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Abstract

This paper presents the novel SphereSearch
Engine that provides unified ranked retrieval
on heterogeneous XML and Web data. Its
search capabilities include vague structure
conditions, text content conditions, and rel-
evance ranking based on IR statistics and sta-
tistically quantified ontological relationships.
Web pages in HTML or PDF are automat-
ically converted into XML format, with the
option of generating semantic tags by means
of linguistic annotation tools. For Web data
the XML-oriented query engine is leveraged
to provide very rich search options that can-
not be expressed in traditional Web search
engines: concept-aware and link-aware query-
ing that takes into account the implicit struc-
ture and context of Web pages. The bene-
fits of the SphereSearch engine are demon-
strated by experiments with a large and richly
tagged but non-schematic open encyclopedia
extended with external documents.

1 Introduction

1.1 Problem

In recent years information retrieval on XML data,
XML-IR for short, has received great attention [2, 6,
11, 15, 28]. The goal is to support structured queries
on semistructured data without a global schema, a sit-
uation arising in large intranets, federations of loosely
coupled databases such as digital libraries or scientific
data repositories, and the Web (if it already had large
amounts of XML data). XML search engines have to
cope with the diversity in the structures and annota-
tions (i.e., tag names) of the data, and should thus
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employ the ranked retrieval paradigm for producing
relevance-ordered result lists rather than merely using
SQL or XQuery for Boolean retrieval. To this end,
prior and ongoing research projects such as XIRQL
[22] or XXL [42] have combined XPath-style pattern
matching with relevance scoring based on similarity
functions for text contents, hierarchical and link struc-
ture, and tag names and their ontological relation-
ships.

Web search engines, on the other hand, are much
less expressive in their querying capabilities, with key-
word queries being the dominant search paradigm.
The following queries demonstrate the shortcomings
of current Web search engines and, at the same time,
show the potential benefit of applying XML-IR to Web
data:

• Searching for facts about the great physics re-
searcher Max Planck. Simply typing the key-
words researcher Max Planck yields many results
about researchers who work at institutes of the
Max Planck Society (Germany’s leading scientific
organization). What is missing is the capabil-
ity for expressing that Max Planck should ap-
pear in a particular role in a Web page, namely,
as the researcher himself. So a better but fic-
titious concept-aware query formulation would be
researcher person="Max Planck". This would
benefit from richer tagging of the data, which in turn
could be provided by state-of-the-art techniques for
named entity recognition (e.g., persons, locations,
companies and organizations) in natural-language
text data.

• Searching for professors from Germany who teach
database courses and do research on XML. This
query cannot be answered by Web search engines be-
cause no single Web page may be a match. Rather
a typical answer would be a closely connected set
of pages with, for example, a researcher’s homepage
containing his address and pointing to a page (or
pages) with her courses and to a page with her re-
search projects. On the Web, successfully processing
such a query thus requires link-awareness or, more
generally, context-awareness. Note that, unlike the
usual navigation axes in XML, context should go
beyond trees and consider the graph structure that
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is spanned by XLink/XPointer references and, espe-
cially, href hyperlinks.

• Searching for dramas where a woman makes a
prophecy to a nobleman that he would become king.
This query cannot be answered because a good
match does not necessarily contain the keywords
woman, prophecy, nobleman, etc. but may rather
say something like ”Third witch: All hail, Macbeth,
thou shalt be king hereafter!” and the same docu-
ment may contain the text ”All hail, Macbeth! hail
to thee, thane of Glamis!”. This query requires some
form of ontology-enabled or abstraction-aware pro-
cessing to recognize that a witch is a woman, ”shalt
be” refers to a prophecy, and thane is a title for a
Scottish nobleman.

From the above examples we can derive the following
desiderata for a next-generation Web search engine:

• It should support querying XML and current Web
data in HTML in a unified manner, with relevance
ranking of results

• It should support concept-aware, context-aware,
and abstraction-aware search. For XML data these
are natural features, but for Web data these would
be a big step forward beyond the state of the art.

1.2 Contribution

This paper addresses the above desiderata. Its key
contribution lies in showing how to apply XML-IR
techniques, in particular, a more expressive query lan-
guage, to Web data. We present a query language
that allows us to search within heterogeneous XML
and Web as well as combinations in a unified man-
ner. The language is implemented in the SphereSearch
Engine. Its design has been influenced by our earlier
work on the XXL language for XML IR [42], on one
hand, and the desire to handle also current Web data
in HTML, on the other hand. But SphereSearch also
deviates from and significantly extends prior work by
interpreting all data as a graph structure rather than
trees. The salient features of SphereSearch are:

• It is simpler than existing query languages for XML
like XPath or XQuery, but it provides ranked re-
trieval with support for concept-, and abstraction-
aware search.

• It is much more powerful than state-of-the-art
Web search engines as it supports concept-aware,
context-aware, and abstraction-aware search.

• It handles XML and Web data uniformly by auto-
matically converting HTML data into XML, with
heuristics and the use of linguistic tools for named
entitity recognition to generate semantically mean-
ingful XML tags.

• It extends XML-IR techniques to arbitrary graphs,
with XPath-style search conditions across docu-
ment/page boundaries and a scoring/ranking model
that reflects the compactness of a matching sub-
graph.

The SphereSearch Engine is fully implemented in
Java using Oracle10g as an underlying data man-

ager. We present experimental results on large-scale
datasets using four different setups:

1. the INEX benchmark [28] for XML-IR,
2. the open Internet encyclopedia Wikipedia consist-

ing of more than 400,000, highly cross-linked lexi-
con entries,

3. Wikipedia in combination with structured data
from IMDB, and

4. the DBLP data[31] converted to XML in combina-
tion with href links to researcher homepages and
further Web pages about projects, courses, etc.

Our experiments demonstrate both the system’s effi-
ciency and its expressiveness and search result quality.

The paper is organized as follows. Related work
is discussed in Section 2. Section 3 introduces im-
portant concepts of SphereSearch, Section 4 describes
data transformation and annotation. The query lan-
guage of SphereSearch is introduced in Section 5, and
Section 6 presents its formal query semantics. Sec-
tion 7 discusses the architecture and implementation
details. Section 8 gives experimental results.

2 Related Work

Ranked retrieval on (heterogeneous) XML data has
recently been a very active research area. This in-
cludes approaches based on extending keyword-based
search to XML [15, 26], combining text search with
XPath-style conditions [14, 47], structural similarities
[6, 39], ontology-enhanced content similarities [37, 42],
and applying probabilistic IR and statistical language
models to XML [2, 22]. None of this prior work has
considered applying these recent concepts for XML
search to Web data.

Applying structured search to Web data is not a
novel idea. There is a considerable body of research
on Web query languages that combine text matching
with SQL-style conditions including joins and other
complex predicates [8, 9, 1, 30]. The problem with
these approaches is that they are based on Boolean
retrieval. We strongly believe that ranked retrieval is
crucial for dealing with large amounts of highly het-
erogeneous data even if the data contains structured
fragments. So unless on-the-fly schema and data inte-
gration over many autonomous data sources (e.g., hun-
dreds of bioinformatics databases or hundreds of sports
portals) is solved, SQL- or XQuery-style Boolean re-
trieval is of limited value.

From a Web search viewpoint, several papers have
addressed enhancing keyword-based search by combin-
ing it with ontologies [29, 32, 34].

Information extraction from text and HTML data is
an area with intensive work. The approaches mostly
follow a rule-based paradigm [7, 17, 23, 36], or em-
ploy learning techniques and/or linguistic methods
[3, 16, 18, 19]. But actually using automatically con-
verted and “semantically” enhanced Web data in a
search engine has not been pursued in the literature
on information extraction.

Ranked retrieval over graph-structured data has
been pursued in [10, 27]. The graphs studied there
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are derived from foreign-key relationships in relational
databases and are quite different from the settings of
the current paper. Queries in this prior work were lim-
ited to keyword search on attributes scattered across
different tables. [13] lists vague search over graph
structures as one of the major open challenges in areas
where DB and IR technologies meet.

3 SphereSearch Concepts

SphereSearch uses the following important concepts
that makes it more powerful than simple keyword
search engines:

• SphereSearch transforms all documents into XML,
using a set of heuristic rules to add semantically
meaningful tags instead of the pure layout tags avail-
able in standard HTML.

• Using information extraction tools, predefined
classes of information like locations, persons, and
dates are annotated with special tags.

• A simple yet expressive query language com-
bines concept-aware keyword-based search with
abstraction-aware similarity search and context-
aware ranking. The language allows grouping of
query conditions that refer to the same entity.

• The relevance of an element for a group of query
conditions is not only determined by its own con-
tent, but also by the content of other neighboring
elements in an environment (a so-called ”sphere“)
of the element, including elements in other, linked
documents.

• Query groups are evaluated independently; a result
for the whole query is a set of results of each group
that form a compact subgraph, with elements/nodes
close to each other.

• Optional join conditions allow expressing that re-
sults of different query groups should have common
properties.

We elaborate on these concepts in the following sec-
tions.

4 Data Transformation and Annotation

4.1 Transformation to XML

SphereSearch converts HTML, PDF, or plain text doc-
uments into XML. The conversion is done by type-
specific transformation components that try to identify
structure within textual content, using heuristic rules
to generate meaningful tags instead of the generic lay-
out tags used in HTML.

<H1>Experiments</H1> <Experiments>
...Text1... ...Text1...

<H2>Settings</H2> => <Settings>
...Text2.. ...Text2..

<H1>... </Settings>
</Experiments>

Figure 1: Example of HTML2XML Conversion

As an example, consider headlines in HTML docu-
ments that are represented (using tags like <h1>) as
sibling nodes of the paragraphs following the headline;

see Figure 1 for an example. Thus, the paragraphs are
not “naturally” connected to the headline, in addition
to the lack of semantics in generic tags like <h1>. Our
heuristic rules “promote” the text within the opening
and closing headline tags into a “semantic” XML tag,
and construct a properly nested structure.

Another heuristic rule concerns the transforma-
tion of HTML structures like <b>Title:</b>War and
Peace<br>. Based on the heuristic rule that a bold
term followed by a colon (in the example Title:)
explains the following term (War and Peace), our
HTML2XML converter creates the XML fragment
<Title>War and Peace</Title>, transforming the
sibling text node War and Peace into a child node
of the Title node.

Other rules exist that convert HTML tables into
XML fragments, using table headers as tag names
whenever possible. Formatting tags (like <br>) that
remain after the transformation process are removed
from the documents.
4.2 Data Annotation

To automatically recognize and annotate named en-
tities in the content of elements (thereby faciliating
their use in concept-value conditions), SphereSearch
applies the information extraction component ANNIE
of GATE (General Architecture for Text Engineering)
[18]. GATE offers various modules for analyzing, ex-
tracting, and annotating text; its capabilities range
from part-of-speech tagging (e.g., for noun phrases,
temporal adverbial phrases, etc.) and lexicon lookups
(e.g., for geographic names) to finite state transducers
for annotations based on regular expressions (e.g., for
dates or currency amounts). GATE provides a set of
Java libraries to facilitate its integration into existing
software. Currently, SphereSearch applies ANNIE’s
Gazetteer Module for named entity recognition based
on part-of-speech tagging and a large dictionary con-
taining names of cities, countries, person names (e.g.,
common first names), etc. Named entities that are
found by the Gazetteer are annotated with a type-
specific tag in the XML document; we use <location>
for locations, <person> for persons, <date> for dates,
and <money> for amounts of money The latter two
also involve regular expression matching based on AN-
NIE’S JAPE1 Transducer module, that provides finite
state transduction over annotations based on regular
expressions. New types of entities (like conferences,
sport events, etc.) can be easily added by providing
additional dictionaries.
5 Query Language

The query language of SphereSearch combines
concept-aware keyword-based search with specific ad-
ditions for abstraction-aware similarity search and
context-aware ranking. Note that even though the
query language is quite simple, it may still be too
powerful for a typical end user, so SphereSearch pro-
vides a simple graphical interface to pose queries (see
Sect. 7.5).

1Java Annotation Patten Engine
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As a simple example for a SphereSearch query,
the search for German professors who teach database
courses and have projects on XML can be phrased as
follows:

P(professor, location=∼Germany)
C(course, ∼databases)
R(∼project, ∼XML)

In this query, P, C, and R are query groups each of
which refers to one class of entities; the example query
searches for a professor, a course, and a project. (If
the user cannot easily identify entities for her query,
she can use SphereSearch like an ordinary keyword
search engine by including all basic conditions in a
single query group.) For each such group, a disjunc-
tion of basic conditions further characterize the en-
tity; these are one or more keywords or, if the user has
some idea of the underlying schema or latent struc-
ture, concept-value conditions that state that the user
expects certain values, i.e., terms in tags with certain
names. Concept-value conditions are typically used
to take advantage of annotations, like in the example
where we exploit the fact that locations are annotated.
As the annotation is done by powerful tools that pro-
vide correct annotations with high probability, using
this information helps in disambiguating terms (like
denoting that ”Max Planck“ means the person, not
the institute). If the user partially knows the schema
of documents (like for documents that are originally
XML), she can also use known tag names in concept-
value conditions. For predefined, special-purpose tags
like <date>, concept-value conditions may also use
comparisons with ’<’ and ’>’, like date>1970, and
range conditions like 1970<date<1980. As this is very
domain specific, SphereSearch currently supports this
type of conditions only for automatically annotated
dates and money amounts, but can be easily extended
for other data types.

In addition, SphereSearch supports the similarity
operator ∼ that was introduced in the XXL Search
Engine in basic conditions. This operator expands a
keyword, a concept or a value with similar terms sup-
plied by a quantified ontology. For example, as the
example query includes the similarity operator with
databases, SphereSearch would also return matches
with information systems and other highly similar
terms. Likewise, the search condition ∼1970 is satis-
fied (with different scores) by years around 1970.

Additionally, query groups can be connected by
joins. As an example, consider the following query
that asks for gothic and romanic churches at the same
location:

A(gothic, church)
B(romanic, church)
A.location=B.location

Like content-value conditions, joins usually exploit the
additional markup introduced by the annotation pro-
cess.

6 Query Semantics and Scoring

6.1 Data Model

As all documents are transformed to XML, we can
consider a collection X = (D,L) of XML documents
D together with a set L of (href, Xpointer, or XLink)
links between their elements. In our model, attributes
are considered as if they were elements, and the doc-
uments are already annotated. We then maintain the
element-level graph GE(X ) = (VE(X ), EE(X )) of the
collection that has the union of the elements of all doc-
uments as nodes and undirected edges that correspond
to parent-child edges and links. In this approach we
could retain the orientation of links as directed edges,
but we chose an undirected graph model for it is eas-
ier to phrase queries if the user does not have to think
about the direction of links. It would be fairly straight-
forward to support a directed graph model in Sphere-
Search.

We maintain two labelings on this graph: For each
element x ∈ VE(X ), name(x) denotes the node’s tag
name, and content(x) its content. Each edge is as-
signed a nonnegative weight which is 1 for parent-child
edges and λ for links. The distance function δX (x, y)
takes two elements as input and computes the weight
of a shortest path (i.e., a path from x to y where the
sum of edge weights is minimal) in GE(X ) between
them.

6.2 Formal Query Language

A SphereSearch query S = (Q, J) consists of a set
Q = {G1, . . . , Gg} of one or more nonempty query
groups and a (possibly empty) set J = {J1, . . . Jm}
of join conditions. Each query group Qi consists of
a (possibly empty) set of keyword conditions ti1 . . . tiki

and a (possibly empty) set of concept-value conditions
ci
1 = vi

1 . . . ci
li

= vi
li
. Here, keywords, concepts and val-

ues are either exact-match conditions or include the
similarity operator ∼.

Additionally, exact-match or similarity joins can be
specified between query groups. A join has the form
Qi.v = Qj .w for exact-match joins and Qi.v ∼ Qj .w
for similarity joins, where Qi,Qj are query groups and
v,w are terms (typically tag names, e.g. those intro-
duced by the annotation process).

6.3 Query Semantics

The result of a SphereSearch query S = (Q, J) with
g query groups is a list of g-tuples (e1, . . . , eg) of el-
ements in VE(X ) where each ei is a result for query
group Gi, sorted by a score that measures the expected
quality of results. In this section we give a bottom-up
definition of the scoring function, starting with scores
for keyword and concept-value conditions.

Note that our score functions include a number of
parameters that have to be carefully chosen. Even
though a parameter-less scoring function would be pre-
ferrable, we are not aware of other IR systems that can
do without such a suite of parameters.
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6.3.1 Spheres and Query Groups

Existing retrieval systems consider only the content
of an element (or document) itself to assess its rele-
vance for a query, often using a scoring model that
give high scores to elements where the keywords in
the query appear frequently. In SphereSearch, this
type of score is provided by the node score of a node.
For a exact-match keyword condition t, the node score
ns(n, t) of a node n is computed using the well-known
Okapi BM25 scoring model [35], adapted for XML (see
[5, 45]). For a similarity keyword condition t that has
the form ∼K, we first compute the set exp(K) of all
terms that are similar to K using the ontology. The
node score ns(n, t) of a node with respect to this con-
dition is then defined as

max
x∈exp(K)

sim(K, x) ∗ ns(n, x)

where sim(K, x) is the ontology-based similarity of
K and another term x.

2
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ttt
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Figure 2: Example for
linked documents

We think that this
kind of ”local“ scor-
ing is not sufficient
(1) in the presence of
linked documents and
(2) when content is
spread over several el-
ements (like in an ar-
ticle with sections and
paragraphs). Instead,
we want to promote the scores of elements where
the requested keyword appears frequently in the con-
text of the element, i.e., in the content of other ele-
ments in its neighborhood. To reflect this notion of
context-aware scoring, SphereSearch uses the concept
of spheres, nodes at a fixed distance of a center node.
The sphere score of a node is then aggregated from
nodes in spheres around the node, with less weight to
nodes that are in spheres at larger distances.

Formally, the sphere Sd(n) of node n at distance d is
the set of all nodes whose distance to n is d. The sphere
score sd(n, t) at distance d of a node n with respect to
an (exact-match or similarity) keyword condition t is
then defined as

sd(n, t) =
∑

v∈Sd(n)

ns(v, t)

and the sphere score of n with respect to t is defined
as

s(n, t) =
D∑

i=1

si(n, t) ∗ αi

with a configurable nonnegative sphere size limit D
and a configurable damping coefficient α between 0
and 1.

As an example, consider Figure 2 that shows the ele-
ments of three linked documents (denoted by different
colors) and their elements, with ’t’s attached that cor-
respond to the number of occurrences of the term ’t’ in
their content. For a keyword query that asks for ”t“,
node 2 would get the highest score in a local scoring
model; in SphereSearch, it has the highest node score.

21 tttt

t

t

tt

tt

tt

Figure 3: Spheres at dis-
tances 1, 2, and 3 around
node 1

However, node
1 may be a bet-
ter result for this
query as the term
”t“ occurs much
more frequently in
1’s neighborhood
than in 2’s, hence
its sphere score is
higher than 2’s.
Figure 3 shows
spheres of distances
1, 2, and 3 around
node 1. Assum-
ing α = 0.5 and
D = 3, we get
s(1, t) = 1 + 4 · 0.5 + 2 · 0.25 + 5 · 0.125 = 4.175 and
s(2, t) = 3 + 0 · 0.5 + 0 · 0.25 + 1 · 0.125 = 3.125, so 1
is a better result for t than 2 in our model. Note that
the sphere scores for both nodes are formed from the
scores of nodes in different documents, not a single
document alone.

We apply a similar scoring model for concept-value
conditions. Here, the node score of a node n with
respect to a concept-value condition of the form c=v
where v can optionally include a similarity operator is
defined as

ns(n, c=v) =
{

0 if name(n) 6= c
ns(n, v) otherwise

For a concept-value condition of the form ∼c=v
(again with an optional similarity operator for v), the
score of a node n is defined as

sim(name(n), c) · ns(n, v)

For domain specific comparisons with ’<’ and ’>’ and
range conditions that are currently limited to automat-
ically tagged dates and money amounts, the score of
an element is computed by a domain specific similarity
function.

The sphere score of a node n with respect to a
concept-value condition is defined analogously to the
sphere score for a keyword condition as the weighted
sum of node scores in spheres around n up to distance
D.

The sphere score of a node n with respect to a query
group G is then the sum of the node’s sphere scores
for each condition of the query group:

s(n, G) =
k∑

j=1

s(n, tj) +
l∑

j=1

s(n, cj = vj)

6.3.2 Queries Without Joins

Results for a query with g query groups, but without
joins consist of a set of g nodes, one node for each
query group of the query. Formally, we say that a
potential answer to a query S = (Q, ∅) without joins
is a g-tuple N = (n1, . . . , ng) of nodes where ni is a
result for query group Gi, i.e., s(n, Gi) > 0.

533



As queries usually ask for related entities, the ac-
cumulated sphere scores of a potential answer alone
is not enough to assess its relevance as the nodes in
the answer may reside in completely different parts
of the element-level graph, hence may be completely
unrelated. Intuitively, we should prefer potential an-
swers with nodes that are at short distances to each
other in the graph, meaning that they are either in the
same document or in a document that can be reached
through only a few link traversals – and therefore often
related as links typically connect related documents.

In SphereSearch, the score of a potential answer
therefore is a combination of the sphere scores of the
nodes in the answer and the compactness of the po-
tential answer. To assess the compactness of a po-
tential answer N , we create the connection graph
G(N) = (V (N), E(N)) that has the elements from N
as nodes and an undirected edge {x, y} iff the distance
δX (x, y) of x and y in the element-level graph GE(X )
is finite (i.e., x and y are connected); we assign this
edge the weight 1

δX (x,y)+1 , yielding the best score for
distance 0. The compactness C(N) of N is then the
sum of the total edge weights of a maximal spanning
tree for G(N); we set C(N) = −∞ if the maximal
spanning tree is not connected (i.e., if it is a forest,
not a single tree). The score of a potential answer N
to a query S is then defined as the weighted sum of
the aggregated sphere scores and the compactness of
the node set, i.e.,

s(N,S) = βC(N) + (1− β)
g∑

i=1

s(ni, Gi)
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Figure 4: Compactness using maximal spanning trees

As an example, consider Figure 4 that shows (on
the left) the same set of three documents that were
shown in Figure 2. Assume a query with three query
groups where the results for group G1 are nodes A
and B, for group G2 node X, and for group G3 nodes
1 and 2. From these sets of results we can generate
four potential answers N1, . . . , N4 whose correspond-
ing connection graphs G(Ni) are depicted on the right
of Figure 4. Edges that belong to a maximal spanning
tree are printed bold; it is evident that the potential
answer N1 consisting of A,X, and 1 is the most com-
pact one. Note that the nodes are from two different
documents, so this answer would not have been found
by an engine without context awareness. Also note
that the fact that documents can have arbitrary links
between them make the identification of spanning trees

in a rich graph structure a nontrivial task. We will dis-
cuss later how to efficiently compute them.

The ranked result of a query S is then (a prefix of)
the list N1, ... of potential answers to S ordered by
s(Ni, S).

6.3.3 Queries Including Joins

An exact-match join condition A.v=B.w in a query re-
quires elements with tag names v and w to have the
same content and that these elements should be close
neighbors of results of the query groups A and B. This
again follows SphereSearch’s basic design principle of
context awareness, as it is unlikely that results will
themselves have the requested tag names. As an ex-
ample, consider a query that asks for two movies on
specific themes with the same director. Here, the re-
sults for each group are probably elements describing
the movies, and the director information may be in
a subelement of each of them. Similarity join condi-
tions extend this notion to contents that are similar
(using an application-specific similarity measure for
predefined tags or text-based similarity). While we
expect that join conditions are most useful with tags
like location introduced by the annotation process
or already present in the (XML) data, SphereSearch
also allows a less strict match where both the concept
and the value merely occur in the content of the same
element; in this case, the entire content is the basis
for computing the similarity. This can be useful when
information is only available as full text like ’The di-
rector of this movie is...’.

To fit this approach with our scoring model for
queries without joins, we introduce new edges in our
element-level graph that connect elements that match
the join (i.e., have the correct tag names and the same
content). The rationale for this is that results for
query groups that are close neighbors to join results
are moved closer together, hence the compactness of a
result that includes them increases and, this way, its
final score raises. As an example, consider again Fig-

B

2

X
1/3

1/4

4
5

( ) 0.83
6

C N = ≈

1/2

A

X

B

2

1

Figure 5: Effect of virtual links
ure 4 and assume the query contained an additional
exact-match join between G1 and G2. If the contents
of B’s parent and X perfectly match, we introduce a
new virtual link between B’s parent and X; we assume
that this is the only perfect match in the graph to keep
the example simple. As the new distance of B and X
is now reduced to 2, the new compactness of the po-
tential answer {B,X, 2} is increased to 5

6 , moving it
higher in the list of results.
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Formally, we extend the collection X with new vir-
tual links, forming an extended collection X ′ = (D,L′).
For a similarity join condition Qi.v ∼ Qj .w, we con-
sider the set N(v) (resp. N(w)) that consists of all
elements with name v (w) or contain v (w) in their
content. For each pair x ∈ N(v), y ∈ N(w) we add a
link {x,y} with weight 1/csim(x, y), with csim measur-
ing the similarity of the contents of x and y as a num-
ber between 0 and 1 where 1 represents equality. For
exact-match joins, we add only links whose weight is 1
(i.e., where the corresponding nodes’ contents match).
csim computes either an application specific similarity
measure for predefined comparison attributes (like lo-
cations or dates) or standard bag-of-words similarity of
the contents of the elements (e.g., the cosine similarity
based on tf*idf-style weights). The result of a query
with join conditions is then the result of the query
without the join conditions on the extended collection
X .

Note that this score model intentionally does not
penalize potential answers that are compact, but that
are not connected through shortest paths across vir-
tual links. We believe that the elements of these an-
swers are already closely related and therefore are a
good answer to the query, too.

7 The SphereSearch Engine

7.1 System Architecture

XML,HTML,
PDF...

Crawler

Trans-
former

Annotator Indexer Index

Query
Processor

Client
GUI

Ontology
Service

Figure 6: Architecture of the
SphereSearch Engine

Figure 6 illus-
trates the main
components of the
SphereSearch pro-
totype system and
their interactions.
The system consists
of

• the Crawler that
collects the data,
either from the
Web or from a file
system,

• the Transformer
that converts non-
XML formats into
XML, using heuristic rules to generate meaningful
tag names,

• the Annotator that adds annotations for named en-
tities like locations and persons,

• the Indexer that inserts documents into a relational
database, with specifically designed tables and index
structures,

• the browser-based Graphical User Interface that
help in graphically constructing queries,

• the Ontology Service that maintains an extensible
ontology and provides similar terms, and

• the Query Processor that evaluates queries and re-
turns a ranked list of results.

The system is implemented in pure Java, using the
Tomcat application server for the graphical user inter-

face and Oracle 10g as underlying relational database
system.
7.2 Crawling and Indexing

The crawler can gather Web pages as well as local
files and directories. It has as suite of control parame-
ters for crawling strategies. The crawler supports the-
matically focused crawling based on an SVM classifier
(which is beyond the scope of this paper), for which
SphereSearch applies the BINGO! focused crawler [41].

After transforming and annotating documents (see
Section 4), the indexer extracts elements, attributes
and their contents from documents and stores them in
an Oracle database together with information about
edges and links. Content is stored in inverted lists to-
gether with corresponding tf*idf-style term statistics.
The indexer also maintains position information for
terms in the contents, to support phrase matching and
reconstruction of whole documents. For efficient nav-
igation within the same document, the indexer stores
with each element the corresponding Dewey encoding
of its position within the document.

In addition to edges, connections up to a config-
urable length in the element-level graph are precom-
puted and stored in the database to accelerate com-
pactness computations. We plan to incorporate the
HOPI index [38] that efficiently compresses such in-
formation in the future. If connections with longer
distances are needed, they can be computed incre-
mentally from the precomputed connections by (one
or more) self joins.

Appropriate B+ index structures are used to sup-
port an efficient evaluation of queries.
7.3 Ontology Service

The ontology service provides quantified ontological
information to the system. It imports concepts and re-
lationships between concepts from thesauri like Word-
Net [21] and other sources, e.g., geographic gazetteers
[4], and constructs a graph of semantic relationships
between concepts. In contrast to most ongoing efforts
for Semantic-Web-style ontologies, our ontology ser-
vice quantifies the strengths of semantic relationships
based on corpus statistics [37]. To this end we have
performed focused Web crawls and use their results to
estimate statistical correlations between the character-
istic words of related concepts. In the current version
we use the Dice coefficient

Dice(c1, c2) =
2|{docs with c1} ∩ {docs with c2}|
|{docs with c1}|+ |{docs with c2}|

The relationships that we quantify this way in-
clude hypernyms and hyponyms (i.e., generalizations
and specializations) and holonyms and meronyms (i.e.,
part-of relationships). Synonyms are captured, too;
their similarities are 1 by definition, regardless of corre-
lations. We are currently extending this component to
incorporate more is-instance-of knowledge (e.g., IBM
is a computer manufacturer, IBM Thinkpad is a note-
book) by crawling HTML tables and forms on the Web
[24].
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To evaluate the similarity operator ∼, the query
evaluator extracts terms from the ontology that are se-
mantically related to the given term in the query and
whose similarity is greater than a predefined threshold.

7.4 Query Processor

The query processor first computes a result list for each
query group, then adds virtual links for join condi-
tions, and finally computes the compactness of a sub-
set of all potential answers of the query in order to
return the top-k results.

For each query group, the query processor com-
putes a list of results (i.e., nodes in VE(X ) together
with their node scores) for each of its keyword and
concept-value conditions. Candidate nodes for which
the sphere score is computed are then nodes that are
at distance at most D from any node that occurs in at
least one of the lists, as exactly these nodes may have
a nonzero sphere score. For all candidate nodes, the
sphere score for the query group is then calculated by
computing the spheres around the node up to distance
D, looking up the node scores of nodes on the spheres
in the result lists, and adding their node scores with
the appropriate damping factor to the node’s sphere
score. The final list Ri for a query group Gi is then
the list of nodes with nonzero sphere score for Gi.

When adding virtual links, the query processor con-
siders only a limited set of possible end points of vir-
tual links to facilitate an efficient computation, namely
the nodes in the spheres up to distance D around nodes
with nonzero sphere score for any query group. The
rationale for this is that any other node has distance at
least D +1 to any result node, so even if a virtual link
is made through this node, it can contribute at most

1
2(D+1)+1 to the compactness, which is negligible for
typical values of D. Additionally, this set of candidate
nodes can be computed on the fly when computing
sphere scores. The set is further reduced by testing
for the join attributes, yielding two sets of potential
link end points. As an example, for the join condi-
tion A.x=B.y, one set consists of all candidate nodes
whose tag name is x or that contain x in their content,
and another set is computed with y. For all pairs of
elements from these two sets, the contents are tested
for equality (for exact-match joins) or similarity (for
similarity joins).

To compute the final ranked list of answers, a naive
solution would be to generate all possible potential
answers from the answers to the query groups, com-
pute their connection graphs with their compactness
and finally their score, and sort this list in descending
score order. However, as a user is typically interested
only in the top-k answers (with k being in the order of
10), this would entail a lot of useless work, especially
as most connection graphs will not have a connected
maximal spanning tree anyway.

To avoid this potential performance problem,
SphereSearch applies a top-k algorithm along the lines
of Fagin’s Threshold Algorithm [20, 25, 33] with sorted
accesses only. The input to this algorithm are two
kinds of sorted lists: (1) for each query group Gi

in the query the list of results for each query group,
sorted by their sphere score in descending order, and
(2) for each two-element set {Gi, Gj} of different query
groups with their result sets Ri and Rj , a list with all
two-element sets {ri, rj |ri ∈ Ri, rj ∈ Rj} with score
δX ′(ri, rj). The second kind of lists contain all possi-
ble edges of connection graphs of any potential answer.

The algorithm incrementally builds candidates for
connected maximal spanning trees by reading the en-
try from any of the lists that currently has the highest
score and combining it with already existing candi-
dates. As an example, if an entry {ri, rj} is read and
there is a candidate with the same ri, but without an
edge to a result from Rj , this candidate is extended.
The algorithm maintains the set of the k connected
maximal spanning trees with the currently best scores;
when a candidate that is extended forms a connected
maximal spanning tree, it is added to this set if its
score is better than the worst score of any other tree
in this set, replacing this graph. The algorithm stops
when no candidate that will be completed in the future
can make it into the top-k, using Fagin’s threshold con-
dition. It can be shown that this algorithm computes
exactly the k potential answers with the best scores;
we skip the (straightforward) proof for space reasons.

While this basic algorithm is already quite efficient,
we plan to extend it in the future by (1) incrementally
creating the lists (especially those with the edges) as
they are read, (2) additionally allowing random ac-
cesses to speed up evaluation, and (3) using an algo-
rithm with probabilistic thresholds [43].

7.5 Client GUI

We provide a graphical user interface that allows users
to construct search requests in an intuitive manner
without any knowledge of the query language itself.
Query groups are represented by boxes, and each box
can hold a set of keyword or concept-value conditions.
Joins can be expressed by drawing lines between the
boxes that are annotated with the join condition. Ad-
ditionally, parameters of the SphereSearch engine can
be configured from the interface (like the size D of
spheres, the damping factor α, etc.). Figure 7 shows
the visual construction of the query from Section 5
that asks for gothic and romanic churches at the same
location.

Figure 7: Sample Query in GUI

8 Experiments

8.1 Setup

For all experiments in this section, the SphereSearch
Engine was run on a dedicated machine (Sun V40z, 16
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GB RAM) running Windows 2003 Server, using the
Tomcat 4.0.6 environment and an Oracle 10g database
running on the same machine.

Let us first comment on the difficulties of defining
a meaningful benchmark for this kind of novel sys-
tem. We considered the existing XML benchmarks
like XMach [12], XMark [40], or INEX [28], as well as
classical information retrieval benchmarks like TREC
[44]. However, the first two XML benchmarks are de-
signed only for XQuery-style exact-match, non-ranked
queries on schematic XML data and thus are inap-
propriate for our purpose, whereas the current TREC
benchmarks do not consider XML at all. The INEX
benchmark for XML information retrieval would have
come closest to our needs. But INEX is currently
based solely on a collection of papers from IEEE CS
journals and conference proceedings, full texts with
XML tags, but with very simple, semantically poor
tags like <section>, <subsection>, <caption> only
and without any links. We nevertheless conducted ex-
periments with the INEX Benchmark to demonstrate
that our system performs well also on such poorly
tagged XML trees. What we would need for an in-
sightful stress test of our system is a large and struc-
turally heterogeneous collection with semantically rich
but diverse tags. None of the above choices seemed at-
tractive from this viewpoint, so we defined three new
collections together with sets of queries, in addition
to the established, but not really appropriate INEX
collection:

• The Wikipedia Collection consists of data from the
Wikipedia project [46], a free Web encyclopedia that
is collaboratively created by the Internet commu-
nity. The English part of Wikipedia currently con-
sists of more than 400,000 articles and is steadily
growing. The articles do not follow specific schema-
or content-related guidelines, nor any hierarchical
structure. They are, however, highly interconnected
using intra-Wikipedia links. The Wikipedia HTML
collection can be created from data available from
the Wikipedia website. We imported these files us-
ing the SphereSearch Crawler, transformed them to
XML (which includes transforming HTML links to
XLinks), and added annotations. Figure 8 shows a
fragment of a transformed and automatically anno-
tated page.

HTML XML

Figure 8: Example HTML-to-XML on Wikipedia

• The Wikipedia++ Collection is an extension of the
Wikipedia collection with information on movies de-
rived from the Internet Movie Database IMDB. We
downloaded the IMDB data, generated XML files
for each movie and actor (containing information
like plots and production locations for movies, birth
places and vitae for actors, and a high number of
links between documents representing castings etc.),
and added links to Wikipedia pages on movies and
actors.

• The DBLP++ Collection is based on the DBLP
project [31] that provides bibliographic information
on major computer science journals and proceed-
ings. It currently indexes more than 480,000 publi-
cations and contains several thousand links to home
pages of computer scientists. The DBLP database
is available as a single, huge XML file; we created
separate XML files for each author and publication
and properly connected these files using XLinks. In
addition to these XML files, we crawled the home-
pages of about 30,000 researchers listed in DBLP
yielding a collection of XML and HTML data.

• INEX [28] provides a set of 12,107 XML docu-
ments (scientific articles from IEEE CS), a set of
queries with and without structural constraints to-
gether with a manually assessed set of results for
each query, and an evaluation environment to assess
the effectiveness of XML search engines. We used
the set of 47 queries from the 2004 evaluation round
that were automatically converted to SphereSearch
queries.

Wikipedia++ DBLP++ INEX

documents 494,730 970,537 12,107
links 12,190,224 3,139,383 0
links per doc. 24.6 3.2 0
XML element nodes 28,697,928 9,319,820 8,283,874
elem. nodes per doc. 58 9.6 684
XML text nodes 27,196,960 7,849,264 8,267155
XML attr. nodes 29,185,399 8,174,065 3,858,653
source data size 3.1 GB 1.2 GB 504 MB

Table 1: Dataset Statistics

Table 1 illustrates the size and complexity of our data
collections. We made preliminary experiments to find
out reasonable values for the parameters of our engine.
We chose the weight of links as λ = 1, the maximal
sphere size as D = 6, the damping factor as α = 0.5,
and the weight for compactness in total score as β =
0.5 which gave good results for the vast majority of
queries. However, a deeper analysis of the effects of
parameter choices is beyond the scope of this paper.
8.2 Results for Wikipedia, Wikipedia++, and

DBLP++

We asked colleagues for queries on the different col-
lections (Wikipedia, Wikipdia++, DBLP++) that
were not too easy (so that a simple keyword search
could immediately find the answer) and not too dif-
ficult (so that even a very sophisticated XML query
could not find the answer). We selected 50 of
the submitted queries to obtain a query collection
comprising queries taking advantage of the different
query language features. To ensure that the queries
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followed some systematics, test users were told to
view the data as if there were a “latent relation”
with a virtual schema Info (Person, Date/Time,
Location, Event, Keywords, Description) where
each attribute could be a concept-value pair or simply
text content. So usually each query group in a user
query would consist of one more of these attributes
(with one or more concept-value and/or keyword con-
ditions, possibly in combination with ontology-based
similarity), but the test users were also free to go be-
yond this view of the data.

We categorized the queries into different levels of in-
creasing complexity, based on language features used:
• SSE-basic: the basic version limited to keyword con-

ditions using sphere-based scoring, however it lacks
concept-awareness and does not use multiple query
groups (i.e. all conditions are included in one single
group).

• SSE-CV: the basic version plus support for concept-
value conditions.

• SSE-QG: the CV version plus support for query
groups (i.e., full context awareness).

• SSE-Join: the full version with all features, includ-
ing joins.
All of the above SphereSearch levels were abstrac-

tion aware by utilizing the statistically quantified on-
tology for query expansion. We compared the Sphere-
Search levels to SphereSearch operating in simple
mode on document level and to Google keyword search
in different modes:
• SSE-KW: a very restricted version of SphereSearch

with simple keyword search without the notion of
spheres so that score mass, using BM25 scores, is
gathered only on the document level.

• GoogleWiki: Google search restricted to the
wikipedia.org domain. Initial experiments have ver-
ified that virtually all Wikipedia data has been in-
dexed by Google.

• Google∼Wiki: Google on wikipedia.org with
Google’s ∼ operator for query expansion.

• GoogleWeb: Google search on the entire Web (incl.
Wikipedia).

• Google∼Web: Google search on the entire Web with
query expansion.
Our measures of interest include the macro-averaged

precision@10 (i.e., the number of relevant results in the
top-10 of a query, averaged over all queries, where rel-
evance was manually assessed by the test users who
posed the queries) and the elapsed run-time of the
queries. Figures 9 and 10 show the aggregated re-
sults for the Wikipedia, Wikipedia++, and DBLP++
collections.

To apply the same collection of queries for all com-
plexity levels, we emulated queries with higher-level
features at lower levels by converting expressive con-
ditions into keyword conditions. Queries from lower
levels were added to higher levels without modifica-
tion. Thus, the gain in average precicion from one to
a higher level is only based on queries that were origi-
nally posed and are usually more difficult.
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Figure 9: Aggregated results for Wikipedia
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Figure 10: Aggregated results for Wikipedia ++ and
DBLP++

The figures show that SphereSearch has a higher
precision@10 than Google (with and without its simi-
larity operator) on Wikipedia, and that the restricted
version SSE-KW of SphereSearch is comparable to
Google on this corpus. Adding more language features
increases precision up to nearly twice the precision of
Google, which shows that SphereSearch’s structure-
oriented language is helpful even on unstructured Web
data. For the more structured data sets Wikipedia++
and DBLP++, the gain introduced by the new lan-
guage features is even more evident.
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Figure 11: Avg. runtimes

Figure 11 shows
the average runtime
for different query
types. With increasing
complexity, runtime
increases, too, but
absolute runtimes are
still quite efficient for
a prototype implemen-
tation, given the huge
size of the underlying
corpus.

In the following sections we discuss the results for
the various language levels in more detail, including
some anecdotic evidence for the behavior of Sphere-
Search.

8.2.1 Keyword Queries

Even for keyword queries SphereSearch performs bet-
ter than Google and SSE-KW. One reason for this is
that Google’s PageRank computation gives high scores
to hub-pages (like lists of events, pages for years, etc.)
that contain very little specific information.

An example is the query (Inventor,World Wide
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Web) to find out who invented the World Wide Web.
Both Google and SSE-KW return almost the same
results and the same ranking, but only the most
prominent person that is considered as the inventor
of the web, Tim Berners-Lee, can be found in the
Top-10. Using SphereSearch, this query also returns
Robert Cailliau, the co-inventor and former colleague
of Berners-Lee. This is in particular based on the high
scores contributed to this page by pages with outgo-
ing and ingoing links to this page, generating a high
sphere score.
8.2.2 Queries with Concept-Value Conditions

Using concept-value conditions especially increases the
result quality when parts of the query are ambigous.
When a user tries to find the first name of the Amer-
ican politician (Condoleezza) Rice with the keyword
query (American, politician, Rice), there is not
a single correct result among the top-10. Stating the
query as (person=rice,politician) increases pre-
cision@10 from 0 to 0.6 (in 4 of the top-10 pages
the person called ”Rice“ is not a politician). An-
other query type that significantly gains from the
usage of concept-value conditions are numerical an-
notations. The query for actors born between 1970
and 1980 (1970<date<1980,actor) can hardly be ex-
pressed with simple keywords.
8.2.3 Query Groups

As query groups can be used to group keywords be-
longing to the same entity, this additional structural
element leads to higher result precision. When the re-
sults can only be found on connected pages, recall is
increased as well. A typical query whose result quality
can be significantly increased by using query groups is
the keyword query (California, governor, movie)
(find movies with an actor who is the governor of Cal-
ifornia) that results in a precision@10 of 0. Using
groups, this query can be expressed as G(California,
governor) M(movie), yielding an increased preci-
sion@10 of 0.4.
8.2.4 Queries with Joins

A typical query that can exploit the power of
joins is searching for movies directed by the hus-
band of Madonna. Without knowing the name of
Madonna’s husband it is almost impossible to pose
a keyword query returning correct results. Us-
ing the SphereSearch query A(Madonna,husband)
B(director) A.person=B.director returns 4 rele-
vant results among the Top-10. These results consist
of pairs of elements where one element contains the in-
formation that Guy Ritchie is the husband of Madonna
(this is automatically annotated as <person>) and an-
other element representing a movie directed by Guy
Ritchie.
8.3 Results for INEX

For the 2004 set of 47 queries with assessments,
SphereSearch gained a mean average precision of 0.060
for keyword-only (CO) queries and 0.055 for queries
with structural constraints (CAS), which is slightly

better than our ’old’ search engine XXL and would
rank SphereSearch among the top-30 of all 70 systems
that participated in INEX 2004. Note that Sphere-
Search has not been explicitly optimized for INEX (like
some of the top-ranked systems) and the structural
constraints of most queries cannot be easily mapped to
SphereSearch’s query language. On average, an INEX
query took about 1-2 seconds to evaluate, which is
much faster than the best published response times of
INEX participants which were 13 seconds per query
on similar hardware.

9 Conclusion

This paper has presented the SphereSearch Engine
as a powerful search engine that provides unified
ranked retrieval on heterogeneous XML and Web
data. Its query language, while being much simpler
than full-fledged XML query languages, includes en-
hanced search features for concept-awareness, context-
awareness, and abstraction-awareness, yielding a much
higher expressiveness than usual keyword-based text
retrieval languages provide. These may not be funda-
mentally new for a rich XML query language, but they
are innovative for a Web search engine and extremely
beneficial on highly heterogeneous XML data where
XPath or XQuery cannot be applied. In contrast to
the mainstream of XML querying, SphereSearch is not
limited to DOM trees but can handle arbitrary graph
structures that emanate from XLink/XPointer refer-
ences or Web hyperlinks.

All queries that we can express on XML produced
ranked results and can be executed in exactly the same
way on Web data that is automatically converted and
heuristically enhanced with semantic tags and anno-
tated with natural language processing tools. Most
importantly, the ability to search mixed collections
of XML and Web data opens up new search func-
tionalities. Even though our experiments are prelimi-
nary, they clearly demonstrate the viable efficiency of
SphereSearch and its expressiveness and good search
result quality. Future work will include further experi-
mentation, additional techniques for efficiency, and the
integration of facilities for Deep-Web search.
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