General purpose database summarization

Régis Saint-Paul, Guillaume Raschia, Noureddine Mouaddib

LINA - Polytech’Nantes
ATLAS-GRIM Group
2, rue de la Houssinire, BP 92208
44 322 Nantes cedex 03, FRANCE
{saint-paul, raschia, mouaddib}@lina.univ-nantes.fr

Abstract

In this paper, a message-oriented architecture
for large database summarization is presented.
The summarization system takes a database
table as input and produces a reduced ver-
sion of this table through both a rewriting and
a generalization process. The resulting table
provides tuples with less precision than the
original but yet are very informative of the
actual content of the database. This reduced
form can be used as input for advanced data
mining processes as well as some specific appli-
cation presented in other works. We describe
the incremental maintenance of the summa-
rized table, the system capability to directly
deal with XML database systems, and finally
scalability which allows it to handle very large
datasets of a million record.

1 Introduction

Because of the ever increasing amount of informa-
tion stored each day into databases, users can no
longer have an exploratory approach for visualizing,
querying and analyzing their data without facing the
problem often referred to as ‘Information Overload’.
Hence, as mentioned in [1], the data summarization
paradigm has become “a ubiquitous requirement for a
variety of application environments, including corpo-
rate data warehouses, network-traffic monitoring and
large socio-economic or demographic surveys”. In ad-
dition, downsizing massive datasets allow to address

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

733

some critical issues such as individual data obfusca-
tion, optimization of the usage of system resources like
storage space and network bandwidth, as well as effec-
tive approximate answers to queries.

Depending on the application environment and the
preferred goal of the approach, we distinguish three
families of approaches concerned with database sum-
marization. The first one focuses on aggregate com-
putation, the second, so-called semantic compression
(SC), deals with intentional characterization of groups
of individuals. The last one is interested in metadata-
based semantic compression (MDBSC) to overcome
the low self-description ability of the usual SC meth-
ods. Those categories are obviously not strict and
there exist a lot of hybrid approaches. It is worth
mentioning here that we do not refer to traditional (or
syntactic) compression methods in which the database
is viewed as a large byte string and usual compression
algorithms (such as Huffman or Lempel-Ziv coding)
can be used.

Related work

In the early 80’s, conceptual models of statistical
databases (SDB) [16] have been studied to provide
tools for macro-data management. The main idea
is to build aggregates using statistical functions from
micro-data especially taken from scientific and socio-
economic application environments. In that context,
two major issues are i) to solve the statistical infer-
ence problem [3], dealing with the privacy of individual
data, and ii) to guarantee the summarizability property
of micro-data [11], which ensures that raw data could
be aggregated. In SDB, raw data are not preserved
and only summarized views are maintained.

Closely related to SDB, On-Line Analytical Pro-
cesses (OLAP) and multidimensional databases are
arising great interest from the summarization task
point of view, since they allow an end-user to query,
visualize and access part of the database using cubes
of aggregate values computed from raw data. In a data
warehousing environment, data marts are designed as

a subject-specific OLAP system and data cubes are
then designed in response to a given intent.

At the frontier of aggregate computation and se-
mantic compression methods, Quotient Cube [9, 10]
also aims at summarizing the generalized group by op-
erator of the cube in OLAP systems. This method
tries to group together cells of the cube with similar
aggregation values while preserving the semantic of the
cube operators. Quotient Cube, also referred by the
authors as Semantic OLAP, offers a way to reduce the
size of a particular cube, but it does not reduce the
size of the dataset itself. As such, it can be seen as
a specialized subject-oriented summary rather than a
general purpose summary of the dataset.

Using SC for dataset summarization, a lot of work
has been done, especially in the data mining research
area, to characterize groups of database observations
and to provide higher-level models such as decision
trees or association rules. The few methods [7, 8, 1]
which explicitly refer to semantic compression of struc-
tured data point out the guaranteed-quality approxi-
mate answer by taking into consideration an error tol-
erance. Thus, lossy compression can be performed to
enhance the compression ratio. Those models provide
intentional descriptions of the data but, as is, they are
usually complex and useless structures for the end-user
and they need third-party applications as well as ex-
perts to become relevant.

Finally, MDBSC approaches use metadata such
as semantic nets to guide the compression process
in a way that summaries are highly understandable
since their descriptions rely on user-defined vocabu-
lary. The main difference between SC and MDBSC is
that in metadata-based approaches, rather than try-
ing to identify hidden patterns from data, provide a
short description which precisely fit the user knowl-
edge of the domain. One representative of that family
is the attribute-oriented induction process (AOI). It
provides small versions of database relations using is-a
hierarchies a priori built over each attribute domain.
First mentioned in [19], the core AOI process has been
presented and implemented in the DBLEARN system
[6]. Tt roughly consists in replacing attribute values
of database records by more general terms taken from
the is-a hierarchies, and merging identical generalized
tuples until the size of the database has reached a
given threshold. Even if this approach seems to be
well-suited to compress the database content, it fre-
quently leads to over-generalization of tuples, and the
well fitting granularity, from the user point of view for
a specific task, is barely obtained. Furthermore the
overall process of AOI has to be performed off-line.
Besides, roll-up and drill-down operations performed
on cubes in OLAP systems are also MDBSC methods
since they rely on conceptual hierarchies built on each
dimension of the cube. Finally, fuzzy set-based meth-
ods [20] have been proposed to construct robust sum-

734

<artiste, miserable> <no occupation, miserable>

Figure 1: Examples of R* of various size

maries from datasets, using linguistic variables [22].

Our contribution

We propose SAINTETIQ, an online linguistic summa-
rization system of tables and/or views. Our approach
considers a first normal form relation R(Ay,...,A,) in
the relational database model, and constructs a new
relation R*(A4,...,A,), in which tuples z € R* are
summaries and attribute values are linguistic labels de-
scribing a set of tuples R, sub-table of R. Thus, the
SAINTETIQ system identifies statements of the form
“Q tuples of R are (ai or a3 ...or a"*) and ... and
(al ...oram)”.

The SAINTETIQ system computes, and incremen-
tally maintain, a hierarchically arranged set of sum-
maries, from the root (the most generic summary) to
the leaves (the most specific ones). Within this struc-
ture, any non-leaf summary generalizes the content of
its children nodes. From this hierarchy, it is then pos-
sible to select a set of summaries to form the relation
R* such that they cover the complete original relation
R (i.e. U,cp« R. = R). However, the size of R* can be
freely chosen: the most precise relation R* that repre-
sents R is given by the set of all leaf summaries and, at
the opposite, the maximally concise relation is made
of a single summary, the root node. A relation R* of
any given intermediate size, composed of more or less
precise summaries chosen to best represent the content
of the database, can be calculated from the hierarchy.
Figure 1 shows the intuitive idea of the various R* that
can be extracted from the summary hierarchy, where

1 is the most precise representation and I3 is the
most concise. In this example, the intentional content
of each summary is presented for attributes OCCUPA-
TION and INCOME.

The relation R* thus forms a downsized version of
the initial relation. R* size can be adjusted posteri-
orly to the summarization process due to the produced
hierarchy structure. The semantic compression intro-
duced by the SAINTETIQ system respects the original
dataset schema and can directly be queried or used as
an alternative dataset for other operations including
querying, browsing, data mining process input or any
other operation that requires a reduced view of the
database.

A summarization process has to harmoniously run

Background Other
Knowledge data
Raw sources
data
Transle.ltlon P —
service DBMS
Cooked |[] T
data
Summarization|
service summary H

Figure 2: Message-Oriented Architecture of SAINTE-
TIQ based on Web Services

on top of existing database management systems. Asa
result, the system requires a low memory consumption,
a reliable serialization and a linear time complexity for
atomic operations. This paper will focus on the SAIN-
TETIQ system proposal to meet those requirements as
well as on the DBMS coupling through various scenar-
ios.

The rest of the paper is organized as follows. First,
an overview of the SAINTETIQ process as well as its
current message-oriented architecture are presented.
The algorithmic time and space complexity will then
be discussed and the benefits of the chosen architec-
ture in terms of scalability will be exposed. In order to
validate the results, section 4 is devoted to the process
behavior in a real case situation. Section 5 will discuss
applications of our approach. Finally, in section 6, we
give conclusion and future direction of our work.

2 System architecture

A major requirement of any Semantic Compression
process is to easily integrate into existing informa-
tion systems. Among the various standardized means
for system interoperability, web services [2], an open
standard with cross-platform capabilities, presents a
unique simplicity. The simplicity of the web services
architecture, if compared with CORBA or COM+ for
instance, comes in a large part from the loosely cou-
pled way in which collaborative systems are intended
to interact, with the assumption that web methods are
independent, stateless and atomic.

Hence, to benefit the web services ease of use, the
SAINTETIQ architecture has been designed around au-
tonomous agents that interact through one-way mes-
sages. Figure 2 shows the overall organization of the
SAINTETIQ system into two separate web services.
The translation service corresponds to a pre-processing
step that prepares the data for summarization while
the summarization services actually produces the sum-

735

maries.

2.1 The translation service

A unique feature of the SAINTETIQ system is
its extensive use of Background Knowledge (BK).
Databases store precise and application-oriented in-
formation to describe individuals (people, transaction,
event, object, ...) with raw attributes values which
are far from the user vocabulary on the same domain.
For example, a database record in a business appli-
cation gives the annual income of a given customer.
This information is mandatory when application di-
rectly deals with the individual. A marketing manager
however will probably refer to those individuals who
have a comfortable or a modest income. The accuracy
of such a vocabulary is much less than the available
precision of the underlying database raw value. Nev-
ertheless, it will be preferred by the marketing depart-
ment since it allows an immediate understanding of
the typology of customers.

To best reflect the way users manipulate knowl-
edge about their data, the SAINTETIQ system relies
on Zadeh’s fuzzy set theory [22] and, more specifically
on linguistic variables [21] and fuzzy partitions [12] to
grasp the inherent imprecision and vagueness of nat-
ural language. Descriptors used for summary inten-
tional content representation are defined as linguistic
labels on the attribute domain. For example, figure 3
shows a user defined vocabulary on the attribute IN-
COME where descriptor reasonable is defined as being
plainly satisfactory to describe values between 42000
and 59000 and less satisfactory as the income is out of
this range.

none ‘modest comfortable outrageous

miserable reasonable enormous

0

0 2‘0 4‘0 GIO 8‘0 l(l)[) Drycoue (K$)
Figure 3: Fuzzy Linguistic Partition defined on at-
tribute INCOME

The translation service supports the process of find-
ing the best representation of a database tuple accord-
ing to background knowledge provided by the user. It
takes as input Raw Data, ie data directly extracted
from the database in a common XML representation.

Almost any modern Relational DBMS provide
mechanisms to directly handle XML data [15]. For
instance, Microsoft SQL-Server uses the FOR XML di-
rective of the Transact SQL language while Oracle 97
uses the DBMS_XMLGEN function. IBM’s DB2 through
Xperanto also provides similar features. Users of such
DBMS can either define their own Relational/XML
Schema mapping or use the default built-in output
format. The following example shows a possible con-
vention (the ‘element’ normal form) for such a repre-

sentation of a collection of tuples:

<MarketingData>
<Client>
<ClientID>0005</ClientID>
<Occupation>sax player</Occupation>
<Income>18,000</Income>
</Client>
<Client>
<ClientID>0013</ClientID>
<Occupation>unemployed</Occupation>
<Income>5,000</Income>
</Client>
<Client>
<ClientID>0015</ClientID>
<Occupation>pensioner</Occupation>
<Income>13,000</Income>
</Client>
</MarketingData>

Tuple values can be represented either by elements
or by attribute values in the XML document. Thus,
any usual representations of documents can actually
be handled by SAINTETIQ without any modification.
The system will try to guess the attribute names as
well as each of the “tuple” root nodes and create its
own mapping into an internal attribute/value repre-
sentation.

The translation service transforms the Raw data
document into Cooked data. Basically, the operation
replaces the original value of all attributes by the set
of descriptors defined in the BK that have a non-zero
matching value. Figure 4 gives an example of pre-
processing operation. In this figure, the separation of
data into Raw Data document has not been shown
because this separation is up to the user. As shown
above, a Raw Data document may contain a single
tuple as well as several tuples. However, we consider
one tuple at a time, and tuple t3 of figure 4 is rewrit-
ten into two distinct candidate tuples denoted by cts[1]
and ct3[2] in figure 4. Flexibility in the vocabulary def-
inition of BK permits to express any single value with
more than one descriptors. In this case, the income
value of t3 could be described as both miserable and
none with corresponding satisfaction degrees.

Cooked data are documents that contain a single
or a collection of candidate tuples and are the input
of the summarization service. They provide a com-
mon representation of the data in the form of a set
of descriptors for each attribute. Each descriptor is
associated with a satisfaction degree. This makes the
summarization service independent of the underlying
data type. We have seen that the task of rewriting
the attribute values into descriptors is trivial for nom-
inal or numerical attributes. Separating the summa-
rization service from the translation service allows for
direct input of data prepared with user-defined trans-
lation service. Automatic extraction of image features
such as color, size or texture, for example, can be used

736

D Occupation Income Candidate tuP]eS
ct, 1/artist 1/miserable
cty 1/no occupation 1/none @concepma]
cty[1] | 1/no occupation .8/miserable clustering
ct;[2] | 1/no occupation .2/none
mmary hierarchy
o 50 () ()
7]
S
Background |::> é R.1.1 Summary R.1.2
Knowledge é Intention
= Occupation Income
D Occupation Income 1/no .occupallon 1/miserable
Original t sax player 18 000 e
Database unemployed 5000 Extension:

ty pensioner 13 000

\ cty, ety [1] /

Figure 4: The Overall Process of DB Summarization

to describe an image attribute into a set of linguis-
tic descriptors. An application of the summarization
process to image databases can be found in [13].

2.2 The summarization service

The Summarization service performs a dual learning
and classification tasks on the data. It takes cooked
data as input, and outputs a collection of summaries,
hierarchically arranged according to their precision.
This hierarchical structure can later be used to pro-
duce reduced and size adjustable version R* of the
original relation R.

New data, prepared in the form of candidate tuples,
are first incorporated in the root node of the hierarchy
one at a time. Then, in a top-down conceptual clus-
tering proposed by D.H. Fisher Cobweb [4], data are
processed from the root to the leaves. At each node,
a measure evaluates the quality of a few hypothetical
summary arrangement resulting from applying a set of
learning operators which locally modify the underlying
partition P,, i.e. the set of child nodes.

At a node z, the algorithm considers incorporating
the current candidate tuple ct into each child node of z
as well as creating a new child node accommodating ct.
Furthermore, the system evaluates the preference of
merging the two best children nodes of z and splitting
the best child node. Then SAINTETIQ uses a heuris-
tic objective function, the partition quality, based on
contrast and typicality of summary descriptions to de-
termine the best operator to apply at each level of the
hierarchy.

The splitting and merging operation make local
bidirectional modification of the hierarchy. They are
used to weaken sensitivity of the object ordering, sim-
ulating the effect of backtracking in the space of sum-
mary hierarchies, without storing previous hypotheses
on the resulting structure. Thus, the system does not
adopt a purely agglomerative or divisive approach, but
rather uses both kind of operators for the construction

of the tree. The so-called hill-climbing search method
locally optimize the summary hierarchy such that the
tree is an estimated structure built from past observa-
tions and refined every time a new tuple is inserted.
Deletion of tuples is performed symmetrically, from
the leaves to the root, updating each concerned sum-
mary to take into account tuple deletion.

Once a candidate tuple is incorporated (or deleted)
from a summary z, the intentional description of z
is updated with respect to this new content and mea-
sures. Basically, this operation consists in merging the
candidate tuple descriptors with those of the summary
intention. Each descriptor is associated with two ad-
ditional measures :

e satisfaction degree: this value expresses the accu-
racy of the descriptor regarding the actual content
of the summary.

e support: it measures the number of tuples within
the summary that are actually described by this
descriptor.

This process repeats until a leaf is reached. Then,
the system considers the creation of a new level. This
decision is based on a user-defined criteria that set
the desired maximal precision of the hierarchy. The
maximal precision is achieved when all leave summary
intentions are described due to a single descriptor per
attribute. When a new level is created, two children
nodes are incorporated to the current summary, the
first one containing the leaf in its previous state and
the second one containing the single candidate tuple
ct.

The quality measure derives from the category util-
ity as defined by D. Fisher in the COBWEB system
[4], itself based on the Contrast Model introduced by
A. Tversky [17] for the judgment of similarity. This
measure tries to maximize both the contrast between
classes and the internal cohesion. Hence, the quality
measure is an aggregate of two measures: the average
contrast between summaries and the average typicality
of the summaries.

The typicality measure is based on the computation
of an intra-similarity degree o(z;) for all the summaries
z; in P,. This value is updated in an incremental man-
ner, each time a new cooked data is integrated into a
summary. o(z;) is maximal when the intentional de-
scription of z; contains only a single descriptor per
attribute, it is minimal (i.e. null) when the summary
is described by all the available descriptors as defined
in BK.

The contrast measure represents an average degree
of the dissimilarity d(z, z’) between all summary pairs
(z,2') of the partition. The dissimilarity d(z,z’) is
null when all descriptors are common between z and
z'. The process prevents such a situation in order to
avoid redundancy in the summaries. Dissimilarity, on

737

the other hand, is maximal when there are no com-
mon descriptors between the intentional descriptions
of z and 2’. The computation of the contrast of a par-
tition is the most time-consuming since a summary
with n child nodes must perform n(n — 1)/2 opera-
tions for the computation of the dissimilarity vector
needed by the contrast measure. Fortunately, most of
the values of the dissimilarity vector remain the same
for the n tests of incorporating a new tuple into each
of the child nodes. Actually, n — 1 calculations are re-
quired for each partition hypothesis Hy (P,) since for a
given updated summary z; € Hy(P,), only dissimilar-
ity values d(z1,2;), ¢ € {2..n}, have to be computed.
Furthermore, each of the contrast evaluation is made
very efficiently through the use of a matrix of pairwise
dissimilarity. Incremental operators are used to up-
date this matrix to reflect the changes that occur once
a new tuple is inserted.

Those two measures are complementary: going from
the root to the leaves of the summary hierarchy, the
internal cohesion increases while the contrast between
summaries decreases. The trade-off values are found
in the middle of the hierarchy and correspond to sum-
maries that are both generalized while still informa-
tive. Therefor, in order to represent the relation R in
a concise R* form, summaries of intermediate level are
selected. Depending on the precision required in R*,
summaries will be selected at a varying level within the
summary hierarchy structure. This last step is per-
formed through an iterative process that reduces R*
at each step until the desired size has been reached. At
each step, the less informative summaries are removed
and replaced by a more general summary (a parent in
the hierarchy).

A distinctive feature of SAINTETIQ is that changes
in the database are reflected through the incremental
maintenance of the complete summary hierarchy. This
means that at any time, the process is able to provide
a semantic compression of R at any chosen precision
level. The summary selection step is efficient because
generalized summaries have already been calculated.

3 Scalability Issues

In this section, we discuss about the robustness and ef-
ficiency of the proposed system, putting forward some
relevant features of the SAINTETIQ process, especially
related to the summarization service. The translation
service will not be further discussed as it is a trivial
rewriting process.

Memory consumption and time complexity are the
two main factors that need to be taken care off in order
to guaranty the capacity of a semantic compression
system to handle massive datasets. Those two points
will be discussed in the following subsections. Also,
the parallelization of the system will be presented as
this feature is a key to ensure a smooth scalability.

Figure 5 shows the component-based architecture

of the summarization service. Messages between au-
tonomous components are self-contained XML docu-
ments representing cooked data. They are treated as
a stream and each document is relayed from the root
of the hierarchy to different summary nodes along a
branch until it reaches a leaf.

3.1 Time complexity of summarization service

The algorithm depicted in section 2.2 shows that con-
structing the hierarchy requires finding the best learn-
ing operator at each level of the hierarchy. Thus, in
order to properly estimate the time complexity of the
process, we first need to make reasonable assumption
on the size and balance of the hierarchy.

In the worst case, i.e. when the hierarchy leaves
have the maximal precision allowed by the given BK,
the number of leaves L is a direct consequence of
the number of combinations of descriptors that are
present in the dataset. Of course, the exact num-
ber will greatly depend on the considered dataset, and
more specifically, on the existing correlation between
attribute values. For example, in a dataset with at-
tributes PRODUCT and PRICE, it is likely that we will
not find the combination of Ferrari and Cheap.

The total number of leaves L is not an issue because
it can be adjusted by the user according to the desired
precision:

e A detailed BK will lead to a greater precision in
the summary description, with the natural con-
sequence of a larger summary. For nominal at-
tribute, the worst case is achieved when the trans-
lation step is skipped and the data are summa-
rized directly with the values as they appear in
the dataset.

e The hierarchy is constructed in a top-down ap-
proach and it is possible to set the process so that
the leaves have any desired precision (see section
2.2).

The average hierarchy depth will be denoted d, an es-
timation of d is given by d = logg L where B is the
average number of children nodes of a summary.

At each step, the process evaluates the quality of
the partition P, resulting from the incorporation of a
candidate tuple ct into each of the children nodes as
well as k (actually 3: splitting, merging and creating a
new node) additional operations. This process repeats
along the hierarchy until a leaf node is reached. The
time cost C' for the incorporation of ¢t can thus be
expressed as :

C(B,L)=logg L-[(B+k)-c¢(B,N)]

where c is the time taken for the evaluation of a parti-
tion quality. Thanks to the contrast matrix described
in section 2.2, this cost is a linear function of the num-
ber of attributes N and of the number of children
nodes B.

738

The cost for the incorporation of a candidate tuple
is then a fixed time C(B, L) depending only on the size
of the hierarchy. The SAINTETIQ process time com-
plexity is thus in O(n) with n the number of candidate
tuples. The number of candidate tuples that will be
produced by the translation service is dependent only
on the fuzziness of the BK definition. A crisp BK will
produce exactly as many candidate tuples as there are
original tuples.

We can see that the balance of the hierarchy is the
parameter that has the most influence on the compu-
tation cost. In fact, this estimation corresponds to a
worst case scenario because many of the (B + k) eval-
uations do not have to be done in order to decide the
correct learning operator. Here are some of the heuris-
tics that helps in avoiding the complete computation:

e If the intentional content of a child node already
subsume the description of the candidate tuple,
the process can stop evaluating the other child
nodes: none will be a better candidate. During
the learning process, more descriptor combina-
tion have already been learned by the hierarchy.
Hence, this situation will occur more frequently.
In such a situation, the summary hierarchy per-
forms a simple classification task rather than a
learning one. On very large datasets, it is likely
that at some point, almost all the existing combi-
nation are already known.

e In order to guaranty a deterministic classification,
the process avoids the creation of a partition such
as two summaries subsume the same set of de-
scriptors. If the incorporation of a candidate tu-
ple into one of the children node leads to such
a partition, then the incorporation of the candi-
date within the conflicting children node can be
skipped.

In the SAINTETIQ algorithm, raw data have to be
parsed only once. Furthermore it is performed in a
minimal time cost, due to both the incremental learn-
ing, the hill-climbing search method and the prede-
fined vocabulary of summary descriptions.

3.2 Space complexity of the summarization
service

From the memory consumption point of view, only
the current state of the summary hierarchy as well
as a single cooked data are simultaneously required
to perform the SAINTETIQ algorithm. We denote
by S the average size in kilo-bytes of a summary or
cooked data. In the average-case assumption, there
are EZ:O B¥ = (B! —1)/(B —1) nodes in a B-arity
tree with d, the average depth of the hierarchy. Thus,
the average space requirement is given by:

Bd+1 -1

em =95 —p 7

From translation —, Cooked
service or other data
cooked data source

summary Root

Summary document
« Intention
« Extension (optional)
ey
Optimisation data
« Contrast matrix
« Child informations

Cooked
data
Summary

. |Summary R.1

R2
Summary S“‘:_‘ ??ry
R3 Summary

Summary R.23.2
R24 Summary

Summary | [_|
— R23
R3.2
Summary .
R22 R14
_ J

hd
Cache manager » Summary
Load repartition storage

Figure 5: Sub-Systems and their Interactions in the
Summarization Service

Each summary node contains not only the inten-
tional description, but also an optional list of the in-
corporated tuples (i.e. the extension) and some opti-
mization data: the contrast matrix and other incre-
mental measures. Based on some real test, S = 3kB
gives a rough estimation of the space required for each
summary.

In practice, the number of summary nodes is de-
rived from the variety of attribute values in the
database. In the worst case where each leaf of the hier-
archy represents only one descriptor combination, the
number of leaves L is equal to the number of distinct
cooked data descriptions. L is expected to be much
lower than the number n of tuples since the transla-
tion vocabulary is at most as precise as the initial raw
values. For instance, if we consider a 1 million tuples
database, a reasonable assumption is L =~ n/4, that
is, L = 250000. The number of leaves of an average
B-arity tree is also given by L = B?, where d is the av-
erage depth. Therefor, B = 6 and d = 7 are candidate
values to approximate the number of leaves in a sum-
mary tree of a 1 million tuples database. Hence, the
total number of summaries in the hierarchy is given by
6 - 335923 - 3kB ~ 1GB.

Figure 5 gives an overview of the internal implemen-
tation of the summarization service. Each summary,
while being part of a global hierarchy is designed to be
an autonomous agent and can be serialized as a small
binary stream.

A supervisor, the cache manager, is in charge of
summary caching in memory and it can be bounded
to a given memory requirement. Usually, less than

739

a hundred of summaries is needed in the cache since
this number covers the two or three top levels of even a
wide hierarchy. Least recently used summaries are dis-
carded when a required summary is not found in the
cache. The cache manager requests the resurrection
of a summary, as stored in the database. Once res-
urrected, the parent summary component invokes the
incorporation method in the current summary with
the new tuple as argument. Then, the cooked data
document is transmitted to the appropriate child sum-
mary and this operation is repeated until the message
reaches a leaf node. The summary stores itself in the
database only when it is unloaded by the cache man-
ager.

The swap system supported by cache management
drastically reduces memory consumption to a user or
system-defined threshold. The natural counterpart is
some more frequent disk accesses, even if they are con-
trolled by the cache policy. In a conventional page
cache system, objects in memory would be loaded ac-
cording to their relative position in the stack. This de-
fault behavior however can be enhanced by the SAIN-
TETIQ cache policy where instances are disposed ac-
cording to their use frequency. With such a method,
complete branches of the hierarchy are resident in
memory while rarely accessed summaries (which rep-
resent outliers data) are stored on the disk. A general
disk access cost model has not been defined since per-
formance mainly depends on data insertion order as
well as attribute values distributions, and as such, it
is very application-dependent.

3.3 Distributed Processing

As mentioned in the previous section, the implemen-
tation of the SAINTETIQ system is based on the
Message-Oriented Programming paradigm. Each sub-
system is autonomous and collaborates with the oth-
ers through disconnected asynchronous method invo-
cations. It is among the least demanding approaches
in terms of availability and centralization.

The autonomy of summary components allows for a
distributed computing of the process. Once a compo-
nent completes the treatment and evaluates the best
operator for the hierarchy modification, if needed, a
similar method is successively called on children nodes.
The cache manager is able to handle several lists of
summaries residing on different computers. The man-
ager is also responsible for the load balancing of the
newly created process.

Moreover, in order to minimize bandwidth con-
sumption, summaries are grouped by branches of the
hierarchy. Obviously, the most frequently used nodes
are situated at the top of the hierarchy. Those nodes
however are not very prone to hierarchy rearrange-
ments when the number of summarized tuples signif-
icantly grows. In that case, their main task consists
in classifying the new tuples, that is finding the next

node which will further process the tuple. Once it is
oriented to a branch, all other sibling nodes become
available for parallel computing. The load balancing
is directly achieved by analysing the number of pro-
cessed tuples for each node: when data are treated
in no particular order, the relative content size of a
summary is a direct function of its frequency of use.

As shown by Figure 5, each basic step, separated by
a wide arrow, can take place on distinct parallelized
nodes:

e The source DBMS do not require any change
other than the publication or the request for raw
data. Usually, the DBMS is already in place and
isolated from other tasks like the summarization
process.

e The translation process is simultaneously per-
formed on any single data or batch of data over
different computers. It produces a stream of
cooked data (see Section 2.1) that can reach the
summarization service in any order.

e The summarization service requires a front-end
as an entry point to the hierarchy. Nodes are
processed from the top of the hierarchy to the
bottom. As detailed in Section 2.2, the parti-
tion quality measure is the most demanding one in
terms of processing time. Each of the summary
node have the information about its underlying
hierarchy partition in order to independently per-
form those evaluations. As such, summary com-
ponents can run on different computers and seri-
alize summary documents in a centralized or dis-
tributed DBMS (which can be entirely different
from the one providing raw data).

Between each of these steps, a single message con-
taining the cooked data is transmitted as shown by the
wide arrows of Figure 2. The serialized form of the
cooked data document requires about 1kB for header,
to identify the target hierarchy structure, and the size
corresponding to the serialization of each attribute de-
scriptor (about 20 bytes for each attribute).

4 Experiments
4.1 UCI dataset

The summarization performance was evaluated
against the 1990 US Census Data from the UCI KDD
Archive [6] which is the largest dataset of this repos-
itory. The dataset is a collection of 2,458,285 tu-
ples defined on 67 discrete attributes. We used the
prepared version of the dataset, as provided by C.
Meek, B. Thiesson and D. Heckerman from Microsoft.
They dropped the less useful attributes of the orig-
inal dataset and discretized the few continuous at-
tributes to a reasonable number of discrete values,
since we do not have expert skills required to build

740

i i I i I i i I I
100000 200000 300000 400000 500000 ~ 600000 700000 ~ 800000 900000
Number of processed tuples

Figure 6: Process performance

realistic domain knowledge. Therefor, the data we
used did not need any translation and were directly
processed by the summarization service available at
http://www.simulation.fr/seq.

In this experiment, the main goal is to check the
validity of our processing cost function. From the 67
attributes, we selected 11 of them, with the greatest
number of discretized values (many attributes were bi-
nary one). Thus, all the selected attributes have be-
tween 5 and 14 distinct values such that the cartesian
product is 9.828e8.

The test was performed over the first million of tu-
ples of the dataset. Figure 6 shows the processing
rate, evaluated on a Intel Pentium IV 2.6GHz proces-
sor. Predictably, as the hierarchy size increases, the
process slows down. The size of the hierarchy depends
essentially on two factors which directly determine the
total number of leaves in the hierarchy:

e maximum granulation of the summaries;
e size of the cartesian product of attribute domains.

The maximum granulation of summaries is fixed by
the condition under which the hierarchy depth grows.
For our experiments, the precision was set to the max-
imum, i.e. the hierarchy leaves contain exactly one ele-
ment of the cartesian product (a single combination of
attribute values). This situation produces a hierarchy
where leaves have a maximal intra-similarity as only
one descriptor is used for each attribute. Of course, it
is not required to be as precise as this and the condi-
tion for the hierarchy growth can be set to any value
of intra-similarity. The effect would be like cropping
the summary tree by removing its too precise nodes.

Distinct tuples, i.e. elements of the relation defined
over the cartesian product of discretized attribute do-
mains, only depends on the translation step and the
selected attributes. In our case, the translation step
was already done and it appeared that a lot of combi-
nations of attribute values were represented in the first
million of tuples. Figure 7 shows the number of leaves
according to the number of processed tuples. We can
see that the curve is pretty regular with an average
of one tenth of the database presenting different at-
tribute values (over the selected subset of attributes).

110 000

100 0001 - - -

90 000

80 000

700004 - - -

60 000

50 000

Number of leaves

40 000

30 000

20 000

10 000

I i i i i I i I I
100000 200000 300000 400000 500000 600000 700000 800000 900000
Number of processed tuples

Figure 7: Number of leaf summaries

I Maximum width [Average width
T T T T T

Number of child nodes

|
1 12 14 16 18 20 22
Hierarchy level

4 6 8

Figure 8: Wideness of the final hierarchy

The total number of leaves at the end of the process is
118707. Hence, a relation R* can be produced of any
size between this number and 1.

The hierarchy contains a set of intermediate levels
involving any new tuple incorporation either in an ex-
isting node (classification task), or to a new one (learn-
ing task). Therefor, the average number of operations
needed to incorporate a new tuple is closely related to
the width and the depth of the hierarchy. In that ex-
periment, the produced hierarchy is composed of a to-
tal of 234255 individual summaries, distributed among
branches of an average depth of 12.67, with the max-
imum depth being 22. The maximum width (19) is
located at level 2, whereas the average value of this
level is 7 siblings. Figure 8 shows the maximal and
average width at each level of the tree. Maximal and
average wideness at each level of the final hierarchy
had been reported in figure 8.

It is worth to note that while the number of new
leaves increase monotonically, the depth or wideness
of the hierarchy follows, as predictable, a logarithmic
progression. Figure 9 shows the evolution of the maxi-
mum and average depth of the hierarchy regarding the
number of incorporated tuples. Naturally, the perfor-
mance of the process follows roughly the same progres-
sion.

The total time for the processing of one million tu-
ples was 636 minutes. It should be noted that the
algorithm was optimized in terms of number of opera-
tions (time complexity), but, as a research prototype,
no low-level optimization has been done regarding the

741

—Max depth___— Average depth
T T T T

I I I I I I I I I
100000 200000 300000 400000 500000 600000 700000 800000 900000
Number of processed tuples

Figure 9: Evolution of the depth of the hierarchy

1900 !
18004 —— - \-1—-—
17004
16004 - - -
15004 - -~

@ 14004

.21300*

T 12004

& 11004

2 10001

9004 - - -

8004 - - -

7004

6004 - - -

5004 - - —

4001

3004 - - -

2004 - - - -

1004 —————1——

|

ope

Number ol

i i i i i i i i
100000 200000 300000 400000 500000 600000 700000 800000 900000
Number of processed tuples

Figure 10: Learning operators needed for 10,000 tuples

individual operation cost. For example, descriptors are
compared through string comparisons while a bit map
would dramatically reduce time cost for this operation.
Those kind of low-level optimizations however would
only affect the number of processed tuples per second
(constant part of time cost), not the overall aspect of
the curve shown on Figure 6.

Besides, as shown on Figure 10, the number of
learning operators tends to be smaller as more tuples
are processed. This is due to the decreasing proportion
of new distinct tuples w.r.t. the ones already inserted
into the hierarchy. As more tuples are processed, fewer
changes are required on the hierarchy and, hopefully,
once all existing combinations of attribute values have
been processed, incorporating new tuples consists only
in sorting it in a tree. In our experiments, the rate of
new combinations is almost constant throughout the
all process (see Figure 7). Then, the system perma-
nently stays in learning mode. Hence, performance
should increase once the curve of Figure 7 has reached
its asymptotic behavior.

4.2 Real life dataset

Through an agreement, the CIC Banking Group pro-
vided us with an extract of statistical data used for
behavioral studies of their customers. The database
consists in a single table in which each record repre-
sents a customer, and fields (attributes) describe the
customer in terms of age, income, or occupation, as
well as banking products this customer is used to hold
(accounts, credit cards, loan, ...). And finally, several

I i I I i i i i i i I i i I I I
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32 000
Number of processed tuples

Figure 11: Process Performance

14000
130004 -
120004 -
110004 —
10 000 —
90004 —
80001 -
70001 -
6000} -
5000
40004 -
30001 -

Number of leaves

|
20001 - - -1
1000

i i i i i I i i i i i i I i I I
2000 4000 6000 8000 10000 12000 14000 16000 18000 20 000 22 000 24 000 26 000 28 000 30 000 32 000
Number of processed tuples

Figure 12: Number of leave summaries

attributes are dedicated to statistics over the opera-
tions the customer do on a monthly period (number of
operations, total cash withdrawal, ...). The database
represents a set of 33700 customers and 70 attributes.
It is to be noted that some of the database values are
absent and some are incoherent.

This dataset differs from the UCI dataset in sev-
eral ways: it has not been prepared, customers were
sorted by offices (each customer is attached to a par-
ticular office, there are about 120 offices spread in the
western region of France concerned by the dataset),
and BK knowledge has been designed by the expert
of the marketing department. Figure 11 shows the
evolution of the performance of the process. It is to
be noted that the performance increases toward the
end of the processing. As opposite to the previous
dataset, the bank customers exhibit a greater correla-
tion between attributes. Hence, less different combi-
nations are found once the process progresses. We can
see that the performance decreases around the 6000th
and the 18000th processed tuple. Those two disconti-
nuities also appear on the curve showing the number
of leaves (see Figure 12). This shows that new value
combinations were met at a higher rate during those
stages than during the rest of the process, requiring
more learning operations with a corresponding impact
on the process performance. After a sequence of learn-
ing activity to take into account the new modalities
found in the data set, the hierarchy becomes stable
again and less operations are required for the incorpo-
ration of incoming tuples.

742

This situation is explained by the dataset organiza-
tion: new category of customers are found when data
from different offices are processed. We later learned
that the bank offices are not only geographical divided,
but are also specialized by customer types, some spe-
cializing, for example, in firms only.

5 Applications

Beside the classical usage of semantic compression
techniques, the SAINTETIQ summarization scheme
was successfully applied in a variety of applications,
presented in separate publications [18, 13, 14]:

1. Selection of a subset of summaries of a given size
for incorporation into a Galois Lattice;

2. Identification of the typology of a group (in a De-
cision Making paradigm);

3. Image database query by example;
4. Flexible query/answering support;

5. User profiling for an intelligent Personal Video
Recorder;

The first application is a straightforward usage of
the compressed version of a database. Galois Lattices
are structures that offer some great features for image
database browsing. However, their usage is limited
due to the high time complexity (O(n?)) of the lattice
construction. Hence, rather than directly constructing
the lattice on the images of the database, a summa-
rized version is used. The lattice is constructed on a
fixed number of generalized summaries rather than on
the initial data. In this case, each summary describes
a subset of the images thanks to descriptor automati-
cally extracted from the low level features of the image.

The second situation also uses the reduced version
of a collection of data but, in this case, the summary
structure is used to build reduced version of subset of
the database tuples. For example, if the user wants
to know the typology of customers that buy a partic-
ular product, (s)he select the corresponding subset of
the database and uses the summary structure to find
relevant generalization of those customers. This way,
the intentional content of the summaries provide an
immediate description of the customers in the user vo-
cabulary.

Applications 3 to 5 benefit from the hierarchical ar-
rangement of summaries, used as a general index over
the data. Using the classification property of the sum-
marization process, it is possible efficiently locate sum-
maries that can answer a particular query. Hence, the
summary structure can be used to give approximate
answer to queries.

6 Conclusion

In this paper, we presented the integration of a
database summarization process into existing corpo-
rate DBMS systems. This operation is facilitated
by the intensive use of wide spread standards such
as XML and Web services. The summarization pro-
cess combines advantages such as scalability, con-
trolled memory consumption, conservation of database
schema and the capacity to handle various data types
as well as user-defined ones. The produced summary
hierarchy provides views on the data at different levels
of granularity through perfectly understandable (be-
cause user-defined) high-level descriptors. Those de-
scriptors rely on fuzzy set theory to avoid common
drawbacks of crisp methods such as mis-categorization.
The scalability and linear time complexity of the sum-
marization process was validated against both a mas-
sive database and a real case application.

Future work could be to provide a wider range of
data translation services for various data types and to
develop a graphical user interface that can help the
user to take the most benefits from a summarized ver-
sion of the database. We will consider using the on-line
version of summary integration to help mining dynam-
ical behavioral tendencies.

Further developments include the use of database
summaries to help querying e-communities catalog
data. In this application, many peers collaborate to
a community providing large databases (for example,
the community of travel agencies). To answer a user
query, each community member has to be separately
queried and the results have to be gathered before be-
ing sent back to the user. The approximate query an-
swer given by a summarized version of peer databases
can be used to avoid unnecessary queries to peers that
obviously don’t have any valuable answer and, thus,
help in sparing both bandwidth and response waits.

References

[1] S. Babu, G. Minos, and R. Rajeev. SPARTAN:
A model-based semantic compression system for
massive data tables. In Proc. of the 2001 ACM
Intl. Conf. on Management of Data (SIGMOD
2001), pages 283-295, Santa Barbara, CA, May
2001.

[2] W. W. W. Consortium. Web services activity,
[http://www.w3c.org/2002/ws], 2002.

[3] D. E. Denning. Secure statistical databases with
random sample queries. ACM Trans. Database
Syst., 5(3):291-315, 1980.

[4] D. H. Fisher. Knowledge acquisition via incre-
mental conceptual clustering. Machine Learning,
2:139-172, 1987.

743

[5] J. Han, Y. Fu, Y. Huang, Y. Cai, and N. Cercone.
DBLearn: a system prototype for knowledge dis-
covery in relational databases. In R. T. Snodgrass
and M. Winslett, editors, Proceedings of the ACM
SIGMOD International Conference on Manage-
ment of Data, page 516, New York, NY, USA,
May 1994. ACM Press.

[6] S. Hettich and S. Bay. The UCI KDD archive
[http://kdd.ics.uci.edu], 1999.

[7] H. V. Jagadish, J. Madar, and R. T. Ng. Semantic
compression and pattern extraction with fascicles.
In Proceedings of 25th International Conference
on Very Large Data Bases (VLDBY99), pages 186—
198, 1999.

[8] H. V. Jagadish, R. T. Ng, B. C. Ooi, and A. K. H.
Tung. ItCompress: An iterative semantic com-
pression algorithm. In 20th International Confer-
ence on Data Engineering, page 646, 2004.

[9] L. V. S. Lakshmanan, J. Pei, and J. Han. Quo-
tient cube: How to summarize the semantics of
a data cube. In Proceedings of the 28 th Inter-
national Conference on Very Large Data Bases,
pages 778-789, Hong Kong, China, August 2002.

[10] L. V.S. Lakshmanan, J. Pei, and Y. Zhao. Socqet:
semantic olap with compressed cube and sum-
marization. In SIGMOD ’03: Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, pages 658-658. ACM Press,
2003.

[11] H.-J. Lenz and A. Shoshani. Summarizability in
OLAP and statistical data bases. In SSDBM °97:
Proceedings of the Ninth International Confer-
ence on Scientific and Statistical Database Man-
agement, pages 132-143. IEEE Computer Society,
1997.

[12] E. H. Ruspini. A new approach to clustering. In-
formation and Control, 15(1):22-32, July 1969.

[13] R. Saint-Paul, G. Raschia, and N. Mouad-
dib. Image database summarization with the
saintetiq system. In Proc. of the 9th Int.
Conf. on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems
(IPMU’2002), pages 1179-1186, Annecy, France,
July 2002. ESTA - Universit de Savoie.

[14] R. Saint-Paul, G. Raschia, and N. Mouaddib.
Mining a commercial banking data set: The Sain-
tEtiQ approach. In Proc. of the IEEE Int. Conf.
on Systems, Man & Cybernetics (SMC’2002),
Hammamet, Tunisia, October 6-9 2002.

[15]

[16]

[19]

J. Shanmugasundaram, E. Shekita, R. Barr,
M. Carey, B. Lindsay, H. Pirahesh, and B. Rein-
wald. Efficiently publishing relational data as
XML documents. VLDB Journal: Very Large
Data Bases, 10(2-3):133-154, 2001.

A. Shoshani. Statistical databases: Character-
istics, problems, and some solutions. In Figth
International Conference on Very Large Data
Bases, September 8-10, 1982, Mexico City, Mex-
ico, Proceedings, pages 208-222. Morgan Kauf-
mann, 1982.

A. Tversky. Features of similarity. Psychological
Review, 84(4):327-352, 1977.

W. Voglozin, G. Raschia, L. Ughetto, and
N. Mouaddib. Querying the SaintEtiQ summaries
- a first attempt. In 6th International Confer-
ence on Flexible Query Answering Systems, Lyon,
France, June 24-26 2004.

A. Walker. On retrieval from a small version of
a large data base. In Sizth International Con-
ference on Very Large Data Bases, October 1-
3, 1980, Montreal, Quebec, Canada, Proceedings,
pages 47-54. IEEE Computer Society, 1980.

R. R. Yager. A new approach to the summariza-
tion of data. Information Sciences, 28(1):69-86,
Oct. 1982.

L. Zadeh. Concept of a linguistic variable and its
application to approximate reasoning-I1. Informa-
tion Systems, 8:199-249, 1975.

L. A. Zadeh. Fuzzy sets. Information and Control,
8:338-353, 1965.

744

