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Abstract

Lazyreplication protocols provide good scalabil-
ity properties by decoupling transaction execution
from the propagation of new values to replica sites
while guaranteeing a correct and more efficient
transaction processing and replica maintenance.
However, they impose several restrictions that are
often not valid in practical database settings, e.g.,
they require that each transaction executes at its
initiation site and/or are restricted to full replica-
tion schemes. Also, the protocols cannot guaran-
tee that the transactions will always see the fresh-
est available replicas. This paper presents a new
lazy replication protocol called PDBREP that is
free of these restrictions while ensuring one-copy-
serializable executions. The protocol exploits the
distinction between read-only and update transac-
tions and works with arbitrary physical data orga-
nizations such as partitioning and striping as well
as different replica granularities. It does not re-
quire that each read-only transaction executes en-
tirely at its initiation site. Hence, each read-only
site need not contain afully replicated database.
PDBREPmoreover generalizes the notion offresh-
nessto finer data granules than entire databases.

1 Introduction
Replication is an essential technique to improve perfor-
mance of frequent read operations when updates are rare.
Updates or any other write operation are challenging in this
context since all copies of a replicated object must be kept
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up-to-date and consistent, which usually implies additional
overhead. Different approaches to replication management
have been studied so far. One approach from standard data-
base technology iseager replication which synchronizes
all copies of an object within the same database transac-
tion [3]. However, conventional eager replication proto-
cols have significant drawbacks regarding performance and
scalability [8, 11, 22], which are due to the high communi-
cation overhead among the replicas and the high probability
of deadlocks. Newer eager replication protocols, such as
proposed in [12, 13], try to reduce these drawbacks by us-
ing group communication.Lazy replication management,
on the other hand, decouples replica maintenance from the
“original” database transaction [5, 6, 15]. In other words,
transactions keeping replica up-to-date and consistent run
as separate and independent database transactionsafter the
“original” transaction has committed. Compared to eager
approaches, additional efforts are necessary to guarantee
serializable executions. Previous work on lazy replica-
tion like [4, 5] has focused on performance and correctness
only. In particular, it did not consider that important practi-
cal scenarios may require up-to-date data – a property that
is not necessarily satisfied by conventional lazy replication
techniques.

Recently, [18] addresses this issue by allowing read-
only clients to definefreshness requirementsstating how
up-to-date data shall be accessed. However, the approach
of [18] suffers from several important shortcomings. First,
it relies on full replication at a granularity of complete data-
bases. Clearly, this precludes more sophisticated physical
data organization schemes such as partial replication, parti-
tioning or striping across sites, which can be beneficial for
parallelization of queries. Second, it assumes that the trans-
action executes entirely at its initiation site, which may not
be the case in practical database settings where the data is
distributed over various cluster nodes. Third, it requires a
centralized coordination component for the entire schedul-
ing and bookkeeping, which is a potential bottleneck and
single point of failure.

The objective of this paper is to attack the aforemen-
tioned shortcomings and to present a new protocol that
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covers the following requirements jointly: (1) combining
the advantages of lazy and eager replica maintenance to
ensure correct and efficient executions, (2) supporting ar-
bitrary physical data organization schemes, (3) allowing
users to specify freshness requirements, and (4) executing
read-only transactions at several data sites in parallel. This
goal cannot be achieved by simply extending previous lazy
replication protocols. As the following example shows, for
instance, lazy replication as proposed in [4] fails already if
one allows a transaction to read objects from several sites.

Example 1: Assume that for each object there is a single
primary site responsible for updates to the object. Let there
be four sitess1, s2, s3, ands4, which are interconnected by
a communication network, as shown in Figure 1.s1 ands2
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Figure 1: Lazy replication management

contain objectsa andb with s1 being a primary fora and
s2 being primary forb. s3 ands4 in turn store secondary
copies ofa andb, each. Further suppose that ats1 (s2) a
transactionT1 (T2): w1(a) (w2(b)) is submitted. At about
the same time at sitess3 ands4, read-onlytransactionsT3

andT4 are submitted, where

T3: r3(a)r3(b)
T4: r4(a)r4(b)

Supposer3(a) andr4(b) are scheduled to be executed ats3,
andr3(b) andr4(a) at s4. In this case, the following local
schedules can be generated at sitess3 ands4, respectively:

S3: w1(a) r3(a) w2(b) r4(b)
S4: r4(a) w1(a) r3(b) w2(b)

whereT ′
1 = T ′′

1 : w1(a) andT ′
2 = T ′′

2 : w2(b) arepropa-
gation transactions generated byT1 andT2 at s3 ands4,
respectively. Figure 1 illustrates these read-only and prop-
agation transactions and their conflicts. Clearly, the global
schedule we have obtained is not globally serializable since
the global serialization graph is cyclic. Observe, however,
that at each site propagation transactions are executed in the
same order and, furthermore, each site-specific schedule is
locally correct.

In this paper, we present a new replication protocol,
called PDBREP1, which covers all aforementioned require-
ments. PDBREP exploits two important characteristics:
(1) distinction betweenread-onlyandupdate transactions
and (2) partitioning of the sites intoread-onlyandupdate
sitesto process read-only and update transactions, respec-
tively. The main idea of PDBREP is to exploit distributed
versioning together withfreshness lockingto guarantee ef-
ficient replica maintenance that provides consistent execu-
tions of read-only transactions. Globally correct execution
of update transactions over update sites is already covered
by previous work, e.g. [4]. It is therefore not the concern
of this paper.

Our main contributions are as follows:

• PDBREPsupports different physical data organization
schemes ranging from full replication at the granular-
ity of complete databases to partial replication com-
bined with partitioning and striping.

• PDBREP respects user-demanded freshness require-
ments. This includes the special case where users al-
ways want to work with up-to-date data.

• PDBREP produces correct, i.e., one-copy serializable,
global executions and allows distributed executions of
read-only transactions.

• We implemented PDBREP and evaluated it in various
settings to reveal its performance characteristics.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the underlying system model, describing the
kinds of transactions and database cluster nodes. Section 3
introduces PDBREP in detail, while Section 4 presents ex-
perimental evaluation results. Section 5 talks about related
work. Section 6 concludes the paper.

2 System Model

Figure 2 illustrates the model of our system. We consider a
replicated database that contains objects which are distrib-
uted and replicated among the sites. Since we use relational
database systems, objects are (partitions of) relations while
operations are queries or data manipulation statements. For
each objectdi there is aprimary sitedenoted byp(di). If
site s contains a replica ofdi and s 6= p(di), we call a
replica ofdi at s a secondary copy. For instance, sites1

holds a primary (underlined) copy ofa while sites3 only
stores a secondary (non-underlined) copy ofa.

Following previous work [5, 4], updates of an object first
occur at its primary site, and only after that these updates
are propagated to each secondary site. A simple conse-
quence of this fact is that all write operations to the same
object can be ordered according to the order of their execu-
tion at the primary site. Similarly to [18], we partition all

1PDBREP stands for the replication protocol we implemented within
Microsoft supported project PowerDB at ETH Zurich [20]
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Figure 2: System architecture underlying PDBREP

sites into two classes: (1) read-only and (2) update. Read-
only transactions only run atread-only sites, while update
transactions only run atupdate sites.

Update transactions consists of at least one write oper-
ation. A write operation is any SQL-DML statement (in-
sert, update and delete). The changes of update transactions
that occur at update sites are serialized [4] and logged in a
global log. For instance,TG1 represents the changes of up-
date transactionT1. These changes are continuously broad-
casted to all read-only sites in the system and are enqueued
in the local propagation queues which have the same struc-
ture as the global log. For example,TL1 corresponds to lo-
calized changes of update transactionT1. The broadcast is
assumed to be reliable and preserves the global FIFO order,
i.e., changes are received by all read-only sites in the order
they have been broadcasted by the global log component.

There are four types of transactions in our model:
update, read-only, propagation, and refresh transactions.
Based on the protocols discussed in [4], anupdate transac-
tionT may update an objecta if T is initiated at the primary
site ofa. T , however, may read any object at this site.

Example 2: Figure 2 depicts three update transactions
T1, T2, andT3 which only run on update sites and their
write operations occur at primary sites.

Read-only transactionsin turn may be initiated at any
read-only site. These transactions read objects only from
read-only sites. Their read operations may run at different
read-only sites. This is an important generalization of [18]
which has only considered full replication and local read-
only transactions. Moreover, it allows for arbitrary physi-
cal data organizations at the read-only sites and routing of
read-only operations.

Example 3: Figure 2 shows a read-only transactionT6.
As the figure illustrates, read-only transactions only run on
read-only sites and may distribute their operations over sev-

eral sites – depending on the physical data organization or
the workload situation at read-only sites.

Propagation transactionsare performed during the
idle time of a site in order to propagate the changes
present in the local propagation queues to the secondary
copies. Therefore, propagation transactions are continu-
ously scheduled as long as there is no running read or re-
fresh transaction. By virtue of our model, the propagation
transactions for the same object are initiated from the same
primary site. As a result, all updates at secondary sites of
the same objects are ordered by the order of the primary
transaction that performed such an update at the primary
site of the object.

Example 4: Figure 2 shows the propagation transaction
T ′

1 applying the changes of the update transactionT1 to site
s5. It comprises all write operations ofT1, but not its read
operations.

Finally, there arerefresh transactionsthat bring the sec-
ondary copies at read-only sites to the freshness level speci-
fied by a read-only transaction. A refresh transaction aggre-
gates one or several propagation transactions into a single
bulk transaction. A refresh transaction is processed when
a read-only transaction requests a version that is younger
than the version actually stored at the read-only site. A re-
fresh transaction first checks the local propagation queue
to see whether all write operations up to the required time-
stamp are already there. If yes, it fetches these write oper-
ations from the local propagation queue and applies them
to the database in a single bulk transaction. Otherwise, it
retrieves whatever available in the local propagation queue
and goes to the global log for the remaining part.

Example 5: Figure 2 shows two refresh transactionsT4

andT5. They bring sitess3 ands4 to a state that is needed
to run the read-only transactionT6, which requires fresh
data with at least a timestamp of031013. The timestamps
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of sites3 and4 are equal to031011. The system hence
checks the local propagation queues for potentially missing
changes – in the figure these are the changes made byT2

and shown asTL2. At this point, the system realizes that the
changes of update transactionT3 have not been enqueued
in the propagation queue at neither sites3 and4 yet. So, it
retrievesTG3 from the global log. Altogether, the refresh
transaction includesTL2 and TG3. After completing the
refresh, the read-only transactionT6 is executed.

Update, propagation, and refresh transactions are exe-
cuted as decoupled database transactions. We assume that
each site ensures locally correct transaction executions. We
adopt the criterionone-copy-serializability[3] to guaran-
tee global correctness. Hence, regardless of the number of
read-only sites, read-only transactions always see a consis-
tent database state as if there were a single database only.

3 The PDBREP Protocol

3.1 Overview of the Protocol

PDBREPexploits the read-only site’s idle time by continu-
ously scheduling propagation transactions as update trans-
actions at the update sites commit. The rationale behind
this is to keep the secondary copies at the read-only sites
as much as possible up-to-date such that the work of re-
fresh transactions (whenever needed) is reduced and thus
the performance of the overall system is increased.

We assume that a globally serializable schedule is pro-
duced for all update sites by some algorithm that is of no
concern for this paper. Moreover, the update transactions’
serialization order is their commit order. Thus, each propa-
gation transaction inherits the number in which the update
transaction committed in the global schedule and this num-
ber we call the propagation transaction sequence number.
Consequently, each propagation transaction has a unique
sequence number that is known to each read-only site.

To ensure correct executions at read-only sites, each
read-only transaction determines a version of the objects
it reads at its start. PDBREP foresees two different ap-
proaches to determine this version. Theimplicit approach
determines the versions of the objects accessed by a read-
only transactionT from the versions of the objects at the
sites accessed byT . With theexplicit approach, users may
specify thefreshnessof the data accessed by their read-
only transactions as a quality of service parameter. How-
ever, explicitly specified freshness can be changed implic-
itly, if none of the objects involved in transaction satisfies
required freshness level or if at least one of them is fresher
than this level. If a read-only transaction is scheduled to
a site that does not yet fulfill the freshness requirements, a
refresh transaction updates the objects at that site.

With either of the two aforementioned approaches,
freshness locks are placed on the objects at the read-only
sites to ensure that ongoing replica maintenance transac-
tions do not overwrite versions which are still needed by
ongoing read-only transactions. Afreshness lockthus rep-
resents a barrier that disallows updates of an object beyond

a given freshness level. Freshness locks keep the objects
accessed by a read-only transaction at a certain freshness
level during the execution of that transaction. When a read-
only transactionTi with the freshness requirement ofTS
wants to access some objects, it first has to acquire fresh-
ness locks on these objects. The procedure for acquiring
freshness locks is performed in two steps:

1. Ti asks for a freshness lock on the object with the
timestampTS. The freshness locking procedure
places a lock with the timestampTS if the current
freshness level of the object is not younger thanTS.
Otherwise, it places the lock with the timestamp of the
current freshness level of that object. In the following,
we will use the termpre-lockto refer to a lock placed
in the first phase of the freshness locking procedure.

2. Depending on the current freshness level of the vari-
ous objects, the pre-locks can differ with respect to the
freshness level. To ensure that the transactionTi will
read consistent data, all freshness locks ofTi must be
brought up to the same freshness level (if this is not al-
ready the case). That is, freshness locks are upgraded
to timestamp of either the freshest site in the system
or the youngest object pre-locked byTi.

Example 6: Figure 3 shows freshness locking in action
for three possible cases when a read-only transactionT1

wants to access the objectsa andb (residing on different
sites) with the freshness requirementts3:

1. The left diagram depicts the case where none of the in-
volved sites satisfies the freshness requirement ofT1,
which demands the freshest data. Therefore, freshness
locks are placed on both objects with the timestamp
ts3, which is assumed to be the freshest in the exam-
ple. Thus, the version of data is determined by the
read-only transaction explicitly.

2. The middle diagram shows the case where both in-
volved sites have younger data than required. This
time the locks are first placed on the objects with cor-
responding current freshness level, i.e.,a is locked
with ts5 andb is locked withts4. Then, the freshness
lock onb is upgraded tots5.

3. The right diagram exhibits the case where some ob-
jects are older than required while others satisfy the
freshness requirement ofT1. In case of a “fresh
enough” data, the lock is set to the current freshness
level of that item. In the example,a is therefore locked
with ts5. “Not fresh enough” data is locked with the
required timestamp of the transaction. Hence,b is
locked with ts3. This lock is then upgraded tots5

in the second phase of freshness locking.

For the last two cases, note that the actual version of data
accessed is implicitly determined by the freshness locking
algorithm.
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The freshness locking procedure of PDBREPguarantees
that transactions always operate on transactionally consis-
tent versions. PDBREP ensures one-copy serializable exe-
cutions of propagation, refresh, and read-only transactions.

3.2 Definition of the Protocol

After having sketched PDBREP, we are now ready to for-
mally state the protocol. First, we introduce the following
definitions.

Definition 1 (Sequence Number)Update transactions
can be ordered sequentially by their commit order on the
update sites. For an update transactionT , we define its
sequence numberSN(T ) as its commit timestamp. Let
P now denote a propagation transaction forT , then the
sequence numberSN(P ) is defined asSN(P ) = SN(T ).

Each propagation transaction at each site then has a
unique sequence number. However, as Example 1 shows,
executing propagation transactions in the order of their se-
quence numbers does not guarantee by itself one-copy seri-
alizability. Therefore, we need an additional data structure.

Definition 2 (Update Counter Vector) Letn be the num-
ber of different database items. The global log sitesgl and
each read-only sites maintain anupdate counter vectorv of
dimensionn defined as follows. For any objecta stored at
sites, v(s)[a] stores the number of committed propagation
transactions that have updateda at s and,v(sgl)[a] stores
the number of committed updates that have been performed
on the primary copy ofa.

Note that by this definition any vectorv(s) has a com-
ponent fora even thougha is not necessarily stored ons.
This is to ensure that distributed read-only transactions al-
ways read consistent versions of objects. Moreover, vectors
v may differ between sites while propagation transactions
are ongoing. Figure 2 illustrates these vectors together with
the site number. Initially, all vector components at all sites
are zero. From a conceptual point of view and for ease of
explanations we have these vectors. But, the implementa-
tion would be different. For instance, we would use (dy-
namic) hash tables in order to be extensible once we will
change the partitions over time.

Definition 3 (Version Vector of a Read-only Transaction)
Theversion vector of transactionT is similar to the update

counter vectors of sites and denoted asv(T ). It determines
the version of data that will be read byT .2

We include an additional quality-of-service parameter
to allow read-only transactions to specify what freshness
of data they require.

Definition 4 (Data Freshness)Freshnessis defined by
means of timestamps. The younger the timestamp, the
fresher the data is.

We assume that there exists a function that maps the
freshness requirementof a read-only transaction to a cor-
responding timestamp. We give an example of such a func-
tion in Section 4.

Definition 5 (Required Freshness Level)Let TST , TSs,
andST denote the freshness requirement of transactionT ,
the current timestamp of sites, and the set of sites involved
in the execution read-only transactionT , respectively. If
TST > TSs holds, then therefresh transactionR brings
all s ∈ ST to the same freshness levelfl by executing a
sequence of write operations. It also includes maintenance
of the site update counter vectors.

Therefore, running a refresh transaction has the same
effect as sequentially running the remaining propagation
transactions at the site. With the implicit approach, i.e.,
when the user has not specified a freshness requirement,fl
is given by the freshness level of the freshest site inST .
With the explicit approach,fl is determined by the level
of the freshest site or of the global log if none of the sites
satisfy the freshness level required byT . If TST ≤ TSs

holds, then the refresh transactionR is empty.
A refresh transaction is thus executed at every sites ac-

cessed by a read-only transactionT if TST > TSs holds.
We introduce the concept of freshness locks to prevent

propagation and refresh transactions that bring an object to
a freshness level that is above of the freshness level of an
ongoing read-only transaction.

Definition 6 (Freshness Lock)A freshness lockis placed
on an objecta at sites with an associated freshness time-
stampf demanded by the acquiring read-only transaction.

2To ease the comparison between the vector of a read-only site and
the vector of a transaction, the version vector of a transaction contains an
element for all objects present in the system. Indeed, we could reduce the
size of the transaction vector to the number of locked objects.
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Such a lock disallows a write operation on objecta on site
s if this operation brings objecta on sites to a younger
timestamp thanf .

This definition states that locking is done at the granu-
larity of objects. Since we do not restrict the granularity
of the object, the locking granularity could be as large as a
whole database and as small as (a partition of) a relation.

Definition 7 (Compatibility of Locks) Freshness locks
are compatible, i.e., freshness locks on the same object can
be acquired by different read-only transactions possibly
with different freshness timestamps.

The scheduling of a read-only transaction is performed
according to Algorithm 1 which consists of three building
blocks that implement the following rules based on the pre-
vious definitions:

Rule 1: Each read-only transaction submitted at sites
requests freshness locks with its required freshness time-
stamp ats for all objects read by the transaction. If an ob-
ject does not exist ats, then the freshness lock is requested
from a site that has a copy of the object. The transaction
waits for the freshness locks to be granted. Note thatnot
all copies of an object have to be freshness locked, butonly
one.

Rule 2: Once all locks are acquired, the version vector
and the freshness timestamp of that transaction are deter-
mined. If at least one of the sites involved in the transaction
is fresh enough to satisfy the transaction’s requirement, the
counter vector of the site with the highest timestamp and its
timestamp are assigned as the transaction’s version vector
and timestamp, respectively. Otherwise, the counter vec-
tor and the timestamp of the global log are used to enforce
accessing up-to-date data.

Rule 3: A read-only transactionTj submits its read op-
erationrj(a) to a previously locked read-only sitesk that
stores a copy ofa. If rj(a) is submitted to such a sitesk,
then the following rules apply:

1. If v(sk)[a] = v(Tj)[a], the read operation is executed.

2. If v(sk)[a] < v(Tj)[a], then the freshness lock which
was granted toTj on objecta is upgraded to the fresh-
ness timestamp ofTj . Upgrading a freshness lock im-
plicitly invokes a refresh transaction and delays the
read operation untilv(sk)[a] = v(Tj)[a] holds. Then,
the read operation is processed onsk.

Since all locks are preclaimed, the casev(sk)[a] >
v(Tj)[a] cannot happen.

Rule 4: A read-only transaction has to release all its
acquired freshness locks with its termination.

As we stated earlier, PDBREP continuously deploys
propagation transactions to exploit the idle time at the sites
for propagating changes. To avoid interference with exe-
cution of a read or a refresh transaction on a sites, prop-
agation transactions are not processed ons when there is
a read-only transaction scheduled or running. The refresh

Algorithm 1: Scheduling read-only transactions
Data: read-only transaction Ti = {opi},

freshness timestamp ft (0 = implicit approach);
// place freshness locks
foreach op ∈ {opi} do

let a denote the object read by op;
acquire lock on a at some site sj storing a copy of a;
S := S ∪ sj ;

end
// compute transaction’s version vector and timestamp
if ft>max

(
tssj | sj ∈S

)
then

// none of the involved sites meets required freshness
// use global version vector to access the freshest data
v(T ) = v(sgl);
ts = timestamp(sgl);

else
// version vector of the freshest site involved in Ti

v(T ) = max (v(sl) | sl ∈ S);
ts = timestamp(sl | v(sl) = v(T ));

end
// execute the operations
foreach op ∈ {opi} do

let sj denote the site op is routed to;
let a denote again the object op reads;
BOT;
if v(sj)[a] < v(T )[a] then

upgrade a’s freshness lock at site sj

to the required timestamp ts;
wait until sj is brought up to ts level;

end
process op at sj ;
release T ’s freshness locks at site sj ;
EOT;

end

transactions, on the other hand, are demanded by read-
only transactions. When a read-only transaction acquires
a freshness lock on an object which is not fresh enough,
PDBREP automatically runs a refresh transaction to bring
that object to demanded freshness level. Algorithm 2, 3
and 4 perform the continuous scheduling and execution of
propagation and refresh transactions according to the fol-
lowing rules:

Rule 5: Propagation and refresh transactions execute
changes in the order of the sequence numbers.

Rule 6: A write operationwn(a) of a propagation or re-
fresh transaction submitted at sitesk is handled as follows:

1. LetT be a read-only transaction holding the “oldest”
freshness lock on objecta at sitesk. By “oldest” we
mean that there is no other freshness lock on the same
object at the same site which refers to an older fresh-
ness timestamp. If there is no freshness lock on the
objecta at sitesk (in case of propagation transaction)
or v(sk)[a] < v(T )[a] holds, thenwn(a) is executed
and corresponding update counterv(sk)[a] is incre-
mented by one (even if objecta is not stored atsk).

2. Otherwise, the operation is delayed until the conflict-
ing freshness locks are released at the site.
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Algorithm 2: Scheduling Propagation and Refresh
Transactions
Data: size of bulked propagation transaction propSize,

timestamp of last write operation at site si SN(si),
local propagation queue at site si lpq

while true do
if there is no scheduled or running read-only transaction
then

if sizeOf(lpq) ≥ propSize then
// enough changes enqueued for bulk propagation
run propagation transaction(propSize);

end
else

// get the user demanded freshness timestamp
let requiredTS be the minimum timestamp on which
there is a freshness lock at site si;
if requiredTS > SN(si) then

// si does not satisfy user’s freshness demand
run refresh transaction(requiredTS);

end
end

end

Rule 7: A propagation or refresh transactionT submit-
ted at sitesk has to overwrite the site’s timestampSNsk

with its commit by the value ofSNT .
As Algorithm 2 shows, PDBREP exploits bulk trans-

actions for applying changes to the read-only databases.
While propagation transactions use predefined and rela-
tively small bulk sizes, refresh transactions try to perform
all required changes using one (sometimes large) bulked
transaction. In contrast to a propagation transaction, a re-
fresh transaction does not know its bulk size in the first
place. It applies all changes occurred up to the demanded
timestamp to the database. If all required changes are al-
ready localized in the local propagation queue, it retrieves
and applies them. Otherwise, it gets what is available in
the propagation queue and goes to the global log for the
remaining part.

Note that propagation transactions – according to the
lazy replication scheme – run locally as independent data-
base transactions at each site. With read-only transactions
in turn, an even more fine-grained database transaction
granularity is feasible. This helps to avoid low-level lock
contention at the database systems.

3.3 Discussion

For executions of read-only and propagation transactions
at read-only sites to be correct, the global schedule must be
serializable. As stated before, we assume that local sched-
ules are correct. Therefore, we do not care about local se-
rializability. It is granted by the DBMS used. Note further
that our focus is on executions at the read-only sites, i.e.,
we do not consider executions at the update sites.

Theorem 1 (Serializability of PDBREPschedules)
PDBREP produces one-copy serializable schedules for

Algorithm 3: Propagation Transaction
Data: bulk propagation transaction P with operations {opj},

number of operations in P propSize, site si, time-
stamp of last committed write operation at si SN(si)

BOT;
// generate fixed size bulk propagation transaction
retrieve next propSize write operations from local input
queue into P ;
let SN(P ) be the timestamp of the last write operation in P ;
// execute the (write) operations
foreach op ∈ {opj} do

let a denote the object op writes;
process op;
// update counter of object a in si’s version vector
v(si)[a] := v(si)[a] + 1;

end
remove all operations in P from local input queue;
// set SN(si) to timestamp of last executed write operation
SN(si) := SN(P );
EOT;

read-only and propagation transaction on read-only sites.

Due to space restrictions we skip the formal proof of
this theorem which can be found in [1]. Instead, we discuss
some other nice characteristics of PDBREP.

Avoiding global deadlocks. With PDBREP, deadlocks
at the level of PDBREP scheduling cannot occur. This is
because database transactions are only local and because
PDBREP locks cannot lead to cyclic waiting conditions.

Lemma 1 PDBREPdoes not produce global deadlocks.

Note that we do not need to consider deadlocks at the
level of database transactions for two reasons. (1) There
are no distributed two-phase-commit database transactions
with PDBREP. (2) The database systems at the sites re-
solve local deadlocks locally so that PDBREP may have to
restart some database transactions. For these reasons, only
deadlocks at the level of PDBREPscheduling are to be con-
sidered. For the full formal proof of this lemma, we again
refer to [1].

Effect of Refresh Transactions.A refresh transaction
is always started on behalf of and inside of a read-only
transaction. In this way, according to Definition 5, all in-
volved sites will consistently increase their version coun-
ters. For the duration of a read-only transactionT no other
read-only transactionT ′ with a higher freshness require-
ment can be executed since the refresh transaction ofT ′

cannot overwrite versions needed by ongoing transaction
T due to freshness locks. Considering now the interleaving
between propagation transactionP and read-only transac-
tion T including a refresh transaction inside at siteS, we
distinguish two cases:

1. If timestamp ofP is less than or equal to timestamp
of S, thenP is simply skipped.
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Algorithm 4: Refresh Transaction
Data: bulk refresh transaction R with operations {opj},

read-only transaction T that invokes R,
required freshness timestamp requiredTS,
timestamp of last committed write operation at site si

SN(si)

BOT;
// generate bulk refresh transaction
retrieve all write operations with timestamp values less than
or equal to requiredTS from local input queue into R;
let SN(R) be the timestamp of latest write operation in R
performed at si;
if requiredTS > SN(R) then

// all required write operations are not yet
// available in the local queue
retrieve and append all write operations with timestamp
values between SN(si) and requiredTS from global log
into R;

end
// execute the (write) operations
foreach op ∈ {opj} do

let a denote the object op writes;
process op;
// update counter of object a in si’s version vector
v(si)[a] := v(si)[a] + 1;
if v(si)[a] = v(T )[a] then

// object is already at required freshness level
// rest of refresh transaction is hence not necessary
exit foreach loop;

end
end
remove all operations in R from local input queue;
// set si’s timestamp to that of the last executed
// write operation
SN(si) := SN(R);
EOT;

2. Otherwise,P waits untilT finishes.

From this we conclude that no additional dependencies
are introduced.

Avoiding Aborts of Read-Only Transactions. With
PDBREP, it is not necessary to abort read-only transactions
due to overwritten versions. This is because PDBREP re-
quires a read-only transactionT to preclaim locks on the
objects accessed byT . Freshness locks ensure that propa-
gation transactions can only overwrite a version if it is no
longer needed for an active read-only transaction. Conse-
quently, there is always a node that either still keeps the
appropriate version or that waits until the appropriate ver-
sion becomes available through propagation. Hence, there
is no need to abort a read-only transaction due to a missing
version under normal circumstances. Site failures, how-
ever, may require to abort a transaction if the site with the
needed version does not come back.

4 Experimental Evaluation
We implemented a prototype on which we ran experiments
to evaluate the performance characteristics of PDBREP.

4.1 Experimental Setup

The prototype comprises a cluster of databases which
among others contains a designated update node, a global
log, a distributed coordinator layer and a client simulator.
The evaluation has been conducted on a cluster consisting
of 64 PCs (1 GHz Pentium III, 256 MBytes RAM and two
SCSI harddisks) each running Microsoft SQL Server 2000
under Windows 2000 Advanced Server. All nodes are in-
terconnected by a switched 100 MBit Ethernet.

We evaluated PDBREP for three different settings where
we switch on and off the continuous broadcasting and prop-
agation features:

Setting 1: No Broadcasting and No Propagation

Setting 2: Broadcasting and No Propagation

Setting 3: Broadcasting and Propagation

We used the database and queries of the TPC-R bench-
mark [21]. We created the TPC-R database by using scale
factor 1.0 which resulted in a database of roughly 4.3GB to-
gether with indexes that we optimized with Microsoft Index
Tuning Wizard. We divided our cluster into node groups of
four nodes. Each node group had the full replica of whole
database, e.g., for 64 node cluster, we had 16 replicas (node
groups). Within the node groups, we fully replicated the
relatively small tables (e.g. Nations, Region) and hash par-
titioned the huge ones (e.g. Orders, LineItem). We im-
plemented update counter vectors as an array of integers.
In the experiments, we submitted queries to node groups
where they were evaluated on four nodes in parallel. In an-
other words, the number of sites involved in a distributed
read transaction was four. For routing and load balancing,
we used theBalance-Query-Numberalgorithm.

The global log broadcasts the changes of update transac-
tions as bulk packages of a certain size. In the experiments,
we used a bulk size that is equal to the number of updates
per second. We set the update rate at 200 updates per sec-
ond, a relatively high value compared to, e.g., [18]. Propa-
gation and read-only transactions run at the read-only sites.
Refresh transactions also run at the read-only sites except
that they request data from the global log when the data is
not available locally.

In our experiments, we varied three parameters:

• Freshness requirement [0.6, 0.7, 0.8, 0.9, 1.0]

• Workload [50%, 75%, 100%]

• Propagation bulk size [200, 400, 800, 1600]

The actual timestamp at which a lock will be requested
for a read-only transaction is determined as follows. We
use a freshness window ofn seconds, and map a specified
freshness requirementfl ∈ [0.0, 1.0] to that window using
the functionf(fl) = n ∗ (1− fl). In our experiments, we
used 30-second windows. That is, data with freshness 1.0
is current, while data with freshness 0.0 is 30 seconds old.
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This provides a definition of freshness that is independent
of the total system runtime as well as of the update rate.
We varied the required freshness between 0.6 and 1.0, thus
requesting data that was at most 12 seconds old.

Workload is defined as the percentage of available
processing time the cluster spends executing read-only and
refresh transactions. Thus, if a client supplies read-only
transactions at half the rate the cluster can execute them,
the workload will be 50%. Our test client dynamically con-
trols the rate of read-only transactions to keep the workload
at the preset value.

As [18] has shown, applying refresh transactions in bulk
rather than executing them individually significantly im-
proves performance. Since propagation transactions also
apply changes to the database, we bulk them, too. This in-
troduces some latency into the system, the effects of which
we studied for various bulk sizes.

4.2 Results

Experiment 1: Our first experiment evaluates the influence
of broadcasting and propagating updates on cluster perfor-
mance. We performed this experiment for various work-
loads and freshness requirements to measure the impact of
these features under different conditions. The results are
depicted in Figure 4 and Table 1.
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Figure 4: Average Query Evaluation Times for Different
Workloads and Freshness Values

Setting Freshness 0.6 - 0.9 Freshness 1.0
50% 75% 100% 50% 75% 100%

1 100% 100% 100% 100% 100% 100%
2 72% 83% 87% 75% 85% 90%
3 55% 70% 86% 58% 74% 89%

Table 1: Relative Query Execution Time for Various Work-
loads w.r.t. Setting 1

The results clearly show the benefit of using broadcast-
ing and propagation. For instance, in case of a workload
of 50% we achieve performance improvements up to 82%.
We see that turning on propagation and/or broadcasting al-
ways improves performance. The lower the workload is,
the higher the gain in performance becomes.

Looking at the average size of the refresh transactions,
as depicted in Figure 5, we see that propagation effectively

eliminates the need for refresh transactions except for the
maximum freshness requirements and workloads. This re-
sults in query execution times that are practically indepen-
dent of the overall workload for the given update rate.
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Figure 5: Average Refresh Transactions Size for Different
Workloads and Freshness Values

At high workloads, there is less time for propagating
changes between read-only transactions. At 100% load,
there is virtually no time at all for propagation. There is
just some processing overhead at the beginning and end of a
read-only transaction, during which a propagation transac-
tion may be executed. This explains the small performance
improvement under this condition.

The effect of broadcasting may also be seen in Figure 5.
When updates are broadcasted, refresh transactions may
be executed completely locally. Only for the very high-
est freshness requirements, the updates that have not been
broadcasted yet have to be fetched from the global log. At
Setting 3, the total amount of fetched updates is between
3% and 10% of that at Setting 1 depending on the work-
load.

Figure 5 exhibits another interesting result. At first
sight, one would expect that broadcasting alone would not
affect the average size of refresh transactions, just the speed
at which they are executed. However, the results depicted
in Figure 5 clearly show a smaller average transaction size
when broadcasting is enabled. The explanation for this is
that we have a fixed workload. With propagation enabled,
refresh transactions execute faster, which shortens the over-
all query execution time. At a fixed workload, this means
that the query rate will be higher. This results in a shorter
time interval between queries, and thus in less updates to
process in between.

Last but not least, Figure 5 also shows that the global
log might become a bottleneck in Setting 1. In setting 2
and 3, on the other hand, it is hardly involved in refresh
transactions. Consequently, it does not cause a bottleneck.

Experiment 2: This experiment aims at determining the
scalability of PDBREP. The results of the first experiment
suggest that scalability should be good, especially in case
of lower freshness requirements, where refresh transactions
are expected to be completely locally. We ran this experi-
ment at 50% cluster load. Figure 6 shows the results.
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The results for freshness 0.9 and lower are virtually
identical. At freshness 1.0, throughput is slightly less. This
was expected given the results of Experiment 1.

Experiment 3: As mentioned above, bulking propa-
gation transactions introduces some latency into the sys-
tem. As shown in Experiment 1, refresh transactions be-
come necessary, which increases the query execution time.
Obviously, this is also dependent on the required freshness
level. The purpose of this experiment is to determine how
query execution time is affected by the propagation bulk
size. Figure 7 shows the query execution times for vari-
ous required freshness levels and propagation bulk sizes at
a workload of 50%.
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Figure 7: Effect of Propagation Bulk Size on Query Exe-
cution Time

Recall that we perform 200 updates per second, i.e., if
there are no ongoing read-only transactions, propagation
transactions are performed once every 1, 2, 4, and 8 sec-
onds for bulk sizes of 200, 400, 800 and 1600, respectively.
Our 30-second freshness window means that the freshness
requirements 0.6 to 1.0 refer to 12, 9, 6, 3, and 0 seconds
old data. The graph shows the expected result: when we
require data that is older than the size of the propagation
interval, this data will already have propagated and no re-
fresh is necessary. This results in shorter execution times.
When we require newer data, refresh transactions will be
necessary and execution time rises. As we saw in Figure 5,
at freshness 1.0 a part of the updates must be fetched from
the global log. This explains the increase of maximum 10%

in query execution times. It is worth noting that this essen-
tially is the same effect except that the latency is caused
by bulking broadcasts rather than by bulking propagation
transactions.

Experiment 4: In this experiment, we compared fully
functional PDBREP (Setting 3) with Freshness Aware
Scheduling(FAS) introduced in [18]. PDBREPis based on a
partial replicationscheme where the database tables are di-
vided into partitions and these partitions are replicated on
different nodes. FAS in contrast relies onfull replication
where each node has an exact copy of the entire database.
For the experiment, we used a 64-node cluster. To mea-
sure the performance of FAS, we fully replicated the TPC-
R database on each node in the cluster. We executed each
query on a single node. To measure the performance of
PDBREP, we used the node group settings that we sketched
in Section 4.1. The results are depicted in Figure 8.

For all three workloads, PDBREPperforms significantly
better than FAS. When the cluster is 100% loaded, through-
put of the cluster is 30% higher in average with PDBREPas
compared to FAS. The reason is two fold. First, PDBREP

allows a query be evaluated in parallel on several nodes
and gains from this parallelization. Second, since PDBREP

uses partitioning of data while FAS relies on full replica-
tion, the size of the refresh transactions is less than for
FAS. So, the refresh process takes longer with FAS. Be-
sides, PDBREP mostly uses locally enqueued data to re-
fresh (see also Figure 5). The lower the workload is, the
better is the performance of PDBREP with respect to FAS.
The gain in query throughput is 72% and 125% in aver-
age for 75% and 50% loaded clusters. This gain results
from the introduction of propagation transactions as well
as from the partitioned refreshment and query paralleliza-
tion. That is, PDBREPnot only allows finer granularity and
distributed read-only transaction execution as advantages
over FAS, but also performs better than FAS.
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Figure 8: PDBREPvs FAS : Relative Query Throughput

To sum up, the main features of PDBREP – update broad-
casting, update propagation, and freshness requirements –
work together to deliver good performance. Update broad-
casting improves scalability, update propagation makes
query execution times nearly independent of the overall
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workload, and by specifying slightly lower freshness re-
quirements we can allow the cluster to maximize the effect
of these features, thus improving query execution times. Of
course, we can still require up-to-date data as well.

5 Related Work

Probably the first paper that discussed many replicated rela-
tion fragments and possibilities to maintain them is in [19].
The work presented here is continuation and significant im-
provement of our previous work [18]. We have described
the main differences already in the introduction. In a more
general setting, much works has been carried out on data-
base replication. To solve the limitations of conventional
eager replication, for instance, group communication has
been proposed in [13]. It first executes a transaction lo-
cally and then multicasts all changes as a write-set in a
single message at the end of the transaction. Although
group communication reduces the messaging overhead, it
still produces a large number of message exchanges. And,
it is not clear if it scales up for large clusters.

Ganymed [17] is a middleware-based replication system
whose roots stem from the early phase of the PowerDB
project at ETH Zurich. Similarly to PDBREP, it combines
eager and lazy replication, and also distinguishes read-only
and update transactions. While read-only transactions can
be executed at any replica, update transactions are sent to
primary site first. Then, all changes occurred in those up-
date transactions are applied to all replicas by using write-
sets. Ganymed relies on full replication and does not sup-
port freshness. Read-only transactions always see the latest
version of the database.

[2] introduces distributed versioning, where a central
scheduler component keeps track of the version numbers
of all tables at all replicas. At the beginning of a trans-
action, clients inform the scheduler about the tables they
will access. Then, the scheduler assigns version numbers
to transactions for each table they will access. The sched-
uler forwards updates to all replicas and reads to a replica.
Every transaction that updates a table increases its ver-
sion number. All operations on a particular table are ex-
ecuted in version number order. This approach however
does not distinguish sites as update and read-only sites.
Thus, read-only transactions prevent the execution of con-
flicting update transactions when strict consistency is re-
quired. Hence, this approach is more likely to work on
rather application scenarios where updates are rare.

Older lazy replication techniques [4, 5, 6] primarily fo-
cused on performance or correctness only. None of these
techniques consider data freshness. [14] proposes a re-
freshment algorithm to improve freshness in lazy master
replicated databases. The main principle of the algorithm
is to delay refresh transactions for a certain deliver time.
[15] extends this algorithm towards multi-master config-
urations. Neither algorithms provide access to up-to-date
data. However, they keep the mean freshness degree of the
data accessed by read-only transactions at high values and
introduces negligible loss of freshness.

[7] generalizes the notion of strong serializability and
shows how it can be implemented based on lazy replica-
tion. It distinguishes read-only and update transactions.
Read-only transactions execute at replicas to which they are
submitted, while update transactions execute at the primary
site, where they are serialized and lazily propagated to the
replicas. The changes of an update transaction, which are
collected at the primary site, are broadcasted to all replicas
and enqueued into local queues in their commit sequence
orders. At every replica, there is a refresher process which
dequeues updates and applies them to the database. In fact,
there is one refresh transaction for every update transaction.
A read-only transaction, on the other hand, is executed at
a single site. The system does not support loose currency
and the read-only transactions always access only up-to-
date data. When a read-only transaction is scheduled at a
replica, it first checks the sequence number of the replica.
If the replica is not fresh, the read-only transaction is either
forwarded to the primary site or delayed until the refresher
process brings the replica to the up-to-date state.

[10] introduces MTCache, which is SQL Server’s mid-
tier database caching solution. The main idea of this ap-
proach is to offload some work from a backend server to
intermediate servers and thus to improve system through-
put and scalability. MTCache uses current support of SQL
Server for transactional replication to propagate changes
that occur at the backend database. The propagation is per-
formed periodically in a single transaction by preserving
the commit order. So, the applications always see a con-
sistent but not necessarily the latest state. MTCache fits
in today’s storefront application scenarios which are read
dominated. Recently, [9] extended MTCache to allow ap-
plications to explicitly specify their currency and consis-
tency requirements in queries. In this model, query plans
are generated according to the known currency and con-
sistency properties of the replicas by taking into account
the user’s freshness demands. When local data does not
satisfy the currency requirement, remote queries are gener-
ated. That is, MTCache does not take any action to bring
the local data to the required level. Instead, cache mainte-
nance continues independently of the query execution.

6 Conclusions

Although replication management has come of age today,
efficient replication protocols for massive numbers of repli-
cas have still been an open question when combined OLTP
and OLAP workloads must be supported, i.e., when OLAP
queries shall be able to work on up-to-date data. As we
have motivated in this paper, existing protocols have sev-
eral drawbacks which we overcome with our new approach
to replication management.

The proposed protocol PDBREPsupports both freshness
and correctness guarantees. It allows read-only transac-
tions to run at several sites in parallel and deploys a so-
phisticated version control mechanism to ensure one-copy-
serializable executions. Moreover, PDBREP does not re-
quire data to be fully replicated on all sites. It works with
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arbitrary physical data organizations such as partitioning
and supports different replication granularities. In this way,
the cluster of database systems for instance can better be
customized for given workloads, and thereby increase the
overall performance of the system. For example, a subset
of cluster nodes can be designed for certain query types.

Although PDBREPuses lazy replication, it also provides
access to fresh data by means of decoupled update prop-
agation and refresh transactions. In this way, it combines
the performance benefits of lazy protocols with the up-to-
dateness of eager approaches. In addition, PDBREPalso ex-
tends the notion of freshness to finer granules of data, and
thereby reduces the needed refreshment efforts. Finally,
PDBREP does not require a centralized component for co-
ordination apart of a global log where the update sites place
their committed update transactions.

Our experiments with PDBREPprovide some insights on
the influence of continuous broadcasting and propagation
on the overall performance. First of all, the experiments
showed that PDBREP scales even with higher update rates
(compared to that used in other work). Furthermore, they
revealed that scenarios with lower workloads in particular
significantly benefit from broadcasting and propagating up-
dates. Another important finding is that for slightly lower
freshness requirements usually refresh transactions are not
necessary anymore because propagation transactions keep
the sites fresh enough.

Finally, PDBREP provides the flexibility to investigate
autonomic computing issues like how to dynamically adapt
the cluster database design to changing parameters like the
workload. This will be part of our future work.
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ment of Computer Science, Sept. 2004.http://www.
dbs.ethz.ch/publications/papers/457.pdf .

[2] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed Ver-
sioning: Consistent Replication for Scaling Back-end Data-
bases of Dynamic Content Web Sites. InProc. of the Int.
Middleware Conf., June 16-20, 2003, Rio de Janeiro, Brazil,
pp. 282–304, 2003.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[4] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and
A. Silberschatz. Update Propagation Protocols For Repli-
cated Databases. InProc. of the ACM SIGMOD Int. Conf.
on Management of Data, pp. 97–108, 1999.

[5] Y. Breitbart and H. F. Korth. Replication and Consistency:
Being Lazy Helps Sometimes. InProc. of the 16th ACM
Symposium on Principles of Database Systems, pp. 173–
184, 1997.

[6] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. Deferred Up-
dates and Data Placement in Distributed Databases. InProc.
of the 12th Int. Conf. on Data Engineering, pp. 469–476,
1996.

[7] K. Daudjee and K. Salem. Lazy Database Replication with
Ordering Guarantees. InProc. of the 20th Int. Conf. on Data
Engineering, pp. 424–435, 2004.

[8] J. Gray, P. Helland, P. O’Neill, and D. Shasha. The Dangers
of Replication and a Solution. InProc. of the ACM SIGMOD
Int. Conf. on Management of Data, pp. 173–182, 1996.

[9] H. Guo, P.-A. Larson, R. Ramakrishnan, and J. Goldstein.
Relaxed Currency and Consistency: How to say ”Good
Enough” in SQL. InProc. of the ACM SIGMOD Int. Conf.
on Management of Data, pp. 815–826, 2004.

[10] H. Guo, P.-A. Larson, R. Ramakrishnan, and J. Goldstein.
Support for Relaxed Currency and Consistency Constraints
in MTCache. InProc. of the ACM SIGMOD Int. Conf. on
Management of Data, pp. 937–938, 2004.

[11] R. Jimenez-Peris, M. Patino-Martinez, G. Alonso, and
B. Kemme. Are Quorums an Alternative for Data Replica-
tion? ACM Transaction on Database Systems, 28(3):257–
294, 2003.

[12] R. Jimenez-Peris, M. Patino-Martı́nez, B. Kemme, and
G. Alonso. Improving the Scalability of Fault-tolerant Data-
base Clusters. InProc. of the 22nd Int. Conf. on Distributed
Computing Systems, pp. 477–484. 2002.

[13] B. Kemme and G. Alonso. Don’t Be Lazy, Be Consistent:
Postgres-R, A New Way to Implement Database Replica-
tion. In Proc. of the 26th Int. Conf. on Very Large Data
Bases, pp. 134–143, 2000.

[14] E. Pacitti, P. Minet, and E. Simon. Replica Consistency
in Lazy Master Replicated Databases.Distributed Parallel
Databases, 9(3):237–267, 2001.

[15] E. Pacitti, M. T.Özsu, and C. Coulon. Preventive Multi-
master Replication in a Cluster of Autonomous Databases.
In Proc. of the 9th Int. Euro-Par Conf., pp. 318–327, 2003.

[16] C. H. Papadimitriou.The Theory of Database Concurrency
Control. Computer Science Press, 1986.

[17] C. Plattner and G. Alonso. Ganymed: Scalable Replication
for Transactional Web Applications. InProc. of the 5th ACM
Int. Middleware Conf., pp. 155–174, 2004.
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