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Abstract

With the advent of chip multiprocessors, ex-
ploiting intra-transaction parallelism is an at-
tractive way of improving transaction perfor-
mance. However, exploiting intra-transaction
parallelism in existing database systems is
difficult, for two reasons: first, significant
changes are required to avoid races or con-
flicts within the DBMS, and second, adding
threads to transactions requires a high level
of sophistication from transaction program-
mers. In this paper we show how dividing
a transaction into speculative threads solves
both problems—it minimizes the changes re-
quired to the DBMS, and the details of par-
allelization are hidden from the transaction
programmer. Our technique requires a lim-
ited number of small, localized changes to a
subset of the low-level data structures in the
DBMS. Through this method of parallelizing
transactions we can dramatically improve per-
formance: on a simulated 4-processor chip-
multiprocessor, we improve the response time
by 36–74% for three of the five TPC-C trans-
actions.

1 Introduction

We are in the midst of a revolution in microprocessor
design: computer systems from all of the major man-
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ufacturers that feature chip multiprocessors (CMPs)
and simultaneous multithreading (SMT) are entering
the marketplace. Examples include Intel’s “Smith-
field” (dual-core Pentium IV’s with 2-way SMT),
IBM’s Power 5 (combinable, dual-core, 2-way SMT
processors), AMD’s Opteron (dual-core), and Sun
Microsystems’s Niagara (an 8-processor CMP). How
can database systems exploit this increasing abun-
dance of hardware-supported threads? Currently, for
OLTP workloads, threads are primarily used to in-
crease transaction throughput ; ideally, we could also
use these parallel resources to decrease transaction la-
tency. Although most commercial database systems
do exploit intra-query parallelism within a transaction,
this form of parallelism is only useful for long running
queries, while OLTP workloads tend to issue multiple
short queries. To the best of our knowledge, commer-
cial database systems do not exploit intra-transaction
parallelism [2, 11, 21], and for good reason.

Parallelizing a transaction is difficult. First, the
DBMS must be modified to support multiple threads
per transaction. Latches must be added to data struc-
tures which are shared between threads in the transac-
tion. These latches add complexity and hinder perfor-
mance. Second, the transaction must be divided into
parallel threads. Consider the New Order transac-
tion, which is the prevalent transaction in TPC-C [6]
(Figure 1). We can parallelize the main loop (which
represents 78% of the execution time), such that each
loop iteration runs as a thread. The transaction pro-
grammer must understand when these threads may
interfere with each other, and add inter-thread locks
to avoid problems; e.g., the thread should use inter-
thread locks to ensure that only one thread updates
the quantity of an item in the stock table at a time.
Finally, the transaction programmer must test the new
transaction to ensure that the resulting parallel execu-
tion is correct and ensure that no new deadlock con-
ditions or subtle race conditions were introduced, and

73



begin transaction {
Read customer info [customer, warehouse]
Read & increment order # [district]
Create new order [orders, neworder]
for(each item in order){
Get item info [item]
if(invalid item)

abort transaction
Read item quantity from stock [stock]
Decrement item quantity
Record new item quantity [stock]
Compute price
Record order info [order line]
}

 78
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} end transaction

Figure 1: The New Order transaction. In brackets
are the database tables touched by each operation.

then repeat the entire process until satisfactory per-
formance is achieved.

1.1 Incremental Parallelization with Thread-
Level Speculation

Fortunately, computer architecture researchers have
anticipated this problem and have developed hardware
support for chip multiprocessors which eases paral-
lelization, called Thread Level Speculation (TLS) [7,
18, 19]. Support for TLS is simple and elegant, has
been implemented in Sun’s MAJC [19] and Stanford’s
Hydra [7] CMPs, and is a strong candidate technology
for future high-end CMPs. In a nutshell, TLS allows
a program to be divided arbitrarily into speculative
threads (or epochs) which are executed in parallel. The
TLS mechanism ensures that the parallel execution is
identical to the original sequential execution. It pre-
serves sequential semantics by tracking data depen-
dences between epochs and restarting threads when
their execution diverges from the original sequential
execution (TLS is described in more detail in Sec-
tion 2). In essence, dividing a program into epochs
improves performance without affecting correctness.

Our goal is to parallelize important OLTP transac-
tions, to achieve high performance with low implemen-
tation overhead. In this study we parallelize the main
loops of the transactions from TPC-C, running on the
BerkeleyDB DBMS [13]. We execute that transaction
on a TLS system which provides profile information
identifying the performance bottleneck; we then per-
form localized optimizations on the DBMS code to re-
move that bottleneck. Removal of each bottleneck ex-
poses the next bottleneck, so we repeat the process.
This paper describes the bottlenecks we encountered
(Section 4), and provides general techniques for elimi-
nating them (Section 3).

While in this paper we evaluate TPC-C transac-
tions running on BerkeleyDB, our techniques can be
generalized in two important ways. First, the changes
we made were to DBMS data structures and functions
which are shared by all transactions, hence the opti-
mizations we describe can be applied to any transac-
tion. Second, we change fundamental primitives used
by all database systems (such as latches and locks),
hence our techniques are not specific to BerkeleyDB
and can be applied to other database systems. Apply-
ing our techniques required changing less than 1200
lines out of 180,000 lines of code in the DBMS, and
took a graduate student about one month of work. As
a result we eliminate 36 to 74% of the latency from
three out of five TPC-C transactions.

1.2 Related Work

Traditionally, high-performance database systems
have targeted inter-transaction parallelism, or intra-
operation parallelism, while this paper introduces new
techniques for exploiting intra-transaction parallelism.
Previous work on intra-transaction parallelism has
focused on hand-parallelized transactions [9, 15]—
requiring great effort from the programmer and sig-
nificant changes to the DBMS. Shasha et. al. showed
that if a conflict graph can be constructed for a set
of transactions, then the transactions can be chopped
into smaller transactions which increases the degree of
concurrency in the workload [16]. In this paper we
show how to exploit intra-transaction parallelism with
very little effort by the transaction programmer, min-
imal changes to the DBMS, and without having to
construct a complete conflict graph.

Our paper draws upon Kung and Robinson’s op-
timistic concurrency control work [10] in two ways.
First, the execution of epochs in thread level specu-
lation is very similar to the execution of optimistic
transactions: epochs optimistically assume that they
will not conflict with other epochs, epochs compare all
of their reads and writes to earlier epochs to ensure a
serializable execution, and epochs commit when they
succeed or abort and restart when speculation fails.
Second, we optimistically omit lock and latch acquires
in epochs, and let the TLS mechanism resolve conflicts.
Our technique for optimistically omitting locks is also
similar to transactional memory [8]. The difference be-
tween our paper and both transactional memory and
optimistic concurrency control is that we allow spec-
ulative transactions to interact with non-speculative
transactions, with no changes to the non-speculative
transactions.

The idea of using TLS to simplify manual paral-
lelization was first proposed by Prabhu and Olukotun
for parallelizing SPEC benchmarks on the Hydra chip
multiprocessor [7, 14]. The base Hydra multiprocessor
uses a design similar to the shared cache CPU design
used in the evaluation portion of this paper.
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(a) Sequential execution.
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(b) Parallel execution
with TLS.

Figure 2: How TLS ensures that all reads and writes
occur in the original sequential order.

1.3 Contributions

Our paper makes the following contributions: (i) it
solves the problem of parallelizing the central loop of
a transaction, which reduces transaction latency and
hence decreases contention for resources used by the
transaction; (ii) it provides a methodology for elimi-
nating the data dependences which limit parallel per-
formance, describing three specific techniques for elim-
inating these dependences and examples of their ap-
plication; (iii) it demonstrates the application of these
techniques by incrementally parallelizing a transaction
running on a real DBMS, reducing transaction latency
by more than a factor of two on a four-CPU machine.

2 Applying TLS to Transactions

When extracting intra-transaction parallelism, thread
level speculation (TLS) allows the programmer to par-
allelize aggressively without worrying about correct-
ness. Consider a transaction which updates several
rows in a database: if the rows are indeed indepen-
dent, then these updates could be performed in paral-
lel. However, since the row IDs are typically not known
in advance, the updates must instead be performed
sequentially to preserve potential read and write de-
pendences between different updates to the same row.
With TLS support, the updates could be performed
aggressively in parallel, limited only by the actual run-
time dependences between rows. The following de-
scribes the basic functionality of TLS, including both
software and hardware support.

2.1 Software Support for TLS

Under TLS, sequential code (Figure 2(a)) is divided
into epochs, which are executed in parallel by the sys-
tem (Figure 2(b)). The system is aware of the original
sequential order of the epochs, and also observes ev-
ery read and write to memory that the epoch performs
(i.e. the reads and writes through p and q).

The system observes whether epoch 1 ever writes
to a memory location which has already been read by
epoch 2—if so, then epoch 2 has violated sequential

semantics, and is rewound and re-executed with the
correct value. For example, in Figure 2(b) we see that
epoch 2 read p before epoch 1 wrote to p, so we restart
epoch 2. On the second execution epoch 2 reads the
new value. Note that the read of q does not cause a
violation, since it executes after the write to q, and
thus reads the correct value. By observing all loads
and stores, and restarting an epoch whenever it con-
sumes an incorrect value, the TLS mechanism ensures
that the parallel execution is identical to the original
sequential execution.

The execution of epochs is similar to the execu-
tion of transactions in a system with optimistic con-
currency control [10]: an epoch either commits or is
violated (aborts), and if there are no dependences be-
tween epochs then their concurrent execution will be
successful. The difference is that epochs are much
smaller than transactions (we demonstrate the use of
between 5 and 200 epochs per transaction in this paper
by creating one epoch per loop iteration), and hard-
ware support makes the cost of violating and restart-
ing an epoch much lower than the cost of aborting and
restarting a transaction. In addition, the ordering of
the epochs is specified by their epoch number when
the epochs are created, while with optimistic concur-
rency control the serial ordering is determined by the
transaction commit order.

How does a programmer use this programming
model to incrementally improve performance? First,
and most importantly, the programmer can simply
specify the decomposition of the transaction into
epochs and do nothing further, and the result will
be a correct parallel execution of the transaction (al-
beit one that does not necessarily perform very well).
The epochs will likely have dependences between them
which will cause violations (i.e., cause speculation to
fail). If this is the case, then the programmer can use
feedback from the TLS system to identify the cause of
each dependence and try to eliminate them.

For example, one dependence which we encountered
when parallelizing New Order was in the buffer pool:
every time a page was requested and it was present
in the buffer pool, the global variable st cache hit
would be incremented. This increment would both
read and write the variable, hence whenever an epoch
requested a page from the buffer pool it would cause
any later epochs which had already made a buffer pool
request to be violated and restart. Once the system
identified this dependence it was easy to correct—
we changed the code so that there was one copy of
st cache hit per CPU, and updated the appropriate
copy of the variable on a buffer pool hit. We then
modified the code which reads this variable (which is
only invoked rarely, since this variable is used only
as a performance monitoring statistic) to sum all of
the per-CPU copies. Therefore a simple change to the
code can eliminate a performance-limiting data depen-
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Figure 3: Sub-epochs improve performance when dependences exist.

dence.

2.1.1 Tolerating Dependence Violations

Previous TLS work has focused on programs with
small epochs that have infrequent data dependences
between them. Eliminating the only frequent data de-
pendence between a pair of epochs removes the main
source of violations, and results in a large performance
gain. Unfortunately, in database systems the epochs
are large and have many frequent data dependences
between epochs. How does eliminating a data depen-
dence affect these epochs?

In Figure 3(a) illustrates the result of eliminating
the dependence caused by p. In this particular case,
removing that dependence actually hurts performance!
The problem is that the elimination of one dependence
can expose other dependences, and merely delay an in-
evitable roll-back and re-execution. This problem can
be avoided by dividing an epoch into several sub-epochs
(Figure 3(b)). A sub-epoch acts like a checkpoint or
sub-transaction: when a violation occurs, execution
is rolled back just to the last sub-epoch so that less
work has to be redone. Compare the execution with
sub-epochs (Figure 3(b)) to an idealized parallel ex-
ecution where each read does not execute until any
dependent write has already executed (Figure 3(c)):
as an epoch is broken into more and more sub-epochs,
it approaches the performance of this idealized execu-
tion. Sub-epochs do not add parallelism, and hence
have a lower hardware overhead than epochs. The
hardware overhead of sub-epochs limits the number of
supported sub-epochs [1], in this paper we assume 8
sub-epochs per epoch are used.

2.2 Hardware Support for TLS

The study presented in this paper is based on a hard-
ware implementation of TLS which buffers specula-
tive state in the cache hierarchy, and detects depen-
dence violations by observing cache coherence mes-
sages [5, 18]. Previous TLS designs focused on ap-
plications with small epochs (50 to 5,000 dynamic in-

structions), while the large epochs (between 7,500 and
490,000 instructions) in a database transaction require
the additional ability to buffer the state of very large
epochs, as well as support for sub-epochs so that vio-
lations have a tolerable performance penalty. Concur-
rently with the work presented in this paper, we also
designed a new implementation of TLS hardware that
supports both large epochs and sub-epochs, the details
of which are beyond the scope of this paper and are
available in a technical report [1].

3 Eliminating Dependences

To evaluate the potential of applying TLS to a
database system, we implemented the New Order
transaction from the TPC-C benchmark on the Berke-
leyDB storage manager. We chose New Order as the
representative transaction in TPC-C because it is rich
in read and update operations, it accounts for half of
the workload, and it is used to measure throughput
in TPC-C (TMPC). Pseudo-code for the transaction
is shown in Figure 1. We want to parallelize the for
loop in the transaction, as this loop comprises 78% of
execution time. At a high level, this loop reads the
item table, updates the stock table, and appends to
the order line table. Since it is read-only, the read
of the item table cannot cause a data dependence be-
tween epochs. The append to the order line table
should not cause data dependences either, since a new
order line is generated for each epoch. The update
of the stock table is potentially problematic—if two
epochs were to refer to the same item, then one epoch’s
update of the stock table might interfere with another
epoch’s update. However, in the benchmark specifica-
tion items are randomly chosen uniformly from a set of
100,000 items, and so the probability of any two epochs
conflicting is very small. At this high level, thanks to
the infrequency of data dependences, it appears that
this loop is an ideal candidate for TLS parallelization.

While our high-level analysis concludes that TLS
parallelization is promising, the implementation
details of query execution algorithms and access
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methods reveal more potentially-limiting data de-
pendences: read/write accesses to locks, latches, the
buffer pool, logging, and B-tree indexes will cause data
dependences between epochs. To eliminate these data
dependences we propose and analyze three techniques:

1. Partition data structures. A memory allo-
cation operation (db malloc) typically uses a single
pool of memory, hence parallel accesses to this shared
pool will conflict. Using a separate pool of memory
for each concurrent epoch avoids such conflicts. Many
other dependences are also due to multiple epochs
sharing a resource in memory—these dependences can
be avoided by partitioning that resource.

2. Exploit isolated undoable operations (IUOs).
The TLS mechanism ensures that all attempts to
fetch and pin a page (pin page) in the buffer pool
by one epoch complete before any invocations of
pin page in the next epoch begin, due to conflicts in
the data structures which maintain LRU information.
We prefer to allow pin page operations to complete
in any order. An epoch can simply call pin page with
speculation disabled: if the epoch is violated then
the fetched page just remains in the buffer pool, and
unpin page can be invoked to release the page. This
works because the pin page operation is undoable and
isolated. An undoable function has a corresponding
function which can undo the isolated function’s
effects. An isolated function can be undone without
affecting any other epoch or thread in the system.
When speculatively parallelizing a transaction, we
exploit isolated undoable operations by executing
them non-speculatively, and call the corresponding
undo function if the epoch is violated. This is similar
to nested top actions in ARIES [12], since we modify
the execution but preserve higher level semantics.

3. Postpone operations until the end of
the epoch. When a log entry is generated, it is
assigned a log sequence number and increments a
global variable. This log sequence number counter
forms a dependence between these two epochs. Our
key insight was that an epoch never uses log sequence
numbers—it only generates them. We can generate
log entries during the execution of the epoch, and
assign all of the sequence numbers at the end of the
epoch after all previous epochs have completed, and
just before committing the epoch (which makes the
new log entries visible to the rest of the system).
When an operation has no impact on the execution of
the epoch, and instead only affects other transactions
then it can be delayed until the end of the epoch.

In the next section we explore the major subsystems
of the DBMS, and show how these three techniques can
be used to eliminate the critical dependences we en-
countered while tuning the New Order transaction.

4 Performance Tuning

When we first parallelized the New Order trans-
action we encountered many dependences throughout
the DBMS code. Some dependences are easy to elim-
inate through a local change to the source code: for
example, false sharing dependences (see Section 4.5)
can be eliminated by inserting padding in data struc-
tures so that independent variables do not share a sin-
gle cache line. Other data dependences are inherent in
the basic design of the database system, such as the
creation of log sequence numbers or the locking sub-
system. In the following sections we tour the database
system’s major components, and explain how we elim-
inate or avoid dependences on the common path in
order to increase concurrency for TLS parallelization.

4.1 Resource Management

A large portion of every DBMS is concerned with the
management of resources, including latches, locks, cur-
sors, private and shared memory, and pages in the
buffer pool. All of these resources can be acquired and
released. Dependences between epochs occur when
two epochs try to acquire the same resource, or when
the data structures which track unused resources are
shared between epochs. In the next sections we exam-
ine each of these resources and develop strategies for
executing them in parallel.

4.1.1 Latches

The database system uses latches extensively to pro-
tect data structures, and as a building block for locks.
Latches are required for correct execution when multi-
ple transactions are executing concurrently, and ensure
that only one thread is accessing a given shared data
structure at any time. Latches are typically held only
briefly—in Section 4.1.2 we discuss locks, which offer
concurrency control for database entities.

Latches form a dependence between epochs because
of how they are implemented: a typical implemen-
tation uses a read-test-write cycle on a memory lo-
cation (which may be implemented as a test-and-set,
load-linked/store-conditional, atomic increment, etc.).
This read-test-write cycle can cause a data dependence
violation between epochs (Figure 4(a)).

Under TLS, using latches to serialize accesses within
a transaction is completely unnecessary—the TLS
mechanism already ensures that any data protected by
the latch is accessed in a serializable order, namely the
original sequential program order. Hence using latches
to preserve mutual exclusion between epochs is redun-
dant with the existing TLS mechanism [8]. However,
latches do ensure that mutual exclusion is maintained
between transactions, and TLS does not perform that
function. So we cannot simply discard the latches; we
must instead ensure that they preserve mutual exclu-
sion between transactions without causing violations
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Figure 4: Adapting latches for use under TLS execu-
tion.

between the epochs within a transaction.
There are two operations performed on a latch: ac-

quire and release. Let us first consider release oper-
ations. When a latch is released, the latch and the
data it protects become available to other transactions.
Since the modifications made by an epoch are buffered
until it commits, we must postpone all release opera-
tions until after the epoch has fully committed. Re-
lease operations can be postponed by building a list of
pending release operations as the epoch executes, and
then performing all of the releases in the pending list
when the epoch commits. If the epoch is violated, we
simply reset this list.

Next we consider acquire operations. During nor-
mal execution, when a latch is acquired it prevents
other transactions in the system from changing the
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Figure 5: Delaying latch release operations until after
a epoch commits can introduce deadlock.

associated data. A näıve approach to handling a latch
acquire under TLS is to perform the acquire non-
speculatively at the point when it is encountered. This
can be implemented by a recursive latch, which counts
the number of acquires and releases, and makes the
latch available to other transactions only when the
count reaches zero. This aggressive approach, shown
in Figure 4(b), has a major drawback: since latch re-
leases have been delayed until the end of the epoch, we
have increased the overall size of the critical section. In
addition, since we have parallel overlap between mul-
tiple critical sections in a single transaction, the latch
may be held for an extended period of time.

To avoid long critical sections, we can also post-
pone acquires as shown in Figure 4(c). In this lazy
approach, all latch acquires are performed at the end
of the epoch, then the buffered speculative modifica-
tions are committed, and finally all latch releases are
performed. This method results in much smaller criti-
cal sections, even when acquire and release operations
for a given latch are encountered repeatedly during
an epoch. A potential disadvantage of this approach
is that if another transaction changes the protected
data, the epoch will violate and restart.

Both the lazy and aggressive latch schemes have
a potential problem: they re-order the latch release
operations relative to the latch acquire operations as
specified in the original program. If multiple latches
are acquired by a single epoch, a deadlock may emerge
that is not possible in the sequential execution, as
shown in Figure 5. Although such deadlocks should be
rare, there are two strategies to remedy them: avoid-
ance and recovery. Deadlock can be avoided using two
traditional techniques: (i) perform all latch acquires in
a single atomic operation, or (ii) enforce a global latch
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acquire ordering [17], such as by sorting the acquire
queue by latch address. If avoidance is not possible,
we can instead recover from deadlock once detected
(perhaps through a time-out) by violating and restart-
ing one of the deadlocked epochs. Forward progress is
guaranteed because there is always at least one epoch
(the oldest) which executes non-speculatively. The key
insight is that restarting an epoch is much cheaper
than restarting the entire transaction since there are
many epochs per transaction.

4.1.2 Locks

Locks are a more sophisticated form of concurrency
control than latches. Instead of providing simple mu-
tual exclusion, locks allow multiple threads into a crit-
ical section at the same time if the lock types are
compatible: multiple readers are allowed into a critical
section at a time, while writers have exclusive access.
Locks also provide deadlock detection, since multiple
locks can be held at once and they are meant to be
held for longer periods of time than latches.

We start by parallelizing locks using a lazy lock-
ing scheme, similar to the lazy latch scheme in Sec-
tion 4.1.1. When an acquire operation is encountered
in speculative code, we cannot simply delay the entire
acquire operation until the end of the epoch, since a
handle must be returned. Instead, we return an in-
direct handle, which is a pointer to an empty handle
that is filled in at the end of the epoch when the lock
acquire is actually performed.

To summarize our scheme so far, at the end of
an epoch all of the lock acquires encountered in that
epoch are performed, the changes made by the epoch
are committed, and then all of the lock releases en-
countered in the epoch are performed. This scheme
will result in correct execution, but holding all of the
locks used by an epoch simultaneously can be a per-
formance bottleneck in the database, particularly for
the locks used for searching B-trees. We avoid this
problem through a minor change: at the end of the
epoch we (i) acquire and release all read-only locks in
the order that the acquire and release operations were
encountered during the epoch, we then (ii) perform
all non-read-only lock acquires that were encountered
during the epoch, (iii) commit the epoch’s changes to
memory, and then (iv) perform all non-read-only lock
releases that were encountered during the epoch. Since
a B-tree search involves briefly acquiring a large num-
ber of read-only locks, this ensures that those locks
are held for minimal time; we need not hold the read-
only locks during the epoch commit because the sys-
tem view of an epoch commit is similar to a transac-
tion commit: it either succeeds or fails. By acquiring
and releasing the locks we ensure that the epoch com-
mit does not occur in the middle of a non-read-only
critical section in some other transaction.1 If latches

1Our method of executing lock acquires may also possibly

were labeled as read-only or read/write then this op-
timization could also be applied to latches in addition
to locks.

4.1.3 Cursor Management

Cursors are data structures used to index into and tra-
verse B-trees. Since they are used quite frequently and
their creation is expensive, they are maintained in pre-
allocated stacks. Unused cursors are stored in a free
cursor stack. A dependence between epochs is cre-
ated when one epoch puts a cursor onto the free cur-
sor stack and the next epoch removes that cursor from
the stack, since both operations manipulate the free
pointer. Preserving this dependence is not required
for correct execution: the second epoch did not need
to get the exact same cursor, but instead wanted to
get any cursor from the free stack. We can eliminate
this dependence by partitioning the stack, and hence
maintaining a separate stack for each processor. This
implies that more cursors will have to be allocated, but
that each cursor will only be used by the CPU which
allocated it, increasing cache locality and eliminating
dependences between epochs.

4.1.4 Memory Allocation

The free cursor pool mentioned above is just a special
case of memory allocation. The general purpose mem-
ory allocators (such as db malloc) in the database sys-
tem introduce dependences between epochs when they
update their internal data structures. To avoid these
dependences, we must substitute an allocator designed
with TLS in mind: in the common case, such an al-
locator should not communicate between CPUs. For-
tunately, this is also a requirement of highly scalable
parallel applications. The Hoard memory allocator [3]
is one such allocator, which maintains separate free
lists for each CPU, so that most requests for mem-
ory do not communicate. In the next section we show
an even simpler way of avoiding dependences which
does not require modifying or changing the underlying
memory allocator.

4.1.5 Buffer Pool Management

When either a transaction or the DBMS itself need to
read a page of the database, they request that page by
invoking the pin page operation on the buffer pool.
This operation reads the requested page into memory
(if it is not already there), pins it in memory, and
returns a pointer to it. Once finished with the page,
it is released by the unpin page operation.

Conceptually, the buffer pool is very similar to the
memory allocator, since it manages memory. However,
the buffer pool is different because users explicitly

cause a deadlock situation. Similarly to latches, we can recover
from a detected deadlock situation by violating and restarting
one of the deadlocked epochs.
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page t *pin page wrapper(pageid t id) {
static intra transaction latch mut;

page t *ret;

suspend speculation(); // (iii)
check pin page arguments(id); // (i)
acquire latch(&mut); // (ii)

ret = pin page(id);

release latch(&mut); // (ii)
on violation call(unpin page, ret); // (iv)
resume speculation(); // (iii)

return ret;

}

Figure 6: Wrapper for the pin page function which
allows the ordering between epochs to be relaxed.

name the memory they want, and different pin page
operations can pin the same page. Therefore, sim-
ply partitioning the page pool between epochs will not
suffice. Instead, we exploit the fact that the order in
which pin page operations take place does not mat-
ter. If a speculative epoch fetches the wrong page from
disk, we simply must return that page to the free pool.
We implement this by executing the pin page func-
tion non-speculatively, so that it really does get the
page and pin it in a way which is visible to the entire
system. If the epoch which called pin page is later vi-
olated, we can undo this action by calling unpin page.
(This is similar to the compensating transactions used
in Sagas [4].)

The code wrapper shown in Figure 6 implements
this modified version of pin page. In particular, this
code does the following: (i) Provides thorough error
checking. Since this routine is called from a speculative
thread, the parameters could be invalid. (ii) Acquires a
latch which provides mutual exclusion between epochs
within a transaction, to guard against the possibil-
ity that pin page was not implemented with intra-
transaction concurrency in mind. However, this latch
can be eliminated if the programmer determines that
the implementation of pin page is safe in this respect.
(iii) Temporarily suspends speculation. While specu-
lation is suspended, the epoch is non-speculative and
hence all reads will observe committed machine state
and all writes will be immediately visible to the rest
of the system (i.e., no buffering occurs). Hence reads
performed by pin page will not cause violations. (iv)
Saves a pointer to the recovery function, unpin page.
If the epoch is violated then unpin page will be called
to undo the execution of the corresponding call to
pin page.

Relaxing ordering constraints simplifies coding: in-
stead of redesigning the buffer pool to be amenable to
TLS execution, we place this simple wrapper around

the allocation function. However, this method requires
that the pin page function be an isolated undoable
operation. The pin page function is undoable: call-
ing unpin page undoes the call to pin page. The
pin page is also isolated: when it is undone via
unpin page no other transaction or earlier epoch is
forced to rewind or otherwise alter its execution.

Similar reasoning shows that the cursor allocation
function and db malloc are also isolated undoable op-
erations, and so this code template could be applied
to these functions instead of partitioning their free
pools. The lock acquire and latch acquire func-
tions also look like isolated undoable operations—but
as we found above in Section 4.1.1, without great care
speculatively executing these functions out of original
sequential order can cause performance problems (by
increasing critical section sizes) or create deadlock con-
ditions (by re-ordering lock and latch acquires).

The unpin page operation for the buffer pool is not
undoable, since an attempt to undo it with a pin page
operation may cause the page to be mapped at a dif-
ferent address. Because of this, we treat it similarly to
a lock or latch release operation, and enqueue it to be
executed after the epoch commits.

4.2 The Log

Every time the database is modified the changes are
appended to the log. For recovery to work properly
(using ARIES [12]) each log entry must have a log se-
quence number. Unfortunately, incrementing the log
sequence number causes a data dependence between
epochs. To avoid this dependence, we modify the log-
ging code to append log entries for speculative epochs
to a per-CPU buffer. When an epoch commits, we
loop over this buffer to assign log sequence numbers
to log entries, then append the entire buffer to the log.

4.3 B-Trees

B-trees are used extensively in the database system to
index the database. The primary operations involv-
ing the B-tree are reading records, updating existing
records, and inserting new records. Neither reading
nor updating records modify the B-tree, and hence
will not cause dependences between epochs. In con-
trast, insert operations modify the leaf pages of the
B-tree. Therefore if the changes made by two epochs
happen to fall on the same page then the update of the
free space count for that page can cause a violation.

One strength of TLS parallelization is that infre-
quent data dependences need not be addressed, since
the TLS mechanism will ensure correctness in such
cases. An example of such an infrequent data depen-
dence is a B-tree page split. Page splits can also cause
many data dependences, but since they happen in-
frequently (by design), we can afford to just ignore
them. In the rare cases when page splits occur, the
TLS mechanism will ensure their correct sequential
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execution. The TLS mechanism provides a valuable
fall-back, allowing the programmer to avoid the effort
of designing a algorithm for parallel page-splits.

The B-tree code in BerkeleyDB contains a simple
performance optimization: when a search is requested,
it begins the search by inspecting the page located by
the previous search through a “last page referenced”
pointer (this assumes some degree of locality in ac-
cesses). Accesses to this pointer cause a data depen-
dence between epochs. Since the resulting violations
can hurt performance, we decided to disable this “last
page” optimization for TLS execution. Alternatively,
one could retain this optimization without causing vio-
lations by maintaining a separate “last page reference”
pointer per CPU.

4.4 Error Checks

Our study indicated that error checking code in the
database system can occasionally cause dependences
between epochs. The most important of these is a de-
pendence caused by reference counting for cursors—a
mechanism in the DBMS which tracks how many cur-
sors are currently in use by a transaction, and ensures
that none are in use when the transaction commits.
Since this code is solely for debugging a transaction im-
plementation, it can be safely removed once the trans-
action has been thoroughly tested.

4.5 False Sharing

To minimize overhead, the TLS mechanism tracks data
dependences at the granularity of a cache-line. How-
ever, accesses to different variables which happen to
be allocated on the same cache line can cause data
dependence violations due to false sharing. This prob-
lem can be remedied by inserting padding to ensure
that variables which are frequently-accessed by differ-
ent CPUs are not allocated on the same cache line.2

5 Experimental Results

In this section we evaluate the ease with which a
DBMS programmer can parallelize transactions, as
well as the resulting performance.

5.1 Benchmark Infrastructure

We study the five transactions from TPC-C: (New
Order, Delivery, Stock Level, Payment and
Order Status). We have parallelized both the in-
ner and outer loop of the Delivery transaction, and
denote the outer loop variant as Delivery Outer.
We also have modified the input to the New Order
transaction to simulate a larger order of between 50
and 150 items (instead of the default 5 to 15 items),

2Insertion of padding works for most data structures, but is
not appropriate for data structures which mirror disk-resident
data, such as B-tree page headers. In this case, changes will have
to be made to the B-tree data structure itself (see Section 4.3).

Table 1: Simulated memory system parameters.

Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 4-way set-assoc,2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Speculative Victim Cache 64 entry
Miss Handlers 128 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency 40 cycles
to Secondary Cache
Minimum Miss Latency 75 cycles
to Local Memory
Main Memory Bandwidth 1 access per 20 cycles

and denote that variant as New Order 150. All
transactions are built on top of BerkeleyDB 4.1.25.
Although a normal TPC-C run executes a concurrent
mix of transactions and measures throughput, we are
concerned with latency ; hence we execute the individ-
ual transactions one at a time. Also, since we are pri-
marily concerned with parallelism at the CPU level,
we attempt to avoid I/O by configuring the DBMS
with a large (100MB) buffer pool (this is roughly the
size of the entire dataset for a single warehouse).

The parameters for each transaction are chosen us-
ing the Unix random function, and each experiment
uses the same seed for repeatability. The benchmark
executes as follows: (i) start the DBMS; (ii) execute
10 transactions to warm up the buffer pool; (iii) start
timing; (iv) execute 100 transactions; (v) stop timing.

All code is compiled using gcc 2.95.3 with O3 opti-
mization on a SGI MIPS-based machine. The Berke-
leyDB database system is compiled as a shared library,
which is linked with the benchmark that contains the
transaction code.

To apply TLS to this benchmark we start with
the unaltered transaction, mark the main loop within
it as parallel, and execute it on a simulated system
with TLS support. The system reports back the load
and store program counters of the instructions which
caused speculation to fail, and we use that informa-
tion to determine the cause (in the source code) of the
most critical performance bottleneck. We then apply
the appropriate optimization from Section 4 and re-
peat.

5.2 Simulation Infrastructure

We perform our evaluation using a detailed, trace-
driven simulation of a chip-multiprocessor composed of
4-way issue, out-of-order, superscalar processors simi-
lar to the MIPS R14000 [20], but modernized to have
a 128-entry reorder buffer. Each processor has its own
physically private data and instruction caches, con-
nected to a unified second level cache by a crossbar
switch. Register renaming, the reorder buffer, branch
prediction (GShare with 16KB, 8 history bits), instruc-
tion fetching, branching penalties, and the memory hi-
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erarchy (including bandwidth and contention) are all
modeled, and are parameterized as shown in Table 1.
Latencies due to disk accesses are not modeled, and
hence these results are most readily applicable to situ-
ations where the database’s working set fits into main
memory.

5.3 Scaling Intra-Transaction Parallelism

In Figure 7 we see the performance of the optimized
transactions as the number of CPUs is varied. The
Seq bar represents the unmodified benchmark running
on a single core of an 8 core chip multiprocessor, while
the 2 CPU, 4 CPU and 8 CPU bars represent the
execution of full TLS-optimized executables running
on 2, 4 and 8 CPUs. Large improvements in transac-
tion latency can be obtained by using 2 or 4 CPUs,
although the additional benefits of using 8 CPUs are
small. The Payment and Order Status transac-
tions are not shown because they do not benefit from
TLS: Payment contains no loops worth parallelizing,
and the main loop in Order Status contains an un-
avoidable dependence.

To better understand this data we break down each
bar by where time is being spent. In Figure 7 we have
normalized all bars to the 8 CPU case so that the sub-
divisions of each bar can be directly compared. This
means that the Seq breakdown shows one CPU ex-
ecuting and 7 CPUs idling, the 2 CPU breakdown
shows two CPUs executing and 6 CPUs idling, etc.

The New Order, New Order 150 and De-
livery Outer bars show that very little time was
spent on failed speculation—this means that our
performance tuning was successful at eliminating
performance-critical data dependences for those trans-
actions. The Delivery transaction has some failed
speculation due to a dependence in updating the Or-
der Line table, and the Stock Level transaction
has failed speculation due to a dependence in the cur-
sor used to scan the Order Line table. As the num-
ber of CPUs increases there is a nominal increase in
both failed speculation and time spent awaiting the
latch used to serialize isolated undoable operations:
as more epochs are executed concurrently, contention
increases for both shared data and the latch. As the
number of CPUs increases there is also an increase in
time spent awaiting cache misses: spreading the ex-
ecution of the transaction over more CPUs decreases
cache locality, since the execution is partitioned over
more level 1 caches. We also see a much larger increase
in the number of cache misses for the Stock Level
transaction—a large amount of cache state can be in-
validated when speculation fails, leading to increased
cache misses.

The dominant component of the bars in New Or-
der and Delivery is idle time, for three reasons.
First, in the Seq, 2 CPU and 4 CPU case we show the
unused CPUs as idle. Second, the loop that we paral-
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(e) Stock Level

Category Explanation

Idle Not enough threads were available to
keep the CPUs busy.

Failed CPU executed code which was later un-
done due to a violation (includes all
time spent executing failed code.)

Latch Stall Stalled awaiting latch; latch is used in
isolated undoable operations.

Cache Miss Stalled on a cache miss.
Busy CPU was busy executing code.

Figure 7: Performance of optimized benchmark while
varying the number of CPUs.

lelized in the transaction only covers 78% of the trans-
action’s execution time for New Order, and 63% for
Delivery: during the remaining time only one CPU
is in use. Third, TPC-C specifies that both trans-
actions will deal with orders which contain between
5 and 15 items, which means that on average each
transaction will have only 10 epochs—this means that
as we execute the last epochs in the loop load imbal-
ance will leave CPUs idling. The effects of all three of
these issues are magnified as more CPUs are added. To
see the impact of reducing this idle time, we modified
the invocation of the New Order transaction so that
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Figure 8: Performance impact on New Order of
adding each optimization one-by-one on a four CPU
machine.

each order contains between 50 and 150 items (which
is the New Order 150 transaction). We found that
this modification decreases the amount of time spent
idling, and does not significantly affect the trends in
cache usage, failed speculation, or idle time.

Figure 7 shows a performance trade-off: devoting
more CPUs to executing a single transaction improves
performance, but results in increased contention, a de-
crease in cache locality, and/or diminishing returns
due to a lack of available parallelism, thus resulting in
diminishing returns as more CPUs are added. One of
the strengths of using TLS for intra-transaction paral-
lelism is that it can be enabled or disabled at any time,
and the number of CPUs can be dynamically tuned.
The database system’s scheduler can dynamically in-
crease the number of CPUs available to a transaction
if CPUs are idling, or to speed up a transaction which
holds heavily contended locks. If many epochs are be-
ing violated, and thus the intra-transaction parallelism
is providing little performance benefit, then the sched-
uler could reduce the number of CPUs available to the
transaction. If the transaction compiler simply emit-
ted a TLS parallel version of all loops in transactions
then the scheduler could use sampling to choose loops
to parallelize: the scheduler could periodically enable
TLS for loops which are not already running in par-
allel, and periodically disable TLS for loops which are
running in parallel. If the change improves perfor-
mance then the scheduler can make it permanent.

5.4 Impact of Each Optimization

In Figure 8 we see the results of the optimization pro-
cess for the New Order benchmark on a four CPU
system (the other transactions show similar trends).
In this case the breakdown of the bars is normalized
to a four CPU system, and so 3

4 of the Sequential
bar is Idle, since three of the four CPUs are idling
during the entire execution. The No Optimizations

bar shows what happens if we parallelize the loop and
make no other optimizations—the existing data de-
pendences in the DBMS prevent any parallelism from
being exploited, and the fact that we have taken a se-
quential transaction and run it on four CPUs has re-
duced cache locality, causing it to slow down slightly.

The major source of failed speculation in our newly-
parallelized transaction are the reads and writes to
latches; hence we perform the lazy latch optimiza-
tion described in Section 4.1.1. This optimization fixes
the first performance bottleneck, and exposes the next
bottleneck which is in the lock code. The first opti-
mization also results in a slight slowdown, since the
next bottleneck merely delays detection of failed spec-
ulation (as illustrated in Figure 3(a))—hence more ex-
ecution has to be rewound.

Once we have eliminated latches as a bottleneck,
the next bottleneck exposed is in the locking subsys-
tem. We remove the lock bottleneck by implementing
lazy locks from Section 4.1.2. We continue to remove
the bottlenecks one by one: applying the code tem-
plate from Figure 6 to db malloc and the pin page
operation, parallelizing the free cursor pool, removing
dependence causing error checks (Section 4.4), adding
padding to avoid violations due to false sharing (Sec-
tion 4.5), removing the “last page referenced” pointer
from the B-tree search code (Section 4.3), delaying the
generation of log entries until epochs are ready to com-
mit (Section 4.2), and parallelizing the assignment of
locker ids.

It is tempting to look at Figure 8 and conclude that
the most important optimization was parallelizing the
buffer pool, since adding this optimization caused the
execution time to drop by 40%. However, this is not
the case since the impact of the optimizations is cumu-
lative. If we take the No Optimizations build and
just enable the buffer pool optimization then the nor-
malized performance is 0.98. Instead, Figure 8 implies
that the iterative optimization process which we used
works well—as the DBMS programmer removes per-
formance limiting dependences performance gradually
improves (and exposes new dependences). Removing
dependences decreases the time spent on failed execu-
tion, and improves performance.

6 Conclusions

Chip multiprocessing has arrived, as evidenced by
recent products (and announced road maps) from
Intel, AMD, IBM and Sun Microsystems. While
the database community has long embraced paral-
lel processing, the fact that an application must ex-
ploit parallel threads to tap the performance poten-
tial of these additional CPU cores presents a major
challenge for desktop applications. Processor archi-
tects have responded to this challenge through a new
mechanism—thread-level speculation (TLS)—that en-
ables optimistic parallelization on chip multiproces-

83



sors. Fortunately for the database community, al-
though TLS was originally designed to overcome the
daunting challenge of parallelizing desktop applica-
tions, it also allows us to tap new forms of parallelism
within a DBMS that had previously been too painful
to consider.

In this paper, we have focused on one such opportu-
nity enabled by TLS: exploiting intra-transaction par-
allelism. Our experimental results demonstrate that
we can speed up the latency (not just the through-
put) of three of the five transactions in TPC-C by
36–74% by exploiting TLS on a chip multiprocessor
with four CPU cores, or by 29–44% with two cores.
TLS allows the database’s scheduler to use CPU cores
to improve latency when throughput is not the pri-
mary concern. In contrast with previous approaches
to exploiting intra-transaction parallelism, we place al-
most no burden on the transaction programmer (they
merely demarcate epoch boundaries). In the future
this burden could easily be shifted to the transaction
compiler. Although changes to the DBMS code are re-
quired to achieve this benefit, they affected less than
1200 out of 180,000 lines of code in BerkeleyDB, they
were implemented in roughly a month by a graduate
student, and we expect that they would generalize to
other DBMSs. We hope that these promising results
will inspire database researchers to find other oppor-
tunities for exploiting untapped parallelism through
TLS.

References

[1] C.B. Colohan, A. Ailamaki, J.G. Steffan, and
T.C. Mowry. Extending Thread Level Speculation
Hardware Support to Large Epochs: Databases
and Beyond. Technical Report CMU-CS-05-109,
School of Computer Science, Carnegie Mellon
University, March 2005.

[2] IBM Corporation. IBM DB2 Universal Database
Administration Guide: Performance. IBM Cor-
poration, 2004.

[3] E.D. Berger and K.S. McKinley and R.D. Blu-
mofe and P.R. Wilson. Hoard: A Scalable Mem-
ory Allocator for Multithreaded Applications. In
Proceedings of the 9th ASPLOS, 2000.

[4] H. Garcia-Molina and K. Salem. Sagas. In Pro-
ceedings of the 1987 ACM SIGMOD international
conference on Management of data, pages 249–
259. ACM Press, 1987.

[5] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi.
Speculative Versioning Cache. In Proceedings of
the 4th HPCA, February 1998.

[6] J. Gray. The Benchmark Handbook for Transac-
tion Processing Systems. Morgan-Kaufmann Pub-
lishers, Inc., 1993.

[7] L. Hammond, B. Hubbert, M. Siu, M. Prabhu,
M. Chen, and K. Olukotun. The Stanford Hydra
CMP. IEEE Micro Magazine, March-April 2000.

[8] M. Herlihy and J. Moss. Transactional memory:
Architectural support for lock-free data struc-
tures. In Proceedings of the 20th ISCA, 1993.

[9] H. Kaufmann and H.J. Schek. Extending tp-
monitors for intra-transaction parallelism. In Pro-
ceedings of the 4th PDIS, 1996.

[10] H.T. Kung and J.T. Robinson. On optimistic
methods for concurrency control. ACM TODS,
pages 213–226, June 1981.

[11] J.H. Miller and H. Lau. Microsoft SQL Server
2000 Resource Kit, chapter RDBMS Performance
Tuning Guide for Data Warehousing, pages 575–
653. Microsoft Press, 2001.

[12] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh,
and P. Schwarz. ARIES: A Transaction Recov-
ery Method Supporting Fine-Granularity Locking
and Partial Rollbacks Using Write-Ahead Log-
ging. ACM TODS, March 1992.

[13] Michael Olson, Keith Bostic, and Margo Seltzer.
Berkeley db. In Proceedings of the Summer
Usenix Technical Conference, June 1999.

[14] M.K. Prabhu and K. Olukotun. Using thread-
level speculation to simplify manual paralleliza-
tion. In The ACM SIGPLAN 2003 Symposium on
Principles & Practice of Parallel Programming,
June 2003.

[15] M. Rys, M.C. Norrie, and H.J. Schek. Intra-
transaction parallelism in the mapping of an ob-
ject model to a relational multi-processor system.
In Proceedings of the 22nd VLDB, 1996.

[16] D. Shasha, F. Llirbat, E. Simon, and P. Val-
duriez. Transaction chopping: Algorithms and
performance studies. ACM TODS, 20(3):325–363,
1995.

[17] A. Silberschatz, P.B. Galvin, and G. Gagne. Op-
erating System Concepts. John Wiley & Sons,
Inc., 2002.

[18] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C.
Mowry. A Scalable Approach to Thread-Level
Speculation. In Proceedings of the 27th ISCA,
June 2000.

[19] M. Tremblay. MAJC: Microprocessor Architec-
ture for Java Computing. HotChips ’99, August
1999.

[20] K. Yeager. The MIPS R10000 superscalar micro-
processor. IEEE Micro, April 1996.

[21] C. Zuzarte. Personal communication, 2005.

84


	1 Introduction
	1.1 Incremental Parallelization with Thread-Level Speculation
	1.2 Related Work
	1.3 Contributions

	2 Applying TLS to Transactions
	2.1 Software Support for TLS
	2.1.1 Tolerating Dependence Violations

	2.2 Hardware Support for TLS

	3 Eliminating Dependences
	4 Performance Tuning
	4.1 Resource Management
	4.1.1 Latches
	4.1.2 Locks
	4.1.3 Cursor Management
	4.1.4 Memory Allocation
	4.1.5 Buffer Pool Management

	4.2 The Log
	4.3 B-Trees
	4.4 Error Checks
	4.5 False Sharing

	5 Experimental Results
	5.1 Benchmark Infrastructure
	5.2 Simulation Infrastructure
	5.3 Scaling Intra-Transaction Parallelism
	5.4 Impact of Each Optimization

	6 Conclusions

