

KLEE: A Framework for Distributed Top-k Query Algorithms

Abstract
This paper addresses the efficient processing of
top-k queries in wide-area distributed data
repositories where the index lists for the attribute
values (or text terms) of a query are distributed
across a number of data peers and the
computational costs include network latency,
bandwidth consumption, and local peer work.
We present KLEE, a novel algorithmic
framework for distributed top-k queries,
designed for high performance and flexibility.
KLEE makes a strong case for approximate top-k
algorithms over widely distributed data sources.
It shows how great gains in efficiency can be
enjoyed at low result-quality penalties. Further,
KLEE affords the query-initiating peer the
flexibility to trade-off result quality and expected
performance and to trade-off the number of
communication phases engaged during query
execution versus network bandwidth
performance. We have implemented KLEE and
related algorithms and conducted a
comprehensive performance evaluation. Our
evaluation employed real-world and synthetic
large, web-data collections, and query
benchmarks. Our experimental results show that
KLEE can achieve major performance gains in
terms of network bandwidth, query response
times, and much lighter peer loads, all with small
errors in result precision and other result-quality
measures.

1. Introduction
1.1 Motivation
Top-k query processing has received much attention in a
variety of settings such as similarity search on multimedia
data [CGM04, NR99, Fa99, GKB00, Bey99, Na01,

deV02], ranked retrieval on text and semi-structured
documents in digital libraries and on the Web [AKM01,
LS03, TWS04, Kau04, Ba03, So01, PZS96, Yu01],
spatial data analysis [BBK01, CP02, HS03], network and
stream monitoring [BO03, Kou04, CW04] collaborative
recommendation and preference queries on e-commerce
product catalogs [YPM03, MGB04, BGM02, GKB01,
CH02], and ranking of SQL-style query results on
structured data sources in general [Ag03, Ch04, BCG02].
In terms of efficiency, the most successful approaches are
based on the family of threshold algorithms (TA)
originally developed by [FLN03, GKB00, NR99]. These
techniques are fairly well understood for centralized data
management, but much less explored for distributed
systems such as peer-to-peer (P2P) federations [Hue05] or
sensor networks. For example, building a P2P Web search
engine where thousands of nodes collaborate to provide
Google functionality in a decentralized and self-
organizing manner would be a great application for
distributed top-k query processing.

In this paper we assume that index lists for text terms
or data attributes are distributed across peers. Index lists
are crucial for a TA-style top-k algorithm; in their
distributed processing we are judicious about the resulting
communication costs: a) network latency incurred by
message rounds and b) network bandwidth consumption
incurred by the data exchange among the peers that
collaborate on behalf of a given query. Moreover, to limit
the local processing costs of each peer, we consider TA-
sorted variants (aka. NRA) [FLN03, GKB01] that
disallow random accesses to index list entries and rather
limit themselves to sorted accesses, which are 20 times
faster for large, disk-resident index lists. We also consider
applying probabilistic approximations to the true top-k
result, using techniques like the ones in [TWS04]. Such
relaxations are well justified for most applications of top-
k queries, where both the underlying score functions and
the result interpretation by the user have a heuristic nature
anyway. In wide-area P2P systems, approximation
techniques are even more appropriate as we face
significant tradeoffs between execution cost and search
result quality.

1.2 Problem Statement
We consider a distributed system with N peers, Pj,
j=1,…,N, that are connected, e.g., by a distributed hash
table or some overlay network. Data items are either
documents such as Web pages or structured data items

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Sebastian Michel

Max-Planck Institute for Informatics
Saarbrücken, Germany

smichel@mpi-inf.mpg.de

Peter Triantafillou

University of Patras
Rio, Greece

peter@ceid.upatras.gr

Gerhard Weikum

Max-Planck Institute for Informatics
Saarbrücken, Germany

weikum@mpi-inf.mpg.de

637

such as movie descriptions. Each data item has associated
with it a set of descriptors, text terms or attribute values,
and there is a precomputed score for each pair of data
item and descriptor. The inverted index list for one
descriptor is the list of data items in which the descriptor
appears sorted in descending order of scores. These index
lists are the distribution granularity of the distributed
system. Each index list is assigned to one peer (or, if we
wish to replicate it, to multiple peers).

In the following we use only IR-style terminology,
speaking of “terms” and “documents”, for simplicity.
Each peer Pj stores one index list, Ij(t), over a term t. Ij(t)
consists of a number of (docID, score) pairs, where score
is a real number in (0, 1] reflecting the significance of the
document with docID for term t. Each index list is
assumed to be sorted in descending order according to
score. In general, score(docID) reflects the score
associated with docID in an index list, e.g., a tf*idf-style
(term_frequency*inverse_document_frequency) or
language-model-based measure derived from term
frequency statistics.

A query, q(T, k), initiated at a peer Pinit, consists of a
nonempty set of terms, T = {t1, t2,… tt}, and an integer k.
Assuming the existence of a set of, say m, peers having
the most relevant index lists for the terms in T, with m≤t,
our task is to devise efficient methods for Pinit to access
these distributed index lists at the m peers, so as to
produce the list of (the IDs of) the top-k documents for
the term set T. The top-k result is the sorted list in
descending order of TotalScore which consists of pairs
(docID, TotalScore), where TotalScore for a document
with ID docID is a monotonic aggregation of the scores of
this document in all m index lists. For the sake of
concreteness, we will use summation for score
aggregation, but weighted sums and other monotonic
functions are supported, too. In case an index list does not
contain a particular docID, its score for docID is set to
zero, when calculating its TotalScore. Note that Pinit
serves as a coordinator only for the given query; different
queries are usually coordinated by different peers.

A naïve solution would be to have all m cohort peers
send the complete index lists to Pinit and then execute a
centralized TA-style method on the copied lists at Pinit.
This approach is unacceptable in a P2P system for its
waste of network bandwidth resulting from transferring
complete index lists.

An alternative approach would be to execute TA at
Pinit and access the remote index lists one entry at a time
as needed. This method is equally undesirable for it incurs
many small messages and needs a number of message
rounds that is equal to the maximum index-scan depth
among the participating peers. Even when messages are
batched (e.g., with 100 successive index entries in a single
message), the total latency of many message rounds
renders this approach unattractive.

As recently shown by [CW04], a good network-cost-
conscious algorithm should ensure that distributed top-k
algorithms terminate within a fixed, small number of
phases. In each phase Pinit, acting as a coordinator,

receives information from the peers’ index lists and then
tries to intelligently estimate whether it has enough
information to compute a high quality approximation of
the top-k list and stop the process as early as possible. The
number of phases should ideally be constant, to guarantee
acceptable latency, while requiring the cohort peers to
send only as little as possible information, aiming to
minimize network bandwidth consumption. To this end
the coordinator needs to address two major issues:

1) Missing scores are an issue when document IDs are
included in the responses of some peers and not in the
responses of others. This complicates the estimation of the
total scores for these documents, which in turn makes it
difficult to prune top-k candidates early or at least to
produce a high-quality top-k approximation.

2) Missing documents are an issue in the coordinator’s
incomplete view of the documents that are candidates for
the top-k result. It is difficult for the coordinator to learn
about documents with relatively low scores (and deeper
positions) in the index lists of all peers; such documents
may nevertheless be good candidates for the top-k result if
their total score, summed up over all index lists, is high.

1.3 Contributions
This paper presents a novel family of algorithms for
distributed top-k query processing, coined KLEE. The
name of the algorithm refers to the plant known as clover
in English: KLEE uses three or, optionally for additional
optimization, four algorithmic steps.

The most relevant prior work [CW04] provided a
distributed top-k algorithm with a small, fixed number of
(only three) communication phases, ensuring small query
response times. We also adopt the requirement for a small
number of communication phases. However, KLEE goes
far beyond. The salient features and novel contributions of
KLEE are the following:

• KLEE comes with two flavors, one involving only
two and one involving three communication phases.
It recognizes that the number of communication
phases is only one aspect of guaranteeing short
response times, which, in turn, is only one aspect of
overall efficiency. In particular, as limited network
and IO bandwidth appear to be key contributors to
response times, KLEE ensures that significantly
smaller messages are exchanged and that random IOs
at participating peers are avoided, resulting in strong
gains in response time and network bandwidth and
lighter peer loads compared to TPUT.

• KLEE is the first to make a strong case for
approximate top-k algorithms for wide-area networks,
showing how significant performance benefits can be
enjoyed, at only small penalties in result quality.

• KLEE provides a flexible framework for top-k
algorithms, allowing for trading-off efficiency versus
result quality and bandwidth savings versus the
number of communication phases.

• We have implemented KLEE and a number of
competing algorithms and conducted comprehensive

638

experimental performance evaluation using real-
world and synthetic data, which shows the consistent
superiority of KLEE over its competitors.

• KLEE is equipped with various fine-tuning
parameters and we provide a discussion of how these
can be automatically adjusted to underlying data and
system characteristics.

2. Related Work
Among the ample work on top-k query processing (see
the references in Section 1.1), the TA family of
algorithms for monotonic score aggregation [FLN03,
GBK00, NR99] stands out as an extremely efficient and
highly versatile method. The current paper builds on the
TA-sorted (aka. NRA) variant which processes the
(docID, score) entries of the relevant index lists in
descending order of score values, using a simple round-
robin scheduling strategy and making only sequential
accesses on the index lists. TA-sorted maintains a priority
queue of candidates and a current set of top-k results, both
in memory. The algorithm maintains with each candidate
or current top-k document d a score interval, with a lower
bound worstscore(d) and an upper bound bestscore(d) for
the true global score of d. The worstscore is the sum of all
local scores that have been observed for d during the
index scans. The bestscore is the sum of the worstscore
and the last score values seen in all those lists where d has
not yet been encountered. We denote the latter values by
high(i) for the ith index list; they are upper bounds for the
best possible score in the still unvisited tails of the index
lists. The current top-k are those documents with the k
highest worstscores. A candidate d for which bestscore(d)
< topKscore can be safely dismissed, where topKscore
denotes the worstscore of the rank-k document in the
current top-k. The algorithm terminates when the
candidate queue is empty (and a virtual document that has
not yet been seen in any index list and has a bestscore =
Σi=1..m high(i) can not qualify for the top-k either).

For approximating a top-k result with low error
probability [TWS04], the conservative bestscores, with
high(i) values assumed for unknown scores, can be
substituted by quantiles of the score distribution in the
unvisited tails of the index lists. Technically, this amounts
to estimating the convolution of the unknown scores of a
candidate. A candidate d can be dismissed if the
probability that its bestscore can still exceed the
topKscore value drops below some threshold:
P[worstscore(d) + Σi S(i) > topKscore] < ε, where the
S(i) are random variables for unknown scores and the sum
ranges over all i in which d has not yet been encountered.

The first distributed TA-style algorithm has been
presented in [BGM02, MGB04]. The emphasis of that
work was on top-k queries over Internet data sources for
recommendation services (e.g., restaurant ratings, street
finders). Because of functional limitations and specific
costs of data sources, the approach used a hybrid
algorithm that allowed both sorted and random access but
tried to avoid random accesses. Scheduling strategies for
random accesses to resolve expensive predicates were

addressed also in [CH02]. In our widely distributed
setting, none of these scheduling methods are relevant for
they still incur an unbounded number of message rounds.

The method in [Su03] addresses P2P-style distributed
top-k queries but considers only the case of two index
lists distributed over two peers. Its key idea is to allow the
two cohort peers to directly exchange score and candidate
information rather than communicating only via the query
initiator. Unfortunately, it is unclear and left as an open
issue how to generalize to more than two peers.

The recent work by [Ba05] addresses the optimization
of communication costs in P2P networks. However, the
emphasis is on appropriate topologies for overlay
networks. The paper develops efficient routing methods
among super-peers in a hypercube topology.

The TPUT algorithm by [CW04] is closest to our
KLEE approach; their architectural goal of a fixed, small
number of communication phases has also influenced
KLEE, but our design philosophy is broader in a number
of dimensions. TPUT executes TA in three phases: 1)
fetch the k best (DocID, Score) entries from each cohort
peer and compute the topKscore using zero-score values
for all missing scores; 2) ask each of the m cohort peers
for entries with Score > topKscore / m, then compute a
better topKscore value and eliminate candidates whose
bestscore is not higher than topKscore; 3) fetch the still
missing scores for the remaining candidates, asking the
cohorts to do random accesses.

3. Key Ideas and Data Structures
The proposed approach is based on having a per-query
coordinator peer and a set of cohort peers. In our setting,
the coordinating peer is the peer where the query was
initiated, Pinit. The cohort peers, are the peers storing the
index lists, based on which the document scores will be
computed. The algorithm is structured to proceed in a
number of phases, with each phase consisting of a round-
trip communication between the coordinator and the
cohorts. In general, in each phase, the coordinator
requests and receives from each peer a portion of the
peer’s local index information, which permits the
coordinator to run a top-k algorithm (such as the TA
algorithm or variants) based on the collected information
about the peers’ index lists.

3.1 The HistogramBlooms Structure
In KLEE, each peer maintains a set of statistical metadata
describing its index list. In particular, histogram-based
information is maintained to describe the distribution of
scores in the index list. The range of possible score values
cover the range (0, 1]. For simplicity, we assume that peer
histograms are equi-width, consisting of n cells, each cell
being responsible for (1/n)th of the score range. It would
be straightforward to employ other forms of histograms.

Associated with each cell i, each peer maintains the
following information:
• The lower and upper values, lb[i], ub[i], respectively,

defining the range of scores being covered by this cell,

639

• The value of freq[i], defining the number of document
IDs whose scores in the peer’s index list fall within
lb[i] and ub[i],

• The average score, avg[i], computed over all scores in
the cell, and

• A synopsis: of the document IDs whose scores fall in
this cell, filter[i]. In particular, this compact
representation is constructed using Bloom filters.

Bloom filters have received a lot of attention in our
community, given their distinguishing ability to, on the
one hand, represent compactly the contents of a set and,
on the other, efficiently test whether a given item is a
member of the set. Briefly, in their simplest form, Bloom
filters work as follows: a bitmap V containing b bits,
initially all set to 0, is used to compact the information in
a set S = {α1, α2,…, αs}. Each value of set S is hashed into
V. In general h independent hash functions, h1, h2,…, hh
can be used for each element of S producing h values,
each varying from 1 to b and setting the corresponding bit
in vector V. Testing if an element e belongs to set S is
now very fast: simply, the same h hash functions are
applied on e and the bits of V in positions of h1(e), h2(e),..,
hh(e) are checked. If at least one of these bits is 0, then e
does not belong to S. Else, it is conjectured that e belongs
to S, although this may be wrong (this is referred to as a
"false positive"). Given the number of items, s, of the set
for which a filter is created, which set a number of bits in
the filter, by tuning h and b one can control the
probability for false positives, which is given by

h-hs/bPFP)e-1(≈ [Bl70, Fan98], where s is the
number of values in the set S, b is the size of the
filter/bitmap, and h is the number of hash functions. When
h=1, the term b/s coined the load factor, controls PFP.

As mentioned, KLEE uses Bloom filters to compactly
represent, for each histogram cell, the set of documents
whose scores fall in this cell. This information, coupled
with the statistical metadata, can prove of great value to
the coordinator to compute a high quality top-k
approximation swiftly and efficiently.

3.2. Harvesting HistogramBlooms
In the first phase, at the coordinator’s request, each cohort
peer replies with its local top-k list, and a fraction of its
HistogramBlooms data structure. The coordinator then
can address the missing-scores problem as follows: for
every peer Pi that has not reported a score for docID,
using the Bloom-filter cell summaries of Pi and the hash
functions, it can find to which histogram cell of peer Pi
the docID belongs say c, (by simply testing for
membership of docID in the filters of each cell, and
stopping when a test is successful). Then, it can use the
average score associated with that histogram cell, avg[c],
to replace the missing score of Pi for docID.

The missing-documents problem can then be dealt
with as follows: The coordinator, having attacked the
missing-scores problem, can then produce an
approximation of the top-k result and identify the k-th
total score in this top-k approximation, topKscore. Thus, a
per-peer candidate list can be constructed, consisting of

all the docIDs (and their scores) that locally in a peer have
a score that is greater than topKscore/m. Each of the m
cohort peers then can be asked to send its candidate list.
After receiving this information, the coordinator can then
compute a higher-quality top-k approximation.

Intuitively, the HistogramBlooms structure allows the
coordinator of the algorithm the chance to gather score
information from deep enough into the index lists of the
cohort peers, without paying the bandwidth cost of
retrieving long subsets of the peers’ index lists.

3.3 The Candidate List Filters Matrix Structure
The above solution to the missing-documents problem,
although helpful, may require further optimization. At the
end of the 1st phase, the coordinator has qualitative
information at its disposal that allows it to estimate how
good its top-k score approximation is. For instance, if too
many missing values are replaced by averages from “low-
end” (“high-end”) peer-histogram cells, then the
approximation is with high probability of low (high)
quality. In addition, and perhaps more importantly, even if
the topKscore approximation at the end of the first phase
is accurate, it is possible that the per-peer candidate lists
sent by the peers in the second phase will be much longer
than needed, wasting thus a lot of bandwidth. The reason
is that, the value topKscore / m, especially for larger
values of m, may be very small, and a very large fraction
of the docIDs at each peer may have a higher score.

For these reasons, an additional “candidate list
reduction” phase may be employed to avoid high network
bandwidth overheads. The central insight is to gather
information about the contents of the per-peer candidate
lists so that only docIDs that belong to “enough”
candidate lists (and have a chance to have a TotalScore
higher than topKscore) are sent; the rest will be filtered
out and not sent. In this phase, the peers will:
1. each identify the contents of its candidate list set, that

is find those docIDs associated locally with a score
that is better than (topKscore / m) and

2. create a bitmap filter of this set, called the peer’s
Candidate List Filter, CLF. Specifically, for each
docID with score(docID) > (topKscore / m), the peer
will hash the docID and set the proper bit in its CLF.
Pinit utilizing the histogram statistics received, can

know from the 1st phase the number of documents at each
peer that have a better score than topKscore / m. The
maximum of these numbers will be sent to the peers and
will be used by them in the bitmap construction so that all
peers’ CLFs will have the same size, b. When Pinit
receives these CLFs it constructs a bitmap matrix, the
CLF Matrix. The CLF Matrix:
• is an m × b matrix,
• its i-th row is the CLF received from the i-th peer.

3.4 Harvesting Candidate List Filters
The rationale for building the CLF Matrix is that, by
construction, all docIDs (from all m peers) which have a
higher score than the topKscore/m in R of the m peers,
will be hashed into a column of the CLF Matrix with R bit
positions set. The central conclusion that can now be

640

drawn is that the docIDs that hashed into columns with a
small number of set bits, need not be sent, since they have
a better score than topKscore/m in only a small number of
peers, making the likelihood of these docIDs having a
total score better than topKscore very small. Thus, for
appropriately selected values of R (e.g. for a majority of
the peers) the docIDs that hashed into columns of the CLF
Matrix which have R bits set, need be sent only. In this
way, Pinit can substantially reduce the size of the set of
(docID, score) pairs which peers will be asked to send,
yielding obvious bandwidth benefits.

Associated with the construction and exploitation of
the CLF Matrix, there are three challenges:
1. obtain the needed information with low network

bandwidth overhead, while
2. avoiding extensive filtering of docIDs that would

reduce the quality of the top-k list result, and
3. being able to estimate the expected benefits of

producing and exploiting Candidate List Filters before
hand, so to avoid having an additional communication
phase if they are not needed.

4. The KLEE Algorithmic Framework
4.1 The Peer Cohorts’ Preparation
Each peer, given its sorted index list, constructs the
HistogramBlooms structure described previously. The
construction of the histogram-related data is
straightforward. The construction of the per-histogram-
cell filters is also simple: In the same scan of the index list
needed to construct the histogram data, for each histogram
cell, a set, cell-docID-set, is created whose elements are
the docIDs belonging to this cell. For each such i, cell-
docID-set[i] a Bloom filter, filter[i], is constructed.

All peers use the same number of and the same hash
functions for the filter[i] construction, for all i. However,
different peers, in general, will be expected to have
histogram cells of different sizes. Therefore, the size of
the filters filter[i] at different peers will of course be
different, driven primarily of the need to ensure a low
probability for false positives.

Since the construction of the histograms and related
filters may be time-consuming, these can be precomputed
and stored locally at each peer, to avoid incurring the
overhead of computing these ‘on line’.

4.2 KLEE: A High-Level View
When a query q(T,k) is initiated at a peer, Pinit, this peer
assumes the responsibility for coordinating the execution
of the top-k algorithm, communicating with the m cohort
peers with relevant index lists for the terms in T.

The algorithm has in general the following four steps:
1. The Exploration Step. Pinit communicates with the m

cohort peers in order to produce a good estimation of
the topKscore, which in turn yields the per-peer
candidate lists. For a peer Pi its candidate list is
defined to contain those docIDs for which
score(docID) > (topKscore / m).

2. The Optimization step. This step is performed by Pinit
locally. It analytically estimates the expected benefits

from engaging a Candidate List Reduction phase, by
arguing about the expected values in the candidate list
filters that would be constructed by the cohort peers.

3. The Candidate List Reduction Step. This step is
optional, in the sense that it is executed only when
indicated by the previous step. It requires one round-
trip communication phase with the cohorts to
construct the Candidate List Filter Matrix data
structure. Using the latter, a new set of per-peer
candidate lists are constructed, replacing the ones
constructed in the first step. Specifically, for a peer Pi
its candidate list is defined to contain those docIDs for
which hash(docID) is one of the columns of the CLF
Matrix with enough bits set.

4. The Candidate List Retrieval Step. This consists of a
final round-trip communication phase with the cohorts
to obtain their candidate lists and compute the final
top-k result.
Note that the optimization step acts basically as a

point for trading-off bandwidth performance vs the
number of communication phases. This step predicts the
potential bandwidth savings resulting from the candidate
list reduction; these, in turn, can be weighed against the
cost in latency of engaging an additional round-trip
communication phase with the peers. Different decisions
can be made, depending on which metric is considered to
be more critical. In the following subsections each step of
the framework is presented in detail.

4.3 The Exploration Step
This is the first step of KLEE embodying the first
coordinator-cohorts communication phase. It addresses
the missing-scores problem as follows:
1. Pinit sends a ‘start’ request with the query q(T,k).
2. Peers respond with:

a. their local top-k lists,
b. for each of the c ‘high-end’ cells (i.e. for the cells

covering up to, say the top few percent of the
highest scored documents): the histogram-cell
information (freq[i], lb[i], ub[i], avg[i], and
filter[i]), i=1, …, c.

c. for each of the remaining i, i=c+1,…,n, ‘low-end’
cells: freq[i], and avg[i].

3. Pinit then approximates the top-k list, as follows:
a. When the score of some document with docIDi is

missing in some index list Ij(t), Pinit hashes docIDi
and checks for membership in the filter[r], r=1,…c
(i.e., in the per-cell document filters sent by peer
Pj) to find out to which histogram cell in Pj docIDi
belongs. The check stops when either a
membership test is successful, or until all available
filter[r] summaries are exhausted.

b. If docIDi is found to be a member of, say, filter[r],
Pinit uses the average score associated with that
cell, avg[r], to replace the missing score.

c. Else, Pinit replaces the missing score with a
weighted average score computed using the
frequencies and average scores associated with the
‘low-end’ cells of Pj.

641

d. This process is repeated for all docIDs for which
scores are missing and for all Pj from which scores
are missing.

4. Having replaced all missing scores, Pinit computes the
top-k list approximation and identifies the score of
the k-th document in this list as the topKscore.

5. Furthermore, given topKscore, implicitly defines the
candidate list of each peer as follows: The
CandidateList of peer Pj is defined to be the set:

}/)(:{ mtopKscoredocIDscorejIdocIDdocID >∧∈

...

Index List

Cohort
Peer Pi

top
k

Coordinator
Peer Pinit

current
top-k

candidate
set

b bits

0
0

0
1

0
1

1
0

0
0

0
1

0
1

1
0

0
1

0
1

1
0

1
0

0
1

0
1

1
0

1
0

0
1

0
0

1
0

1
0

0
1

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
1

0
0

1
0

0
1

0
0

0
1

1
1

0
1

0
0

0
1

1
1

Histogram

c cells

...

score

Index List

Cohort
Peer PJ

top
k

b bits

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
0

0
1

1
1

0
1

0
0

0
1

1
1

0
1

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
0

1
1

1
0

0
1

0
0

1
1

1
0

Histogram

c cells

score

Figure 1: Two peers responding to Pinit

4.4 The Optimization Step
This is the second step of KLEE. It requires no
communication; it is executed completely locally within
Pinit. The main task here is to analytically estimate the
expected bandwidth savings resulting from possibly
employing the candidate list reduction phase. Thus, we
derive the fundamental relation that yields these expected
savings and the parameters it depends on.

The analysis uses the value d, defined as the average
size of the peer candidate lists (that is, the average number
over all peers of docIDs having a score that is greater than
topKscore/m, at the end of phase 1). For clarity, we
assume that the probability of false positives is made very
small, using appropriate load factors, so approximating
the average number of (docID, score) pairs sent by each
peer with d, is acceptable; actually, these probabilities are
not hard to compute, but would make the presentation
harder to follow. Recall that for the CLF construction,
peers use just one hash function.

Arguing about the expected values of the CLF Matrix,
we note that the probability of any bit of a column being
set (independently by a peer in its CLF filter) is given by

lfP /11 = where, lf is the load factor for the Bloom filter
which is given by: dblf /= where b is the size of the
peers’ CLFs. Next, the key value to estimate is the
expected number of columns of the CLF Matrix which
have at least R bit positions set. The term PR refers to the
probability of any column satisfying this criterion. PR is
given by the following binomial distribution:

im
lf

lfi
lf

m

Ri i

m
RP −−

××
=
∑ 








=)

1
()

1
(

The bandwidth cost, measured in terms of the number of
(docID, score) pairs sent by all peers, in the final phase of

KLEE without the Candidate List reduction phase, C, is
given by C = d × m.

The bandwidth cost in the version of KLEE with the
candidate list reduction phase engaged, Cr, consists of the
cost of sending the candidate list filters at phase 2, Cr,2
and the cost of sending the (docID, score) pairs in the
final phase 3, Cr,3. For the latter cost, recall that Pinit sends
to the peers in the phase 3 the column indices which are
found to satisfy the criterion that at least R bits are set and
that each peer responds only with the docIDs that hash
into these positions. Thus, we need to compute the
probability that in each peer CLF there is a bit set for the
specific indices sent by Pinit. Cr,3 is thus given by Cr,3 = PR
× d × m since in each peer’s CLF filter, a bit position
belongs to a column with at least R bits set with
probability PR, and since there are d bits set in each peer,
and there are m peers in total.

Comparing Co and Cr,3 we see that Cr,3 = PR × C0
making the value of PR the key to the expected savings

in the bandwidth in the last phase of the algorithm.
The actual costs Co and Cr must be multiplied by the

average number of bytes required for each (docID, score)
pair. Additionally, the cost of sending the candidate list
filters, Cr,2, must also be accounted for. This cost is
simply given by Cr,2 = (m × b / 8) bytes.

4.5 The Candidate List Reduction Step.

The following details step 3 of KLEE, which revolves
around the construction and manipulation of the peers’
CLF structures.
Candidate List reduction: Improving the quality of the
top-k approximation and addressing the missing
documents problem:
1. Pinit first refines the set candidate_list(P) for a peer, P,

to be all docIDs that:
 P has not sent to Pinit so far and
 have a score in the index list of P that is greater

than the minimum score of the histogram cell
holding the value topKscore / m.

2. Pinit computes the size of candidate_list(Pi) for each
peer Pi, based on the histogram data received in step 1
and then finds their maximum,
max_size_candidate_list. Then,
 Pinit sends to each peer Pi the current top-k estimate

and max_size_candidate_list,
 Each peer Pi, computes and returns to Pinit:

 The CLF: using just one hash function and a
bitmap with size b = load_factor ×
max_size_candidate_list, with a load_factor
value large enough to ensure low probabilities of
false positives. The CLF is constructed by
hashing each docID of its candidate list into this
bitmap, and
 the true scores of the docIDs in the top-k
estimate.

3. Pinit constructs the CLF bit matrix, CLFM, of size m ×
b. As mentioned, the rows in this matrix are the CLF
filters received from the peers: CLFM [i,j] represents

642

the jth entry in peer Pi’s CLF filter for
candidate_docs(Pi).

4. Pinit defines the interesting columns of its CLFM to be
the indices of those columns with at least a number R
of bits set.

5. Finally, Pinit redefines the candidate list of a peer Pi to
be the subset of Pi’s original candidate list consisting
of only the docIDs that hash into the interesting
columns of Pi’s CLF.

...

score

010010000100010001

Index List

Cohort
Peer Pi

...

Index List

top
k top

k

Coordinator
Peer Pinit

threshold

current
top-k candidate

set

ca
nd

id
at

es

0000100000100000001

xx x

threshold

000010000010000001

current
top-k candidate

set
find interesting

columns

ca
nd

id
at

es

threshold

early stopping
point score

Figure 2: Constructing CLFM from CLFs
As mentioned, by construction, after phase 2, all

docIDs which have a higher score than the (topKscore /
m) in R peers, will be hashed into a column of CLFM with
R entries set. The converse, however, does not necessarily
hold; i.e. when two different bit positions in a column of
CLFM are set, they may either come from the same docID
known to the respective peers, or from two different
docIDs that happened to hash into the same bit position.
This obviously implies that these false positives
introduced by the CLF filters of the different peers will
lead to having peers send more docIDs than absolutely
necessary in the next phase. This problem is in essence
the false positives problem and can be addressed by
appropriate settings of the values of the load factor for the
filter construction.

4.6 The Candidate List Retrieval Step

This is the final step and represents the final
communication phase between the coordinator and the
cohorts.
1. Pinit asks and receives from each peer Pj the (docID,

score) pairs, for each docID that belongs in Pj’s
candidate list, as the latter is defined either from step 1
or from step 3.

2. Pinit then calculates the new top-k list result, based on
the (docID, score) pairs received.
In essence, with the 4-step version of the algorithm,

peers are asked to perform some more processing,
introducing a trade-off between top-k approximation
latency and peer resource utilization, on the one hand, and
overall network bandwidth on the other.

5. KLEE Parameters
The main parameters characterizing the functionality
offered by KLEE are: (i) the number of cells, c, for which

filters are sent by each peer in the first step and (ii) the
number of bits, R, that have to be set in order for any
column of the CLFM to be considered as interesting by
the coordinator in the third step. KLEE also utilizes
parameters pertaining to the construction of the
histogram-cell Bloom filters and in the construction of the
CLFs at peers; these parameters are the load factor and
the number of hash functions to be used so that, given the
number of entries, the probability of false positives is kept
below an acceptable threshold value. The values for the
latter parameters, however, are well understood from the
related literature and do not deserve further attention.

A good choice of the parameter c depends on the skew
of the score distributions. We employ a technique that
bounds the score-prediction error that we make by
fetching only the top c histogram cells compared to the
entire histogram.

Defining the right value for the parameter R, which
represents the number of bits that need be set in order for
a column of CLFM to be considered interesting in step 3,
may be error-prone. A key insight would be to utilize the
histogram data available at Pinit. Instead of simply
counting set bits in the columns of CLFM, we could
multiply each set bit with an appropriately-selected score
value from the peers’ histograms. This value could be the
average or the highest score of the remaining docIDs a
peer has not sent to Pinit, or some alternative score. For
example, after histogram-based statistical analysis, the
average score augmented by a multiple of the standard
deviation adequate to capture a certain percentile of the
remaining score distributions could be used. Obviously,
this is beyond the scope of this paper. However, we
present an approach that is based on the above insight
avoids the conundrum of selecting an appropriate R value.

The basic idea is for peers in the third step of the
algorithm to construct CLFs that are no longer simple bit
maps: a non-zero value in a CLF position indicates now
the cell number of the docID hashing into this position.

Specifically, in the third step of KLEE:
1. For each docID that belongs into its candidate list,

each peer hashes the docID and stores, in the CLF
position indicated by the hash, the cell number of the
peer’s histogram into which this docID belongs.
Formally, CLF[i] = r, if and only if hash(docID) = i,
and lb[r] ≤ score(docID) ≤ ub[r].

2. Pinit after receiving the peer CLFs constructs as before
the m × b matrix CLFM.

3. Finally, Pinit defines a column of CLFM, j,1≤ j ≤ b, as
interesting if and only if:

∑
=

>
m

i
topKscorejiCLFMiub

1
]],[[

 where ubi[r] represents the upper bound of cell r in
the histogram of peer Pi. Note that by using the upper
bound score of the cell to which a docID belongs, the
definition of interesting CLFM columns ensures that
no docID that could attain a TotalScore higher than
topKscore would be missed.

Obviously, the new definition of the interesting columns
of the CLFM structure automatically brings about a new

643

definition of the peers’ candidate lists to be retrieved in
the final step of KLEE.

The new method for selecting interesting columns
introduces bandwidth savings and improves the quality of
the expected result top-k list. However, note that these
benefits come at the expense of using additional bits for
the contents of CLFs. Since cell numbers are stored now
in CLFs, a number of bits equal to log2(n), where n is the
number of histogram cells, are required. Since n is
typically fairly small (e.g., ≤ 100), this cost is still small.

Note that instead of using the upper bound values of
cells, the average or even the lower bounds could be used,
offering trade-offs with respect to higher bandwidth
savings versus reduced accuracy of the resulting top-k list.

6. Experimentation
6.1 Experimental Setup
Our implementation of the testbed and the related
algorithms was written in Java. All peer related data were
stored locally at the peer’s disk. Experiments were
performed on 3GHz Pentium machines. For simplicity, all
processes ran on the same server.
Real-World Data Collections and Queries. Two real-
world data collections were used in our experiments:
GOV and IMDB. The queries for the former contained
text attributes, whereas queries for the latter collection
contained text and structured attributes.

The GOV collection consists of the data of the TREC-
12 Web Track and contains roughly 1.25 million (mostly
HTML and PDF) documents obtained from a crawl of the
.gov Internet domain (with total index list size of 8 GB).
The original 50 queries from the Web Track’s distillation
task were used. These are term queries, with each query
containing up to 5 terms. In our experiments, the index
lists associated with the terms contained the original
document scores computed as tf * log idf. tf and idf were
normalized by the maximum tf value of each document
and the maximum idf value in the corpus, respectively.

In addition, we employed an extended GOV (XGOV)
setup, which we utilized to test the algorithms’
performance on a larger number of query terms and
associated index lists. The original 50 queries were
expanded by adding new terms from synonyms and
glosses taken from the WordNet thesaurus
(http://www.cogsci.princeton.edu/~wn/). The expansion
resulted in queries with, on average, twice as many terms,
with the longest query containing 18 terms.

The IMDB collection consists of data from the
Internet Movie Database (http://www.imdb.com). In total,
our test collection contains about 375,000 movies and
over 1,200,000 persons (with a total index list size of 140
MB), structured into the object-relational table schema
Movies (Title, Genre, Actors, Description). Title and
Description are text attributes and Genre and Actors are
set-valued attributes. Genre contains 2 or 3 genres. Actors
included only those actors that appeared in at least 5
movies.
Synthetic Data Collections and Queries. Our synthetic
benchmarks allow the evaluation of the algorithms under

different input data characteristics. We systematically
study the effect of (i) the skewness in score distributions
and (ii) of the correlation among queried terms on the
algorithms’ performance.

We created index lists having score distributions
following the Zipf law [Zi49], varying the Zipf parameter
(θ), to create varying skewness. For each set of real-world
collections (e.g. GOV and XGOV) we kept the docIDs in
the original index lists in tact and simply replaced the
scores to follow a Zipf distribution with values of θ = 0.3,
0.7, and 1.0. The set of queries was the same as in the
corresponding GOV and XGOV benchmarks. We coined
these synthetic benchmarks Zipf-GOV and Zipf-XGOV.

Finally, in real-world applications there will often be
correlations among the query terms. To systematically test
this, we generated synthetic index lists that had controlled
overlap among their docIDs, using a parameter Ω. Given
any index list I(t1) its overlap with another I(t2) was
created as follows: for each of the top-k docIDs in I(t1), a
random (uniform) value, v, was selected in the range
[k+1, Ω] and this docID was inserted in I(t2) at position v.
By controlling the value of Ω between [k+1, sizeof(I(t2)],
we create stronger or weaker correlations (for smaller or
greater values of Ω, respectively). We created 10 such
index lists. The queries in these Overlap benchmarks were
queries involving t terms, t = 2,..,10, with each query
selecting randomly t index lists from the set of 10.
6.2 Tested Algorithms

DTA: This is a Distributed TA algorithm, an extension
of the standard TA algorithm. Each peer partitions its
sorted index list into batches, with each batch having k
entries. DTA proceeds in phases, in each phase each peer
sends its next batch. After each phase, the coordinator
runs the TA algorithm on the collected entries and stops
when all uncollected index entries can be pruned away.

TPUT: This is the 3-phase algorithm as described in
[CW04]. TPUT comes in two flavors: the original and a
version with compression for long docIDs. This optimized
version instead of sending (docID, score) pairs, hashes the
docID into a hash array where it stores its score and sends
the hash array of scores. Even in the experiments
conducted in [CW04] the compressed optimized version
did not always perform better. Furthermore, KLEE could
also use compression for the filters in Step 1 and the
sparse CLFs in step 3. For these reasons, we report only
the results for the original TPUT version.

X-TPUT: As one of our key contributions is to show
the suitability and significant benefits of approximate top-
k algorithms, we implemented a new version of TPUT,
which we coined X-TPUT. X-TPUT essentially consists
of only the first two phases of TPUT. We tested X-TPUT
given our expectation that even with some missing scores,
which TPUT retrieves in the 3rd phase, it should still be
possible to develop an algorithm that performs much
better than TPUT, at a small precision penalty.

 KLEE-3: This is KLEE with only three steps, two
communication phases – i.e., the version of KLEE
without Step 3, the Candidate List Reduction Step.

644

KLEE-4: This is KLEE with all four steps, three
communication phases engaged.

6.3 Performance Metrics

Cost: Bandwidth. This represents the total number of
bytes transferred between the query initiator and the
cohort peers. This is our primary metric, since it is widely
regarded to be critical in the envisioned applications.

Cost: Query Response Time. This represents the
elapsed, “wall-clock” time for running the benchmarks.

Quality: Relative Recall. This represents the fraction
of the top-k results produced that are in the “true” top-k
results without any approximations. By construction,
DTA and TPUT have a recall value of 1.

Quality: Normalized Score Error. The score error is
the average of the differences between the score of the i-
th position in an algorithm’s result top-k list and the score
in the i-th position in the “true” top-k result, for all 1 ≤ i ≤
k. By, construction, DTA and TPUT have a score error
value of 0. Note that this is an important metric since the
recall value alone may lead to erroneous conclusions. As
an extreme example, in cases where the top-2k docIDs
have very small score differences, it is possible that a top-
k result list can have recall close to 0, while being a very
good result with only negligible score differences from
the true top-k result. Since the score error may be a very
small number, we normalize it by dividing it with the
topKscore. We also computed the footrule distance for the
ranks of approximate vs. exact top-k results.
6.4 Experiments
We report on experiments performed for each of the
benchmarks, GOV, XGOV, IMDB, Zipf-GOV, Zipf-
XGOV, and Overlap. In all experiments queries are for
the top-20 results. KLEE algorithms assume that peers in
the first step send to the query initiator filters for enough
histogram cells, whose cumulative score is a certain
percentage (5%, 10%, and 20%) of the total score mass.
For space reasons, we show only the results with c = 10%
of the score mass. For the value of R, we used the
technique of Section 5 to select the interesting columns.

In KLEE, the Bloom filters were configured as
follows: For the 1st step, the filters for each cell of a
peer’s histogram were long enough to ensure that pfp <
0.004. This creates sparse filters, but helps to avoid
overestimating the topKscore due to false positives. For
the 3nd step, the size of peers’ CLFs ensured that pfp <
0.06. This larger pfp is deemed as an appropriate
compromise between unnecessarily long filters versus a
few (6%) more (docID, score) pairs that need be sent (for
docIDs that were mistakenly assumed to be in the
interesting columns of the CLFs of peers).

Running the experiments over multiple nodes in a
network would be inherently vulnerable to interference
from other processes running concurrently and competing
for cpu cycles, disk arms, and network bandwidth. To
avoid this and produce reproducible and comparable
results for algorithms ran at different times, we opted for
simulating disk IO latency and network latency which are

dominant factors. Specifically, each random disk IO was
modeled to incur a disk seek and rotational latency of 9
ms, plus a transfer delay dictated by a transfer rate of
8MB/s. For network latency we utilized typical round trip
times (RTTs) of packets and transfer rates achieved for
larger data transfers between widely distributed entities
[SaLu00]. We assumed a packet size of 1KB with a RTT
of 150 ms and used it to measure the latency of
communication phases for data transfer sizes in each
connection up to 1KB. When cohorts sent more data, the
additional latency was dictated by a “large” data transfer
rate of 800 Kb/s. This figure is the average throughput
value measured (using one stream -- one cpu machines) in
experiments conducted for measuring wide area network
throughput (sending 20MB files between SLAC nodes
(Stanford's Linear Accelerator Centre) and nodes in Lyon
France [SaLu00] using NLANR's iPerf tool [TQDFG03].

Hence, the overall response times were the sum of cpu
times for an algorithm’s local processing, IO times, and
network communication times. Since cohorts are running
in parallel, the longest time was considered in each phase.
6.5 Performance Results

6.5.1 On Synthetic Benchmarks
Bandwidth Costs. Figure 3 shows the bandwidth results
for Overlap. We show results for θ = 0.7, and t=5-term
queries, (similar results occur with all other tested values
of θ and t, and are omitted for space reasons). Ω was
varied to correspond to the index list positions capturing
from 10% to 100% of the total score mass.

We see that the KLEE algorithms show excellent
performance. KLEE-4 outperforms the TPUT algorithms
by a factor ranging from approximately 2.5 to more than
an order of magnitude. Intuitively, higher correlations
imply that the HistogramBlooms have a greater chance to
work: when calculating the TotalScores of docIDs in the
first phase, any missing scores will be (with high
probability) found in the filters for the docIDs in the top
histogram cells sent by peers. This results in much better
approximations of topKscore, which in turn results in not
having to go very deep into the peer index lists in the
subsequent phases to retrieve candidates. The difference
in the performance between KLEE-3 and KLEE-4 shows
the benefits introduced by the CLFM filtering in the 2nd
communication phase of KLEE-4. KLEE-3 also enjoys
much better performance, especially for higher term
correlations. As Ω values increased, the performance
gains of KLEE-3 vs TPUT and X-TPUT decreased, due to
the inability of HistogramBlooms to significantly help.

Perhaps surprisingly, DTA performs well, for queries
with higher overlap, since a high overlap implies that,
after a relative small number of batches, DTA has gone
deep enough in all index lists. (However, as we shall see
later, this comes at a very high cost in response times).

Figures 4 and 5 show the bandwidth results for Zipf-
GOV and Zipf-XGOV, respectively, for θ = 0.7 (similar
results occur with all other values of θ). In all cases, the
KLEE algorithms outperform the TPUT competitors. In

645

particular, for Zipf-GOV and Zipf-XGOV, KLEE-4 wins
by a factor of 2, compared to TPUT and X-TPUT.

Overlap, c=10%, θ=0.7

0
1,000,000
2,000,000
3,000,000
4,000,000
5,000,000
6,000,000
7,000,000
8,000,000
9,000,000

10,000,000

10 20 30 40 50 60 70 80 90 100
 Ω in %

B
an

dw
id

th
 in

 B
yt

es DTA
TPUT
X-TPUT
KLEE 3
KLEE 4

Figures 3: Bandwidth for Overlap

DTA performs very well for a small number of
terms/peers. For larger numbers of terms/peers, DTA’s
bandwidth performance deteriorates, and for more than
ten terms it is consistently and by far the worst performer.

With respect to the TPUT algorithms vs KLEE-3, we
note that for queries with more than 3 terms/peers, KLEE-
3 outperforms X-TPUT, by about 10% to about 50%.
These smaller gains of KLEE-3 are attributable to the
very small term correlations in these benchmarks.

Finally, in general, for less skewed score distributions,
as shown here, X-TPUT and TPUT have similar
bandwidth performance. Intuitively, this is due to TPUT
and X-TPUT using the same score threshold value. The
less skewed a score distribution is, the larger number of
docIDs (having higher scores than the threshold) are sent
by each peer to the coordinator. Thus, the smallest is the
missing information at the coordinator, which is retrieved
by TPUT in the 3rd phase.

Tables 1, 2, and 3 present the aggregate picture for
most metrics we used, for the Overlap, Zipf-GOV, and
Zipf-XGOV benchmarks. In total bandwidth, KLEE-4 is
better than both TPUT algorithms by a factor of about 8 in
Overlap and by more than 2 in Zipf-GOV and Zipf-
XGOV. KLEE-3 is better by a factor of about 2.5 in
Overlap and by about 10% in the other two.
Response Times. We see a similar picture from Tables 1,
2, and 3, which show total benchmark times (i.e., for the
entire batch of 50 queries). In Table 1, for the Overlap
benchmark, KLEE-4 (KLEE-3) is shown to outperform
the TPUT algorithms by a factor better than 4 (2).
Similarly, for the Zipf-XGOV benchmark, KLEE-4
(KLEE-3) outperforms X-TPUT and TPUT by a factor
higher than 4 (25%). For Zipf-GOV, KLEE-4 is better by
about 2.5 (3.5) times than X-TPUT (TPUT), respectively.

The DTA times are very disappointing, due to very
high number of random IOs. Overall, KLEE-4’s, response
times are better by 1-2 orders of magnitude.

Zipf-GOV, c=10%, θ =0.7

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

2 3 4
Number of Query Terms

B
an

dw
id

th
 in

 B
yt

es

DTA
TPUT
X-TPUT
KLEE 3
KLEE 4

Zipf-XGOV, c=10%, θ=0.7

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

10 11 12 13 14 15 18

Number of Query Terms

B
an

dw
id

th
 in

 B
yt

es

DTA
TPUT
X-TPUT
KLEE 3
KLEE 4

Figure 4,5: Bandwidth for Zipf-GOV and Zipf-XGOV

Result Quality. Tables 1, 2 and 3 also depict results
using different metrics for result quality, namely: relative
recall, normalized average score error, and average rank
distance. With average recall being higher than 90%, and
very small rank distance and score errors, the approximate
algorithms, and especially KLEE, prove themselves as the
algorithms of choice, given their great performance.

6.5.2 On Real-World Benchmarks
Bandwidth Costs. Figures 6 and 8 and the first columns
of Tables 4, 5 and 6 show the bandwidth results for GOV,
XGOV, and IMDB respectively. Figure 7 shows
bandwidth consumption for IMDB. We observe that,
again, KLEE-4 is the strongest performer, outperforming
X-TPUT by a factor of about 2 (for > 2 terms) in GOV,
by a factor of between 2 and 3 in XGOV, and by a factor
of about 3 for IMDB. Against TPUT, KLEE-4 is better by
a factor of up to 6 in GOV and by up to more than an
order of magnitude in XGOV, and by similar factors for
IMDB. KLEE-3 and X-TPUT performed comparably. X-
TPUT outperforms KLEE-3 by better than 20% in GOV,
while KLEE-3 wins by more than 15% in XGOV.

GOV, c=10%

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

2 3 4
Number of Query Terms

B
an

dw
id

th
 in

 B
yt

es

DTA
TPUT
X-TPUT
KLEE 3
KLEE 4

IMDB, c=10%

0
200,000
400,000
600,000
800,000

1,000,000
1,200,000
1,400,000
1,600,000
1,800,000
2,000,000

3 4 5
Number of Query Terms

B
an

dw
id

th
 in

 B
yt

es

DTA
TPUT
X-TPUT
KLEE 3
KLEE 4

Figure 6, 7: Bandwidth for GOV and IMDB

It is interesting to note that X-TPUT in these
benchmarks outperforms TPUT. Since index lists are very
skewed, the score threshold of topKscore/m points to a
depth in the index lists which is not surpassed by a large
number of docIDs.

Figure 8: Bandwidth for XGOV

Thus, unlike the synthetic benchmarks reported, there
is a large mass of information that TPUT must retrieve in
the third phase, which explains the better performance of
X-TPUT. However, note from Figures 6, 7, and 8 that as
the number of terms/peers increases, both TPUT and X-
TPUT start performing worse (with KLEE-3 consistently
surpassing X-TPUT, for example).

Finally, again, DTA is in general performing very
poorly except for very small numbers of terms.
Response Times. The same trends are noted for response
times. Both KLEE algorithms significantly outperform
TPUT and DTA. X-TPUT approaches the response times

XGOV, c=10%

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

4 5 6 7 8 9 10 11 12 13 14 15 18

Number of Query Terms

B
an

dw
id

th
 in

 B
yt

es TA
TPUT
X-TPUT
KLEE 3
KLEE 4

646

of KLEE for smaller-term queries, (eg in GOV) but as the
number of terms increases it becomes worse by a factor of
about 2 (e.g. in XGOV).

The KLEE algorithms are also best in terms of fewer
random and sequential local IOs at peers. This shows that
KLEE incurs the lightest local peer work.
Result Quality. Tables 4, 5 and 6 show that all
approximate algorithms continue to provide acceptable
result quality. Average recall values for KLEE-4 (KLEE-
3) are at 90% (90%) and 79% (83%) for GOV and XGOV
respectively and average score errors are about 2% and

5% of the topKscore. In light of KLEE’s strong
performance, this is definitely acceptable.

7. Conclusions
We have presented the KLEE framework for distributed
top-k query processing. KLEE’s salient features set it
apart from related work in several ways. First, KLEE
makes for the first time a strong case for approximate top-
k algorithms in widely distributed environments. Second,
KLEE promotes flexibility. It allows the trading-off of
result quality vs performance by: utilizing filters of
various sizes at steps 1 and 3, sending various number of

Table 1: Aggregated Statistics for the Overlap Benchmark with θ = 0.7, Ω=30% and c=10%
Overlap+Zipf
c=10%,θ= 0.7,Ω=30%

Total # of
Bytes

Total
Time in ms

Average
Recall

Avg Score
Error/topKScore

Avg Rank
Distance

Sorted
Accesses

Random
Accesses

DTA 1,146.320 157,420 1 0 0 8,060 150
TPUT 9,150,904 29,270 1 0 0 70,867 0
X-TPUT 9,150,904 28,335 1 0 0 70,867 0
KLEE 3 3,678,780 12,971 0.92 0.0003 1.45 27,801 0
KLEE 4 1,192,704 6,546 0.91 0.0003 1.39 27,765 0

Table 2: Aggregated Statistics for the Zipf-GOV Benchmark with θ = 0.7 and c=10%
Zipf-GOV
c=10%, θ= 0.7

Total # of
Bytes

Total
Time in ms

Average
Recall

Avg Score
Error/topKScore

Avg Rank
Distance

Sorted
Accesses

Random
Accesses

DTA 17,752,769 3,532,180 1 0 0 89,241 133,338
TPUT 53,494,903 576,713 1 0 0 1,262,745 15,998
X-TPUT 53,011,252 404,991 0.99 0.001 0.13 1,262,745 0
KLEE 3 49,861,342 367,931 0.97 0.002 0.87 1,182,434 0
KLEE 4 25,057,920 160,585 0.94 0.004 1.04 1,182,434 0

Table 3: Aggregated Statistics for the Zipf-XGOV Benchmark with θ = 0.7 and c=10%
Zipf-XGOV
c=10%, θ= 0.7 Total # of Bytes

Total
Time in ms

Average
Recall

Avg Score
Error/topKScore

Avg Rank
Distance

Sorted
Accesses

Random
Accesses

DTA 617,009,260 39,582,682 1 0 0 443,040 2,486,650
TPUT 377,928,880 1,599,581 1 0 0 5,057,570 6,465
X-TPUT 377,097,644 1,521,220 0.98 0.002 0.36 5,057,570 0
KLEE 3 287,294,812 1,189,891 0.91 0.012 1.70 3,908,467 0
KLEE 4 165,077,807 375,077 0.92 0.011 1.43 3,924,437 0

Table 4: Aggregated Statistics for the GOV Benchmark with c=10%
GOV
c=10%

Total # of
Bytes

Total
Time in ms

Average
Recall

Avg Score
Error/topKScore

Avg Rank
Distance

Sorted
Accesses

Random
Accesses

DTA 1,172,446 190,259 1 0 0 6,043 8,229
TPUT 1,505,290 185,049 1 0 0 13,180 13,754
X-TPUT 597,991 31,432 0.89 0.026 1.21 13,180 0
KLEE 3 722,664 28,319 0.90 0.018 1.16 11,652 0
KLEE 4 440,868 39,564 0.90 0.022 1.27 11,652 0

Table 5: Aggregated Statistics for the XGOV Benchmark with c=10%

XGOV c=10% Total # of Bytes
Total

Time in ms
Average
Recall

Avg Score
Error/topKScore

Avg Rank
Distance

Sorted
Accesses

Random
Accesses

DTA 92,587,264 3,740,677 1 0 0 40,940 289,468
TPUT 70,044,884 2,346,882 1 0 0 235,809 213,906
X-TPUT 19,236,084 96,153 0.91 0.027 1.12 235,809 0
KLEE 3 16,690,912 88,271 0.83 0.046 2.91 203,174 0
KLEE 4 7,920,774 56,609 0.79 0.052 3.25 203,174 0

Table 6: Aggregated Statistics for the IMDB Benchmark with c=10%

IMDB c=10% Total # of Bytes
Total

Time in ms
Average
Recall

Avg Score
Error/topKScore

Avg Rank
Distance

Sorted
Accesses

Random
Accesses

DTA 3,182,737 581,226 1 0 0 16,110 28,836
TPUT 16,152,355 1,148,847 1 0 0 282,013 9,708
X-TPUT 8,406,897 92,137 0.73 0.026 3.85 282,013 0
KLEE 3 8,592,431 92,745 0.70 0.026 4.14 276,795 0
KLEE 4 2,845,225 33,616 0.69 0.027 4.33 276,795 0

647

filters in the 1st step, using high, average or low scores of
histogram cells for the missing scores in the 1st step,
utilizing the cell score upper or lower bounds when
determining the interesting columns of CLFM, etc. KLEE
even allows the trade-off between bandwidth vs the
number of communication phases.

Our comprehensive experiments show that KLEE
achieves great performance gains in network bandwidth,
query response times, and local peer load, and high
quality results. We also developed, implemented, and
tested extensions of competing algorithms, which in some
cases were found to be better performers than their base
algorithm. Again, KLEE was a clear winner. The most
appealing performance feature of KLEE is that it
introduces the aforementioned great performance benefits
consistently, without sensitivity to the key input
characteristics (such as score distributions, number of
terms/peers, and term correlations).

8. References
[Ag03] S. Agrawal et al.: Automated Ranking of
Database Query Results. CIDR 2003
[AKM01] V.N. Anh et al.: Vector-Space Ranking with
Effective Early Termination. SIGIR 2001
[Ba05] W.-T. Balke, et al.: Progressive Distributed Top k
Retrieval in Peer-to-Peer Networks. ICDE 2005
[BO03] B. Babcock, C. Olston: Distributed Top-K
Monitoring. SIGMOD Conference 2003
[Ba03] M. Bawa, et al.: Make it fresh, make it quick:
searching a network of personal webservers. WWW 2003
[Bey99] K.S. Beyer, et al.: When Is ''Nearest Neighbor''
Meaningful? ICDT 1999
[Bl70] B.H. Bloom: Space/Time Trade-offs in Hash
Coding with Allowable Errors. Comm. of the ACM, 1970
[BBK01] C. Böhm, S. Berchtold, D.A. Keim: Searching
in high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Comput. Surv. 33(3), 2001
[BCG02] N. Bruno, S. Chaudhuri, L. Gravano: Top-k
selection queries over relational databases: Mapping
strategies and performance evaluation. TODS 27(2), 2002
[BGM02] N. Bruno, L. Gravano, A. Marian: Evaluating
Top-k Queries over Web-Accessible Databases. ICDE
2002
[CW04] P. Cao, Z. Wang: Efficient Top-K Query
Calculation in Distributed Networks. PODC 2004
[CH02] K.C.-C. Chang, S.-W. Hwang: Minimal probing:
supporting expensive predicates for top-k queries.
SIGMOD 2002
[CGM04] S. Chaudhuri, L. Gravano, A. Marian:
Optimizing Top-K Selection Queries over Multimedia
Repositories, TKDE 16(8), 2004.
[Ch04] S. Chaudhuri, et al.: Probabilistic Ranking of
Database Query Results. VLDB 2004
[CP02] P. Ciaccia, M. Patella: Searching in metric spaces
with user-defined and approximate distances. TODS 2002
[deV02] A.P. deVries, N. Mamoulis, N. Nes, M.L.
Kersten: Efficient k-NN Search on Vertically
Decomposed Data, SIGMOD 2002.

[Fa99] R. Fagin: Combining Fuzzy Information from
Multiple Systems, J. Comput. Syst. Sci. 58(1), 1999
[FLN03] R. Fagin, J. Lotem, M. Naor: Optimal
aggregation algorithms for middleware. J. Comput. Syst.
Sci. 66(4), 2003.
[Fan98] L. Fan, et al.: A Scalable Wide-Area Web Cache
Sharing Protocol, SIGCOMM 1998
[GKB00] U. Güntzer, W. Kießling, W.-T. Balke:
Optimizing Multi-Feature Queries for Image Databases.
VLDB 2000
[GKB01] U. Güntzer, W. Kießling, W.-T. Balke: Towards
Efficient Multi-Feature Queries in Heterogeneous
Environments. ITCC 2001.
[HS03] G.R. Hjaltason, H. Samet: Index-driven similarity
search in metric spaces. TODS 28(4), 2003.
[Hue05] R. Huebsch, et al.: The Architecture of PIER: an
Internet-Scale Query Processor. CIDR 2005
[Kau04] R. Kaushik, et al.: On the Integration of Structure
Indexes and Inverted Lists. SIGMOD Conference 2004
[Kou04] N. Koudas, et al.: Approximate NN queries on
Streams with Guaranteed Error/performance Bounds.
VLDB 2004: 804-815
[LS03] X. Long, T. Suel: Optimized Query Execution in
Large Search Engines with Global Page Ordering. VLDB
2003
[MGB04] A. Marian, L. Gravano, N. Bruno: Evaluating
Top-k Queries over Web-Accessible Databases. TODS
29(2), 2004
[Na01] A. Natsev, et al: Supporting Incremental Join
Queries on Ranked Inputs. VLDB 2001
[NR99] S. Nepal, M. V. Ramakrishna: Query Processing
Issues in Image (Multimedia) Databases. ICDE 1999
[PZS96] M. Persin, J. Zobel, R. Sacks-Davis: Filtered
Document Retrieval with Frequency-Sorted Indexes,
JASIS 47(10), 1996.
[SaLu00] D Salomoni and S. Luitz, "High Performance
ThroughputTuning/Measurement"
http://www.slac.stanford.edu/grp/scs/net/talk/High_Perf_
PPDG_Jul2000.ppt
[So01] A. Soffer, et al: Static Index Pruning for
Information Retrieval Systems. SIGIR 2001
[Su03] T. Suel et al.: ODISSEA: A Peer-to-Peer
Architecture for Scalable Web Search and Information
Retrieval, WebDB 2003
[TQDFG03] Ajay Tirumala et al.: iPerf: Testing the limits
of your network, http://dast.nlanr.net/Projects/Iperf/
[TWS04] M. Theobald, G. Weikum, R. Schenkel: Top-k
Query Evaluation with Probabilistic Guarantees. VLDB
2004
[Yu01] C.T. Yu, et al.: Database selection for processing
k nearest neighbors queries in distributed environments.
JCDL 2001
[YPM03] C.T. Yu, G. Philip, W. Meng: Distributed Top-
N Query Processing with Possibly Uncooperative Local
Systems. VLDB 2003
[Zi49] G. K. Zipf: Human Behavior and the Principle of
Least Effort. Addison-Wesley Press, 1949.

648

