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Abstract

In this paper, we examine the performance of
frequent pattern mining algorithms on a mod-
ern processor. A detailed performance study
reveals that even the best frequent pattern
mining implementations, with highly efficient
memory managers, still grossly under-utilize a
modern processor. The primary performance
bottlenecks are poor data locality and low in-
struction level parallelism (ILP). We propose
a cache-conscious prefix tree to address this
problem. The resulting tree improves spatial
locality and also enhances the benefits from
hardware cache line prefetching. Furthermore,
the design of this data structure allows the use
of a novel tiling strategy to improve temporal
locality. The result is an overall speedup of
up to 3.2 when compared with state-of-the-art
implementations. We then show how these al-
gorithms can be improved further by realizing
a non-naive thread-based decomposition that
targets simultaneously multi-threaded proces-
sors. A key aspect of this decomposition is to
ensure cache re-use between threads that are
co-scheduled at a fine granularity. This opti-
mization affords an additional speedup of 50%,
resulting in an overall speedup of up to 4.8. To
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the best of our knowledge, this effort is the first
to target cache-conscious data mining.

1 Introduction

Frequent pattern mining [2] is an immensely popular
data mining approach which aims to discover groups of
items or values that co-occur frequently in a transac-
tional data set. Following the seminal work by Agrawal
and colleagues [2], over the last decade there has been
a proliferation of efficient algorithms developed for fre-
quent pattern mining [22, 35, 31, 18, 11, 6].

During this same time frame, processor speeds have
increased 40-fold according to Moore’s law. However,
DRAM speeds have not kept up. Given the memory in-
tensive nature of such algorithms, and the widening gap
between memory and processor performance, it is our
conjecture that these algorithms are grossly inefficient
in terms of CPU utilization. Furthermore, architec-
tural innovations such as prefetching and simultaneous
multi-threading (SMT), designed to alleviate this gap,
have largely been ignored by the data mining commu-
nity. We believe that techniques leveraging these ar-
chitectural innovations can significantly improve per-
formance.

To motivate this study, we measured the scaling be-
havior of the fastest known implementation for the fre-
quent pattern mining algorithm, FPGrowth [22]. We
evaluate the performance of this algorithm while we
scale CPU frequency from 1300MHz to 3100MHz?. Ide-
ally, one would want execution to scale linearly with
processor frequency. Figure 1 shows both the ideal
speedup and the observed speedup in a real experi-
mental setting with increasing CPU frequency. While
the CPU frequency increases by a factor of 2.38, the
speedup for FPGrowth saturates at 1.6, even though
cache hit rates are held constant. This is simply a
result of the fact that, even though processor speeds

1This evaluation was conducted on an experimental Intel Pen-
tium 4 system on which CPU frequency can be varied.
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Figure 1: Scaling behavior of FPGrowth with increasing
CPU frequency

have increased, memory stall times (measured in terms
of CPU cycles) have also increased, thus limiting the
performance of such algorithms.

The above experiment serves to illustrate an impor-
tant point. Advanced architectural designs, even those
possessing intelligent mechanisms for hiding memory
latency, do not necessarily translate to improved ap-
plication performance. Improving execution time will
require rethinking by the program designer. In this pa-
per, we further examine our hypothesis that even the
most efficient frequent pattern mining algorithms are
grossly under-utilizing a modern processor.

Specifically, we examine in depth the performance
of three popular and efficient frequent pattern mining
implementations from the Frequent Itemset Mining Im-
plementations (FIMI) repository [6]. We evaluate im-
plementations for the algorithms FPGrowth [22], Gen-
maz [18], and Apriori [2], which apply pattern-growth,
depth-first, and breadth-first search space traversal
strategies, respectively. Our evaluation is performed on
an Intel Pentium 4 processor using Intel VTune Perfor-
mance Analyzers®*. Our performance evaluation shows
that these algorithms achieve a CPU wutilization of up
to 8%. Furthermore, our study reveals that this poor
utilization is due to excessive number of cache misses
(from the lack of data locality) and low instruction level
parallelism (ILP). To the best of our knowledge, such
a study is the first of its kind within the data mining
community.

Faced with this performance bottleneck, we present
three techniques to alleviate this problem. Our main
contributions are:

e First, we improve the cache performance of these
frequent pattern mining algorithms through the
design and use of a tile-able cache-conscious prefix
tree.

e Second, we demonstrate how, through the design

2http://www.intel.com/software/products/vtune

578

of this cache-conscious data structure, one can
leverage hardware cache line prefetching [26], a
processor technology that hides cache miss latency.

e Third, we present novel algorithms to capitalize
on simultaneous multi-threading (SMT) [34]. Es-
sentially, we instantiate a non-naive thread-based
decomposition of the algorithms and co-schedule
threads so as to maximize cache re-use and im-
prove ILP.

Our empirical evaluation reveals that, cumulatively,
these strategies result in a speedup of up to 4.8 on a
modern-day uniprocessor.

2 Background and Related Work

Frequent pattern mining, also known as frequent item-
set mining, plays an important role in a range of data
mining tasks. Examples include mining associations
[2], correlations [10], causality [33], sequential patterns
[3], episodes [25], partial periodicity [21], and emerging
patterns [15].

The frequent pattern mining problem was first for-
mulated by Agrawal et al. [1] for association rule
mining. Briefly, the problem description is as follows:
Let I = {i1,i2, --,in} be a set of n items, and let
D ={T1,T>,---,T,,} be a set of m transactions, where
each transaction T; is a subset of I. An itemset ¢ C I
of size k is known as a k-itemset. The support of i is
>ojq (124 C Ty), or informally speaking, the number
of transactions in D that have ¢ as a subset. The fre-
quent pattern mining problem is to find all i € D that
have support greater than a minimum support value,
minsupp.

Agrawal et al. [2] presented Apriori, the first effi-
cient algorithm to solve this problem. Apriori traverses
the itemset search space in breadth-first order. Its ef-
ficiency stems from its use of the anti-monotone prop-
erty: If a size k-itemset is not frequent, then any size
(k + 1)-itemset containing it will not be frequent. The
algorithm first finds all frequent 1-items in the data set,
and then iteratively finds all frequent l-itemsets using
the frequent (I — 1)-itemsets discovered previously.

This general level-wise algorithm has been extended
in several different forms, leading to improvements such
as DHP [27] and DIC [10]. We have proposed Eclat
[35] and several other algorithms that use equivalence
classes to partition the problem into independent sub-
tasks. The use of the vertical data format allows for
fast support counting by set intersection. The inde-
pendent nature of subtasks, coupled with the use of
the vertical data format, results in improved I/O effi-
ciency, because each subtask is able to reuse data in
main memory. Savasere et al. presented Partition [31],
an approach that scans the data set twice; once for gen-
erating candidate frequent itemsets, and once for col-
lecting their support. This approach processes the data
set into partitions such that each partition fits in mem-
ory, improving I/0O efficiency on large data sets. Han et



al. presented FPGrowth [22], an algorithm that effec-
tively combats the above problems. FPGrowth summa-
rizes the data set into a succinct prefix tree or FP-tree.
This structure is often significantly smaller than the
original data set, and thus, it can be stored in main
memory in most practical scenarios. Furthermore, the
algorithm does not have an explicit candidate genera-
tion phase. Rather, it generates frequent itemsets us-
ing FP-tree projections in main memory. The payoff
is improved search space traversal and very high 1/0
efficiency. However, as pointed out by Goethals [16],
the pointer-based nature of the FP-tree requires costly
dereferences. We presented a hash tree-based paral-
lel algorithm for frequent pattern mining on an SMP
[28]. This article illustrates the benefits of improving
memory locality in parallel algorithms. Another popu-
lar approach to frequent pattern mining is to directly
find all maximal frequent itemsets, without generating
all frequent itemsets in the data set. The benefit of
this approach is that maximal frequent itemsets can be
used to enumerate all frequent itemsets. This strategy
is used in Mafia [11], Mazminer [5], and Genmaz [18].

Several recent studies have revisited core database
algorithms in an effort to improve cache performance
[7, 32]. Rao and Ross [29, 30] proposed two new types
of data structures: Cache-Sensitive Search Trees and
Cache-Sensitive B+ Trees. This work builds upon the
premise that the optimal tree node size is equal to the
natural data transfer size. This corresponds to the
disk page size for disk-resident databases, and cache-
line size for main memory databases. Chen et al. [14]
have further improved the index and range search per-
formance of B+ trees using prefetching (a means of
reducing materialized cache miss latency). More re-
cently, Chen et al. [13] have improved the performance
of Hash-Join operations using prefetching. Ailamaki et
al. [4] examined DBMS performance on modern ar-
chitectures, noting that poor cache utilization is the
primary cause of extended query execution time. They
conclude that database programmers must increase the
attention given to data layout to improve cache perfor-
mance. Lo et al. [24] analyzed the performance of
database workloads on simultaneously multi-threaded
(SMT) processors. They show that while database
memory footprints tend to be large, working sets of-
ten can fit in cache (when properly organized). They
determine that improved cache performance is required
to leverage the abilities of multiple threads in an SMT
environment. To the best of our knowledge, there has
been no work in the area of cache-conscious data min-
ing.

3 Performance Characterization

In the previous section, we presented a summary of
several frequent pattern mining algorithms. In a broad
sense, each algorithm is distinct in the data set repre-
sentation it uses and the manner in which it traverses
the itemset search space. The data set representation
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that is used is horizontal [2], vertical [35], or based on
a prefix tree [22]. The itemset search space traversal
strategy that is used is depth-first [18], breadth-first
[2], or based on the pattern-growth methodology [22].
Through several recent independent evaluations [17, 6],
it is now well accepted that a prefix tree-based data set
representation typically outperforms both the horizon-
tal and the vertical data set representations for support
counting. Thus, we design our frequent pattern min-
ing workloads using a prefix tree-based data set rep-
resentation, to span the three different itemset search
space traversal strategies. Specifically, our workloads
are prefix tree-based implementations of FPGrowth,
Genmazx, and Apriori, as representative algorithms for
pattern-growth, depth-first using equivalence classes,
and breadth-first-based search methodologies, respec-
tively. For all three algorithms, we base our study
on the fastest known public implementations from the
FIMI repository [17, 6].

3.1  FPGrowth

FPGrowth [22] is a frequent pattern mining algorithm
that uses an annotated prefix tree known as the FP-
tree as a data set representation. Furthermore, it uses
the pattern-growth based search methodology. In sum-
mary, the algorithm works as follows: Beginning with
frequent 1-items in the data set, each k-itemset is ex-
tended with frequent items that occur in the projected
data set for the k-itemset to create (k + 1)-itemsets.
The projected data set for an itemset is the subset of
the transactions in the data set that contains the item-
set. This process is carried out recursively in depth-first
order of the search space. Each level in the recursion
uses the FP-tree as a data set representation. Several
independent evaluations suggest that FPGrowth is the
most efficient frequent pattern mining algorithm [17, 6]
to date.

3.2 Apriori

Apriori [2] is a frequent pattern mining algorithm that
traverses the itemset search space in a breadth-first or-
der. Beginning at size 1, it finds frequent itemsets of
size | using a data set scan, and then uses these to
generate candidate frequent itemsets of size [ + 1. In
the next iteration, frequent [ + 1 itemsets are discov-
ered by reducing the candidate frequent [ + 1 itemsets
(using a data set scan), and the algorithm then gen-
erates candidate frequent itemsets of size [ + 2. The
process continues iteratively until all frequent itemsets
are generated. The original implementation of Apri-
ort uses the horizontal data layout. However, Borgelt
[9], showed that the performance of Apriori can be sig-
nificantly improved using a prefix tree. In each itera-
tion, rather than traversing the entire data set, one can
find the frequency count for the candidate itemsets by
traversing the prefix tree. We use this version.



3.3 Genmax

Genmax [18] is a maximal frequent pattern mining algo-
rithm that traverses the itemset search space in depth-
first order. The algorithm directly enumerates all max-
imal frequent itemsets. The entire search task is bro-
ken down into independent subtasks using equivalence
classes. Each subtask consists of a frequent itemset
and a combine set, and the associated search space
is traversed in depth-first order using a back-tracking
search. The algorithm prunes the search space based
on maximal frequent itemsets that are discovered at an
earlier point in the search. Although the original Gen-
mazx algorithm uses the vertical data format, recently,
a variant of Genmaz that uses a prefix tree has been
proposed by Grahne and Zhu [19]. The sizable improve-
ment stems from their employment of a projected data
set for frequency estimation.

3.4 Memory Managers

It has been well documented that memory allocation
requests in C/C++ implementations can be a perfor-
mance obstruction [20]. Each allocation is a call to the
function malloc(), which then requires a subsequent
call to the function free(). Both these function calls of-
ten involve expensive system calls. Consequently, each
of the frequent pattern mining implementations that
we analyze use custom memory managers, designed to
eliminate these costs. Oftentimes, these custom mem-
ory managers allocate large chunks of contiguous mem-
ory, and then distribute portions of the memory, as
needed. This buffer of memory is generated with one
malloc(), which consequently requires only one call to
free(). These buffers can then serve a large number
of memory requests (all in user space) with very little
overhead. A potential downfall to this method is that
memory allocation and deallocation should be done in
near first-in-last-out order. This is not a problem with
frequent pattern mining, due to the recursive nature
of the algorithms. We inform the reader of these man-
agers to quell reservations regarding the performance of
the implementations we have chosen to profile — they
are not naive straw man implementations.

3.5 Performance Benchmarking

To analyze the chosen data mining implementations,
we use a system with an Intel Xeon processor and 4GB
of physical memory. The processor runs at 2GHz and
has a 4-way set associative 8KB L1 data cache, an 8-
way set associative 512KB unified L2 cache on chip, and
2MB L3 cache. The cache line sizes are 64 bytes for the
L1 and L2 caches, and 128 bytes for the L3 cache. The
system bus runs at 100MHz and delivers a bandwidth
of 3.2GB/s. We use Intel VTune Performance Analyz-
ers to collect performance numbers. This tool profiles
program execution at the level of source code and pro-
vides performance characteristics for each function in
the implementation. We performed a workload char-
acterization using a variety of data sets with different
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support parameters. The following analysis and find-
ings present average performance numbers measured
over various runs. The variation is not significant.

3.6 Detailed Analysis

Table 1 presents the top kernel functions for FPGrowth,
Genmaz, and Apriori. In FPGrowth, 61% of the exe-
cution time is spent in the Count()-FPGrowth routine.
This routine finds the set of all viable items in the F'P-
tree (projected data set) that will be used to extend
the frequent itemset at that point in the search space.
31% of the execution time is spent in the Project-
FPGrowth() routine, which scans the FP-tree to build
a new projected FP-tree for the next step in the recur-
sion. We point out that these two routines are very sim-
ilar, the difference being that the Project-FPGrowth()
routine is not called as often as the Count-EFPGrowth()
routine. For Genmaz, the counting routine, Count-
GM(), scans the prefix tree to find the support of an
itemset. Furthermore, in order to specify a projected
data set, it maintains pointers to locations in the tree
at which the previous search terminated. This eases
the processing burden on subsequent counting steps.
This implementation does not have an explicit projec-
tion phase, and thus, the counting routine contributes
to 91% of the execution time. Finally, for Apriori, the
counting routine, Count-Apriori(), scans the prefix tree
to compute the frequency count for each of the candi-
date itemsets. CandidateGen() generates candidates of
size [+ 1 using frequent itemsets of size . The counting
phase accounts for 70% of the execution time and 25%
of the time is spent in the candidate generation phase.
We will now examine the operation mix and memory
access behavior of these kernels.

3.6.1 Operation Mix

Table 2 presents the operation mix> for the top kernel
functions. The operation mix for Project-FPGrowth()
is very similar to that of Count-FPGrowth(), and there-
fore, has not been included. There were a negligible
number of floating point operations and branch mis-
predictions per instruction, which is why these numbers
have not been included. These kernels are memory in-
tensive, with a large number of memory operations per
instruction. Moreover, most of these operations are
load operations that are associated with reads on the
prefix tree. This is not surprising, because these ker-
nel functions are associated with prefix tree traversals,
which are read only operations. ALU operations are
primarily increment and decrement integer operations
(no floating point operations). These are associated
with support counting. Please note that there are a
negligible number of 1/O operations per instruction.
This is because, all I/O operations take place during
the construction of the very first prefix tree, and subse-
quent operations on the prefix tree are handled in main

3Please note that the operation mix need not sum to 1, as a
single x86 instruction can contribute to both ALU and memory
operations.



FPGrowth Genmax Apriori
Count-FPGrowth() - 61% Count-GM() - 91% | Count-Apriori() - 70%
Project-FPGrowth() - 31% Other - 9% CandidateGen() - 25%

Other - 8% Other - 5 %

Table 1: Kernels

Count-FPGrowth() | Count-GM() [ Count-Apriori()

Integer ALU operations per instruction
Memory operations per instruction

0.65 0.64 0.34
0.72 0.69 0.66

Table 2: Operation Mix

memory. Construction of the first prefix tree takes a
negligible amount of time compared to the task of gen-
erating frequent patterns.

3.6.2 Memory Access Behavior

Table 3 presents the memory access behavior of the
three algorithms. All algorithms exhibit a poor L1 hit
rate, and even worse L2 and L3 hit rates. As a con-
sequence, over 3% of all instructions miss in L3 cache,
and need to access main memory. On a modern proces-
sor, such a high fraction of cache misses per instruction
is a primary performance bottleneck. The Intel Xeon
processor is capable of executing 3 instructions per cy-
cle, with an optimum CPI (clock cycles per instruction)
= 0.33. Here, we see a CPI value that is greater than 4,
a near 12-fold slowdown from the optimum, due to poor
cache utilization. The CPU is grossly under-utilized
for this very same reason, with utilization in the 8-9%
range across all algorithms.

3.6.3 Key Insights

Based on the provided performance characterization,
together with an understanding of the kernel functions,
we can make the following observations.

First, frequent pattern mining algorithms are mem-
ory intensive, and their implementations have a large
number of load operations per instruction. This is be-
cause, most of the time is spent on traversing the prefix
tree in search of an item, which is a memory intensive
operation. These tree accesses are bottom up accesses,
along the paths connecting the leaf nodes to the root.
Second, the prefix tree being a pointer-based structure,
prefix tree traversals result in pointer-chasing. In other
words, the address of the node to be accessed next in
the prefix tree is only available through a pointer at the
node that is currently being accessed. Third, the prefix
tree is not accessed just once, but several times. These
tree accesses are largely misses, as the prefix tree is typ-
ically several times larger that the L3 cache. Fourth,
when the prefix tree is created, the memory address of
each node in the tree is relatively independent of the
memory address of its child and parent nodes. Looking
back at how the prefix tree is constructed, the trans-
actions in the data set can appear in any order. As a
result, child node and parent node addresses are rela-
tively independent.

Based on the above observations, we conclude that
prefix tree accesses exhibit poor locality. In other
words, given we have accessed a certain node in the
tree, its parent node, that will be accessed next, will

most likely not be in the following location in the cache
line. This results in very poor cache utilization, as once
a cache line for a certain node in the tree is fetched, the
rest of the line is most likely going to be wasted. These
algorithms do not benefit from hardware prefetching, be-
cause their memory access patterns lack structure. For
a large prefix tree that does not fit in cache, we will
have a negligible amount of temporal locality. The pri-
mary bottleneck is that prefiz tree traversals leave the
processor waiting on a data-cache stall for the magjority
of the time. This is exacerbated by the pointer-chasing
problem, as such codes do not provide the processor with
a large instruction pool to exploit ILP.

4 Cache-conscious Optimizations

In this section, we present several novel techniques for
improving the performance of frequent pattern mining
using prefix trees. We then follow these descriptions
with a performance evaluation for each technique. The
details of our optimizations are presented in the con-
text of the FPGrowth algorithm. We choose FPGrowth
for our case study because it has been shown to be
the most efficient frequent pattern mining algorithm to
date [17, 6]. We take the time now to point out that
our optimization techniques can be applied to most fre-
quent pattern mining algorithms that use prefix trees.
In section 4.7.4, we will summarize the results of us-
ing our strategies on Genmaz and Apriori. Before we
detail these techniques, we will introduce the reader to
the prefix tree and the FPGrowth algorithm.

4.1 Prefix Trees

A prefix tree (or an FP-tree [22]) is a data structure
that provides a compact representation of transaction
data set. Each node of the tree stores an item label
and a count, with the count representing the number
of transactions which contain all the items in the path
from the root node to the current node. By order-
ing items in a transaction, a high degree of overlap
is established. The compressed nature of this repre-
sentation allows in-memory frequent pattern mining,
because in most practical scenarios, this structure fits
in main memory. Its design is based on the following
observations:

e A transaction data set representation only needs
to consist of frequent 1-items in the data set; the
remaining items can be pruned away. This is a
direct consequence of the anti-monotone property
used in Apriori [2].
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Count-FPGrowth() | Count-GM() [ Count-Apriori()
L1 hit rate 89% 87% 86%
L2 hit rate 43% 42% 49%
L3 hit rate 39% 40% 27%
L3 misses per instruction 0.03 0.03 0.04
CPI 4 4 5
CPU utilization 9% 9% 8%

Table 3: Memory Access Behavior

No. Transaction Sorted Transaction
with Frequent Items

1 fra,c,d,g,i,m,p a,c, f,m,p

2 a,b,c,f,l,}m,o a,c, f,b,m

3 b, f, h,j,0 )

4 b,c k,s,p ¢, b,p

5 a, f,c,e,l,p,m,n a,c, f,m,p

6 a, a

Table 4: A Transaction Data Set with minsupp = 3

e If two transactions share a common prefix, as per
some sorted order of the frequent items, they can
be merged into one, provided a count value indi-
cating this merge is registered. Furthermore, if fre-
quent items in a transaction are sorted in descend-
ing order of their frequencies, there is a greater
chance that more prefix strings will be shared?.

With these observations in mind, a prefix tree is con-
structed as follows:

1. Scan the data set to produce a list of frequent 1-
items.

Sort the items in frequency descending order.
Sort the transactions based on the order from (2).

Prune frequent 1-items.

AT o

For each transaction, insert each of its items into
a tree, in sequential order, generating new nodes
when a node with the appropriate label is not
found, and incrementing the count of existing
nodes otherwise.

Table 4 shows a sample transaction data set, and
Figure 3(a) shows the corresponding prefix tree. Each
node in the prefix tree consists of an item, count,
nodelink ptr, (which points to the next item in the pre-
fix tree with the same item-id) and child ptrs (a list of
pointers to all its children). Pointers to the first occur-
rence of each item in the tree are stored in a header
table.

To compute the frequency count for an itemset, say
ca, using a prefix tree, we proceed as follows: First,
we find each occurrence of item c in the tree using the
node link pointers. Next, for each occurrence of ¢, we
traverse the tree in a bottom up fashion in search of an
occurrence of a. The count for itemset ca is then the
sum of counts for each node c¢ in the tree that has a as
an ancestor.

4.2 FPGrowth Algorithm
The FPGrowth algorithm is presented in Figure 2. As

described earlier, FPGrowth is a prefix tree-based ap-
proach to frequent pattern mining. In Step 1, it builds

4This may not be the minimal representation[22].
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Algorithm: FPGrowth

Input: A prefix tree D, minimum support ming
Output: Set of all frequent patterns

Step 1: Construct an FP-tree

(1) Scan the transaction database D once, gathering support of
(-) all items.

(2) Sort the items based on their frequency.

(3) Create a root node, labeled null.

(4) Scan the database a second time.

(5) For each transaction, remove elements with

(-) frequency < mins.

(6) Sort the transaction, and append it to the root

(-) of the tree, maintaining the prefix property.

(-) Each inserted node is linked to a header list of the
(-) frequent one item with that label.

Step 2. Mine the FP-Tree by calling FP-Growth(FP-tree,null,min)
FP-Growth (tree, suffix, ming)

(1) If tree has only one path

(2) Output 2pPath (4 suffix as frequent

(3) Else

(4)  For each frequent one item 3 in the header table
(5) { Output the item U suffix as frequent

(6 Use the header list for § to find

(- all frequent items in conditional pattern

(_

(

fat2

base C for g
If we find at least one frequent item in the conditional
pattern base, use the header list for 8, and C
to generate conditional prefix tree 7
If 7 # 0 then
FP-Growth(r, suffix US)
)}

¥
Note: 2P**" denotes the power set of the elements in path

NN NN

= ©
o—I

(
(
(
(
(

Figure 2: FPGrowth Algorithm

a prefix tree from the transaction database, removing
all infrequent items, using the procedure outlined in
section 4.1. Step 2 iterates through each item 3 in the
tree, and performs two sub-steps. First, it uses the
prefix tree to find all frequent items in the conditional
pattern base for the item 3. This involves scanning the
tree bottom up beginning at all node locations for item
(. The header table provides a starting point for this
search. The remaining locations for item [ are derived
using the node link pointers. Second, given we have
discovered at least one frequent item in the conditional
pattern base of item J in the tree, we build a projected
database (represented as a prefix tree) for item 3. This
sub-step also involves scanning the conditional pattern
base of item [, in search for items to be included in the
projected database. For each projected database that
we build, the algorithm proceeds recursively.

4.3 Spatial Locality Related Enhancements

Through the detailed characterization presented in the
previous section, we concluded that approximately 60%
of the execution time is spent on finding frequent items
in the conditional pattern base for an item, and an ad-
ditional 30% of the execution time is spent on using
the results of this step to create a new projected pre-
fix tree. Both these procedures have very poor cache



utilization, mainly for the following reasons.

First, the routine that scans the conditional pattern
base performs a bottom up traversal of the prefix tree.
This access pattern also holds true for the routine that
builds the projected prefix tree for the next step in the
recursion. While we scan the prefix tree, we are only
concerned with the item and parentpointer associated
with the node. In the prefix tree proposed by Han et
al. [22], each node has a list of child pointers, a parent
pointer, a nodelink pointer, a count, and an item. Ex-
cept for item and parentpointer, all other fields in the
prefix tree node are not required for the two main rou-
tines. Consequently, once we fetch a prefix tree node,
only two fields are actually used. This significantly de-
grades cache line utilization. Second, due to the way a
prefix tree is constructed, the chances are that a node
will not be present at an adjacent location in the cache
line of its child node. This prefix tree is constructed as
the data set is scanned, and thus, successive accesses in
the bottom-up traversal of the tree are not contiguous
in memory. Due to the lack of temporal locality, this
node is not likely to be present in any other cache line.
The result is commonly a cache miss.

We present the cache-conscious prefix tree (Figure
3b), a data structure designed to significantly improve
cache performance through spatial locality. A cache-
conscious prefix tree is a modified prefix tree which
accommodates fast bottom up traversals and improves
cache line usage. First, given a prefix tree, our solu-
tion to improve spatial locality is to reallocate the tree
in main memory, such that the new tree allocation is
in depth-first order of the original tree. We malloc()
one contiguous block of memory equal to the total size
of the prefix tree. Next, we traverse the tree in depth-
first order, and (in one pass) copy each node to the next
block of memory (in sequential order). This simple re-
allocation strategy provides significant improvements,
because all algorithms access the prefix tree several
times in a bottom up fashion, which is largely aligned
with a depth first order of the tree. Second, our node
size is much smaller than the original node size, because
we do not include child pointers, node pointers, and
counts. These data members are eliminated, because
in FPGrowth, child pointers, node link pointers, and
counts are not used during a bottom up traversal of the
tree. This new node size is less than half of the original
node size, which allows at least twice as many nodes to
reside on one cache line. However, the node fields node
link pointer and count are required at the start of each
bottom up traversal. Therefore, these fields are stored
in a separate structure, as node link pointer and count
accesses are not along the critical path. We would like
the reader to note that once the cache-conscious pre-
fix tree is created, the original tree can be purged, and
thus memory usage does not increase significantly. The
tile-able aspect of cache-conscious prefix trees will be
presented in section 4.5.1.

In summary, our allocation strategy has the follow-
ing benefits:
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e Prefix tree accesses being bottom up accesses, once
a node is fetched into a cache line, the next con-
secutive node in depth-first order of the tree will
likely be located in the next consecutive location
in the cache line. This should reduce the cache
miss rate associated with prefix tree traversals.

e The fact that we are improving cache line utiliza-
tion by using a smaller prefix tree node allows for
a larger fraction of the working set to fit in cache.

4.4 Prefetching

Cache line prefetching [12] is a popular technique for
reducing the effect of cache line misses, particularly
when applications do not perform a significant amount
of computation per cache line. Frequent pattern min-
ing is one such application. Although we improve the
spatial locality of data access in the algorithms, we
still spend a significant portion of the execution time
waiting on cache misses. These misses are particularly
difficult to mask, because the algorithm only performs
simple ALU operations upon accessing each node. This
can be alleviated by prefetching nodes of the tree into
cache with hardware [8]. The Intel Pentium 4 has a
hardware prefetcher that operates without user inter-
vention. It records memory access patterns of the ex-
ecuting application and prefetches data addresses on
a best-effort basis. Simple patterns such as sequen-
tial and strided memory accesses are easily recognized.
Since the accesses to the cache-conscious prefix tree are
largely sequential, the use of the hardware prefetcher
has great benefit. Hardware prefetching outperforms
software prefetching for this access pattern. Therefore,
we do not consider software prefetching in the analysis
to follow.

4.5 Temporal Locality Related Enhancements

Temporal locality states that recently accessed mem-
ory locations are likely to be accessed again in the
near future. Cache designers assume that programs
will exhibit good temporal locality, and store recently
accessed data in the cache accordingly. Therefore, it
is imperative that we find any existing temporal local-
ity in the algorithm and restructure computation to
exploit it.

To simplify further discussion, we present the core
loop for FPGrowth in Figure 4. For each loop iteration,
we do the following: First, we scan the conditional pat-
tern base of each item 7 in the header table, for its pro-
jected frequent items. Second, if there are any frequent
items in the conditional pattern base of ¢, we build a
conditional prefix tree for item ¢, again, accessing the
conditional pattern base of . The prefix tree does not
typically fit in cache. Even the conditional pattern base
does not always fit in cache. As a result, both scans of
the conditional pattern base do not reuse portions of
the tree in cache. This holds between: (a) a call to the
conditional pattern base routine followed by the build
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Core loop: FPGrowth

Input: A prefix tree D, minimum support min,

(1) For each frequent item ¢ in D

@) {

(3) Find number of items j in conditional
(4) pattern base of i with support ming
(5)

(6) if5>0

(7)

(8) Build conditional prefix tree P for
(9) item 4

(10) FPGrowth (P, ming)

any 3

(12) }

Core loop after path tiling: FPGrowth
Input: A prefix tree D, minimum support min,

1) For each path tile t in the cache-conscious prefix tree
2)

3) For each frequent item 4 in D

4)

5) Find counts ¢; for each item in the

-) conditional pattern base of i
) with node locations in ¢

) }

)

}

8) Aggregate conditional pattern base counts ¢; collected
-) across all tiles, for all items in D
)

9) For each path tile t in the cache-conscious prefix tree
10){

11) For each frequent item ¢ in D

12)

13) j = ¢; = number of items

-) in conditional pattern base of %

14) Ifj>0

15)

16) Build conditional prefix tree

-) P; for item i with node

-) locations in ¢

17) }

18) )

19)}

20) For each frequent item ¢ in D

21) {

22) If conditional prefix tree P; for item 4 exists
23) FPGrowth(P;, min,)

24) }

Figure 4: Core Loops for FPGrowth and Path Tiled
FPGrowth using Cache-conscious Prefix Trees
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Figure 5: Path Tiling
conditional prefix tree routine, and (b) consecutive it-
erations of the loop.

4.5.1 Path Tiling

We can restructure computation within the algorithm
so as to improve temporal locality. The goal of restruc-
turing the algorithm is to maximize reuse of the prefix
tree once it is fetched into cache. We accomplish this
by reorganizing computation, and thus, accesses to the
prefix tree, in the algorithm. Our approach, called path
tiling works as follows.

First, we break down the tree into relatively fixed
sized blocks of memory (tiles) along paths of the tree
from leaf nodes to the root, as illustrated in Figure 5.
This is possible because our tree is allocated in depth
first order. The tiles are identified using their start and
end memory addresses.

Next, we iteratively fetch each tile into cache. Then
for each frequent item i, we traverse the part of its con-
ditional pattern base that has leaf nodes located within
the tile’s start and end address. There is a large over-



lap between the conditional pattern bases of different
items. Thus, once a tile is brought into the cache, con-
ditional pattern base accesses for all items that hit the
tile are managed in cache. This dramatically improves
temporal locality for the algorithm.

Once we determine the number of frequent items in
the conditional pattern bases of all items i in D, we
must build the projected prefix trees for each i. As
this step also accesses the conditional pattern bases as
above, it can also make use of path tiling. This im-
proves temporal locality through the conditional tree
building phase, but results in increased memory usage,
as we need to maintain a larger number of projected
trees in main memory. There is a workaround how-
ever. We introduce an additional loop that builds a
conditional prefix tree for the first k items, and not
all items. These k trees are processed recursively, af-
ter which they are purged. We then continue to the
next k items, and proceed similarly. We have not in-
cluded this additional loop in Figure 5 for simplicity of
explanation.

4.6 Improving ILP via Simultaneous Multi-
threading

Simultaneous Multithreading [34] (SMT) is a pro-
cessor design that combines hardware multithreading
with superscalar processor technology to allow mul-
tiple threads to issue instructions each cycle. SMT
permits all thread contexts to simultaneously compete
for and share processor resources by maintaining sev-
eral thread contexts on chip. Unlike conventional su-
perscalar processors, which suffer from a lack of per-
thread instruction-level parallelism, simultaneous mul-
tithreading enables multiple threads to compensate for
low single-thread ILP. The performance consequence
can be significantly higher instruction throughput and
program speedups for database workloads, web and sci-
entific applications. SMT has been incorporated into
the Intel Pentium 4 processor in the form of Hyper-
Threading technology [23] which supports two thread
contexts on chip. For a multithreaded implementation,
SMT can provide several benefits.

e First, it can absorb an appreciable portion of the
cache miss latency seen by a single threaded im-
plementation by overlapping computation in one
thread with a cache miss in another thread.

e Second, data fetched into the cache by one thread
can be reused by the second thread. This reuse of
data can take place across all cache levels, and
serves as another way of reducing materialized
cache miss latency.

A natural candidate for a two-thread decomposition of
a frequent pattern mining algorithm is to use an ex-
tant strategy like that proposed in [28]. Such a strat-
egy would involve decomposing execution into two in-
dependent threads of computation. However, when we
evaluate this strategy for FPGrowth on an SMT, we
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Name Number of transactions
DS1 - T40115D300K 300000
DS2 - T60I15D300K 300000
DS3 - T70I115D300K 300000
DS4 - T100I15D300K 300000
DS5 - Webdocs.dat 500000

Table 6: Data Sets

were not able to gain any benefit from simultaneous
multi-threading. A detailed study revealed that the
first benefit from above is not materialized in frequent
pattern mining implementations when using this extant
strategy. This is because there is insufficient computa-
tion to overlap with the memory stalls. In the future,
as more hardware contexts are put on chip, it is likely
that this first benefit will materialize, because we will
have a larger instruction pool. For now, however, we
leverage the second benefit of SMT for improving ILP
in frequent pattern mining.

We devise a novel parallelization strategy in which
the two threads follow each other through the same FP-
Growth() calls. These threads are not independent, but
rather, they operate on the same tile simultaneously.
This is accomplished through fine grained parallel ex-
ecution of the tiled loops that were shown in Figure
4. The workload for each tile is partitioned across the
two threads. By co-scheduling the two threads, when
one thread fetches a portion of the tile into the cache,
it will be reused by the second thread. This results in
significant cache reuse between the two threads.

4.7 Performance Evaluation Revisited

We now empirically evaluate the benefits of our opti-
mizations. We use four synthetic data sets generated by
the IBM Quest Dataset Generator and a real data set
called Webdocs, as presented in Table 6. For the syn-
thetic data sets, the naming parameters are the aver-
age transaction length T, the average maximal pattern
length I, and the number of transactions D. Webdocs
[17] was chosen, because most other FIMI data sets are
too small. We do realize the limitations of using this
synthetic data set generator [36], but truly large real
data sets are not readily available. Although the syn-
thetic data sets only have 300,000 transactions, these
data sets are very dense, and the FIMI implementa-
tions we use are unable to handle a larger number of
transactions. The experimental setup is identical to
that provided in the previous section. Throughout this
section, we compare execution time with respect to the
fastest known implementation of FPGrowth from the
FIMI repository [19]. Execution times for this imple-
mentation are summarized in Table 5 and we present
speedup numbers with respect to these times. Also
note that speedup is based on overall execution time,
including the time required to create the first tree.

4.7.1 Benefits of Improving Spatial Locality

From Figures 6 through 8, it is evident that we achieve
a significant performance improvement due to im-
proved spatial locality. Most trials provided between 30
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DST (0.20%) | DS2 (0.83%) [ DS3 (0.83%) [ DS4 (1.33%) [ DS5 (10%)
Baseline 192 sec 269 sec 627 sec 3798 sec 949 sec
Cache-conscious 77 sec 80 sec 145 sec 773 sec 220 sec

Table 5: Execution Time Comparison
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and 60% improvement. When the hardware prefetcher
is enabled, there is an additional 10 to 25% speedup.
The Pentium 4 processor has a 64 byte cache line size.
Therefore, when we traverse the cache-conscious prefix
tree, we can fit up to 8 tree nodes in one cache line. In
the baseline implementation, each node spans at least
20 bytes, and at most 3 nodes would fit on a cache line.
The cache-conscious tree directly improves cache uti-
lization and also facilitates hardware prefetching, be-
cause the prefetcher can easily predict simple serial ac-
cess patterns. We also note that speedup improves with
increasing transaction length and decreasing support.
Increasing transaction length improves the benefits of
spatial locality, because the path lengths are greater.
In addition, lowering supports increase the size of pre-
fix trees, providing ample opportunity to leverage the
sequential nature of the path traversals.

4.7.2 Benefits of Improving Temporal Locality

Path tiling provides a significant improvement over
that provided by spatial locality and prefetching. Re-
turning to Figures 6 through 8, we see cumulative
speedups ranging from 1.9 to 3.2. Some of the benefit of
increased spatial locality is tempered due to tiling, but
overall, we see significant speedup. By reusing cache
content, a large fraction of the misses are eliminated.
It can be seen that as we lower support, the impact of
tiling greatens. We attribute this to larger prefix tree
sizes and greater benefits from temporal locality. °

4.7.3 Benefits of SMT

An extant parallelization strategy did not provide more
than 3% improvement on an SMT. Therefore, the ben-
efits we see in Figures 6 through 8 are due to the reuse
of cached data between threads, and thus, improved
ILP. The use of SMT gives us an overall speedup of up
to 4.8. Cumulatively, our optimizations increase L1 hit
rate to 94% (from 89% ) and L2 hit rate to 98% (from
48%).

4.7.4 Benefits on Apriori and Genmax

We also injected all our proposed techniques into pub-
licly available implementations of Genmax and Apriori
[17]. Due to space constraints, we are not able to detail
the optimizations for these algorithms, other than to
express that the methodology was similar. Execution
time improvements were comparable with that of our
case study, as depicted in Figure 8. Genmax improves
up to 4.5 -fold, and Apriori improves up to 3.7-fold.
Apriori shows slightly less improvement due to its can-
didate generation phase, which does not use the prefix
tree.

5Note that we cannot evaluate path tiling without the im-
proved spatial locality; it is the depth-first ordering of the cache-
conscious prefix tree that provides the possibility of path tiling.
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4.8 Discussion

It is our contention that a large percentage of data min-
ing algorithms will not glean the benefits of state-of-
the-art architectures. We tested this notion with three
publicly available frequent pattern mining algorithms,
and showed that they greatly under-utilize the cache
and are affected by poor ILP. It is thus natural to be-
lieve that many other data mining algorithms, partic-
ularly those which share a common algorithmic struc-
ture with frequent pattern mining, suffer from similar
bottlenecks.

Algorithms in the areas of tree mining, sequence
mining, and graph mining are particularly suscepti-
ble to such bottlenecks. Solutions to these problems
spend a considerable amount of time estimating sup-
port for patterns, often rereading the same blocks of
data in a streaming fashion. In all likelihood, the work-
ing set will not fit in cache due to the size of the input
data. These algorithms do not necessarily use prefix
trees, however, as such the community could benefit
from an investigation into how their data structures
can be made cache-conscious. It is imperative that this
investigation include an evaluation on the use of tile-
able data structures. Furthermore, the investigation
must look at mechanisms to decompose the algorithm
into threads of execution that have significant overlap
in access. This would help improve ILP on an SMT.
These are required to derive high performance from to-
day’s architectures. Technology trends indicate that
future architectures will possess more thread contexts
on chip, as well as more execution cores per proces-
sor. This would motivate a study that targets both
inter-thread ILP for SMT and inter-thread data reuse
between cores.

5 Conclusion

In this paper, by way of an extensive performance char-
acterization, we show that frequent pattern mining al-
gorithms grossly under-utilize a modern-day CPU. This
poor utilization is attributed to poor data locality and
low instruction level parallelism. We improve the per-
formance of said algorithms through the design of a
tile-able cache-conscious prefix tree.

This data structure improves spatial locality and fa-
cilitates hardware cache line prefetching. Furthermore,
it allows the use of path tiling, a novel tiling strat-
egy, to improve temporal locality. All these optimiza-
tions significantly reduce the number of cache misses.
We also present a multi-threaded decomposition for fre-
quent pattern mining algorithms, which, coupled with
a thread co-scheduling strategy, significantly improves
ILP as well as cache performance on simultaneously-
multithreaded processors.

Our results can be summarized as follows:

e Cache-conscious prefix trees improve spatial local-
ity in data access, and coupled with prefetching
and path tiling, result in up to 3.2-fold speedup.



e An intelligent thread-based decomposition on an

SMT provides a cumulative speedup up to 4.8-fold

e Overall, CPU utilization improves nearly 5-fold

From our results, we conclude that the cache perfor-

mance and ILP of frequent pattern mining algorithms
can be greatly improved through the use of a cache-
conscious prefix tree coupled with processor technolo-
gies such as hardware cache line prefetching and SMT.
We believe that this work makes an important contri-
bution towards applying cache-conscious techniques to
various data mining algorithms.

Our work assumes that the prefix tree fits in main

memory. For future work, we are extending our strate-
gies to disk-resident prefix trees. In addition, we are
exploring the fruitfulness of cache-conscious strategies
in other pattern mining domains, such as graph mining
and sequence mining.
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