a realistic environment by running fully-
functional, disk-based implementations of the paper’s al-
gorithms over several multi-gigabyte data sets. Second, we
test the statistical properties of the Combined Algorithm
by repeating the algorithm hundreds of thousands of times
over some small, synthetic data sets.

7.1 Large-Scale Experiments

The first set of experiments has several goals. First, we
wish to test whether any of these algorithms can produce
suitably accurate estimates in realistic cases. Next, we wish
to test whether it is actually the case that the Combined Al-
gorithm is able to produce a more accurate estimate than
the Indexed Algorithm over a large, disk-resident database.
Finally, we wish to test the ability of the optimization de-
scribed in Section 5.4 to further increase the speed of con-
vergence of the estimator produced by the Combined Al-
gorithm over a large, disk-resident database. Note that we
do not experimentally evaluate the Concurrent Algorithm
because there is no way to give online confidence bounds
with this method; the algorithm has an arbitrarily large bias
that cannot easily be computed online without resorting to
indexed sampling. This renders any sort of online accuracy
guarantees given by the other methods difficult or impossi-
ble to provide.

In this Section, we make use of three pairs of
synthetically-generated data sets to answer a query of the
form:

SELECT SUM (e.A) FROM Emp AS e
WHERE e.B AND NOT EXISTS

(SELECT * FROM Sal AS s
WHERE s.C AND s.D = e.A)

For each data set pair tested, the data setEmp is
5GB in size and made of 100B records; the setSal is
25GB in size and also made of 100B records. The sets
were generated as follows:

0.001

0.01

0.1

1

0 50 100 150 200 250 300

C
on

fid
en

ce
 In

te
rv

al
 W

id
th

 (
Lo

gs
ca

le
)

Seconds

Indexed

Combined

Combined-Optimized

Figure 3: Experimental results fortest1.

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300

C
on

fid
en

ce
 In

te
rv

al
 W

id
th

Seconds

Indexed

Combined

Combined-Optimized

Figure 4: Experimental results fortest2.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

C
on

fid
en

ce
 In

te
rv

al
 W

id
th

Seconds

Combined

Combined-Optimized

Indexed

Figure 5: Experimental results fortest3.

754

• In test1, e.A is produced using Zipf distribution with
parameter0.8, ande.B is true50% of the time. The
number of occurrences of eache.A is also Zipfian
with a parameter of0.8, as is the number of matches
for eache.A in Sal . s.C is true10% of the time.
The average record fromEmphas113 matching tuples
in Sal (though only10% are accepted by theWHERE
clause of the subquery).

• In test2, e.A is generated using a normal distribution
with with mean0 and standard deviation15; the sign
of all negative values fore.A is inverted, ande.B
is true50% of the time. The number of occurrences
of eache.A in Sal is also generated with a normal
distribution having mean0 and standard deviation15;
a negative value indicates a tuple with no matches in
Sal . The number of repeats ofe.A in Emp is sim-
ilarly distributed. The average tuple fromEmphas5
matches inSal , and again an average of10% of those
are accepted by theWHEREclause of the subquery.

• In test3, e.A is generated similarly totest2, but a stan-
dard deviation of1 is used. Againe.B is true50% of
the time. As intest1, the number of occurrences of
eache.A is Zipfian, as is the number of matches for
eache.A in Sal , but with a milder skew of0.4. The
average tuple fromEmphas14 matches inSal , and
again an average of10% of those are accepted by the
WHEREclause of the subquery.

In each case,EmpandSal are clustered randomly on
disk and a secondary B+-Tree index is created onSal.D .
We test three options for estimating the answer to the query:
the Indexed Algorithm, the Combined Algorithm with no
optimization (equal time is spent sampling forE, Emp′,
and Sal ′), and the Combined Algorithm with full opti-
mization. The optimization is set so as to minimize the
variance after 100 seconds of query execution. All experi-
ments are performed with a cold disk buffer using a 15,000
RPM SCSI disk and a 2.4GHz Pentium machine with 1GB
RAM. For each data set, each algorithm is run for 300 sec-
onds. For each experiment, the current confidence interval
width at a 95% confidence level is plotted as a function of
time in Figures 3, 4 and 5. In order to normalize the re-
sults across plots, the width is reported as a fraction of the
current estimate. Thus, a confidence interval width of 0.3
means that the span of the 95% confidence interval is 30%
as large as the current estimate. The width is computed
assuming each estimator is normally distributed.

Discussion

In general, the Combined Algorithm performs as well as
the Indexed Algorithm for all three data sets, and in par-
ticular produced confidence bounds that are roughly two
orders of magnitude better than the Indexed Algorithm for
the most skewed data set (test1).

Note that the three data sets are ordered according to
the amount of skew in the attribute that is aggregated over,

and that the advantage of the Combined Algorithm gen-
erally decreases as the skew in the data set decreases. In
particular, sincetest1andtest2are very similar except for
e.A , it appears that ife.A has a great degree of skew, the
Indexed Algorithm is essentially unusable. On the other
hand, for the relatively well-behavede.A in test3, both the
Combined and Indexed Algorithms were roughly equiva-
lent (though the estimate of the Indexed Algorithm was
slightly better). It is also interesting to note that the ex-
periments seem to indicate that the optimization to deter-
mine the optimal sampling rates is an absolute necessity.
Without optimization, the Combined Algorithm can easily
perform far worse than the Indexed Algorithm.

7.2 Properties of the Combined Algorithm

Given that the Combined Algorithm performed far better
for some of the tests of the previous Section, it seems to
be a natural choice for the queries considered in this paper.
This Subsection describes an additional experimental eval-
uation of the Combined Algorithm, aimed at evaluating the
statistical properties of the algorithm. There are two goals
of these tests. First, we wish to obtain some experimen-
tal evidence that the mathematical derivations of expected
value, variance, and bias correction of the Combined Algo-
rithm described in the paper are in fact correct. Second, we
wish to obtain an experimental validation that the normal-
ity assumption used to compute the confidence bounds in
the previous Subsection is valid.

To test the statistical properties of the Combined Algo-
rithm, we ran a series of tests using the following setup.
Smaller versions of the two relationsEmpandSal were
created synthetically using methods very similar to those
described in the previous Subsection, with each result-
ing relation having 1000 tuples. Much smaller relations
than those tested previously were used in order to facil-
itate a very large number of algorithm repetitions during
testing. We began each test by pre-sampling 100 tuples
from Emp. We then retrieved the exact counts for those tu-
ples fromSal , and then ran the Combined Algorithm over
EmpandSal using identical sampling rates for both re-
lations. The process was repeated 100,000 times for each
pair of data sets. These 100,000 runs were then used to
compute empirically-observed values forσ2(wN +U) and
E[wN + U].

Discussion

Over several different data sets, after 200 samples from
EmpandSal , we observed the following:

• The difference between the theoretical and observed
values for σ2(wN + U) ranged from 0.04% to
0.1%. Given that the variance of such experimentally-
observed variances is often relatively large in prac-
tice, this is strong evidence for the correctness of our
derivations.

• The difference between the theoretical and observed
values forE[wN + U] was always less than0.01%.

755

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

100 150 200 250 300 350 400

N
um

be
r o

f O
bs

er
va

tio
ns

Value of Estimate

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

340 360 380 400 420 440 460 480 500 520 540

N
um

be
r o

f O
bs

er
va

tio
ns

Value of Estimate

Figure 6: Empirical distributions for Combined Algorithm.

Again, this is good evidence of the correctness of our
derivations.

Our experiments also strongly indicate that it is accept-
able to assume that the estimate given by the Combined Al-
gorithm is normally distributed when deriving confidence
bounds using the variance estimates produced by our algo-
rithms. For example, consider the empirical distributions
given in Figure 6. These plots show a strong tendency to-
ward a normal or bell-shaped curve. There was a slight
skew observed in each of the empirical distributions, but
our experiments seem to give some evidence that this skew
is actually related more toU than toN , since increasing
the size ofE tends to reduce the skew (to a certain extent,
this is not surprising since the central limit theorem applies
to E, implying that ifE has enough samples, it will in fact
be normally distributed). For a more realistic application
(where far more than 100 samples are used), we anticipate
that this slight skew may vanish entirely.

8 Related Work
The work most closely related to our own is the online ag-
gregation work from Haas, Hellerstein, and their collabo-
rators [2, 10, 4, 5]. In particular, the Concurrent Algorithm
is closely related to the ripple join [2], though the statisti-
cal analysis is very different. Though our work was clearly
inspired by Haas and Hellerstein, ours is the first attempt
to extend the online query processing framework beyond
selection predicates and joins to subset-based SQL queries.

Approximation over queries similar to the the subset-
based SQL queries we consider has been attempted before,
though not for online applications. Olken [11] considered
the problem of sampling from various relational operators,
including relational subtraction (which is closely related to
SQL’sNOT EXISTS). Olken’s algorithms are most closely
related to the Indexed Algorithm described in this paper.
However, Olken’s focus was not on developing online al-
gorithms, and the Concurrent and Combined Algorithms
we have described are far different from Olken’s sampling
strategy. Ganguly, Garofalakis, and Rastogi [3] consider
the problem of tracking the answer to set-basedCOUNT
queries over continuous update streams with limited main
memory (and so approximation is mandatory), but their al-
gorithms actually perform the opposite task that ours are
designed to: they assume a known query and then build
an updatable model to answer the query; we assume that
we have a database given to us beforehand but an unknown

query workload consisting of arbitrary subset-based SQL
queries.

9 Conclusions
We have considered the problem of performing online es-
timation over a very general class of subset-based SQL
queries (queries with an inner query that is correlated to an
outer query via a check for set membership). This greatly
extends the class of queries that are amenable to sampling-
based, online estimation. We have presented a formal sta-
tistical analysis of our estimators, and give a strong ex-
perimental argument for their utility with very large, disk-
resident databases. The experiments verify that our estima-
tors are able to quickly give accurate answers, especially
when compared to the simple, index-based solution.

References
[1] G. H. Hardy and J. E. Littlewood and G. Polya.In-

equalities. Cambridge University Press, 1988.

[2] P. J. Haas and J. M. Hellerstein. Ripple joins for
Online Aggregation. InSIGMOD, pages 287 – 298,
1999.

[3] S Ganguly and M. N. Garofalakis and R. Rastogi.
Processing Set Expressions over Continuous Update
Streams. InSIGMOD, pages 265–276, 2003.

[4] J. M. Hellerstein and P. J. Haas and H. J. Wang. On-
line Aggregation. InSIGMOD, pages 171–182, 1997.

[5] J. M. Hellerstein and R. Avnur and A. Chou and C.
Hidber and C. Olston and V. Raman and T. Roth and
P. J. Haas. Interactive data Analysis: The Control
Project. InIEEE Comp. 32(8), pages 51 – 59, 1999.

[6] N. L. Johnson and S. Kotz and A. W. Kemp.Univari-
ate Discrete Distributions. Wiley Series in Probabil-
ity, 1993.

[7] W. Cochran.Sampling Techniques. Wiley and Sons,
1977.

[8] Transaction Processing Council.TPC-H Benchmark.
http://www.tpc.org, 2004.

[9] Terrence L. Fine. Feedforward Neural Network
Methodology. Springer, 1999.

[10] P. J. Haas. Large-sample and Deterministic Confi-
dence Intervals for Online Aggregation. InStatistical
and Scientific Database Management, pages 51–63,
1997.

[11] F. Olken. Random Sampling from Databases. In
Ph.D. Dissertation, 1993.

[12] J. Shao.Mathematical Statistics. Springer, 2nd Edi-
tion, 2003.

[13] S. K. Thompson.Sampling. Wiley and Sons, 2002.

756

