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Abstract

Lazyreplication protocols provide good scalabil-
ity properties by decoupling transaction execution
from the propagation of new values to replica sites
while guaranteeing a correct and more efficient
transaction processing and replica maintenance.
However, they impose several restrictions that are
often not valid in practical database settings, e.g.,
they require that each transaction executes at its
initiation site and/or are restricted to full replica-
tion schemes. Also, the protocols cannot guaran-
tee that the transactions will always see the fresh-
est available replicas. This paper presents a new
lazy replication protocol called BBREP that is
free of these restrictions while ensuring one-copy-
serializable executions. The protocol exploits the
distinction between read-only and update transac-
tions and works with arbitrary physical data orga-
nizations such as partitioning and striping as well
as different replica granularities. It does not re-
quire that each read-only transaction executes en-
tirely at its initiation site. Hence, each read-only
site need not contain fally replicated database.
PDBREPmMoreover generalizes the notionfadsh-
nesgo finer data granules than entire databases.

Introduction

up-to-date and consistent, which usually implies additional
overhead. Different approaches to replication management
have been studied so far. One approach from standard data-
base technology igagerreplication which synchronizes

all copies of an object within the same database transac-
tion [3]. However, conventional eager replication proto-
cols have significant drawbacks regarding performance and
scalability [8, 11, 22], which are due to the high communi-
cation overhead among the replicas and the high probability
of deadlocks. Newer eager replication protocols, such as
proposed in [12, 13], try to reduce these drawbacks by us-
ing group communicationLazyreplication management,

on the other hand, decouples replica maintenance from the
“original” database transaction [5, 6, 15]. In other words,
transactions keeping replica up-to-date and consistent run
as separate and independent database transaattenthe
“original” transaction has committed. Compared to eager
approaches, additional efforts are necessary to guarantee
serializable executions. Previous work on lazy replica-
tion like [4, 5] has focused on performance and correctness
only. In particular, it did not consider that important practi-
cal scenarios may require up-to-date data — a property that
is not necessarily satisfied by conventional lazy replication
techniques.

Recently, [18] addresses this issue by allowing read-
only clients to defindreshness requirementgating how
up-to-date data shall be accessed. However, the approach
of [18] suffers from several important shortcomings. First,

Replication is an essential technique to improve perfordtrelies onfull replication ata granularity of complete data-
mance of frequent read operations when updates are rar@ases. Clearly, this precludes more sophisticated physical
Updates or any other write operation are challenging in thiglata organization schemes such as partial replication, parti-

context since all copies of a replicated object must be keptioning or striping across sites, which can be beneficial for
parallelization of queries. Second, it assumes that the trans-

* This work has been supported partially by Microsoft. action executes entirely at its initiation site, which may not
Permission to copy without fee all or part of this material is granted pro- b_e the case In prac_tlcal database settlngs_whgre the_ data is
vided that the copies are not made or distributed for direct commercialdistributed over various cluster nodes. Third, it requires a
advantage, the VLDB copyright notice and the title of the publication andcentralized coordination component for the entire schedul-

its date appear, and notice is given that copying is by permission of th : - - :
Very Large Data Base Endowment. To copy otherwise, or to republishe?ng and bookkeeplng, which is a pOtentlaI bottleneck and

requires a fee and/or special permission from the Endowment. single point of failure.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005
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The objective of this paper is to attack the aforemen-
tioned shortcomings and to present a new protocol that



covers the following requirements jointly: (1) combining

In this paper, we present a new replication protocol,

the advantages of lazy and eager replica maintenance talled FPBREP', which covers all aforementioned require-

ensure correct and efficient executions, (2) supporting aments.

PBREP exploits two important characteristics:

bitrary physical data organization schemes, (3) allowing(1) distinction betweemead-onlyandupdate transactions
users to specify freshness requirements, and (4) executirand (2) partitioning of the sites intead-onlyandupdate
read-only transactions at several data sites in parallel. Thisitesto process read-only and update transactions, respec-
goal cannot be achieved by simply extending previous lazyively. The main idea of BBREP is to exploit distributed
replication protocols. As the following example shows, for versioning together witfreshness lockingp guarantee ef-
instance, lazy replication as proposed in [4] fails already ifficient replica maintenance that provides consistent execu-
one allows a transaction to read objects from several sitestions of read-only transactions. Globally correct execution
Example 1: Assume that for each object there is a singleof update transactions over update sites is already covered
primary site responsible for updates to the object. Let ther®y previous work, e.g. [4]. It is therefore not the concern

be four sitessy, ss, s3, ands,, which are interconnected by
a communication network, as shown in FiguresLands,

update transactions

read-only transactions

2 /)
N

propagation transactions
global serialization graph

Figure 1: Lazy replication management

contain objects andb with s; being a primary fow and
so being primary forb. s3 ands, in turn store secondary
copies ofa andb, each. Further suppose thatsat(sz) a
transactionl; (7%): w1 (a) (w=(b)) is submitted. At about
the same time at sites andsy, read-onlytransactiond’s
andT, are submitted, where

T3 r3(a)rs(b)
T4 Ty (a)r4 (b)

Suppose;(a) andry(b) are scheduled to be executed at
andrs(b) andrs(a) ats4. In this case, the following local
schedules can be generated at siteands,, respectively:

S3: wy(a) r3(a) wa(b) ra(b)
S4: 7“4((1) wl(a) 7'3(b) ’UJQ(b)

whereT] = T{": wi(a) andTy = Ty': wo(b) arepropa-
gation transactions generated By and 7, at s3 and sy,

respectively. Figure 1 illustrates these read-only and propz . ;
) : . . e propagated to each secondary site. A simple conse-
agation transactions and their conflicts. Clearly, the globa] propag y b
schedule we have obtained is not globally serializable sinc

the global serialization graph is cyclic. Observe, however

that at each site propagation transactions are executed in the

of this paper.
Our main contributions are as follows:

e PDBREPSsupports different physical data organization
schemes ranging from full replication at the granular-
ity of complete databases to partial replication com-
bined with partitioning and striping.

e PDBREP respects user-demanded freshness require-
ments. This includes the special case where users al-
ways want to work with up-to-date data.

e PDBREPproduces correct, i.e., one-copy serializable,
global executions and allows distributed executions of
read-only transactions.

e We implemented PBREP and evaluated it in various
settings to reveal its performance characteristics.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the underlying system model, describing the
kinds of transactions and database cluster nodes. Section 3
introduces PBREPIn detail, while Section 4 presents ex-
perimental evaluation results. Section 5 talks about related
work. Section 6 concludes the paper.

2 System Model

Figure 2 illustrates the model of our system. We consider a
replicated database that contains objects which are distrib-
uted and replicated among the sites. Since we use relational
database systems, objects are (partitions of) relations while
operations are queries or data manipulation statements. For
each objectl; there is aprimary sitedenoted byp(d;). If
site s contains a replica ofl; ands # p(d;), we call a
replica ofd; ats a secondary copy For instance, site;
holds a primary (underlined) copy afwhile site s; only
stores a secondary (non-underlined) copy.of

Following previous work [5, 4], updates of an object first
occur at its primary site, and only after that these updates

uence of this fact is that all write operations to the same
bject can be ordered according to the order of their execu-

tion at the primary site. Similarly to [18], we partition all

same order and, furthermore, each site-specific schedule is 1ppgrep stands for the replication protocol we implemented within

locally correct.
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Figure 2: System architecture underlyingdRep

sites into two classes: (1) read-only and (2) update. Reaceral sites — depending on the physical data organization or
only transactions only run aad-only siteswhile update the workload situation at read-only sites.
transactions only run atpdate sites Propagation transactionsare performed during the
Update transactions consists of at least one write opelidle time of a site in order to propagate the changes
ation. A write operation is any SQL-DML statement (in- present in the local propagation queues to the secondary
sert, update and delete). The changes of update transactioogpies. Therefore, propagation transactions are continu-
that occur at update sites are serialized [4] and logged in ausly scheduled as long as there is no running read or re-
global log For instance]; represents the changes of up- fresh transaction. By virtue of our model, the propagation
date transactioffi; . These changes are continuously broad-transactions for the same object are initiated from the same
casted to all read-only sites in the system and are enqueugulimary site. As a result, all updates at secondary sites of
in the local propagation queues which have the same struthe same objects are ordered by the order of the primary
ture as the global log. For examplg,; correspondsto lo- transaction that performed such an update at the primary
calized changes of update transactign The broadcast is site of the object.
assumed to be reliable and preserves the global FIFO order, Example 4: Figure 2 shows the propagation transaction
i.e., changes are received by all read-only sites in the order] applying the changes of the update transacfipto site
they have been broadcasted by the global log component.ss. It comprises all write operations @, but not its read
There are four types of transactions in our model:operations.
update read-only propagation andrefreshtransactions. Finally, there areefresh transactionthat bring the sec-
Based on the protocols discussed in [4]umadate transac-  ondary copies at read-only sites to the freshness level speci-
tion7" may update an objeetif T is initiated at the primary  fied by a read-only transaction. A refresh transaction aggre-
site ofa. T', however, may read any object at this site. gates one or several propagation transactions into a single
Example 2: Figure 2 depicts three update transactionsbulk transaction. A refresh transaction is processed when
Ty, Ty, andT5 which only run on update sites and their a read-only transaction requests a version that is younger
write operations occur at primary sites. than the version actually stored at the read-only site. A re-
Read-only transactions turn may be initiated at any fresh transaction first checks the local propagation queue
read-only site. These transactions read objects only fronto see whether all write operations up to the required time-
read-only sites. Their read operations may run at differenstamp are already there. If yes, it fetches these write oper-
read-only sites. This is an important generalization of [18]ations from the local propagation queue and applies them
which has only considered full replication and local read-to the database in a single bulk transaction. Otherwise, it
only transactions. Moreover, it allows for arbitrary physi- retrieves whatever available in the local propagation queue
cal data organizations at the read-only sites and routing aind goes to the global log for the remaining part.
read-only operations. Example 5: Figure 2 shows two refresh transactidis
Example 3: Figure 2 shows a read-only transactiin ~ and75s. They bring sitess ands, to a state that is needed
As the figure illustrates, read-only transactions only run orto run the read-only transactich, which requires fresh
read-only sites and may distribute their operations over sevdata with at least a timestamp @$1013. The timestamps

567



of sites3 and4 are equal td)31011. The system hence a given freshness level. Freshness locks keep the objects
checks the local propagation queues for potentially missingiccessed by a read-only transaction at a certain freshness
changes — in the figure these are the changes madg by level during the execution of that transaction. When a read-
and shown a%7». Atthis point, the system realizes that the only transactioril; with the freshness requirement 615
changes of update transactih have not been enqueued wants to access some objects, it first has to acquire fresh-
in the propagation queue at neither site@nd4 yet. So, it  ness locks on these objects. The procedure for acquiring
retrievess3 from the global log. Altogether, the refresh freshness locks is performed in two steps:
transaction included’., andTg3. After completing the
refresh, the read-only transacti®h is executed. 1. T; asks for a freshness lock on the object with the
Update, propagation, and refresh transactions are exe- timestampT'S. The freshness locking procedure
cuted as decoupled database transactions. We assume that Places a lock with the timestanips' if the current
each site ensures locally correct transaction executions. We ~ freshness level of the object is not younger tHas
adopt the criteriorone-copy-serializabilityf3] to guaran- Otherwise, it places the lock with the timestamp of the
tee global correctness. Hence, regardless of the number of ~ current freshness level of that object. In the following,
read-only sites, read-only transactions always see a consis- We Will use the ternpre-lockto refer to a lock placed
tent database state as if there were a single database only.  in the first phase of the freshness locking procedure.

2. Depending on the current freshness level of the vari-
3 The PDBREP Protocol ous objects, the pre-locks can differ with respect to the
freshness level. To ensure that the transactiowill
read consistent data, all freshness lockg;ofust be
PDBREP exploits the read-only site’s idle time by continu- brought up to the same freshness level (if this is not al-
ously scheduling propagation transactions as update trans- ready the case). That is, freshness locks are upgraded
actions at the update sites commit. The rationale behind to timestamp of either the freshest site in the system
this is to keep the secondary copies at the read-only sites  or the youngest object pre-locked By.
as much as possible up-to-date such that the work of re- _ o )
fresh transactions (whenever needed) is reduced and thus Example 6: Figure 3 shows freshness locking in action
the performance of the overall system is increased. for three possible cases when a read-only transadfion

We assume that a globally serializable schedule is proWvants to access the objeatsandb (residing on different
duced for all update sites by some algorithm that is of noSites) with the freshness requiremesy:
concern for this paper. Moreover, the update transactions’
serialization order is their commit order. Thus, each propa-
gation transaction inherits the number in which the update
transaction committed in the global schedule and this num-
ber we call the propagation transaction sequence number.
Consequently, each propagation transaction has a unique
sequence number that is known to each read-only site.

To ensure correct executions at read-only sites, each
read-only transaction determines a version of the objects 5
it reads at its start. BBREP foresees two different ap-
proaches to determine this version. Tihmlicit approach
determines the versions of the objects accessed by a read-
only transactioril” from the versions of the objects at the
sites accessed . With theexplicitapproach, users may
specify thefreshnesof the data accessed by their read-

only transactions as a quality of service parameter. How- 3 The right diagram exhibits the case where some ob-

ever, explicitly specified freshness can be changed implic-  jects are older than required while others satisfy the
itly, if none of the objects involved in transaction satisfies freshness requirement @f. In case of a “fresh

required freshness level or if at least one of them is fresher  enough” data, the lock is set to the current freshness

than th|S IeVel. If a read'only tl’ansaCtiOI’l iS SChedu|ed to level Of that |tem In the examp|e,is therefore |Ocked

a site that does not yet fulfill the freshness requirements, a  jith ¢s;. “Not fresh enough” data is locked with the

refresh transaction updates the objects at that site. required timestamp of the transaction. Henkds
With either of the two aforementioned approaches, locked with¢ss. This lock is then upgraded toss

freshness locks are placed on the objects at the read-only  in the second phase of freshness locking.

sites to ensure that ongoing replica maintenance transac-

tions do not overwrite versions which are still needed byFor the last two cases, note that the actual version of data

ongoing read-only transactions. fleeshness lockhus rep-  accessed is implicitly determined by the freshness locking

resents a barrier that disallows updates of an object beyoralgorithm.

3.1 Overview of the Protocol

1. The left diagram depicts the case where none of the in-
volved sites satisfies the freshness requiremefit, pf
which demands the freshest data. Therefore, freshness
locks are placed on both objects with the timestamp
ts3, which is assumed to be the freshest in the exam-
ple. Thus, the version of data is determined by the
read-only transaction explicitly.

The middle diagram shows the case where both in-
volved sites have younger data than required. This
time the locks are first placed on the objects with cor-
responding current freshness level, i.€.is locked
with tss andb is locked withts,. Then, the freshness
lock onb is upgraded tdss.

568



‘ ‘ i ‘ : > A :current
: ' T1 ' ! : : ! TI timestamp
sb ’A’ ””” R st sb ’A"" ”””””””””” : pre-lock
.2, ' | ' 2 H ' . . ! —: lock
) o : 5 oo
o ' I T, o ' ! ! ! T, —» : lock upgrade
L i S et e e e N
ts; s, sy ts,; 1S ts; ts, ts; ts, 1s; ts; ts, ts; ts, 1ss
Timestamp Timestamp Timestamp

Figure 3: Freshness locking f@ = 71 (a)r1(b) with T'S = ts3

The freshness locking procedure af8REPguarantees counter vectors of sites and denoted/é®). It determines
that transactions always operate on transactionally consighe version of data that will be read 1.2
tent versions. BBREP ensures one-copy serializable exe-
cutions of propagation, refresh, and read-only transactions. We include an additional quality-of-service parameter
to allow read-only transactions to specify what freshness

3.2 Definition of the Protocol of data they require.

After haVing sketched PBR.EP! we are now ready to fO!‘- Definition 4 (Data FrEShHESS)FreShneSSiS defined by
ma”y state the prOtOCOL First, we introduce the fO”OWIng means of timestamps_ The younger the timestamp, the
definitions. fresher the data is.

Definition 1 (Sequence Number)Update  transactions We assume that there exists a function that maps the
can be ordered sequentially by their commit order on thefreshness requirement a read-only transaction to a cor-

update sites. For an update transacti@h we define its  responding timestamp. We give an example of such a func-
sequence numbe$ N (T') as its commit timestamp. Let tjon in Section 4.

P now denote a propagation transaction @, then the
sequence numbetN (P) is defined a§ N(P) = SN(T).  Definition 5 (Required Freshness Level)Let T'S7, T'S,,
and St denote the freshness requirement of transaction

Each propagation transaction at each site then has e current timestamp of sitg and the set of sites involved
unique sequence number. However, as Example 1 show the execution read-only transactidh, respectively. If
executing propagation transactions in the order of their se7’S, > T'S, holds, then theefresh transactio® brings
quence numbers does not guarantee by itself one-copy settl s € S to the same freshness levél by executing a
alizability. Therefore, we need an additional data structuresequence of write operations. It also includes maintenance

of the site update counter vectors.
Definition 2 (Update Counter Vector) Letn be the num-

ber of different database items. The global log sijeand Therefore, running a refresh transaction has the same

each read-only site maintain arupdate counter vecterof  effect as sequentially running the remaining propagation

dimension: defined as follows. For any objeetstored at  transactions at the site. With the implicit approach, i.e.,

site s, v(s)[a] stores the number of committed propagation when the user has not specified a freshness requirerfient,

transactions that have updatedat s and, v(s,;)[a] stores  is given by the freshness level of the freshest sit&'in

the number of committed updates that have been performedlith the explicit approachf! is determined by the level

on the primary copy of. of the freshest site or of the global log if none of the sites
satisfy the freshness level required By If TSt < T'S,

Note that by this definition any vecter(s) has a com-  holds, then the refresh transactifiris empty.

ponent fora even thoughu is not necessarily stored an A refresh transaction is thus executed at every.sie-

This is to ensure that distributed read-only transactions aleessed by a read-only transactibiif 7'S+ > T'S, holds.

ways read consistent versions of objects. Moreover, vectors We introduce the concept of freshness locks to prevent

v may differ between sites while propagation transactiongropagation and refresh transactions that bring an object to

are ongoing. Figure 2 illustrates these vectors together with freshness level that is above of the freshness level of an

the site number. Initially, all vector components at all sitesongoing read-only transaction.

are zero. From a conceptual point of view and for ease of

explanations we have these vectors. But, the implementdefinition 6 (Freshness Lock) A freshness loclks placed

tion would be different. For instance, we would use (dy-on an objectz at site s with an associated freshness time-

namic) hash tables in order to be extensible once we wilstampf demanded by the acquiring read-only transaction.

change the partitions over time.

2To ease the comparison between the vector of a read-only site and

.. . . the vector of a transaction, the version vector of a transaction contains an
Definition 3 (Version Vector of a Read-only Transaction)  gjement for all objects present in the system. Indeed, we could reduce the

Theversion vector of transactidhi is similar to the update size of the transaction vector to the number of locked objects.
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Such a lock disallows a write operation on objeabn site

Algorithm 1: Scheduling read-only transactions

s if this operation brings object on sites to a younger
timestamp tharf.

Data: read-only transaction T; = {op;},

freshness timestamp ft (0 = implicit approach);

. I . // place freshness locks
This definition states that locking is done at the granu-oreach op € {op:} do

larity of objects. Since we do not restrict the granularity
of the object, the locking granularity could be as large as a
whole database and as small as (a partition of) a relation.

e

Definition 7 (Compatibility of Locks) Freshness locks

let a denote the object read by op;
acquire lock on a at some site s; storing a copy of a;
S :=SUsj;

nd

// compute transaction’s version vector and timestamp

are compatible, i.e., freshness locks on the same object caf f¢ > max (tssj | s; € S) then

be acquired by different read-only transactions possibly
with different freshness timestamps.

The scheduling of a read-only transaction is performed
according to Algorithm 1 which consists of three building
blocks that implement the following rules based on the pre-
vious definitions:

Rule 1: Each read-only transaction submitted at site

requests freshness locks with its required freshness timend

// none of the involved sites meets required freshness
// use global version vector to access the freshest data
u(T) = v(sq);
ts = timestamp(sq1);

Ise
// version vector of the freshest site involved in T;
v(T) = maz (v(s) | st € 5);
ts = timestamp(s; | v(s;) = v(T));

stamp ats for all objects read by the transaction. If an ob- // execute the operations
ject does not exist at, then the freshness lock is requestedforeach op € {op;} do

from a site that has a copy of the object. The transaction
waits for the freshness locks to be granted. Note tioht

all copies of an object have to be freshness lockedobiyt

one

Rule 2: Once all locks are acquired, the version vector

and the freshness timestamp of that transaction are detef
mined. If at least one of the sites involved in the transaction
is fresh enough to satisfy the transaction’s requirement, the
counter vector of the site with the highest timestamp and its
timestamp are assigned as the transaction’s version vectd
and timestamp, respectively. Otherwise, the counter vec-

let s; denote the site op is routed to;
let a denote again the object op reads;
BOT;
if v(s;)[a] < v(T)[a] then
upgrade a's freshness lock at site s;
to the required timestamp ts;
wait until s; is brought up to ts level;

end

process op at sj;

release T"'s freshness locks at site s;;
EOT;

tor and the timestamp of the global log are used to enforcgnd

accessing up-to-date data.

Rule 3: A read-only transactioff; submits its read op-
erationr;(a) to a previously locked read-only sitg that
stores a copy ok. If r;(a) is submitted to such a site,,
then the following rules apply:

1. If v(sk)[a] = v(T})[a], the read operation is executed.

2. If v(sg)[a] < v(T})[a], then the freshness lock which
was granted td’; on objectz is upgraded to the fresh-
ness timestamp &f;. Upgrading a freshness lock im-

transactions, on the other hand, are demanded by read-
only transactions. When a read-only transaction acquires
a freshness lock on an object which is not fresh enough,
PDBREP automatically runs a refresh transaction to bring
that object to demanded freshness level. Algorithm 2, 3
and 4 perform the continuous scheduling and execution of
propagation and refresh transactions according to the fol-
lowing rules:

Rule 5: Propagation and refresh transactions execute
changes in the order of the sequence numbers.

plicitly invokes a refresh transaction and delays the ~Rule 6: A write operatiorw, (a) of a propagation or re-

read operation untib(sx)[a] = v(T})[a] holds. Then,
the read operation is processedsqn

Since all locks are preclaimed, the casésy)[a)
v(T})[a] cannot happen.

Rule 4: A read-only transaction has to release all its
acquired freshness locks with its termination.

As we stated earlier, BBREP continuously deploys

>

propagation transactions to exploit the idle time at the sites
for propagating changes. To avoid interference with exe-

cution of a read or a refresh transaction on a sjtprop-
agation transactions are not processed avhen there is

a read-only transaction scheduled or running. The refresh

570

fresh transaction submitted at siteis handled as follows:

1. LetT be aread-only transaction holding the “oldest”
freshness lock on objeatat sites,. By “oldest” we
mean that there is no other freshness lock on the same
object at the same site which refers to an older fresh-
ness timestamp. If there is no freshness lock on the
objecta at sitesy, (in case of propagation transaction)
or v(si)[a] < v(T)[a] holds, thenw, (a) is executed
and corresponding update countégy)[a] is incre-
mented by one (even if objeatis not stored aty).

2. Otherwise, the operation is delayed until the conflict-

ing freshness locks are released at the site.



Algorithm 2:

Transactions

Data: size of bulked propagation transaction propSize,
timestamp of last write operation at site s; SN (s;),
local propagation queue at site s; Ipg

while true do

Scheduling Propagation and Refresh

Algorithm 3: Propagation Transaction

Data: bulk propagation transaction P with operations {op;},
number of operations in P propSize, site s;, time-
stamp of last committed write operation at s; SN (s;)

BOT:

// generate fixed size bulk propagation transaction

if there is no scheduled or running read-only transaction
then

if sizeOf(lpq) > propSize then

// enough changes enqueued for bulk propagation
run propagation transaction(propSize);

retrieve next propSize write operations from local input
queue into P;
let SN (P) be the timestamp of the last write operation in P;
// execute the (write) operations
foreach op € {op;} do
let a denote the object op writes;
process op;
// update counter of object a in s;’s version vector
v(si)[a] :=v(si)[a] + 1;
end
remove all operations in P from local input queue;
// set SN (s;) to timestamp of last executed write operation
SN(s;) == SN(P);
EOT;

end

else

// get the user demanded freshness timestamp

let requiredT'S be the minimum timestamp on which
there is a freshness lock at site s;;

if requiredT’S > SN(s;) then

// si does not satisfy user’s freshness demand

run refresh transaction(requiredT'S);

end
end
end

read-only and propagation transaction on read-only sites.

Due to space restrictions we skip the formal proof of
this theorem which can be found in [1]. Instead, we discuss

Rule 7: A propagation or refresh transacti@dhsubmit- ; o
some other nice characteristics afBREP.

ted at sites, has to overwrite the site’'s timestan$V,,

with its commit by the value of Nr. o .
As Algorithm 2 shows, BBREP exploits bulk trans- Avoiding global deadlocks. With PDBREP, deadlocks

actions for app|y|ng Changes to the read_on'y database@._t the level of PBREP SChequllng cannot occur. This is

While propagation transactions use predefined and rel2€cause database transactions are only local and because

tively small bulk sizes, refresh transactions try to performPDBREPlocks cannot lead to cyclic waiting conditions.

all required changes using one (sometimes large) bulked

transaction. In contrast to a propagation transaction, a r&-emma 1 PDBREPdoes not produce global deadlocks.

fresh transaction does not know its bulk size in the first )

place. It applies all changes occurred up to the demanded NOt€ that we do not need to consider deadlocks at the

timestamp to the database. If all required changes are al€Ve! Of database transactions for two reasons. (1) There

ready localized in the local propagation queue, it retrieve@® NO distributed two-phase-commit database tran_sacnons

and applies them. Otherwise, it gets what is available inVith PDBREP. (2) The database systems at the sites re-

the propagation queue and goes to the global log for th&olve local deadlocks locally so thabBREP may have to

remaining part. restart some database transactions. For these reasons, only

Note that propagation transactions — according to théjeadlocks at the level ofdBREPSscheduling are to be con-

lazy replication scheme — run locally as independent datasiderr?g'[lﬁor the full formal proof of this lemma, we again

base transactions at each site. With read-only transactiofi€®

in turn, an even more fine-grained database transaction ) )
granularity is feasible. This helps to avoid low-level lock  Effect of Refresh Transactions. A refresh transaction

contention at the database systems. is always started on behalf of and inside of a read-only
transaction. In this way, according to Definition 5, all in-
volved sites will consistently increase their version coun-
ters. For the duration of a read-only transactiono other

For executions of read-only and propagation transactiongead-only transactiofi” with a higher freshness require-
at read-only sites to be correct, the global schedule must b@ent can be executed since the refresh transactidi of
serializable. As stated before, we assume that local schedannot overwrite versions needed by ongoing transaction
ules are correct. Therefore, we do not care about local seF due to freshness locks. Considering now the interleaving
rializability. It is granted by the DBMS used. Note further between propagation transactiéhand read-only transac-
that our focus is on executions at the read-only sites, i.etion T including a refresh transaction inside at siewe

we do not consider executions at the update sites. distinguish two cases:

3.3 Discussion

Theorem 1 (Serializability of PDBREP schedules)
PDBREP produces one-copy serializable schedules for

1. If timestamp ofP is less than or equal to timestamp
of S, thenP is simply skipped.
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Algorithm 4: Refresh Transaction

Data: bulk refresh transaction R with operations {op,},

read-only transaction T that invokes R,

required freshness timestamp requiredT'S,
timestamp of last committed write operation at site s;
SN(s;)

BOT;
// generate bulk refresh transaction
retrieve all write operations with timestamp values less than

(0]

r equal to requiredT'S from local input queue into R;

let SN(R) be the timestamp of latest write operation in R

p

erformed at s;;

if requiredT’S > SN(R) then

e

e

// all required write operations are not yet
// available in the local queue
retrieve and append all write operations with timestamp
values between SN (s;) and requiredT'S from global log
into R;

nd

// execute the (write) operations
foreach op € {op;} do

let a denote the object op writes;
process op;
// update counter of object a in s;’s version vector
v(s;)[a] :==v(si)[a] + 1;
if v(s;)[a] = v(T)[a] then
// object is already at required freshness level
// rest of refresh transaction is hence not necessary
exit foreach loop;

end
nd

remove all operations in R from local input queue;
// set s;'s timestamp to that of the last executed
// write operation

SN(s;) .= SN(R);

EOT;

2. Otherwise P waits until T finishes.

4.1 Experimental Setup

The prototype comprises a cluster of databases which
among others contains a designated update node, a global
log, a distributed coordinator layer and a client simulator.
The evaluation has been conducted on a cluster consisting
of 64 PCs (1 GHz Pentium Ill, 256 MBytes RAM and two
SCSI harddisks) each running Microsoft SQL Server 2000
under Windows 2000 Advanced Server. All nodes are in-
terconnected by a switched 100 MBit Ethernet.

We evaluated BBREPfor three different settings where
we switch on and off the continuous broadcasting and prop-
agation features:

Setting 1: No Broadcasting and No Propagation
Setting 2: Broadcasting and No Propagation

Setting 3: Broadcasting and Propagation

We used the database and queries of the TPC-R bench-
mark [21]. We created the TPC-R database by using scale
factor 1.0 which resulted in a database of roughly 4.3GB to-
gether with indexes that we optimized with Microsoft Index
Tuning Wizard. We divided our cluster into node groups of
four nodes. Each node group had the full replica of whole
database, e.g., for 64 node cluster, we had 16 replicas (node
groups). Within the node groups, we fully replicated the
relatively small tables (e.g. Nations, Region) and hash par-
titioned the huge ones (e.g. Orders, Lineltem). We im-
plemented update counter vectors as an array of integers.
In the experiments, we submitted queries to node groups
where they were evaluated on four nodes in parallel. In an-
other words, the number of sites involved in a distributed
read transaction was four. For routing and load balancing,
we used théalance-Query-Numbealgorithm.

The global log broadcasts the changes of update transac-
tions as bulk packages of a certain size. In the experiments,

From this we conclude that no additional dependenciegve used a bulk size that is equal to the number of updates
are introduced.

Avoiding Aborts of Read-Only Transactions. With

per second. We set the update rate at 200 updates per sec-
ond, a relatively high value compared to, e.g., [18]. Propa-
gation and read-only transactions run at the read-only sites.

PDBREP, it is not necessary to abort read-only transactiongRefresh transactions also run at the read-only sites except

due to overwritten versions. This is becauseBREP re-

that they request data from the global log when the data is

quires a read-only transactidn to preclaim locks on the 4t qvailable locally.

objects accessed ly. Freshness locks ensure that propa-
gation transactions can only overwrite a version if it is no

In our experiments, we varied three parameters:

longer needed for an active read-only transaction. Conse- o Freshness requirement [0.6, 0.7, 0.8, 0.9, 1.0]
qguently, there is always a node that either still keeps the

appropriate version or that waits until the appropriate ver- e Workload [50%, 75%, 100%]

sion becomes available through propagation. Hence, there

is no need to abort a read-only transaction due to a missing
version under normal circumstances. Site failures, how-
ever, may require to abort a transaction if the site with th

needed version does not come back.

4 Experimental Evaluation

We implemented a prototype on which we ran experimentsised 30-second windows. That is, data with freshness 1.0
to evaluate the performance characteristics m8REP.

%

e Propagation bulk size [200, 400, 800, 1600]

The actual timestamp at which a lock will be requested
or a read-only transaction is determined as follows. We
use a freshness window efseconds, and map a specified
freshness requiremetiit € [0.0, 1.0] to that window using
the functionf(f1) = n % (1 — f1). In our experiments, we

is current, while data with freshness 0.0 is 30 seconds old.



This provides a definition of freshness that is independengliminates the need for refresh transactions except for the
of the total system runtime as well as of the update ratemaximum freshness requirements and workloads. This re-
We varied the required freshness between 0.6 and 1.0, thigsilts in query execution times that are practically indepen-

requesting data that was at most 12 seconds old. dent of the overall workload for the given update rate.
Workload is defined as the percentage of available
processing time the cluster spends executing read-only and

refresh transactions. Thus, if a client supplies read-onlyg
transactions at half the rate the cluster can execute then,
the workload will be 50%. Our test client dynamically con- !
trols the rate of read-only transactions to keep the workload .,
at the preset value. 5

As [18] has shown, applying refresh transactions in bulk «
rather than executing them individually significantly im-
proves performance. Since propagation transactions alsb™ MHH HHHW
apply changes to the database, we bulk them, too. Thisin- i !

troduces some latency into the system, the effects of which | 222
we studied for various bulk sizes.
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4.2 Results Figure 5: Average Refresh Transactions Size for Different
Experiment 1: Our first experiment evaluates the influence Workloads and Freshness Values

of broadcasting and propagating updates on cluster perfor- a¢ high workloads, there is less time for propagating
mance. We performed this experiment for various Work'changes between read-only transactions. At 100% load,
loads and freshness requirements to measure the impact @fgre is virtually no time at all for propagation. There is
these featurgs under different conditions. The results aRist some processing overhead at the beginning and end of a
depicted in Figure 4 and Table 1. read-only transaction, during which a propagation transac-
tion may be executed. This explains the small performance
improvement under this condition.

_ The effect of broadcasting may also be seen in Figure 5.
£ When updates are broadcasted, refresh transactions may
be executed completely locally. Only for the very high-
est freshness requirements, the updates that have not been
£ o broadcasted yet have to be fetched from the global log. At
Setting 3, the total amount of fetched updates is between
3% and 10% of that at Setting 1 depending on the work-

Setting 1 Setting2 ~ Setting 3 Setting 1 Setting2 ~ Setting 3 Setting 1 Setting2 ~ Setting 3 |Oad .
50% 75% 100%

Workioad Figure 5 exhibits another interesting result. At first
) ) ] ) sight, one would expect that broadcasting alone would not
Figure 4: Average Query Evaluation Times for Different affect the average size of refresh transactions, just the speed

7000

6000

(ms)

cution Timg

1000

o H

Workloads and Freshness Values at which they are executed. However, the results depicted
in Figure 5 clearly show a smaller average transaction size
Setting| Freshness 0.6 - 0.9 Freshness 1.0 when broadcasting is enabled. The explanation for this is
50% [ 75% | 100%| 50% | 75% [ 100% that we have a fixed workload. With propagation enabled,
1 100%) 100%] 100%] 100%] 100%] 100% refresh transactions execute faster, which shortens the over-
2 7206 | 83% | 87% | 75% | 85% | 90% all query execution time. At. a fixed vyorkload, '_[hls means
3 559% | 70% | 86% | 53% | 74% | 89% that the query rate will be higher. This results in a shorter

time interval between queries, and thus in less updates to
Table 1: Relative Query Execution Time for Various Work- PTOC€SS in between.
loads w.r.t. Setting 1 Las_t but not least, Figure 5 a_Iso shc_)ws that the global
log might become a bottleneck in Setting 1. In setting 2
The results clearly show the benefit of using broadcastand 3, on the other hand, it is hardly involved in refresh
ing and propagation. For instance, in case of a workloadransactions. Consequently, it does not cause a bottleneck.
of 50% we achieve performance improvements up to 82%. Experiment2: This experiment aims at determining the
We see that turning on propagation and/or broadcasting akcalability of BREP. The results of the first experiment
ways improves performance. The lower the workload is,suggest that scalability should be good, especially in case
the higher the gain in performance becomes. of lower freshness requirements, where refresh transactions
Looking at the average size of the refresh transactionsare expected to be completely locally. We ran this experi-
as depicted in Figure 5, we see that propagation effectivelynent at 50% cluster load. Figure 6 shows the results.
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in query execution times. It is worth noting that this essen-
tially is the same effect except that the latency is caused
by bulking broadcasts rather than by bulking propagation
transactions.

Experiment 4: In this experiment, we compared fully
functional PBREP (Setting 3) with Freshness Aware
SchedulingFAs) introduced in [18]. PBREPis based on a
partial replicationscheme where the database tables are di-
vided into partitions and these partitions are replicated on
different nodes. kS in contrast relies offull replication
0 ‘ ‘ ‘ ‘ where each node has an exact copy of the entire database.
# o For the experiment, we used a 64-node cluster. To mea-

sure the performance ofaB, we fully replicated the TPC-
Figure 6: Query Throughput for Varying Cluster Sizes R database on each node in the cluster. We executed each
i guery on a single node. To measure the performance of
__ The results for freshness 0.9 and lower are virtuallyppgrep we used the node group settings that we sketched
identical. At freshness 1.0, throughput is slightly less. This;, section 4.1. The results are depicted in Figure 8.
was expgcted gl\(en . resglts of Experiment 1 For all three workloads, BBREP performs significantly

Experiment 3: As mentioned above, bulking propa- peyer than ks, When the cluster is 100% loaded, through-
gation transactions introduces some latency into the SYSut of the cluster is 30% higher in average WithdREPas
tem. As shown in Experiment 1, refresh transactions be'compared to Es. The reason is two fold. First,JBREP

come necessary, which increases the query execution imgy s 3 query be evaluated in parallel on several nodes
Obviously, this is also dependent on the required freshnesgnd gains from this parallelization. Second, sinc@REP

level. The purpose of Fh's experiment is to determ_lne hov‘hses partitioning of data whileaB relies on full replica-

query execution time Is affected by the_ propagation bu'.ktion, the size of the refresh transactions is less than for

size. Figure 7 shows the query execution times for Vari-ea s 5o the refresh process takes longer witts.F Be-

ous required freshness levels and propagation bulk sizes éfdes, |®'BREP mostly uses locally enqueued data to re-

aworkload of 50%. fresh (see also Figure 5). The lower the workload is, the
4600 — better is the performance oDBREP with respect to ks.

[-06 =07 08 09 x1]

Queries per Second
w

16
Cluster Size

. | The gain in query throughput is 72% and 125% in aver-
age for 75% and 50% loaded clusters. This gain results

4200 _ M from the introduction of propagation transactions as well
as from the partitioned refreshment and query paralleliza-

4000 1 tion. That is, ®BREPNot only allows finer granularity and

distributed read-only transaction execution as advantages

%8001 over Fas, but also performs better tham§.

Average Query Execution Time (ms)

3600 A 100 -

90 H
3400
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Freshness
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Figure 7: Effect of Propagation Bulk Size on Query Exe-

cution Time o1

e Query Throughput

40 +
Recall that we perform 200 updates per second, i.e., i§ 30
there are no ongoing read-only transactions, propagatiofi 4 |
transactions are performed once every 1, 2, 4, and 8 sec- ,, |
onds for bulk sizes of 200, 400, 800 and 1600, respectively. ||
Our 30-second freshness window means that the freshness  rosrer  Fas PDBREP  FAS PDBREP  FAS
requirements 0.6 to 1.0 refer to 12, 9, 6, 3, and 0 seconds o o oo
old data. The graph shows the expected result: when we
require data that is older than the size of the propagation Figure 8: ®BREPVS FaS : Relative Query Throughput
interval, this data will already have propagated and no re-
fresh is necessary. This results in shorter execution timed.o sum up, the main features obBREP — update broad-
When we require newer data, refresh transactions will beasting, update propagation, and freshness requirements —
necessary and execution time rises. As we saw in Figure Byork together to deliver good performance. Update broad-
at freshness 1.0 a part of the updates must be fetched fronasting improves scalability, update propagation makes
the global log. This explains the increase of maximum 10%query execution times nearly independent of the overall
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workload, and by specifying slightly lower freshness re- [7] generalizes the notion of strong serializability and
guirements we can allow the cluster to maximize the effecshows how it can be implemented based on lazy replica-
of these features, thus improving query execution times. Ofion. It distinguishes read-only and update transactions.

course, we can still require up-to-date data as well. Read-only transactions execute at replicas to which they are
submitted, while update transactions execute at the primary
5 Related Work site, where they are serialized and lazily propagated to the

replicas. The changes of an update transaction, which are

Probably the first paper that discussed many replicated rel&ollected at the primary site, are broadcasted to all replicas
tion fragments and possibilities to maintain them is in [19]. and enqueued into local queues in their commit sequence
The work presented here is continuation and significantimorders. At every replica, there is a refresher process which
provement of our previous work [18]. We have describeddequeues updates and applies them to the database. In fact,
the main differences already in the introduction. In a morethere is one refresh transaction for every update transaction.
general setting, much works has been carried out on data read-only transaction, on the other hand, is executed at
base replication. To solve the limitations of conventionala single site. The system does not support loose currency
eager replication, for instance, group communication hagind the read-only transactions always access only up-to-
been proposed in [13]. It first executes a transaction lodate data. When a read-only transaction is scheduled at a
cally and then multicasts all changes as a write-set in @eplica, it first checks the sequence number of the replica.
single message at the end of the transaction. Althougl¥ the replica is not fresh, the read-only transaction is either
group communication reduces the messaging overhead, fgrwarded to the primary site or delayed until the refresher
still produces a large number of message exchanges. Ang@rocess brings the replica to the up-to-date state.
it is not clear if it scales up for large clusters. [10] introduces MTCache, which is SQL Server's mid-

Ganymed [17] is a middleware-based replication systemier database caching solution. The main idea of this ap-
whose roots stem from the early phase of the PowerDByroach is to offload some work from a backend server to
project at ETH Zurich. Similarly to BBREP, it combines  intermediate servers and thus to improve system through-
eager and lazy replication, and also distinguishes read-onlgut and scalability. MTCache uses current support of SQL
and update transactions. While read-only transactions caBerver for transactional replication to propagate changes
be executed at any replica, update transactions are sent fi§at occur at the backend database. The propagation is per-
primary site first. Then, all changes occurred in those upformed periodically in a single transaction by preserving
date transactions are applied to all replicas by using writethe commit order. So, the applications always see a con-
sets. Ganymed relies on full replication and does not supsistent but not necessarily the latest state. MTCache fits
port freshness. Read-only transactions always see the latggttoday’s storefront application scenarios which are read
version of the database. dominated. Recently, [9] extended MTCache to allow ap-

[2] introduces distributed versioning, where a centralplications to explicitly specify their currency and consis-
scheduler component keeps track of the version numbefigncy requirements in queries. In this model, query plans
of all tables at all replicas. At the beginning of a trans-are generated according to the known currency and con-
action, clients inform the scheduler about the tables thegistency properties of the replicas by taking into account
will access. Then, the scheduler assigns version numbegie user's freshness demands. When local data does not
to transactions for each table they will access. The schedsatisfy the currency requirement, remote queries are gener-
uler forwards updates to all replicas and reads to a replicaated. That is, MTCache does not take any action to bring
Every transaction that updates a table increases its vethe local data to the required level. Instead, cache mainte-
sion number. All operations on a particular table are exnance continues independently of the query execution.
ecuted in version number order. This approach however
does not distinguish sites as update and read_—only S|te%. Conclusions
Thus, read-only transactions prevent the execution of con-
flicting update transactions when strict consistency is reAlthough replication management has come of age today,
quired. Hence, this approach is more likely to work on efficient replication protocols for massive numbers of repli-
rather application scenarios where updates are rare. cas have still been an open question when combined OLTP

Older lazy replication techniques [4, 5, 6] primarily fo- and OLAP workloads must be supported, i.e., when OLAP
cused on performance or correctness only. None of thesgueries shall be able to work on up-to-date data. As we
techniques consider data freshness. [14] proposes a rbave motivated in this paper, existing protocols have sev-
freshment algorithm to improve freshness in lazy masteeral drawbacks which we overcome with our new approach
replicated databases. The main principle of the algorithirio replication management.
is to delay refresh transactions for a certain deliver time. The proposed protocold®REP supports both freshness
[15] extends this algorithm towards multi-master config-and correctness guarantees. It allows read-only transac-
urations. Neither algorithms provide access to up-to-dat¢ions to run at several sites in parallel and deploys a so-
data. However, they keep the mean freshness degree of tipaisticated version control mechanism to ensure one-copy-
data accessed by read-only transactions at high values asédrializable executions. MoreoverpPREP does not re-
introduces negligible loss of freshness. quire data to be fully replicated on all sites. It works with

575



arbitrary physical data organizations such as partitioning [6] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. Deferred Up-
and supports different replication granularities. In this way,
the cluster of database systems for instance can better be
customized for given workloads, and thereby increase the
overall performance of the system. For example, a subse{7]
of cluster nodes can be designed for certain query types.
Although PbBREPuUSses lazy replication, it also provides
access to fresh data by means of decoupled update propg] J. Gray, P. Helland, P. O'Neill, and D. Shasha. The Dangers
agation and refresh transactions. In this way, it combines

the performance benefits of lazy protocols with the up-to-

dateness of eager approaches. In additiogHEPalso ex-
tends the notion of freshness to finer granules of data, and
thereby reduces the needed refreshment efforts. Finally,

PDBREP does not require a centralized component for co-

[9]

ordination apart of a global log where the update sites placg o)
their committed update transactions.

Our experiments with BBREPprovide some insights on
the influence of continuous broadcasting and propagation
on the overall performance. First of all, the experiments11]
showed that BBREP scales even with higher update rates
(compared to that used in other work). Furthermore, they
revealed that scenarios with lower workloads in particular
significantly benefit from broadcasting and propagating up{12]
dates. Another important finding is that for slightly lower
freshness requirements usually refresh transactions are not
necessary anymore because propagation transactions keep
the sites fresh enough.

Finally, PDBREP provides the flexibility to investigate
autonomic computing issues like how to dynamically adapt
the cluster database design to changing parameters like the
workload. This will be part of our future work.
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