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Abstract

In this paper we propose and analyze a
method for proofs of actual query execution in
an outsourced database framework, in which
a client outsources its data management needs
to a specialized provider. The solution is not
limited to simple selection predicate queries
but handles arbitrary query types. While this
work focuses mainly on read-only, compute-
intensive (e.g. data-mining) queries, it also
provides preliminary mechanisms for handling
data updates (at additional costs). We intro-
duce query execution proofs; for each executed
batch of queries the database service provider
is required to provide a strong cryptographic
proof that provides assurance that the queries
were actually executed correctly over their en-
tire target data set. We implement a proof of
concept and present experimental results in
a real-world data mining application, proving
the deployment feasibility of our solution. We
analyze the solution and show that its over-
heads are reasonable and are far outweighed
by the added security benefits. For example
an assurance level of over 95% can be achieved
with less than 25% execution time overhead.

1 Introduction

Outsourcing the “database as a service” [18] emerged
as an affordable data management model for parties
(“data owners”) with limited abilities to host and sup-
port large in-house data centers of potentially signif-
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icant resource footprint. In this model a client out-
sources its data management to a “database service
provider” which provides online access mechanisms for
querying and managing the hosted data sets. At the
same time, most of the data server management and
query execution load is incurred only by the service
provider and not by the client.

This is intuitively advantageous and significantly
more affordable for parties with less experience, re-
sources or trained man-power (such as small compa-
nies and individuals). Compared with e.g., a small
company, with likely a minimal expertize in data man-
agement, such a database service provider intuitively
has the advantage of expertize consolidation. More-
over it is likely to be able to offer the service much
cheaper, with increased service availability (e.g. up-
time) guarantees.

Significant security issues are associated with
such “outsourced database” frameworks, including
communication-layer security and privacy, of both the
data and associated access patterns. Of equal concern
is the ability to provide assurances of service execu-
tion and correctness. For a batch of data queries, it is
important to ensure result accuracy as well as authen-
ticity of their input data sets; assurances are required
for the fact that the serviced client queries were in fact
executed correctly over the entire intended target data.

This is especially true in an online, incentive-
driven, possibly hostile environment. Often the in-
centive model (e.g., data querying costs) of the service
provider allows for a scenario in which query execution
correctness could be questioned. A “lazy” or possi-
bly malicious (e.g., with compromised security) service
provider could avoid paying CPU and storage costs
associated with query execution (e.g., maybe only for
the more expensive queries) and reply with (cheaper)
inexact or entirely incorrect results.

To enforce data outsourcing as a sound and truly
viable alternative to in-house data management, it is
essential to provide a solution to handle such scenarios.
Existing research [28] deals with this issue in the con-
text of proving authentication for results of “queries
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testing equality and other logical comparison predi-
cate clauses”, queries that return a selection of a set of
records matching a given simple predicate. This is an
important first step in both identifying the issue and
providing a solution for such (what we call) “identity
queries” 1. Ensuring completeness 2 and authenticity
as well as handling complex (e.g., aggregate), arbitrary
query types remain open hard issues.

In an outsourced database framework, developing a
solution to this problem becomes especially challeng-
ing as the data is placed under the authority of an
external party whose honest behavior is not guaran-
teed but rather needs to be ensured by this very solu-
tion. Additionally, there are clear cost-incentives for
dishonest behavior. Not surprisingly, an intrinsic “un-
friendly” behavior is to be anticipated and handled.

In this paper we propose a solution to provide such
assurances of query execution correctness, for arbi-
trary queries, solution built around a mechanism of
runtime query “proofs” in a challenge-response proto-
col. For each batch of client queries, the server is “chal-
lenged” to provide a proof of query execution which is
then checked at the client site as a prerequisite to ac-
cepting the actual query results as accurate.

The execution proof mechanism is partially based
on an extension to the ringer concept first intro-
duced in [16]. Its core strength derives from the non-
invertibility of cryptographic hash functions. In other
words, a successful fake execution proof requires the in-
version of a cryptographic hash or a lucky guess. The
probability of the lucky guess is known, controllable
and can be made arbitrary small. If, as part of the
response to a query execution batch, the server in-
cludes a correct, verifiable query execution proof, the
client is provided with a (tunable) high level of assur-
ance that the queries in the batch were executed cor-
rectly. This constitutes a strong counter-incentive to
“lazy”, (e.g., cost-cutting) behavior. By construction,
this provides a probabilistic solution (with arbitrary
large confidence factors) to both issues of complete-
ness and authenticity.

While on somewhat orthogonal dimensions, it might
be worth noting that other important challenges are
to be considered in the framework of database out-
sourcing. Transport layer security is important as
eaves-dropping of data access primitives is unaccept-
able. This can be achieved by deploying existing tradi-
tional network security protocols such as IPSec/SSL.
Additionally, because data resides on another party’s
server, there are likely scenarios in which privacy is a
concern. Both the client/owner query access patterns
and possibly the data itself are to be concealed. Sig-
nificant progress has been made in this area [5] [6] [12]

1They return only “verbatim” (subsets of) the original data,
no aggregation or other processing involved.

2“Correct execution over the entire data domain”[28].

[13] [17]. Section 6 discusses related work.
The main contributions of this paper include: (i)

the proposal and definition of the problem of query
execution proofs for arbitrary compute-intensive query
batch processing in an outsourced database model, (ii)
a solution offering assurance of correct query execu-
tion, (iii) its analysis, (iv) a proof-of concept imple-
mentation and (v) the experimental evaluation thereof.

The paper is structured as follows. Section 2 in-
troduces the main system, data and adversary mod-
els. Section 3 overviews, details and analyzes our so-
lution. Section 4 discusses extensions and revisits some
of the assumptions. Section 5 introduces our proof-of-
concept implementation and provides an experimental
analysis thereof. Section 6 surveys related work and
Section 7 concludes.

2 Model and Tools

2.1 Data Outsourcing

We choose to keep the data outsourcing model con-
cise yet representative. Data owned by a data owner
(Alice) is placed on the database server situated at
the site and under the control of a database service

provider (Bob). From this moment on, Alice can ac-
cess the outsourced data solely as a client through an
online query interface exposed by Bob. The network
layer is assumed to be secured by mechanisms such
as SSL/IPSec. Here we discuss the scenario where all
data access is initiated by or occurs through Alice only.
This corresponds to a unified client model as defined
in [14] and [28]. In Section 4 we discuss extensions and
propose alternatives for more complex models.

Database Service Provider
(Bob)

Data 
Owner
(Alice)

Q1,…,Qb

ρ(Q1)…,ρ(Qb)

1

2

Online
Query
Interface

Outsourced 
Database 

Figure 1: Database Outsourcing Overview

In a typical scenario Alice submits a batch of b

queries Q = {Q1, ..., Qb} for execution to Bob who ex-
ecutes them and then replies with the corresponding
results {ρ(Q1),..., ρ(Qb)}.

There is a certain wisdom behind choosing a proper
b. For each batch of b queries, a query execution proof
is required from Bob. If Bob does not execute any
queries and instead attempts to “guess” a matching
proof, its probability of success can be upper-bounded.
More on this in Section 4.1.
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Let the data be (conceptually) a collection of data
segments S = {S1, ..., Ss}. This can be visualized for
example by considering partitions of the data accord-
ing to some attribute values (e.g., sales data by zip-
code, or web-click data by source or date/time). Both
Alice and Bob agree upon and are aware of this con-
ceptual partitioning at the time the data is outsourced.
Also, let us consider here the case where each batch of
incoming queries target a particular data segment.

We call identity query any query that for a particu-
lar data set returns a un-aggregated “verbatim” subset
of it (i.e., vertically partitioned), for example queries
that return a selection of a set of records matching a
given predicate (no aggregation or additional process-
ing is performed in the data layer).

2.2 Cost Model

Let the server execution cost for a given read-only
query Q over any segment of size σ be denoted by
ψq(Q, σ). Let the query execution cost for a read-
only query Q at Alice’s site (the server’s client) be
ψowner
q (Q, σ). Let ψi(σ) = ψq(I, σ) = σ be the cost of

executing (linear pass) an identity query I over a data
set of size σ. Let the cost of an update query Q over
a data segment of size σ be ψu(Q, σ) at the server site
and ψowner

u (Q, σ) at the owner site respectively.
Due to their application specific nature, any generic

assumptions about query result sizes are bound to be
inaccurate. Let us consider query result sizes being
proportional to the query inputs (i.e., γσ). In reality
it is often the case that the results are smaller. In the
following, unless specified otherwise we are assuming
the result output (for any query over a target segment
of size σ) to be of size σ, i.e., γ = 1. Let the cost of
transferring a certain amount of data of size σ over
the network be ψnet(σ) = νbwσ + νl (a combination of
bandwidth and latency factors).

In this work we are considering workloads composed
of compute intensive query batches, requiring both
CPU and storage in comparable amounts. The nat-
ural cost model is such that Alice can at most afford
to execute just a small percentage of the query load at
its site and outsources the bulk of it to Bob (significant

cost assumption):

for a given query load and target data set, even if
Alice would be in the possession of the entire data
set, in terms of execution costs, it would still pay
off to outsource the query load (or a large part
of it) to Bob (instead of performing it locally).

Formally, we assume the cost model of the ex-
pected query executions is such that the amount
of computation costs per query are of the same or
greater order of magnitude with the data access costs:
ψq(Q, σ) > ψq(I, σ) and ψowner

q (Q, σ) > ψowner
q (I, σ) for

any query Q 6= I.

It is important to explore such compute-intensive
queries as they (arguably) model more accurately real-
world data processing scenarios in outsourced frame-
works. This is due to both (i) the complexity of mod-
ern data processing jobs and the heterogeneity of as-
sociated data sources as well as (ii) the intrinsic na-
ture of data outsourcing in itself. It is likely that the
(likely resource-constrained) data clients will prefer to
outsource as much as possible of their data access and
processing needs rather than using the service provider
as a simple storage device.

2.3 Adversary

A special type of adversarial behavior is of interest in
such a framework. A malicious service provider Bob
might have incentives to selectively avoid CPU and
storage costs associated with query execution (e.g.,
maybe only for the more expensive queries) and reply
with (cheaper) inexact or entirely incorrect results. In
other words, Bob will not execute (some of) the queries
submitted by its data clients and might execute the
other ones only partially.

This is somewhat orthogonal to a malicious denial
of service (DOS) behavior in which Bob might not de-
liver query results to the client even if it actually ex-
ecuted the associated queries. In other words, here
we are mainly concerned with the core issues of com-
pleteness and correctness of query execution and do
not directly tackle the orthogonal issue of DOS pre-
vention. Deploying our solution however, has the po-
tential to increase the cost of such DOS attacks, thus
making them less likely. This is so because (as will
be seen later on) to construct the required query ex-
ecution proofs, a malicious Bob will have to actually
correctly execute the query load in the first place.

2.4 Crypto-hashes

A special de-facto secure construct we are leveraging
in our solution, is the one-way cryptographic hash (or
simply “hash”). If H() is a cryptographic secure one-
way hash, of interest are two of its properties: (i) it
is computationally infeasible, for a given value V′ to
find a V such that H(V) = V′ (one-wayness), and (ii)
changing even one bit of the hash input causes ran-
dom changes to the output bits (i.e., roughly half of
them change even if one bit of the input is flipped).
Examples of potential candidates for H() are the MD5
(fast) or the SHA class of hashes (more secure). The
computation costs of computing most crypto hashes
are linear in the size of the input. Let the cost of
computing a crypto hash over a data set of size σ be
ψh(σ) = αhσ (αh ≥ 1). For more details see [34].
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2.5 Extended Ringers

The ringers concept was first introduced in [16]. The
main idea behind it is to provide computation proofs
in a distributed computing market. In a basic version
it works as follows: in a computation market com-
posed of servers and clients, clients are willing to pay
for computation services provided by servers. A client
wishes to get one of these computations h() computed
for a set of inputs, {x1, ..., xa} by a service provider.

The initial assumption is that the computations in

the system are one-way non-invertible functions. Un-
der this assumption, to perform the computation a
client first computes a challenge (“ringer”) to be sub-
mitted along with the input data set to the service
provider. This challenge is exactly the result of apply-
ing h to one of the inputs, h(xt), where t ∈ [1, a] is not
known to the service provider. The implicit assump-
tion here is that computing h for the entire input set
is more expensive than for a single item in the input
(e.g, if i is large enough).

The client then submits {x1, ..., xa} and h(xt) to
the service provider. In addition to the normal com-
putation results {h(x1), ..., h(xa)} the service provider
is expected to return also (as a computation proof) the
correct value for t. Due to the assumed non-invertible
nature of h, a correct return provides a certain confi-
dence of actual computation over the set of inputs.

The main power of the ringers lies in the assumed
non-invertibility of the performed computations. To
directly fake a proof (and produce a “valid” t), the
service provider would have to either: (i) act honest
and perform a computations or (ii) cheat and perform
only 0 ≤ w < a computations hoping it finds the ringer
in the process and if not simply guess as a last resort.
The probability to succeed in such malicious behavior
can be shown to be positively correlated to the amount
of work performed. Over the course of multiple inter-
actions it can be forced to arbitrary small values. For
more details see Section 4.1.

Here we extend the ringers concept to (i) provide
also proofs of actual data access (as opposed to compu-
tation only), (ii) work for arbitrary computations, by
“wrapping” them in one-way cryptographic hash func-
tions and (iii) avoid reuse of previously seen ringers.
We lift the assumption of one-way non-invertibility for
the computations in the system; h can be any func-
tion. The ringer challenge submitted to the service
provider becomes now H(h(xt)) where H() is a one-way
non-invertible cryptographic hash function. Thus, in-
stead of the assumed one-wayness of computations, our
extension puts the main power of ringers in the non-
invertibility of the cryptographic hash deployed. We
also extend the adversary model to consider “guess-
ing” (see Section 3).

3 A Solution

An initial solution overview is illustrated in Figure 2.
It proceeds as follows.

Data Preparation. Before outsourcing the data, in
an initial step, for each data segment Si ∈ S the data
owner computes and stores H(Si), a segment “identity-
hash”, an authentication digest that can be later on
used to authenticate identity query results for that
particular segment. The main role of the identity-
hashes is to provide authentication for identity queries
in the later steps of the algorithm, not unlike the mech-
anisms deployed in [28].

Database Service
Provider (Bob)

Data 

Data 
Owner
(Alice)

S1

Si

Ss

x=x’ ?
3

Q1,…,Qb,C(Q,x)
1

ρ(Q1)…,ρ(Qb),x’
2

Q
ue

ry
In

te
rf

ac
e

Figure 2: Solution Overview. A challenge token
C(Q, x, ε) = {H(ε||ρ(Qx)), ε} is sent together with the batch
of queries. Upon return, query batch execution is proved
if x′ = x holds.

Challenge-Tokens. For every batch
Q = {Q1, ..., Qb} of queries to be executed over a
data segment Si ∈ S, the data owner picks a secret
number x ∈ [1, b] and a unique one-time use random
nonce ε and computes a query batch challenge token,

C(Q, x, ε) = {H(ε||ρ(Qx)), ε}

where “||” denotes concatenation.
In other words Alice executes the corresponding

query Qx over the data segment Si and computes a
one-way cryptographic hash of the nonce concatenated
with the query result. This token is then used in the
next step to challenge the service provider to prove
actual query execution. As will be detailed in the fol-
lowing, the purpose of the one-time use nonce ε is to
avoid replays or “recordings” (by Bob) of previously
used challenge tokens.

Let us also note here that, due to the ability to au-
thenticate identity queries, Alice does not need to host
a copy of the entire database to compute the challenge
tokens. Instead she can do one of the following. (i)
Periodically (e.g. when running “low” on tokens) re-
trieve a segment, generate a set of fake queries and
compute and store the associated challenge tokens (for
later use). This has the advantage of reducing commu-
nication costs. The drawback of such a scheme is that
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it will incurr the execution of fake queries. This could
be advantageous nevertheless, as Alice might want to
do this at off-peak hours (e.g., nighttime) and pre-
compute a large number of challenge tokens. The sec-
ond option available is (ii) for each query batch to
simply perform a identity query for the correspond-
ing segment and the compute the challenge token at
Alice’s site. For cost evaluation purposes, as (i) is
straight-forward, in the rest of the paper we chose to
illustrate (ii) instead.

Query Submission. Next, the data owner sub-
mits the batch Q = {Q1, ..., Qb} for execution to the
service provider. It also submits its associated chal-
lenge token C(Q, x, ε) (computed above). The service
provider then executes the queries in the batch and
also computes the value for x, by identifying which of
the queries maps to the received challenge token (it
can do so by computing the associated challenge to-
kens for each executed query, for the given nonce ε).
Let this value be x′. This will constitute the main
query execution proof.

Verification. The service provider then returns both
the query execution proof x′ and the query results for
the batch, ρ(Q) = {ρ(Q1), ..., ρ(Qb)}. The data owner
verifies that indeed (x′ = x); if true, it provides a sta-
tistical proof that the queries were performed correctly
over their target data sets. This is so because, to an-
swer correctly, the service provider has to be able to
either compute the inverse of the one way crypto-hash
used in the challenge token (impossible) or execute the
query batch and find out which of the query results
matches the given challenge token. In the following
we explore this in more detail.

3.1 Unique Nonces

Let us first understand the need for one-time use
nonces in the challenge token construct. This becomes
clear if we consider a “smarter” Bob. In the absence of
nonces Bob can apparently remember previously seen
query batch challenge tokens. If enough storage capac-
ity is available, as he performs queries and responds
to challenges, he can “record” the associated tokens,
for example by constructing a hashtable which maps
(query,segment) pairs to challenge tokens. Eventually
this will result in increasingly more tokens known to
Bob. These can be used later on to respond to chal-
lenges (by a lookup in the hashtable) without the need
to perform the associated work. In other words, if
Alice happens to submit the same token twice, Bob
can then return the answer directly without the re-
quirement to do any actual work for the given query
batch. Using an unique nonce for each challenge to-
ken guarantees that the computed token hash values
become useless after their initial use, thus no recording
at Bob’s site is possible.

3.2 Cheating

To analyze the provided assurance levels, let us start
by asking the following question: what are the chances
of a malicious Bob to “get away” with cheating in the
query execution phase? A “lazy” Bob will attempt to
execute only 0 ≤ w < b queries (less work) and try to
find the query corresponding to the challenge token. If
after w work, Qx is not found, simply guess x (among
the remaining queries) and stop. The probability of
success in returning the correct challenge response is

P(w, r) =
w

b
+ (1−

w

b
)

1

b− w
=

w + 1

b

This features (naturally) a linear behavior with respect
to w: the probability of cheating is naturally direct
proportional to the amount of work performed. This
is good news. Bob is forced into a position of requiring
to do significant amounts of work to yield reasonable
success. In the long term, over a large number of in-
teraction instances (e.g. v of them), the chances of
not getting caught (and thus the incentives to act ma-
liciously) can be made arbitrary low.

3.3 Client-Side Checking

But why deploy query execution proofs when similar
results can be achieved much simpler. In particular,
let us consider the following alternate client-side re-

sult checking mechanism: for each batch of b queries,
Alice simply verifies one of the query results. This
will require the same type of setup (the ability to ac-
cess original segment in an authenticated way) thus
yield similar network costs but less server-side compu-
tation. Bob is now not required to compute challenge
tokens anymore. The probability to get away with only
0 ≤ w < b work done, will be similar to P(w, r):

Pc(w, r) =
w

b

The initial query execution proof construct introduced
above thus proves to be less desirable and efficient than
simple client-side result checking. But then why intro-
duce execution proofs in the first place? In the follow-
ing we show how the execution proof construct is but
a first step towards a cheaper, more secure architec-
ture. It can be built upon to actually provide much
higher assurances than are possible with simple client-
checking type of mechanisms.

But, before we do that, we need to extend the basic
scheme to handle multiple challenge tokens. Instead
of a single challenge token, Alice will now generate a
set of tokens for Bob to reply to. An analysis of this
mechanism is detailed in the following.

3.4 Multiple Challenge Tokens

If we assume now a number of r > 1 challenge tokens
per query batch, what is the success probability of lazy
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behavior in this case?
Let us start by asking the question: For r challenge

tokens, what is the probability of “finding” x of them
by performing only w < b work? In other words, what
is the likelihood of simply finding them after doing less
work than required. This can be modeled as a classical
sampling experiment without replacement (retrieving
x black balls out of w draws from a bowl of (b− r)
white and r black balls):

P0(b, w, r, x) =
(rx) × (b−r

w−x)

(bw)

where x ∈ [max(0, w+ r− b), min(r, w)]. Additionally,
we know the success probability of simple guessing
of r challenge tokens without performing any work is
(choosing r out of b items):

P1(b, r) =
1

(br)

A rational malicious Bob deploys the following strat-
egy: do w < b work (execute only w queries) and, if not
all the tokens are discovered (possible if also r < w),
simply guess the remaining ones. It can be shown that
the success probability of such a strategy is

P(w, r) =

min(r,w)
X

i=max(0,w+r−b)

[P0(b, w, r, i) × P1(b − w, r− i)]

=
1

(br)

min(r,w)
X

i=max(0,w+r−b)

(wi)

To better understand what this means we depicted the
behavior of P(w, r) in Figures 3 and 4 for b = 20. It
can be seen that (e.g., for r = 5) a significant amount
of work (e.g., w > 3

4
b) needs to be performed to achieve

even a 33% success probability. Figure 3 (b) illustrates
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Figure 3: The behavior of P(w, r) (query batch size
b = 20). (a) 3-dimensional view, (b) inverse dependency
of r to w (2-dimensional cut through (a)).

the inverse dependency on the number of challenge to-
kens r for specific values of performed work. The more
challenges are presented to Alice, the less its probabil-
ity of getting away with less work. Maybe more im-
portantly, in Figure 4 the new behavior of P(w, r) is
represented against the base case with a single token.
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Figure 4: The behavior of P(w, r). A 2-dimensional
cut through Figure 3 (a) showing the relationship be-
tween P(w, r) and the amount of performed work w, plot-
ted against the base case with one single challenge token
(r = 1).

It can be seen that, with more challenge tokens, (at the
expense of performing more queries at the data owner’s
site), the shape of P(w, r) forces a malicious Bob to ex-
ecute increasingly more queries to achieve the same
success probability. For example, with 3 challenge to-
kens for the batch of 20 queries, to achieve a 40% prob-
ability, Bob now has to execute at least 14 queries in
the query batch; in the single challenge token case, it
could achieve the same probability by only executing
7 queries. Adding two challenge tokens doubled the
amount of work required of Bob!

This is great news. Over multiple interactions (e.g.
v of them), malicious behavior is not sustainable; the
probability of getting caught increases exponentially
and the cheating success probability converges to 0:∏v

i=1
(P(wi)) → 0, where wi < a is the work performed

in each of the interactions.
While it is clear that additional tokens are aiding in

decreasing the likelihood of undetected lazy behavior,
in real life scenarios, the choice of r is also necessarily
cost-driven. The trade-off between the additional cost
of constructing challenge tokens at Alice’s site and the
guaranteed level of security (i.e. modeled ultimately
by (1− P(w, r))) needs to be custom tailored for each
individual application.

But is this extension offering better assurances than
the above client-side result checking method? Af-
ter all, Alice could also simply check more results in-
stead of computing more tokens. For 1 < r ≤ w results
checked by Alice 3, it can be shown that the probabil-
ity of Bob getting away with only w < b work is

Pc(w, r) =
(wr)

(br)

3It is obvious that if Alice checks more than w results she will
find out if Bob cheated.
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Because (it can be shown that) Pc(w, r) ≤ P(w, r) the
answer to the above question is no. Multiple challenge
tokens do not offer better assurances than simple client
checking of multiple query results. The ability to han-
dle multiple tokens is required however to build upon.
In the following we show how this mechanism can be
modified to yield much higher security assurances. We
do so by introducing fake challenge tokens.

3.5 Fake Challenge Tokens

Before we proceed, let us first note an additional issue
of concern with the above scheme. Because Bob knows
the number of challenge tokens, once he finds all r of
them it can simply stop working and directly reply
with correct query execution proofs.

One simple yet effective solution to this problem
is to add “fake” items to the set of challenge tokens
In other words, at Alice’s site, instead of executing
(r + f) queries to construct (r + f) challenge tokens,
execute just r queries and then simply generate f > 0

random token-like items and add them to the set. This
has the additional benefit of reducing Alice’s query
execution costs. Now Bob has to respond correctly
only to the non-fake ones. Because he does not know
which ones and how many of the challenges are fake,
he is forced to execute all the queries to guarantee
a correct answer (it cannot stop after it finds all the
correct ones, as it doesn’t know which ones and how
many they are).

Introducing the fake challenge tokens solves the is-
sue of Bob being able to simply stop after discovering
all the tokens. It also offers higher security assurances.
Let us explore why.

We start by looking at the impact of fake challenge
tokens on the success probability of Bob’s malicious
behavior P′(w, r, f). To succeed, at each step, Bob
needs now to first guess exactly what the value of f
is. If he is off even by one and replies with a value to
a fake token (instead of stating it is fake), Alice knows
that Bob did not execute all the queries in the batch.
It can be shown that:

P
′(w, r, f) =

1

(br)

min(r,w)
X

i=max(0,w+r−b)

[
(wi)

min(b − w, max(1, r + f− i))
]

where 1
min(b−w,max(1,r+f−i)) is the probability of Bob

guessing the value of r (and f) after performing w

work and discovering i correct challenge tokens. This
is so because Bob knows that clearly (r− i) ≤ (b− w)
(number of remaining challenge tokens cannot exceed
number of remaining un-executed queries). Then,
there are (r− i) + f remaining possible values for f,
only one of which is correct. The max() needs to be
considered if f = 0 and Bob discovers all r tokens: it
knows then that f = 0.

In Figure 5 we show the impact of deploying fake
challenge tokens is by illustrating a scenario with 5
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Figure 5: P′(w, r, f) and P(w, r) plotted for r = 5, f = 3.

challenge tokens for both the normal case (P(w, 5))
and the case of 3 additional fake tokens (P′(w, 5, 3)).
Without fake challenge tokens, the cheating success
probability climb towards 100% with increasing work
is much faster. When using fake challenge tokens
however, even after executing w = 19 queries (out of
b = 20), Bob’s uncertainty is still as high as 66% yield-
ing an associated low success probability of only 33%.

To function properly, deploying fake challenge to-
kens requires the assumption that their number is ran-
dom for every query batch and cannot be predicted by
Bob. Alice has to make sure that throughout time,
both r and f are randomly chosen and not correlated
to each other or with their previous values.

Now let us see what the probability corresponding
to the client-side result checking mechanism is. We
discussed above that for 1 < r ≤ w results checked by
Alice, it can be shown that the probability of Bob get-

ting away with only w < b work is Pc(w, r) =
(wr)
(br)

. Be-

cause (it can be shown that) Pc(w, r) >> P′(w, r, f) (for
f > 1), the level of assurance provided by query execu-
tion proofs is significantly higher than the levels that
can be achieved using client-side result checking meth-
ods only. At the same time, while for each batch of
queries the number of challenge tokens will be differ-
ent, the average amount of work performed by Alice is
going to be still r (where 1 < r ≤ w). With the same
amount of work, query execution proofs offer much
higher levels of assurance.

This result is illustrated in Figure 6 where the be-
havior of P′(w, r, f) is plotted against Pc(w, r) (client-
side result checking mechanism) for r = 2 and f = 2.
The addition of fake tokens decreases the ability to
“get away” with less work. Because adding (as long
as their number is random) more fake tokens comes at
no cost, we also show in the same figure the case of
f = 4. It can be seen that the probability of successful
malicious behavior is further reduced to about half its
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Figure 6: The behavior of P′(w, r, f) (fake tokens) plot-
ted against Pc(w, r) (client-side result checking mecha-
nism) showing that the query execution proof mecha-
nism (with fake tokens) significantly decreases the abil-
ity to “get away” with less work.

value in the case of two fake tokens only (f = 2) and
to about 1

5 th of the client-side result checking case.
In other words, by performing only 2 computations

at the client (r = 2) and including 4 fake tokens in
the request we achieve increased levels of assurance
(roughly 5 times higher).

4 Discussion

4.0.1 Data Updates

The above solution does not consider the case of signif-
icant data updates. In the case of updates, additional
issues need to be explored, mainly deriving from the
fact that their presence will invalidate challenge tokens
associated with the target data segments.

This is so because now Alice needs to make sure
she can still authenticate segment identity queries (to
construct challenge tokens). In a unified client model,
where Alice can act as a “gateway”, this can be nat-
urally solved. As such it can continuously update its
stored identity-hashes before it forwards the updates
to Bob: before letting the data altering updates go
through, Alice first issues a identity query (that can
be verified by its current identity-hashes) and retrieves
the target data segment. It then applies the updates
to it, re-computes its corresponding identity-hash and
also submits them to the service provider.

This however, will yield a set of additional costs.
In Section 4.1 we analyze overheads in the case of at
least one update per batch of read-only queries. Never-
theless, more efficient solutions to the issue of handling
updates in such a secure outsourcing context should be
devised. Existing efforts [14] [28] explore solutions for
simple selection predicate query result authentication
in a static read-only setting. To the best of our knowl-

edge, the issue of handling data updates in authenti-
cating predicate selection queries (which is required in
our protocol as a subroutine for identity query authen-
tication) has not been analyzed yet. Here we propose
an initial step.

4.1 Analysis

In the following we explore query execution and com-
munication costs. Let us consider a batch of b queries.

4.1.1 Query Execution

The query execution and computation costs include:
(i) an identity query (Bob), (ii) r queries to construct
the challenge tokens (Alice), (iii) the computation of r
crypto-hashes over the r query results (Alice), (iv) ex-
ecuting the b queries (Bob) and, (v) the computation
of b crypto-hashes to discover the ones corresponding
to the challenge tokens (Bob).

Also, if we assume that for each query batch of b
queries, on average at least one data-altering update
will get executed, we incur these additional costs: (vi)
an identity query to retrieve the segment correspond-
ing to this update (Bob), (vii) applying the update
over the retrieved segment (Alice), (viii) the computa-
tion of a crypto-hash to reconstruct its corresponding
identity-hash (Alice), (ix) the actual execution of the
update (Bob). This becomes:

ψ(Q) = ψi + rψowner
q + rψh + bψq + bψh

+ψi + ψowner
u + ψh + ψu

In the traditional, non-secured case, for every b

read-queries and 1 update query, the costs would have
been composed of (iv) and (ix). The actual overhead
incurred is:

ψ(Q) = ψi + rψowner
q + rψh + bψh + ψi + ψowner

u + ψh

= σ + rψowner
q + rαhσ + bαhσ

+σ + ψowner
u + αhσ

= σ(2 + (r + 1)αh + b) + (rψowner
q + ψowner

u )

Because r < b, depending on the actual complexity of
ψowner
q and ψowner

u , the overhead can be dominated by
either the first or the second term. If we normalize
with respect to the identity query complexity and as-
sume that the r queries and the update at Alice’s site
are not dominating 4 then the overheads are of order
O(b) (mainly due to crypto-hashing).

4.1.2 Communication

Let us analyze the incurred communication costs.
These are mainly composed of: (i) transferring an

4For example if they are O(σ) – linear in the size of the input,
with possibly large constants.
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identity query result (Bob to Alice) and (ii) transfer-
ring (b− r) of the batch query results 5 (Bob to Alice).
As, for each query batch of b queries, we assume on
average at least one data-altering update, we have the
additional communication of (iii) transferring an iden-
tity query result (Bob to Alice):

ψnet = (b− r + 2)ψnet(σ)

In the traditional case the incurred costs would have
consisted of transferring b batch query results from
Bob to Alice. It can be seen that if r > 2, our so-
lution in fact reduces the communication costs, at the
expense of additional load on Alice as discussed above.
The incurred communication overheads are thus zero
(or negative) in this case. This is due in no small part
to the result to input size dependency factor assumed
(γ = 1). If γ were just a factor let us see how this
would impact the communication overheads:

ψnet = (2 + γ(b− r))ψnet(σ)

It can be derived from here that, for γ > 2
r
, the over-

heads are still zero (in fact less communication hap-
pens with our solution). For γ < 2

r
, the communica-

tion overheads are (2− rγ) ψnet(σ). In Section 5 an
experimental evaluation of these costs is shown.

5 Implementation and Results

We designed and built a proof of concept implementa-
tion of our solution (the Secure Query Interface briefly
depicted in Figure 7). Its main components are (i)
a client-side wrapper (sqi.client.QueryClient) that
implements the client main steps outlined in Section 3
and, (ii) a server-side stub (sqi.server.QueryServer)
representing the server-side of the challenge-token pro-
tocol, responding to challenge-tokens and executing
queries by calling the underlying DBMS.

network

sqi.server.QueryServer

DBMS

Database Service 
Provider

Traditional 
JDBC

sqi.client.QueryClient

Extended JDBC Interface

Traditional JDBC
Security 
Controls

Secure Client

Data 
Client

security
event

Figure 7: Proof-of-concept Overview: The QueryClient
interfaces with the actual Service Provider. It exposes a
security extension to a traditional query interface.

5There is no need to also transfer the results for the r queries
that were used in computing the batch challenge tokens, as they
are already known to Alice

To outside (legacy and security-aware) clients, the
client-side wrapper exposes a traditional query sub-
mission interface. It accepts as input queries to be ex-
ecuted over a specific target data segment and returns
the query execution results. If the query execution
proof (challenge-token) protocol gets activated, an in-
terface extension allows a client to determine the guar-
anteed correctness factor ((1− P(w, r+ f)) see Section
4.1) for the returned query results. Additionally, a
call-back mechanism is provided for the client to reg-
ister to receive notifications of security events. One
such event is the case of the service provider failing
to correctly respond at any time in the challenge to-
ken protocol (security breach). Both the server and
client side components are independent of and trans-
parent to the underlying data layer and the data client.
The challenge-token protocol runs behind the scenes,
in parallel with any query submission events.

5.1 Experiments

To validate our solution and implementation we de-
ployed it in the framework of a web transaction data
mining scenario – constructing session profiles for indi-
vidual web server sessions (with the ulterior purpose of
predictive model scoring over the resulting data set).
This scenario is important because often [10] (espe-
cially for large data sets) it makes sense to mediate
(potentially public) access to this type of data through
a specialized service provider.
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Figure 8: (a) Execution times behave naturally linear in
the size of the input, (b) Execution time and network over-
heads behavior with increasing segment size (r = 1).

Experiments were performed on general purpose
1Ghz+ linux boxes with approximately 512MB of RAM
each in a local Ethernet network running at 100MBps

during normal daily load 6. A majority of code was
written in Java. The deployed database was Post-
greSQL version 7.4. We also confirmed that the code
works with IBM DB2 8.2.

The data set used in the experiments was 42 days
worth of web transaction data (log of our department’s
web server between 12/18/2003 and 01/27/2004),
containing over 3.2+ million individual web hits (a
tuple each). This data was vertically partitioned and

6In our experience, the application layer (TCP/IP) would
not see more than 10− 15MBps.
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imported into the database as 42 (one per day) sepa-
rate data tables, each indexed by the web transaction
timestamp (augmented with a serial number to medi-
ate collisions).

Each query execution over a given data set (table)
involved also a CPU-intensive component: the invoca-
tion of a “web-session aggregation” UDF (DBMS user
defined function) performing multiple read-only passes
over the data, identifying an increasingly accurate set
of web sessions (and associated web object accesses)
corresponding to the given data set. The function re-
turns a data set composed of multiple separate tuples
for each identified web session (one tuple per session)
containing additional aggregate statistics (e.g., aver-
age inter-click delay, data-transfer sizes).

Unless specified otherwise, for illustration purposes,
in each of the experiments, the actual query load is
a batch of b = 20 queries (web session identification).
The number of fake challenge tokens is f = 1, as it does
not have an impact in the actual costs. The web-click
session discovery algorithm behaves linear (multiple
passes) in the size of the input and can process roughly
80KBytes of data (about 950 records) per second.

5.1.1 Overheads

To compute the incurred overheads we first submit-
ted the same query load without any security controls.
We then compared the resulting times with the ones
obtained by running the queries through the secure
interface (same client and server nodes).

In an initial experiment, we varied the amount of
data used in each query computation over the data
segments (of sizes over 7.5MBytes each). Naturally,
a virtually linear behavior can be observed (Figure 8
(a)), as both the crypto-hashing and the computation
UDF behave linear in the size of the inputs.

For one challenge token (r = 1), measured execution

time overheads varied decreased slightly with increas-
ing segment sizes as can be seen in Figure 8 (b). As
segment sizes increase, the computation UDF execu-
tion times increase (linear), together with the hashing
and identity query transfer times (see Figure 8 (a)).
This yields a proportionally smaller actual overhead
(as a fraction of total execution time). Network over-
head on the other hand, increased with increasing seg-
ment size, mainly due to the identity query require-
ment (to construct the challenge token).

In the next experiment (Figure 9 (a)) we explored
the execution time overhead behavior with increasing
number of challenge tokens r > 1 (for segment sizes of
1MByte). It can be seen that increasing security as-
surances come naturally at the expense of additional
computation. These overheads however are (arguably)
quite reasonable considering the yielded security ben-
efits. For example, it can be shown (see also Section
4.1) that for r = 4 and a single fake extra token, a
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Figure 9: Overheads with increasing number of challenge
tokens per batch: (a) execution overhead increases (b) net-
work overhead decreases and eventually becomes negative.

cheating Bob doing just half the work (w = b
2

= 10)
would only have a success probability of less than 5%
(the incurred execution time overheads would be less
than 25%).

On the other hand, in a multi-token scenario, net-
work overhead behaves entirely different, as described
in Section 4.1.2. Due to the proportionally less result
data that needs to be transferred back to Alice, these
overheads actually decrease with increasing number of
challenge tokens. In Figure 9 (b) this virtually linear
behavior is depicted. An actual reduction in network
costs is observed as already predicted in Section 4.1.2.

Summary. Thus, there are two components of
read query overheads, (i) additional network costs and
(ii) cryptographic hashing costs. With increasing num-
ber of challenge tokens, network overheads decrease to
zero. Cryptographic hashing costs bear thus much of
the responsibility for the execution overhead. In our
scenario these overheads were well within reasonable
margins, e.g. 10% (for segments of 7 Mbytes and one
challenge token). For a given data segment size, as
the number of challenge tokens (and associated secu-
rity guarantees) increases, so do execution overheads.
As outlined above however, we believe the added secu-
rity assurance is well worth it: e.g., cheating by only
doing half of the work has a success probability of less
than 5% with an overhead of under 25%.

6 Related Research

Extensive research has focused on various aspects of
DBMS security, including access control techniques as
well as general information security issues [7] [8] [13]
[19] [20] [22] [23] [24] [29] [30] [33]. Additionally, in-
creasing awareness of requirements for data storage
security mechanisms and support can be found with
DBMS vendors such as IBM [1] and Oracle [2]. In
particular in [21] the authors focus on efficient mech-
anisms for secure storage and the inherent trade-off
between an appropriate level of security and efficiency.

Additionally, (relatively recent) research efforts are
to be found in the areas of statistical and “hippocratic”
databases [5] and privacy preservation where issues
have been identified early on [13] and more recently
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also materialized, e.g., [6] [12].

The paradigm of providing a database as a service
recently emerged [18] as a viable alternative, likely due
in no small part to the dramatically increasing avail-
ability of fast, cheap networks. Given the global, net-
worked, possibly hostile nature of the operation envi-
ronments, security and integrity assurances have be-
come paramount.

Few research efforts have been directly tackling
the issues of authentication and completeness in a
database outsourced model. A majority of existing
efforts, focused on source data authentication and in-
tegrity. In [14] Merkle trees are deployed for the
purpose of authenticating data published at a third
party’s site. In [26], the same authors explore a gen-
eral model for authenticating data structures. In a
publisher-subscriber model “hard to forge verification
objects” (“search DAGs”) are provided by publishers
to prove authenticity and source guarantees of results.

In [17] a mechanism for querying encrypted data
is discussed. This is an important component of pri-
vacy assurance in general (as the data can be stored
encrypted at the server site). Queries are decomposed
using operators that push as much as possible of the
load to the server side without decrypting the actual
data. The paper introduces a framework for query
splitting to minimize client load.

In spirit, our work is also related to such efforts as
SETI@Home [3] where the issue of computation cor-
rectness over outsourced data sets is of importance.
There, the issue has been handled by majority vot-
ing over multiple instances of the same computation
assigned randomly to computation nodes.

Finally, let us note that a (arguably more expen-
sive) solution to the secure data outsourcing problem
can be devised by deploying Private Information Re-

trieval (PIR) mechanisms [11] or similarly, Byzantine

Quorum Systems [25]. Data could be split among mul-
tiple service providers (with associated assumptions
of non-collusion of minimal subsets of them) and the
query batch issued to all of the servers, followed for
example by a quorum voting (or result aggregation)
mechanism. Such a solution is explored by Aggarwal
et. al. in [4]. The requirement for additional resources
however, (e.g., at least a “few” additional indepen-
dent non-colluding service providers) might sometimes
prove impractical, as the main reason behind data out-
sourcing is often a limiting cost factor. It would be
interesting to explore a “hybrid” solution, deploying
query execution proofs in a PIR setting to provide both
privacy and execution assurance.

Maybe the closest related effort is to be found
in [28], which focuses on mechanisms for efficient
integrity and origin authentication for simple selec-
tion predicate query results (specifically no aggre-
gate queries or updates). Different signature schemes

(DSA, RSA, Merkle trees [27] and BGLS [9]) are ex-
plored as potential alternatives for data authentication
primitives (corresponding to our identity-hash mech-
anism). It is important to also note the fact that in
this work the significance of guaranteeing query com-

pleteness (“the correct execution of the query over the
entire target domain”) is identified.

7 Conclusions

In this paper we proposed a solution for query execu-
tion assurance in outsourced database frameworks. It
handles arbitrary query types and features reasonable
overhead factors. While our solution mainly focuses on
read-only queries, it also provides preliminary mecha-
nisms for handling data updates (at additional costs).
We introduced query execution proofs, a cryptographic
proof mechanism that shows queries were actually ex-
ecuted. We implemented a proof of concept and per-
formed experiments in a real-world mining application
for web-click analysis.

More work is needed in understanding and dealing
with complex query models (e.g., multi-querier and
multi-owner) and more efficient mechanisms for han-
dling update queries need to be designed. The re-
lationship between query execution proofs and trust
assessment mechanisms [32] should be explored. Ad-
ditionally, deploying query execution proofs in private
information retrieval (PIR) settings could yield an in-
teresting “hybrid” mechanism for both privacy and ex-
ecution assurance.

Additionally, an integration with security policy
frameworks [15] [31] (e.g., also for querying possibly
non-relational data) would allow for more complex
constraint-specifications over the space of query proofs
(e.g., which queries to include proofs for, what level
of assurance is guaranteed or required by the client –
maybe linked with a certain service level etc).

Ultimately, we believe this effort and others to bring
the “database as a service” paradigm one step closer to
being a viable secure alternative for data management.
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