
An Efficient and Versatile Query Engine for TopX Search

Martin Theobald, Ralf Schenkel, Gerhard Weikum

Max-Planck Institute for Informatics
Stuhlsatzenhausweg 85, D-66123 Saarbruecken, Germany

{mtb, schenkel, weikum}@mpi-inf.mpg.de

Abstract

This paper presents a novel engine, coined
TopX, for efficient ranked retrieval of XML
documents over semistructured but non-
schematic data collections. The algorithm fol-
lows the paradigm of threshold algorithms for
top-k query processing with a focus on inex-
pensive sequential accesses to index lists and
only a few judiciously scheduled random ac-
cesses. The difficulties in applying the ex-
isting top-k algorithms to XML data lie in
1) the need to consider scores for XML el-
ements while aggregating them at the docu-
ment level, 2) the combination of vague con-
tent conditions with XML path conditions, 3)
the need to relax query conditions if too few
results satisfy all conditions, and 4) the selec-
tivity estimation for both content and struc-
ture conditions and their impact on evalua-
tion strategies. TopX addresses these issues
by precomputing score and path information
in an appropriately designed index structure,
by largely avoiding or postponing the evalu-
ation of expensive path conditions so as to
preserve the sequential access pattern on in-
dex lists, and by selectively scheduling random
accesses when they are cost-beneficial. In ad-
dition, TopX can compute approximate top-
k results using probabilistic score estimators,
thus speeding up queries with a small and con-
trollable loss in retrieval precision.

1 Introduction

1.1 Motivation

Non-schematic XML data that comes from many dif-
ferent sources and inevitably exhibits heterogeneous
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structures and annotations (i.e., XML tags) cannot be
adequately searched using database query languages
like XPath or XQuery. Often, such queries either re-
turn too many or too few results. Rather the ranked-
retrieval paradigm is called for, with relaxable search
conditions and quantitative relevance scoring. Note
that the need for ranking goes beyond adding Boolean
text-search predicates to XQuery.

Research on applying IR techniques to XML data
has started five years ago [13, 17, 35, 36] and has
meanwhile gained considerable attention. The em-
phasis of the current paper is on efficiently supporting
vague search on element names and terms in element
contents in combination with XPath-style path condi-
tions. A typical example query could be phrased in
the NEXI language used for the INEX benchmark [24]
as follows:
//book[about(.// "Information Retrieval XML")]

//[about(.//affiliation "Stanford") and

about(.//reference "Page rank")].
This twig query should find the best matches for books
that contain the terms “Information Retrieval XML”
and have descendants tagged as affiliation and refer-
ence with content terms “Stanford” and “Page rank”,
respectively. The challenge lies in processing such
queries efficiently. The method of choice for top-k
similarity queries is the family of threshold algorithms,
developed by [16, 20, 32] and related to various heuris-
tics for processing index lists in IR [9, 33, 6]. These
methods scan index lists for terms or attribute val-
ues in descending order of local (i.e., per term) scores
and aggregate the scores for the same data item into a
global score, using a monotonic score aggregation func-
tion such as (weighted) summation. Based on clever
bookkeeping of score intervals and thresholds for top-k
candidate items, index scans can often terminate early,
when the top-k items are determined, and thus, the
algorithm often only has to scan short prefixes of the
inverted lists. In contrast to the heuristics adopted by
Web search engines [29], the threshold algorithms com-
pute exact results and are provably optimal in terms of
asymptotic costs. The XML-specific difficulties arise
from the following issues:

• Scores and index lists refer to individual XML el-
ements and their content terms, but we want to
aggregate scores at the document level and return
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documents or XML subtrees as results, thus facing
two different granularities in the top-k query pro-
cessing.

• Good IR scoring models for text documents can-
not be directly carried over, because they would
not consider the specificity of content terms in
combination with element or attribute tags. For
example, the term “transactions” is viewed as
specific when occurring within elements of type
<section> or <caption> but is non-informative in
a <journalname>.

• Relevant intermediate results of search conditions
must be tested as to whether they satisfy the path
conditions of the query, and this may incur expen-
sive random accesses to disk-resident index struc-
tures.

• Instead of enforcing a conjunctive query processing,
it is desirable to relax path conditions and rather
rank documents by a combination of content scores
and the number of structural query conditions that
are satisfied.

• An efficient query evaluation strategy and the prun-
ing of result candidates must take into consideration
the estimation of both aggregated scores and selec-
tivities of path conditions.

A viable solution must reconcile local scorings for con-
tent search conditions, score aggregation, and path
conditions. As a key factor for efficient performance,
it must be careful about random accesses to index
structures, because random accesses are one or two
orders of magnitude more expensive than (the amor-
tized cost of) a sequential access. It should exploit pre-
computations as much as possible and may utilize the
technology trend of fast growing disk space capacity
(whereas disk latency and transfer rates are improving
only slowly). The latter makes redundant data struc-
tures attractive, if they can be selectively accessed at
query run-time.
1.2 Related Work

Efficient evaluation of XML path conditions is a very
fruitful research area. Solutions include structural
joins [3], the multi-predicate merge join [41], the stair-
case join based on index structures with pre- and post-
order encoding of elements within document trees [19]
and holistic twig joins [8, 25]; the latter is probably the
most efficient method for twig queries using sequential
scans of index lists and linked stacks in memory. [27]
extends XQuery to support partial knowledge of the
schema. None of these papers considers result ranking
and finding the top-k results only.

Information retrieval on XML data has become pop-
ular in recent years. Some approaches extend tradi-
tional keyword-style querying to XML data [14, 21,
22]. [17, 13, 36] introduced full-fledged XML query
languages with rich IR models for ranked retrieval.
[11] and [18] developed extensions of the vector space
model for keyword search on XML documents. [35] ad-
dressed vague structural conditions, and [5] combined
this theme with full-text conditions. [4] introduced
a query algebra for XML queries that integrates IR-

style query processing. To the best of our knowledge,
among these systems XRANK [21] is the only one that
provides efficient support for finding the top-k results,
but only for keyword queries.

Top-k queries have been tackled in various appli-
cation settings such as multimedia similarity search,
spatial data analysis, information retrieval in digital
libraries and the Web, or preference queries on prod-
uct catalogs and other kinds of structured databases
[2, 10, 12, 15, 16, 20, 23, 32, 38]. The TA (thresh-
old algorithm) family [16, 20, 32] has evolved as the
most efficient and versatile method; we discuss it in
more detail in Section 2. Recent work on making XML
ranked retrieval more efficient has been carried out by
[26] and [31]. [26] uses path index operations as basic
steps; these are invoked within a TA-style top-k algo-
rithm. The scoring model can incorporate distance-
based scores, but the experiments in the paper are
limited to DB-style queries rather than XML IR in
the style of the INEX benchmark. [31] focuses on ef-
ficient evaluation of approximate structural matches
along the lines of [5]. The paper considers primarily
structural similarity by means of outer joins, and disre-
gards optimizations for content term search. The prior
work that is closest to the TopX engine is [26]; our per-
formance studies in Section 7 compare TopX against
this work. Our own prior work on XXL [36, 37] did
not use a top-k algorithm; TopX has a radically dif-
ferent query processing architecture and outperforms
XXL by a large margin.
1.3 Contributions

This paper presents the TopX algorithm and its im-
plementation in a prototype search engine for ranked
retrieval of XML, supporting the NEXI language of
the INEX benchmark [24] and extending search along
all XPath axes with IR-style search conditions. The
salient properties of TopX and the paper’s novel con-
tributions are the following:
• It efficiently processes XML IR queries with support

for all XPath axes, carefully designed index struc-
tures, efficient priority queue management for top-
k candidates, and judicious scheduling of expensive
random accesses.

• It supports probabilistic pruning of candidates,
along the lines of [38] but considerably extending
these prior techniques to an XML setting, to gain
additional speed at the expense of a small loss in
precision of the top-k results.

• It uses novel techniques for estimating aggregated
scores of candidates as well as selectivities of both
tag-term content conditions and structural path
conditions which are used to drive the scheduling
decisions on random accesses to index lists.

• Our XML-specific scoring model takes into consid-
eration both statistics about tag-term combinations
in the underlying XML corpus and the compactness
of subtrees that satisfy the search conditions.

• The paper provides an extensive performance eval-
uation on various real-life, fairly large datasets:
the INEX benchmark, the IMDB structured movie
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database, and the TREC 2004 Terabyte track.

2 Computational Model

We consider a simplified XML data model, where
idref/XLink/XPointer links are disregarded. Thus ev-
ery document forms a tree of nodes, each with a tag
and a content. We treat attributes as children of the
corresponding node. With each node, we can addi-
tionally associate its full content which is defined as
the concatenation of the contents of all the node’s de-
scendants.

Our query processing methods are based on precom-
puted index lists that are sorted in descending order
of appropriately defined scores for individual tag-term
content conditions, and our algorithmic rationale for
top-k queries follows that of the family of threshold al-
gorithms (TA) [16, 20, 32]. For finding the matches
to multiple search conditions (e.g., multiple tag-term
conditions), scoring, and ranking them, TA scans all
relevant index lists in an interleaved manner. In each
scan step, when the algorithm sees the score for a data
item in one list, it combines this score with scores for
the same data item previously seen in other index lists
into a global score using a monotonic aggregation func-
tion such as weighted summation.

The TA family of algorithms comes in two flavors: a)
with random accesses to data items in addition to the
sorted scans on index lists, and b) with sorted access
only. Hybrid methods that aim to schedule random
accesses at appropriate points during query execution
have been proposed as well; TopX proposes an XML-
specific cost model to schedule random lookups to both
content-related and structural query conditions.

Sorted access benefits from sequential disk I/O with
asynchronous prefetching and high locality in the pro-
cessor’s cache hierarchy; so it has much lower amor-
tized costs than random access. Threshold algorithms
with eager random accesses look up the scores for a
data item in all query-relevant index lists, when they
first see the data item in one list. Thus, they can im-
mediately compute the global score of the item, and
need to keep in memory only the current top-k items
with their scores. Algorithms with a focus on sorted
access do not eagerly look up all candidates’ global
scores and therefore need to maintain a candidate pool
in memory, where each candidate is a data item d that
has been seen in at least one list and may qualify for
the final top-k result based on the following informa-
tion (we denote the score of data item d in the i-th
index list by si(d), and we assume for simplicity that
the score aggregation is summation):
• the set E(d) of evaluated lists where d has already

been seen,
• the worstscore(d) :=

∑
i∈E(d) si(d) based on the

known scores si(d), and
• the bestscore(d) := worstscore(d) +

∑
i/∈E(d) highi

that d could possibly still achieve based on
worstscore(d) and the upper bounds highi for the
scores in the yet unvisited parts of the index lists.

The algorithm terminates when the worstscore of the

Algorithm 1 Baseline top-k algorithm
1: min-k := 0
2: for all index lists Li (i = 1..m) do
3: d := (did, si) //scan next d
4: E(d) := E(d) ∪ {i};
5: highi := si;

6: worstscore(d) :=
∑

i∈E(d)
si;

7: bestscore(d) := worstscore(d) +
∑

i/∈E(d)
highi;

8: if worstscore(d) > min-k then
9: replace min{worstscore(d′)|d′ ∈ top-k} by d;

10: remove d from candidates;
11: else if bestscore(d) > min-k then
12: candidates := candidates ∪ d;
13: else
14: drop d from candidates if present;
15: end if
16: min-k := min{worstscore(d′)|d′ ∈ top-k};
17: if (scanDepth % prefetchSize) = 0 then
18: for all d′ ∈ candidates do
19: consider random accesses to Li′ for i′ /∈ E(d′)

according to cost model;
20: update bestscore(d′) using current highi;
21: if bestscore(d′) ≤ min-k

or P [bestscore(d′) > min-k] < ε then
22: drop d′ from candidates;
23: end if
24: end for
25: end if
26: if candidates = ∅

or max{bestscore(d′)|d′ ∈ candidates} ≤ min-k then
27: return top-k;
28: end if
29: end for

rank-k in the current top-k result, coined min-k, is at
least as high as the highest bestscore among all other
candidates.

The literature contains various extensions to this
baseline algorithm. Among these, [38] discuss how
to efficiently implement the candidate pool using pri-
ority queues with judicious queue maintenance. The
same work also proposes to replace the conservative
threshold test by a probabilistic test for an approxima-
tive top-k algorithm with probabilistic precision and
recall guarantees. The most flexible implementation
uses histograms to capture the score distributions in
the individual index lists and computes convolutions
of histograms in order to predict the probability that
an item d has a global score above the min-k threshold:

P [
∑

i∈E(d)

si(d) +
∑

j /∈E(d)

Sj(d) > min-k | Sj(d) ≤ highj ] < ε,

where Sj(d) denotes the random variable for the score
of d in list j. When this probability for some candi-
date document d drops below a threshold ε (e.g., set to
0.1), d is discarded from the candidate set. The special
case of ε = 0 corresponds to the conservative thresh-
old algorithm. Figure 1 shows pseudo code for this
algorithm. The current paper builds on this method.

The pseudo code has an option for making random
accesses when assessing a candidate and reducing the
uncertainty in the [worstscore, bestscore] interval, if
it is desired and cost-beneficial at this point. This
idea gives rise to a family of hybrid algorithms that
allow random accesses but aim to minimize them or
postpone them to the latest possible point [7, 12, 30].

All candidates that are of potential relevance for the
final top-k result are collected in a hash table (the
cache) in main memory; this data structure has the full
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information about elements, worstscores, bestscores,
etc. In addition, two priority queues merely containing
pointers to these cache entries are maintained in mem-
ory and periodically updated. The top-k queue uses
worstscores as priorities to organize the current top-k
documents, and the candidate queue uses bestscores
as priorities to maintain the condition for threshold
termination. In this paper, we employ the following
strategy for queue management, coined the “smart”
strategy in [38]. We periodically rebuild the candidate
queue and bound its length (e.g., to a few hundred en-
tries), taking into account the most recent highi values
from the index scans, and stop the index scans when
the top-priority entry can no longer qualify for the top-
k result (with high probability, if the score predictor
is used).

3 System Architecture

3.1 Query Language

The TopX engine supports a variant of XPath that
has been extended by IR-style conditions, namely
the NEXI dialect [40] used in the INEX benchmark
[24] (see Section 1). TopX currently supports the
full NEXI specification. Like in XPath, a query
is expressed by a location path that consists of at
least one location step. In each location step, the
set of qualifying nodes can be restricted with one
or more predicates that can be Boolean combina-
tions of keyword conditions (denoted by the so called
about operator), e.g., //movie[about(.//title,
"Matrix 3")]//actor[about(.//, "Reeves")].

3.2 Content Scores

For content scoring, we make use of statistical mea-
sures that view the content or full content of a node n
with tag A as a bag of words: 1) the term frequency,
tf(t, n), of term t in node n, which is the number of
occurrences of t in the content of n; 2) the full term
frequency, ftf(t, n), of term t in node n, which is the
number of occurrences of t in the full content of n; 3)
the tag frequency, NA, of tag A, which is the number of
nodes with tag A in the entire corpus; 4) the element
frequency, efA(t), of term t with regard to tag A, which
is the number of nodes with tag A that contain t in
their full contents in the entire corpus. Now consider a
content condition of the form A//"t1 . . . tm", where A
is a tag name and t1 through tm are terms that should
occur in the full contents of a subtree. The score of
node n with tag A for such a condition should reflect

• a monotonic aggregation of the ftf values of the
terms t1 through tm (or tf values, if we use the
child rather than the self-or-descendant axis), thus
reflecting the relevance of the terms for the node’s
content,

• the specificity of the search terms, with regard to
efA(ti) and NA statistics for all node tags, and

• the compactness of the subtree rooted at n that con-
tains the search terms in its full content.

In the following we focus on the self-or-descendant axis
(i.e., the full-content case) as the much more important

case for XML IR with vague search; the case for the
child axis follows analogously. Our scoring of node n
with regard to condition A//"t1 ...tm" uses formulas
of the following type:

score(n, A//”t1 . . . tm”) :=

∑m

i=1
relevancei · specificityi

compactness(n)
,

where relevancei reflects ftf values, specificityi is de-
rived from NA and efA(ti) values, and compactness(n)
considers the subtree or element size for length normal-
ization. Note that specificity is made XML-specific
by considering combined tag-term frequency statistics
rather than global term statistics only. It serves to as-
sign different weights to the individual tag-term pairs,
a common technique from probabilistic IR.

An important lesson from text IR is that the in-
fluence of the term frequency and element frequency
values should be sublinearly dampened to avoid a bias
for short elements with high term frequency of a few
rare terms. To address these considerations, we have
adopted the popular and empirically usually much su-
perior Okapi BM25 scoring model (originating in prob-
abilistic IR for text documents [34]) to our XML set-
ting, leading to the following scoring function:

score(n, A//”t1 . . . tm”) :=
m∑

i=1

(k1 + 1) · ftf(ti, n)

K + ftf(ti, n)
· log

(
NA − efA(ti) + 0.5

efA(ti) + 0.5

)
with

K = k1

(
(1 − b) + b

∑
t∈full content of n

ftf(t, n)

avgn′{
∑

t′
ftf(t′, n′) | n′ with tag A}

)
.

For more background on the theoretical underpinnings
of Okapi BM25 see [34]. The modified Okapi function
was applied to both XML collections in the experi-
ments of this paper with the parameters k1 and b set to
1.2 and 0.75, respectively, for all element types. With
regard to overall retrieval quality, the above formula
would also allow a more elaborated parameter opti-
mization for individual element types, which would go
beyond the subject of this work. Good scoring func-
tions for XML, e.g., based on statistical language mod-
els, are an active research issue [24]; our Okapi-based
scoring model achieved very good result quality on the
INEX benchmark.
3.3 Structure Conditions

For efficient testing of structural conditions, we tran-
sitively expand all structural dependencies. For ex-
ample, in the query //A//B//C[.// "t"] an element
with tag C (and content term "t") has to be a descen-
dant of both A and B elements. This way, the query
forms a directed acyclic graph with tag-term condi-
tions or elementary tag conditions as nodes and all
transitively expanded descendant relations as edges.
Branching path expressions are expressed analogously.
This transitive expansion of structural constraints is a
key for efficient path validation and allows an incre-
mental testing of path satisfiability. If C in the above
example is not a valid descendant of A, we may safely
prune the candidate document from the priority queue,
if its bestscore falls below the current min-k threshold
without ever looking up the B condition.
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In non-conjunctive (aka. “andish”) retrieval, a re-
sult document (or subtree) should still satisfy most
structural constraints, but we may tolerate that some
tag names or path conditions are not matched. This
is useful when queries are posed without much in-
formation about the possible and typical tags and
paths, e.g., when the XML corpus is a federation
of datasets with highly diverse schemas. Our scor-
ing model essentially counts the number of struc-
tural conditions (or tags) oj that are still to be sat-
isfied by a result candidate d and assigns a small
and constant score mass c for every condition that
is matched. This structural score mass is combined
with the content scores and aggregated with each can-
didate’s [worstscore(d), bestscore(d)] interval. In our
setup we have set c = 1, whereas content scores were
normalized to [0, 1], i.e., we emphasize the structural
query conditions.

3.4 Database Schema and Indexing

Index lists are implemented as database tables; Figure
1 lists the corresponding schema definitions. Nodes in
XML documents are identified by the combination of
document id (did) and pre-order (pre). Navigation
along all XPath axes is supported by both the pre
and post attributes using the indexing technique by
[19]. The actual index lists are processed by the top-k
algorithm using the various B+-tree indexes that are
created on the base tables.

// Full content index for tag-term pairs

CREATE TABLE TagTermFeatures (

did NUMBER, // Document id

tag VARCHAR2(32), // Element name

term VARCHAR2(32), // Term in element

pre NUMBER, // Pre-order of element

post NUMBER, // Post-order of element

score NUMBER, // Full content score of tag-term pair

maxscore NUMBER); // Max(score) of tag-term pair per doc

// Sorted access by (tag, term) with desc.maxscore

CREATE INDEX TagTermScoreIndexSorted ON

Features(tag,term,maxscore,did,score,pre,post);

// Random access by (did, tag, term)

CREATE INDEX TagTermScoreIndexRandom ON

Features(did,tag,term,score,pre,post);

// Navigational elements index

CREATE TABLE Elements (

did NUMBER, // Document id

tag VARCHAR2(32), // Element name

pre NUMBER, // Pre-order of element

post NUMBER ); // Post-order of element

// Random access on elements by (did, tag)

CREATE INDEX ElementIndexRandom ON

Elements(did,tag,pre,post);

Figure 1: Tables for TopX index structures

The TagTermFeatures table contains the actual
node contents indexed as one row per tag-term pair
per document, together with their local scores (re-
ferring either to the simple content or the full con-
tent scores) (see Section 3.2) and their pre- and post-
order numbers. For each tag-term pair, we also pro-
vide the maximum score among all the rows grouped
by tag, term, and document id to extend the previ-

ous notion of single-line sorted accesses to a notion
of sorted block-scans. TopX scans each list corre-
sponding to the key (tag, term) in descending order
of (maxscore, did, score), using the TagTermScore-
IndexSorted index. Sequential scans prefetch all tag-
term pairs for the same did in one shot and keep them
in memory for further processing which we refer to as
sorted block-scans, the reason will be discussed in Sec-
tion 4. Random accesses to content scores for a given
document, tag, and term are performed through range
scans on the TagTermScoreIndexRandom index using
the triple (did, tag, term) as key. Structural tests to
the Elements are performed through random accesses
to the ElementIndexRandom index, only, using the key
(did, tag).

We fully precompute and materialize the TagTerm-
Features table to efficiently support the self-or-
descendant axis. We propagate, for every term t that
occurs in a node n with tag A, its local tf value “up-
wards” to all ancestors of n and compute the ftf val-
ues of these nodes for t. Obviously, this may create a
redundancy factor that can be as high as the length of
the path from n to the root.

4 TopX Query Processing

The query processor decomposes the query into con-
tent conditions, each of which refers to a tag-term pair,
and into additional elementary tag conditions (e.g., for
navigation of branching path queries), plus the path
conditions that constrain the way how the matches for
the tag-term pairs and elementary tag conditions must
be connected. We concentrate on content conditions
that refer to the self-or-descendant axis, i.e., the full
contents of elements. This way, each term is connected
to its last preceding tag in the location path, in order
to merge each tag-term pair into a single query con-
dition with a corresponding list in the inverted index.
For each such content condition (e.g., A[.//"a"]), a
sorted index scan on the TagTermScoreIndexSorted
index is started. Note that by using tag-term pairs
for the inverted index lookups, we immediately ben-
efit from more selective, combined tag-term features
and shorter index lists. The hypothetical combinato-
rial bound of #tags·#terms rows is by far not reached
for any of the collections. There are three key issues
to be addressed for efficiency:

1. The random accesses for tag-only conditions are ex-
pensive and should be minimized.

2. Path conditions that test partial results for their
connectivity along the specified XPath axes must
be inexpensive to evaluate.

3. We would like to achieve fast convergence of
worstscores and bestscores of candidate items to
prune candidates and terminate index scans as early
as possible.

As for the first issue, TopX postpones random accesses
as much as possible, namely, until the point when ran-
dom I/Os are cost-beneficial according to our schedul-
ing approach (see Section 6) for a given candidate. For
most candidates the content-based bestscore quantiles
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(or the probabilistically estimated quantiles) already
become low enough, so they can be dropped from the
candidate queue before the structural conditions need
to be evaluated. This results in major savings of ran-
dom accesses.

The second requirement is met by adding pre- and
post-order values to the entries in the main index
lists (the TagTermFeatures table, see Section 3.4),
following the XPath accelerator work by [19]. This
gives us an efficient in-memory test whether an ele-
ment e1 is an ancestor of another element e2 (within
the same document) by evaluating pre(e1) < pre(e2)
∧ post(e1) > post(e2). There are analogous tests for
all XPath axes, including the child and preceding axes
by extending the schema with the level information.
Since the pre/post information is at hand as we fetch
entries from the index lists, we can test path condi-
tions for candidates with high local scores without ad-
ditional index accesses. If an element fails a path test,
we simply drop it and exclude it from the structural
join.

The third requirement, fast convergence of
worstscores and bestscores for entire documents,
can be met by eagerly eliminating uncertainty about
matches among the elements of a document for which
only a subset of elements has been seen so far in
the index scans. The problem is that we may have
to keep the document in the candidate queue for
a long time until we finally find low-score elements
that satisfy the content conditions but violate the
path conditions. This would keep up the bestscores
unnecessarily high and render the candidate pruning
ineffective. To efficiently fetch all tag-term pairs con-
nected to a content condition in the query, we perform
sorted block-scans that fetch all the elements being
relevant for a content condition from the respective
index list in an inexpensive series of sequential disk
I/O per document. The TagTermScoreIndexSorted
that materializes this block grouping of elements in
descending order of (maxscore, did, score) for each
tag-term condition helps us to this end. Analogously
to the single-line sorted accesses model, the maxscore
attribute now becomes the basis for the highi values
used in each index list to estimate the upper bestscore
bounds for all candidates. Note that the highi

values now serve as a more generous upper bound for
the score each candidate can still achieve, but our
experiments indicate that pruning remains effective.

2:A

1:R

6:B

3:X 7:X

4:B 5:C

aaccab

8:B 9:C

bbb cccxy

2:X

1:A

6:B

3:B 7:C

4:B 5:C

cccabb

abc

2:B

1:Z

3:X

4:C 5:A

aaaabb

6:B 8:X

7:C

acc

9:B 10:A

bb 11:C 12:C

aabbc xyz

d1 d2 d3

Figure 2: XML example documents

4.1 Query Processing Example

As an illustration of the query processing, consider
the example data in Figure 2 and the following twig

query: //A[.//B[.//"b"] and .//C[.//"c"]]. Fig-
ure 3 shows an excerpt of the respective TagTerm-
ScoreIndexSorted index. For simplicity, we do not
show the Okapi-based scores here, but rather pretend
that our scores are mere ftf values normalized by the
number of terms in a subtree (e.g., for the tag-term
pair A:a, the element e10 in document d3 has score
1/4, because the term a occurs twice among the eight
terms under e10). TopX evaluates the query by open-
ing index scans for the two tag-term pairs B:b, and
C:c, and block-fetches the best document for each of
the two conditions. For example, for B:b, the first
three lines of index list L2 in Figure 3 that belong to
the same document d1 are fetched as a sorted block-
scan.

Figure 2 gives pseudo code for the TopX algorithm.
As the index scans proceed in a baseline round-robin
fashion among all index lists Li connected to a content
condition (i.e., tag-term pairs), the algorithm continu-
ously computes [worstscore(d), bestscore(d)] intervals
for each candidate d that it is fetched by a sorted ac-
cess and periodically updates the bestscore(d) values
of all candidates using the current highi values and
the score mass of the not yet evaluated structural con-
straints oj · c. As the first round of block-scan fetches
yields two different documents, the algorithm needs to
continue fetching the second-best document for each
condition. After the second round, it happens that d3’s
relevant elements for both conditions are in memory
at this point. A random access for all A elements in d3

can now be triggered, if it is cost-beneficial (see Section
6). If so, we can efficiently test both path conditions
for d3, namely whether a B:b element is a descendant
of an A element and a C:c element is a descendant of
the same A element, by comparing the pre- and post-
order numbers of the respective element pairs. This
way, it is detected that none of d3’s element triples
satisfies both path conditions and the wortscore(d3)
and bestscore(d3) values have both converged to the
final value 1 + 2/3, however, without the score mass
c = 1 for the missed A condition. The same test can
be performed for document d1 at this point, but only
for one of the two path conditions, namely, whether an
A element has a B:b element among its descendants.
The second condition, namely the connecting between
A and C:c, can be tested only later, when the matches
for C:c within d1 are encountered on the C:c index
list. As d1 has valid element pairs after the A vs. B:b
test, we recompute the [worstscore(d1), bestscore(d1)]
interval which now becomes [1 + 1, 1 + 1 + 3/5]. If the
worstscore(d1) > min-k, we put d1 into the top-k re-
sults; if otherwise the bestscore(d1) > min-k, we put
d1 into the candidate queue and optionally perform
the probabilistic threshold test as to whether d1 still
has a good chance to qualify for the top-k.

5 Score and Selectivity Predictors

For score prediction and probabilistic candidate prun-
ing along the lines of [38], histograms on score distri-
butions are stored in a separate database table and
the histograms that are relevant for each content-
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Li tag term maxscore did score pre

A a 1 d3 1 e5
1 A a 1 d3 1/4 e10

A a 1/2 d1 1/2 e2
A a 2/9 d2 2/9 e1

B b 1 d1 1 e8
2 B b 1 d1 1/2 e4

B b 1 d1 3/7 e6
B b 1 d3 1 e9
B b 1 d3 1/3 e2
B b 2/3 d2 2/3 e4
B b 2/3 d2 1/3 e3
B b 2/3 d2 1/3 e6

C c 1 d2 1 e5
3 C c 1 d2 1/3 e7

C c 2/3 d3 2/3 e7
C c 2/3 d3 1/5 e11
C c 3/5 d1 3/5 e9
C c 3/5 d1 1/2 e5

Figure 3: Block index for the example of Figure 2

Algorithm 2 Structure-Aware Top-k Algorithm
1: min-k := 0
2: for all index lists Li (i = 1 . . . m) do
3: e := (maxscore, did, score, pre, post); //block-scan e in d
4: highi := e.maxscore;
5: elementsi(d) := elementsi(d) ∪ e;
6: for all i′ ∈ E(d) with i′ 6= i do
7: for all e′ ∈ elementsi′ (d) do
8: incrementally test path constraints on (e, e′)

using e.pre, e.post, e′.pre, and e′.post;
9: end for

10: if e does not match any connected e′ then
11: drop e from elementsi(d);
12: end if
13: end for
14: E(d) := E(d) ∪ {i};
15: worstscore(d) :=

∑
i∈E(d)

max{e.score|e ∈ elementsi(d)};

16: bestscore(d) := worstscore(d) +
∑

i/∈E(d)
highi + oj · c;

17: min-k := min{worstscore(d′)|d′ ∈ top-k};
18: //continue as in baseline top-k algorithm shown in Fig.1
19: end for

related query dimension are loaded on-demand in a
single database prefetch prior to query execution. We
chose single-dimensional equi-width histograms over
tag-term pairs for simplicity, with a default of 100
cells per histogram. Predicting the score summation
over multiple index lists requires a convolution of his-
tograms; this is performed on demand during query
run-time. We use one histogram for each tag-term pair
according to our full content scoring model (see Section
3.2). This way we capture the joint tag-term distribu-
tion of scores which is important as some terms have
high scores in combination with particular tags (e.g.,
the term “transactions” in elements named “journal-
name” vs. elements named “section”).

The convolution that is needed for score predic-
tions is dynamically performed during query execu-
tion whenever the priority queue of candidates is re-
built. Note that we merely need to precompute his-
tograms for frequent tag-term pairs in the collection,
since the first pruning step is applied after B sorted ac-
cesses. This approach yields about 75,000 histograms
for INEX (and 118,000 for IMDB) for tag-term pairs
(A, ai) with efA(ai) > 100. There is no necessity to
maintain histograms for non-frequent combinations,
because they will be scanned through after the first
batch of scan steps anyway.

To consider if and when we should perform random

accesses to look up tag-term scores for particular can-
didates, TopX also needs selectivity estimators and
combines it with the score predictor. We introduce
Bernoulli random variables Xi for the ith tag-term
condition being satisfied by candidate d, and and we
estimate the combined probability that d satisfies the
conditions for which d has not yet been seen during the
index scans and will eventually have a sufficiently high
total score to qualify for the top-k result as q(d) :=

P [

m∑
j=1

Sj > min-k|Sj ≤ highj ] · P [Xi = 1 for all i /∈ E(d)]

(assuming independence between the Sj and the Xi

variables, for tractability). A perfectly analogous ap-
proach can be used to estimate, if a candidate will have
a high total score and satisfies certain structural con-
ditions; we will come back to this aspect in the next
section.

We can estimate P [Xi] for each i separately by the
ratio P [Xi] = li

n , where li := ni − pi is the length ni

of index list Li minus the current index scan position
pi in this list and n is the total number of documents
in the corpus. We could then assume independence
among the Xi variables, but this would lead to a very
crude selectivity estimator. Instead we capture the
covariance covij of the (ti, tj) pairs for all i, j that ap-
pear together in prior query histories or have strong
correlation in the data collection. We can then use
the equality P [Xi ∧Xj ] = P [Xi]P [Xj ] + covij and the
chain rule to derive:
P [Xi = 1 for all i ∈ M ] =

∏
i∈M

P [Xi]P [Xi+1] + covi,i+1

P [Xi]
,

where M is a set of conditions to be satisfied.
6 Random Access Scheduling

The rationale of TopX is to postpone expensive ran-
dom accesses as much as possible and perform them
only for the best top-k candidates. However, it can be
beneficial to test path conditions earlier, namely, for
eliminating candidates that do not satisfy the condi-
tions but have high worstscores. Moreover, in the
query model where a violated path condition leads
to a score penalty, positively testing a path condi-
tion increases the worstscore of a candidate, thus po-
tentially improving the min-k threshold and leading
to increased pruning subsequently. In TopX, we con-
sider random accesses at specific points only, namely,
whenever the priority queue is rebuilt. At this point,
we consider each candidate d and decide whether we
should make random accesses to test unresolved path
conditions, or look up missing scores for content condi-
tions. For this scheduling decision, we have developed
two different strategies.
6.1 MinProbe Scheduling

The first strategy, coined MinProbe, aims at a min-
imum number of random accesses by probing struc-
tural conditions for the most promising candidates,
only. Since we do not perform any sorted scans on
elementary tag conditions, we treat structural condi-
tions as expensive predicates in the sense of [12]. We
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schedule random accesses only for those candidates d
whose worstscore(d) + oj · c > min-k, where oj is the
number of untested structural conditions for d and c
is a static score mass that d earns with every satisfied
structural condition (see Section 3.3).

6.2 BenProbe Scheduling

The second strategy, coined BenProbe uses an analytic
cost model. We denote the number of documents in
the priority queue by Q, and the batch size for the
next round of sorted accesses on the index lists by
B. The probability that document d, which has been
seen in the tag-term index lists E(d) and has not yet
been encountered in lists E(d) := [1..m]−E(d), qual-
ifies for the final top-k result is estimated by the com-
bined score predictor (see Section 5) and denoted as
q(d). We estimate the selectivity of the oj remaining
path or twig conditions by precomputed frequencies of
ancestor-descendant and twig patterns, i.e., pairs and
triples of tag names. This is a simple form of XML
synopsis; it could be replaced by more advanced ap-
proaches like [1, 28].

BenProbe compares the cost of making random ac-
cesses to tag-term index lists or to indexes for struc-
tural path conditions versus the cost of proceeding
with the sorted-access index scans. For all three
cost categories, we consider only the expected wasted
cost (EWC) which is the expected number of ran-
dom (or sorted) accesses that our decision would in-
cur but would not be made by an optimal sched-
ule. For looking up unknown scores of a candidate
d in the index lists E(d), we would incur |E(d)| ran-
dom accesses which are wasted, if d does not qual-
ify for the final top-k result (even after considering
the additional score mass from E(d)). By comput-
ing the convolution histogram for E(d), we can esti-
mate this probability, using the current min-k thresh-
old, as P [d /∈ final top-k] = 1 − P [S(d) > min-k] =
1−P [

∑
i∈E(d) Si > min-k−worstscore(d)] =: 1−q(d).

Then the random accesses to resolve the missing tag-
term scores have expected wasted cost:

EWC-RA1(d) = (1 − q(d)) · |E(d)| [RA].

As for path conditions, the random accesses to
resolve all oj path conditions are “wasted cost”
if the candidate does not make it into the fi-
nal top-k which happens, if the number of sat-
isfied conditions is not large enough to accumu-
late enough score mass. The probability that
d qualifies for the final top-k is estimated as∑

Y ′⊆Y P [o′ conditions i1 . . . io′ are satisfied] ·
P [

∑
i∈E(d) Si > min-k−worstscore(d)−o′ ·c] =: q′(d),

where the sum ranges over all subsets Y ′ of Y for
the oj conditions. P [Y is satisfied] is estimated as∏

ν∈Y pν ·
∏

ν /∈Y (1 − pν), assuming independence for
tractability. The independence assumption can be re-
laxed by the covariance-based technique mentioned in
Section 5. For efficiency, rather than summing up over
the full amount of subsets Y ′ ⊆ Y , a lower-bound ap-
proximation can be used. Then the random accesses

for path and twig conditions have expected wasted
cost:

EWC-RA2(d) =
(
1 − q′(d)

)
· oj [RA].

For a candidate d, the sorted accesses are wasted, if
we do not learn any new information about the total
score of d, that is, when we do not encounter d in any
of the m lists. The probability of not seeing d in the
ith list in the next B steps is 1 − li

n
B
li

= 1 − B
n . As-

suming independence, the probability of not seeing d
at all in the next round of index scan steps then be-
comes

∏
i∈E(d) 1− B

n =: r(d). Analogously to the con-
siderations for structural selectivities, we can improve
accuracy by considering covariance estimates. Then
the total costs for the next batch of sorted accesses is
shared by all Q candidates and incurs expected wasted
cost:

EWC-SA =
∑

d∈PQ

r(d) ·
B · m

Q
[SA].

We initiate the random accesses for tag-term score
lookups and for structural conditions, if and only if
EWC-RA1(d) < EWC − SA and EWC-RA2(d) <
EWC−SA, respectively, with RA′s weighted 20 times
higher than SA′s. We actually perform the random
accesses one at a time in ascending order of expected
score gain (for tag-term score lookups) and selectiv-
ity (for path and twig conditions). Candidates that
can no longer qualify for the top-k are eliminated as
early as possible and their further random accesses are
canceled.

7 Experiments

7.1 Setup

We implemented TopX as a collection of Java classes.
We performed experiments on a 3 GHz dual Pentium
PC with 2 GB of memory. Index lists were stored
in an Oracle 10g server running on the same PC. In-
dex lists were accesses in a multi-threaded mode and
prefetched in batches of B = 100 tuples per index
list and cached by the JDBC driver. The scan depth
for invoking periodic queue rebuilds was synchronized
with this prefetch size. The queue bound was set to
Q = 500 candidates. We used three different datasets
in the experiments.

The INEX collection [24] consists of full articles
from IEEE Computer Society journals and conference
proceedings in a rather complex XML format. We
chose the 46 queries from the INEX topics of 2004 for
which official relevance assessments are available. An
example query is //article[.//bibl[ "QBIC"] and
.//p["image retrieval"]].

For the IMDB collection, we generated an XML doc-
ument for each of the movies available at the Internet
Movie Database (www.imdb.com). Such a document
contains the movie’s title, plot summaries, information
about people such as name, date of birth, birth place,
etc. The interesting issue in using this collection is
the mixture between elements with rich text contents
and categorical attributes such as Genre=Thriller
yielding many ties in local scores. We asked colleagues
to create 20 meaningful queries with structural and
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keyword conditions; examples are queries of the
kind //movie[about(.//cast//casting//role,
Sheriff)]//casting//actor[about(.//name,
Henry Fonda)], thus looking for movies with Henry
Fonda and an arbitrary actor in the role of a sheriff.

Since INEX and IMDB are still not exactly very
large dataset in terms of documents, we included ex-
periments on the TREC Terabyte corpus as a stress
test, even if this is not XML. The TREC Terabyte col-
lection of the TREC 2004 benchmark [39] consists of
more than 25 million crawled Web pages from the .gov
domain. This collection contains mostly HTML and
PDF files. The 50 benchmark queries are mere key-
word queries such as “train station security measures”
or “aspirin cancer prevention”.

Note that experimental studies in the literature on
XPath, XQuery, and XML-IR system performance are
mostly based on the XMark synthetic dataset (often
using the 100 MB version which fits into memory),
which is not really appropriate for our setting. INEX
has become the main benchmark for XML IR. Table 1
shows the sizes of our test collections, Table 2 shows
the disk resident sizes including all index structures
required for sorted and random accesses described in
Section 3.4. Index creation times were between 83
minutes for INEX and 15 hours for Terabyte, using
standard IR techniques such as stemming, stop word
removal, and the scoring model described in Section
3.2.

#Docs #El’s #Feat’s Size
INEX 12,223 12,071,272 119M 534MB
IMDB 386,529 34,669,538 130M 1,117MB
TB 25,150,527 n/a 2,938M 426GB

Table 1: Sizes of test collections
INEX IMDB TB

Features 3.8GB 7.4GB 190.2GB
Elements 0.2GB 0.6GB n/a
Histograms 7.4MB 11.5MB 13.5MB
Twigs&Paths 108KB 4KB n/a

Total 4.0GB 8.0GB 190.2GB

Table 2: Index sizes for test collections

7.2 Competitors

Our experiments compared the following strategies for
top-k query processing:

• TopX-MinProbe with the minimum probing strategy
for random accesses, explained in Section 6.

• TopX-BenProbe with the cost-based strategy for
beneficial random accesses, explained in Section 6.

• TopX-Text, using sorted access only to inverted term
index lists for unstructured data. Here, random
lookups are only used to clarify the final ranking
among all top results’ [worstscore, bestscore] inter-
vals.

• Join&Sort, a strategy where all query-relevant in-
dex lists are first completely fetched into main mem-
ory and the top-k algorithm works in memory using
hash tables and cheap random access.

• StructIndex, the algorithm developed in [26] which
uses a structure index to preselect candidates that

satisfy the path conditions and then uses TA with
random access to compute the top-k result.

• StructIndex+, an optimized version of the StructIn-
dex top-k algorithm, using the extent chaining tech-
nique of [26].

The Join&Sort competitor corresponds to a tradi-
tional DBMS-style query processing and is a lower
bound for the amount of index list accesses any non-
TA-based implementation would have to make. It is
inspired by the Holistic Twig Join of [8, 25] which is
probably the best known method for twig queries with-
out any scoring or ranking (i.e., non-IR XPath).

The StructIndex competitor is driven by the assump-
tion that structure conditions are often quite selective.
It uses a Data-Guide-like structure index for first eval-
uating the structural skeleton of the query. This pro-
vides it with a compact representation of result candi-
dates, namely, all element combinations that satisfy all
path constraints, concisely encoded into combinations
of “extent identifiers”. These identifiers are stored as
additional attributes in the entries of the inverted in-
dex lists; so we can quickly test, if an element that
is encountered in the index scan for a tag-term condi-
tion belongs to a document that satisfies the structure
conditions. As the algorithm also performs immediate
lookups of missing tag-term scores (i.e., the original
TA of Fagin [16]), it generally follows an eager strat-
egy for random accesses.

The optimized StructIndex+ method assumes that
all elements in a tag-term index list that have the same
extent identifier in the structure index, i.e., have the
same path tags from the root to the elements, form
a forward-linked chain. The evaluation of the struc-
ture conditions then groups the resulting candidate el-
ements by extent identifier, and conceptually invokes
one sorted index scan for each extent. The implemen-
tation merges these cursors into one index scan that
is mostly sequential but can perform skips. The two
StructIndex approaches have been optimized to fit our
full content scoring. A comparison with Okapi BM25
scores for simple element contents has shown major
benefits of our scoring model in terms of result qual-
ity. Furthermore, StructIndex also uses a hash-based
cache structure to avoid redundant random accesses.
7.3 Baseline Runs

Table 3 gives detailed results comparing different
TopX configurations and competitors for varying k for
INEX, IMDB, and Terabyte. The table lists the fol-
lowing statistics each for the whole batch of queries:
the parameter k, the amount of queries, the sum of
sorted accesses and the sum of random accesses for
the entire batch, the per-query average process CPU
times in seconds, the sum of queue operations (inserts,
deletes, and updates) for TopX, the maximum number
of cached items for the hash-structure used (in num-
bers of documents), the macro-averaged precision at k
(P@k) and the mean average precision (MAP) for the
top-k using official relevance assessments for INEX and
Terabyte. Since the IMDB is not an official benchmark
setting, we omit the P@k and MAP values for the
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IMDB, although results were very good throughout
the whole range of queries. We do not report detailed
wall-clock elapsed times, because we could not mea-
sure them with sufficient statistical confidence given
that our testbed was not exclusively dedicated to a sin-
gle process. Wall-clock times were typically a factor of
10 higher than CPU times (because of disk I/O by the
Oracle server), yielding user-perceived response times
in the range of 0.1 to 0.7 seconds per INEX query (and
up to 30 seconds for Terabyte) at k = 10 and without
probabilistic pruning, and this proportion was fairly
consistent for all algorithms and parameter settings.

Table 3 shows that the conservative TopX method
without probabilistic pruning (ε = 0) reduces the num-
ber of expensive random accesses by a factor of 50 to 80
compared to the StructIndex competitors on INEX,
and still by a factor of 4 to 6 on IMDB, with very good
rates of inexpensive sorted accesses.
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Figure 4: Performance as a function of k for INEX

The MinProbe scheduling outperforms BenProbe
on INEX, in terms of saving random accesses. On
IMDB, on the other hand, BenProbe was superior
because of the different structural characteristics of
the data. There are 106,970 distinct twig and 3,404
distinct path structures in INEX compared to only
3,859 distinct twigs and 111 distinct path structures
in IMDB. Because of the low document-level selectiv-
ity of path conditions on IMDB, the structural con-
straint tests using range scans on the Elements table
to get the pre/post codings were much more expen-
sive than for INEX so that random access scheduling
became very crucial. Here the cost-based BenProbe
method showed its benefits. For the same reason, the
StructIndex techniques became competitive to TopX
for large k, but for small k up to 100 both MinProbe
and BenProbe won by a large margin. Generally,
sorted access shows its drawbacks for categorical at-
tributes such as genres, birth places, etc., which yield
very long lists with many ties in the local scores. Note
that the sorted-access cost of Join&Sort is the same
for all k values as the query-relevant index lists are
completely fetched anyway (even for k=1). We re-
port the MAP value (which depends on k) for the top
k = 1, 000 in this case.

For k as large as 1,000 or higher, all top-k ap-
proaches degenerate and lose their advantage over the
database-style Join&Sort approach due to their over-
head. But this is not surprising; very large k values
are no longer a case for top-k algorithms at all. Note
that for k = 1, 000, we already return about 8% pre-
cent of the INEX documents as query results. For
k = 1, 000, StructIndex approaches has more index

accesses than Join&Sort because of the different index
structures, where TopX still has fewer index accesses
than Join&Sort.

The run Join&Sort-nr for INEX using a non-
redundant scoring model with Okapi BM25 weights on
per-document statistics performs very poorly in terms
of precision and MAP values for the top 1,000 results.
This demonstrates the severe shortcomings of standard
document scoring approaches for XML retrieval. Note
that MAP captures both precision and recall and is the
key metric in the relevance assessment in both bench-
marks, INEX and TREC.

Terabyte served as a stress test to our engine. The
relatively high P@1,000 values indicate that the rele-
vance sets are huge as well. Therefore the MAP values
at the lower k mostly suffer from not returning the top
10,000 as originally proposed by TREC 2004 which we
do not consider meaningful for a top-k engine. For
Terabyte we did not run Join&Sort but merely re-
port the lower bounds of index access costs based on
the relevant index lists’ sizes.

7.4 Runs with Probabilistic Pruning

We also studied the influence of ε on performance and
query result quality. The results for the MinProbe
scheduling are shown in Table 4. As an additional
quality measure we report the macro-averaged relative
precision rPrec(R1, R2) := |R1∩R2|

max{|R1|,|R2|} compared to
the conservative algorithm with ε = 0.

The probabilistic pruning reduces both the amount
of index accesses and the overhead in queue opera-
tions, whereas the predictor overhead itself is almost
negligible. The performance gain is another factor of
20 in access rates and a factor of 10 in run times
compared to the conservative TopX and more than
two orders of magnitude compared to StructIndex or
Join&Sort throughout all the collections, at very high
precision values. Figure 5 shows performance gains
for INEX, in terms of accesses rates, as a function
of the ε value. Although there are minor reductions
in the user-perceived quality measures like precision
and MAP, probabilistic pruning hardly affects the re-
sult quality. Figure 6 shows that the relative pre-
cision value rPrec degrades at a much higher rate.
This means that different results are returned at the
top ranks, but they are equally good from a user per-
spective based on the official relevance assessments of
INEX and TREC.

10,000

100,000

1,000,000

10,000,000

100,000,000

0
0.

2
0.

4
0.

6
0.

8
1.

0

ε

#
 S

A
 +

 #
 R

A

Terabyte

INEX

IMDB

Figure 5: Performance as a function of ε

8 Conclusion
The TopX engine combines an extended TA-style algo-
rithm with a focus on inexpensive sorted accesses with
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Run k Queries Sum(SA) Sum(RA) Avg(CPU) Sum(Q.Ops) Max(Cache) P@k MAP

INEX
Join&Sort 1,000 46 9,122,318 0 0.260 n/a 12,180 0.03 0.17

Join&Sort-nr 1,000 46 8,189,566 0 0.245 n/a 12,183 0.01 0.07

1 46 289,160 1,500,804 0.161 n/a 2,725 0.57 0.04
StructIndex 10 46 761,970 3,245,068 0.357 n/a 8,387 0.34 0.09

100 46 1,966,960 4,938,645 0.648 n/a 10,415 0.13 0.15
1,000 46 4,442,806 6,307,770 1.123 n/a 11,542 0.03 0.17
1 46 30,309 2,282,280 0.896 n/a 2,725 0.57 0.04

StructIndex+ 10 46 77,482 5,074,384 1.837 n/a 8,387 0.34 0.09
100 46 160,816 8,447,310 2.753 n/a 10,415 0.13 0.15
1,000 46 271,803 11,441,431 3.658 n/a 11,542 0.03 0.17

1 46 605,975 10,668 0.064 66,582 11,500 0.57 0.04
TopX 10 46 723,169 84,424 0.078 71,959 11,640 0.34 0.09
BenProbe 100 46 826,458 441,563 0.124 96,176 11,644 0.13 0.15

1,000 46 882,929 1,902,427 0.352 98,692 11,683 0.03 0.17
1 46 322,109 15,876 0.016 36,820 9,157 0.57 0.04

TopX 10 46 635,507 64,807 0.026 59,457 9,828 0.34 0.09
MinProbe 100 46 999,608 361,706 0.062 89,008 10,842 0.13 0.15

1,000 46 1,219,639 1,984,801 0.260 112,423 11,058 0.03 0.17

IMDB
Join&Sort 1,000 20 14,510,077 0 37.758 n/a 282,158 n/a n/a

1 20 251,036 205,775 0.126 n/a 4,162 n/a n/a
StructIndex 10 20 346,697 291,655 0.163 n/a 5,071 n/a n/a

100 20 629,574 747,737 0,378 n/a 18,111 n/a n/a
1,000 20 1,274,624 1,735,399 1.006 n/a 23,831 n/a n/a
1 20 15,250 208,140 0.153 n/a 4,162 n/a n/a

StructIndex+ 10 20 22,445 301,647 0.173 n/a 5,071 n/a n/a
100 20 67,065 782,856 0.437 n/a 18,111 n/a n/a
1,000 20 180,701 1,914,181 1.097 n/a 23,831 n/a n/a

1 20 202,429 8,672 0.066 27,663 24,534 n/a n/a
TopX 10 20 241,471 50,016 0.080 27,818 25,012 n/a n/a
BenProbe 100 20 248,080 187,684 0.126 29,351 23,825 n/a n/a

1,000 20 400,142 1,231,516 0.598 89,903 28,051 n/a n/a
1 20 181,973 13,889 0.031 36,245 3,196 n/a n/a

TopX 10 20 317,380 72,196 0.061 119,899 5,231 n/a n/a
MinProbe 100 20 870,615 241,955 0.349 156,895 21,374 n/a n/a

1,000 20 993,751 1,326,999 1.214 250,501 49,965 n/a n/a

Terabyte
Join&Sort 1,000 50 105,806,358 0 n/a n/a n/a 0.08 0.13

1 50 13,452,578 1,390 1.829 2,077,896 776,977 0.16 0.01
TopX 10 50 27,541,711 2,035 19.840 5,540,426 1,661,793 0.31 0.01
Text 100 50 53,000,119 3,192 97.583 7,884,308 2,077,187 0.21 0.07

1,000 50 56,619,220 25,227 33.015 7,113,318 2,381,891 0.08 0.13

Table 3: Baseline runs for INEX, IMDB, and Terabyte for various k

Run ε Queries Sum(SA) Sum(RA) Avg(CPU) Sum(Q.Ops) Max(Cache) P@10 MAP rPrec

INEX
0.10 46 426,986 59,414 0.063 39,865 9,828 0.32 0.08 0.80

TopX 0.25 46 392,395 56,952 0.056 38,568 9,828 0.34 0.08 0.77
MinProbe 0.50 46 231,109 48,963 0.027 20,567 7,205 0.31 0.08 0.65

0.75 46 102,118 42,174 0.017 7,223 3,167 0.33 0.08 0.51
1.00 46 36,936 35,327 0.007 902 570 0.30 0.07 0.38

IMDB
0.10 20 250,173 57,066 0.028 106,166 5,231 n/a n/a 0.95

TopX 0.25 20 234,248 67,015 0.033 88,302 5,231 n/a n/a 0.89
MinProbe 0.50 20 147,471 55,197 0.026 47,027 5,231 n/a n/a 0.80

0.75 20 38,679 41,504 0.019 10,590 3,586 n/a n/a 0.77
1.00 20 10,068 37,058 0.013 663 568 n/a n/a 0.78

Terabyte
0.10 50 23,010,990 1,106 4.312 4,947,328 1,662,197 0.27 0.01 0.73

TopX 0.25 50 22,948,882 871 9.952 4,884,704 1,661,793 0.27 0.01 0.67
Text 0.50 50 19,283,550 993 3.219 3,300,383 1,661,793 0.26 0.01 0.60

0.75 50 11,538,263 641 1.362 2,223,093 1,661,793 0.22 0.01 0.51
1.00 50 151,043 779 0.011 5,953 4,998 0.19 0.01 0.35

Table 4: TopX runs with probabilistic pruning for various ε at k = 10

a number of novel features: carefully designed, pre-
computed index tables and a cost-model for schedul-
ing that helps avoiding or postponing random accesses;
a highly tuned method for index scans and priority
queue management; and probabilistic score predictors
for early candidate pruning. Our performance experi-
ments demonstrate the efficiency and practical viabil-
ity of TopX for ranked retrieval of XML data.

In addition to the XML IR techniques pre-
sented in this paper, TopX efficiently integrates

ontology/thesaurus-based query expansion, relaxing,
for example, a search for the tag <book> to find also
documents with tag <monography> in a statistically
focused and efficiently computed manner. Other fea-
tures include efficient phrase matching and the flexi-
bility of handling query conditions either in a score-
aggregating “andish” mode or as hard conjunctions
with mandatory terms, tags, and paths. Our future
work will generally aim to combine the best methods
from structured XML querying and non-schematic IR,
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Figure 6: Precision as a function of ε

and will mostly address more sophisticated techniques
for scheduling accesses to different kinds of content and
structure indexes.
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