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Abstract

Link spam is used to increase the ranking
of certain target web pages by misleading
the connectivity-based ranking algorithms in
search engines. In this paper we study how
web pages can be interconnected in a spam
farm in order to optimize rankings. We also
study alliances, that is, interconnections of
spam farms. Our results identify the optimal
structures and quantify the potential gains. In
particular, we show that alliances can be syn-
ergistic and improve the rankings of all partic-
ipants. We believe that the insights we gain
will be useful in identifying and combating
link spam.

1 Introduction

As search engines become ubiquitous tools of our
everyday lives, individuals and businesses crave to see
their web pages showing up frequently on the top of
query results lists. The economic advantage of high
search engine ranking led to the emergence of the dark
art of web spamming [5]: some authors create web con-
tent with the main purpose of misleading search en-
gines and obtaining higher-than-deserved ranking in
search results.

Successful spamming attempts induce a bias in
search results and decrease quality, as truly popular
pages are replaced by artificially boosted spam docu-
ments. Counterbalancing the negative effects of an in-
creasing volume of web spam represents a major chal-
lenge for today’s web search engines [6].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Among the plethora of techniques used by spam-
mers, one that deserves special attention is link spam-
ming. Link spamming refers to the cases when spam-
mers set up structures of interconnected pages, called
link spam farms, in order to boost the connectivity-
based ranking, most frequently the PageRank [9], of
one or a small number of target pages. The issue of
link spamming is important not only because it can
render significant gains in the rankings of target pages,
but also because many instances of it are very hard to
detect.

In this paper we analyze how link spammers ma-
nipulate PageRank scores. We study the problem in
two phases. First, we take a look at the ways in
which a spammer can improve the ranking of a sin-
gle target page. Then, we investigate how groups of
spammers could collaborate by forming alliances of in-
terconnected spam farms. For the latter scenario, we
suppose that individual spammers already have their
own spam farms. Such spammers might want to coop-
erate, either for mutual benefit, or based on a finan-
cial agreement. As we will see, with carefully devised
interconnection of spam farms, cooperation could be
reciprocally advantageous to all participants.

While recent analyses of PageRank’s mathematical
properties [1, 8] touch on the subject of link spam-
ming, our paper represents a more detailed discussion
dedicated exclusively to this subject.

It is important to mention that while our ultimate
goal is to combat link spam, in this paper we only focus
on studying various farm structures and alliances that
can impact rankings. We briefly touch on the topic of
combating link spam in Section 7, where we illustrate
how our understanding of spam structures can lead to
useful detection schemes.

One obvious question that arises is whether we help
spammers by presenting our results. Our experience
indicates that all the spamming techniques that we will
present are already widely used by the large commu-
nity of spammers. Our contribution here is simply to
formalize these link spam structures, to quantify their
impact on ranking, and to compare them against each
other.
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The rest of the paper is organized as follows. First,
we offer an overview of PageRank, the commonly used
ranking algorithm that we investigate from the per-
spective of link spamming. Then, we discuss our model
for a spam farm, and derive the optimal internal struc-
ture of a farm based on the properties of PageRank.
Sections 4 and 5 first focus on the optimal structure
of two interconnected spam farms, then also analyze
larger spam farm alliances. Next, we discuss how our
findings apply to generic link spam structures. We
conclude the paper with a summary of applicable link
spam detection techniques.

2 Preliminaries

2.1 Web Model

In this paper we adopt the usual graph model for rep-
resenting the web of interlinked hypertext documents.
Let G = (V, E) be the web graph with vertices V, rep-
resenting web pages, and directed unweighted edges
E , representing hyperlinks between pages. Please note
that we do not allow self loops (links on a page point-
ing to itself).

As we will see, pages without outlinks play an im-
portant role in our analysis. Such pages are usually
referred to as sink pages.

It is common to associate with the web graph a
transition matrix T = (Ti,j)n×n defined as:

Ti,j =

{
1/out(i), if (i, j) ∈ E
0, otherwise

where out(i) is the outdegree of page i, that is, the
number of links (edges) leaving i.

2.2 The PageRank Algorithm

Search engines usually combine the results of sev-
eral ranking algorithms to produce the ordering of the
pages returned as answers to a query. One of the
best-known ranking algorithms is PageRank [9], which
computes global importance scores for all web pages.
Because the scores are determined based on the link
structure of the web, PageRank is a natural target to
link spamming. Our discussion will focus on link spam
structures that target the PageRank algorithm. Next,
we offer a short overview of PageRank.

Let us introduce a constant c called the damping
factor. The scores computed by PageRank will cor-
respond to the stationary distribution of a Markov
chain [7] where:

1. The states represent web pages.

2. A transition from page i to page j occurs with
a probability c/out(i) whenever one of the out(i)
outgoing links of i points to j.

3. With probability (1 − c), the transition from a
page will be made uniformly at random to any
web page. This latter case is called random jump
or teleportation.

The traditional formulation of the PageRank prob-
lem is based on the eigensystem corresponding to a
Markov matrix. For the purposes of this paper, we
define the PageRank score vector p in a different way,
as the solution of the matrix equation

p = cT′ p +
1− c

N
1N , (1)

where c is the damping factor, T′ is the transposed
transition matrix, N is the total number of web pages,
while 1N is a vector consisting of N elements of 1.
Hence, our formulation is based on a linear system,
which not only yields the same relative scores for the
pages as the traditional approach, but also has several
additional advantages [8].

3 Single-Target Spam Farm Model

In the first part of the paper, we introduce our spam
farm model, and investigate what link spam structure
yields the highest PageRank of the target page. This
sets the stage for the analysis of spam alliances (Sec-
tion 4) and other link spam structures that deviate in
some ways from the presented ones (Section 6).

3.1 Definition

As mentioned in Section 1, link spamming targets
those ranking algorithms that derive the importance
of a page from the link structure of the web. In order
to boost the rankings of some of their pages, spammers
often set up (large) groups of web pages with carefully
devised interconnection structures. We will call the
group of pages controlled by a spammer a link spam
farm, or simply a spam farm.

The initial link spam farm model that we adopt is
based on the following rules:

1. Each spam farm has a single target page. The
target page is the one that the spammer wishes
to expose to a web user through a search engine.
Therefore, the spammer focuses on boosting the
ranking of the target page.

2. Each spam farm contains a fixed number of boost-
ing pages that exist in order to improve the rank-
ing of the target page, possibly by pointing to it.
These boosting pages are under the spammer’s
full control. We assume that there is always an
upper bound on the size of the spam farm (the
number of boosting pages) because of the associ-
ated maintenance costs (domain registration fees,
page hosting fees, hardware costs, invested time).
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Figure 1: An optimal structure for a single spam farm
with one target page.

3. It is also possible for spammers to accumulate
links from pages outside the spam farm (for in-
stance, by finding their way into a web directory,
or an unmoderated bulletin board). We call these
external links hijacked links, and the total Page-
Rank that reaches the farm through these links
is referred to as the leakage. Please note that
the spammer does not have full control over the
pages that contain hijacked links, i.e., can nei-
ther influence their PageRank scores significantly,
nor determine where and how the scores get dis-
tributed through the outlinks. Therefore, the ac-
tual amount of leakage is fairly independent of
the spammer’s efforts—the spammer can at most
struggle to hijack many links, preferably on pages
that are suspected of having a high PageRank.

3.2 Structure

Let us consider a spam farm consisting of k boost-
ing pages plus a target page. It is possible to iden-
tify an entire class of farm structures that yield the
highest PageRank score for the target page. One opti-
mal structure is presented in Figure 1. The k boosting
pages point directly to the target, the target links back
to each of them, and all hijacked links point to the tar-
get, providing the leakage λ.

First, let us take a look at what target score this
structure yields. Then, we prove that this is the best
target score one could achieve.

Theorem 1 The PageRank score p0 of the target page
in Figure 1 is

p0 =
1

1− c2

[
cλ +

(1− c)(ck + 1)
N

]
.

The proof for all our theorems can be found in the
extended version of this paper [4].

3.3 Optimality

In this section we identify the class of spam farm struc-
tures that yield the highest target PageRank. Con-
sider the generic spam farm in Figure 2, with a single
target and k boosting pages. The pages of the farm are
interconnected in an arbitrary manner. Spam pages
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Figure 2: Generic farm structure used in Theorem 2.

may have outlinks pointing to pages outside the farm
(although such links are omitted in the figure). Hi-
jacked links point to pages in the farm so that the
leakage to the target is λ0 ≥ 0, and to boosting page
i is λi ≥ 0. The total leakage is λ = λ0 + · · · + λk.
Please note that while the spam pages may point to
good pages, and thus possibly have some impact on
the leakage, based on Assumptions 3 from Section 3.1,
λi does not actually depend on the PageRank scores
of spam pages.

We introduce two vectors p and λ for the PageRank
and leakage of the boosting pages,

p =


p1

p2

...
pk

 λ =


λ1

λ2

...
λk

 .

With this notation, the matrix equation of the
PageRank scores of the spam farm pages can be writ-
ten as(

p0

p

)
= c

(
λ0

λ

)
+ c

(
0 e′

f G

) (
p0

p

)
+

1− c

N
1k+1 , (2)

where the row vector e′ corresponds to the weights of
the links from boosting pages to the target, f contains
the weights of links from the target to the boosting
pages, and G is the weight matrix capturing the con-
nections among boosting pages.

Theorem 2 The PageRank score p0 of the target is
maximal if the farm is structured so that e = 1k, 1′kf =
1, G = 0k×k, and λ0 = λ and λi = 0, for i = 1, . . . , k.

In other words, p0 is maximal if and only if

• all boosting pages point to and only to the target
(e = 1k),

• there are no links among the boosting pages (G =
0k×k),

• the target points to some or all boosting pages
(1′kf = 1), and

• all hijacked links point to the target (λ0 = λ, and
λi = 0 for i = 1, . . . , k).

519



 
 

 
 

 
 

 
 

 
 

p1 

p2 

pk 
p0 

λ 

p1 p2 pk 

p0 

q1 q2 qm

q0

p1 

p2 

pk 
p0

? 

λ0
 

λ1 
 
λ2 
 

λk 
 

p2 

p3 

pk 
p0 

λ 
 

p1 

p0 

Figure 3: Another optimal structure for a single spam
farm with one target page.

These constraints also imply that there are no outlinks
pointing to external pages.

The farm structure in Figure 1 satisfies the prop-
erties required by Theorem 2. Similar structures will
also satisfy the properties, as long as a proper subset of
the target-to-boosting links are maintained. The ex-
treme case when the target points to only one boosting
page is shown in Figure 3.

3.4 Leakage

We have seen that in the optimal case the target
accumulates PageRank from the boosting pages and
through the hijacked links. In this section we show
that the leakage can be thought of as an additional
number of boosting pages. Therefore, we will not need
a separate treatment of leakage in the rest of the paper.

Theorem 3 For an optimal farm, a leakage of λ in-
creases the target score by just as much as an addi-
tional number of dλ boosting pages would, where d is
a constant that depends on the farm structure.

Please note that we are not expecting actual farms
to lack leakage and be isolated from the rest of the
web. Leakage is treated as additional boosting pages
merely to simplify the exposition and our mathemat-
ical derivations. Our results can be easily generalized
to the case when there is leakage.

3.5 Reachability

The structure presented in Figure 1 has the property
that if the search engine’s crawler reaches the target
through at least one hijacked link, then the entire link
farm becomes reachable. Thus, the entire farm gets
crawled and indexed by a search engine and the boost-
ing pages contribute to the score of the target indeed.

While reachability through hijacked links is impor-
tant, there are also other ways in which one can make
the crawler aware of specific pages. For instance, in
order to make sure that the search engine’s crawler
reaches all the pages of a spam farm, one could use
a separate domain for each of the pages. As search
engines usually crawl all domains from the registrar
databases, all the pages would get crawled and indexed
this way.
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Figure 4: Making boosting pages reachable through
hijacked links.

Also, it is possible to “sacrifice” some hijacked links
and point to the boosting pages instead of the target.
A corresponding spam farm is presented in Figure 4
(dashed lines represent hijacked links). These alterna-
tive approaches to reachability will become important
later in our discussion, when we remove the links from
target pages to boosting pages.

4 Alliances

The first part of this paper addressed the case of a
single spam farm. In the second part of this paper,
we turn our attentions to groups of spammers, each
with an already built farm, and investigate how inter-
connecting their farms impacts the PageRank scores
of target pages. As mentioned earlier in Section 1,
these types of collaborations emerge on the web, ei-
ther because they are mutually beneficial, or as a result
of some financial agreement between a “client” and a
“service provider.”

First, in this section we derive formulas that quan-
tify features of various alliance structures. Then, in
Section 5 we use the derived formulas to study some
collaboration scenarios of interest.

4.1 Alliances of Two

Let us first discuss ways in which we can combine two
optimal farms. The farms have a single target page
each, and have k and m (k < m) boosting pages, re-
spectively. (As mentioned earlier, leakage is treated as
being a fraction of the boosting pages.) Let p̄0 and q̄0

denote the (maximal) PageRank scores of the target
pages when the farms are not interconnected:

p̄0 =
ck + 1

(1 + c)N
q̄0 =

cm + 1
(1 + c)N

.

Then, p0 and q0 will denote the scores of the tar-
gets when the two farms are interconnected in one way
or another. We investigate three interconnection tech-
niques next.

4.1.1 Shared Boosting Pages

There are a number of ways in which one could con-
nect two spam farms. One way of doing it is just hav-
ing all boosting pages point to both of the targets,
as presented in Figure 5. In order to produce such a
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Figure 5: Two spam farms with all boosting pages
pointing to both targets.

structure, both spammers have to add links from their
boosting pages to the target of the other. Hence, a
total number of (k + m) new links has to be added.

What we achieve through this interconnection
structure is two target pages with identical scores:

Theorem 4 For the structure presented in Figure 5,
p0 = q0 = (p̄0 + q̄0)/2.

Accordingly, sharing boosting pages is clearly ad-
vantageous to the spammer with the smaller initial
farm, as its target PageRank increases from p0 ∝ k to
p̄0 ∝ (k + m)/2 > k.

On the other hand, sharing is inconvenient to the
spammer with the larger initial farm, as the PageRank
of its target decreases.

The net effect of sharing boosting pages is just
equivalent to the scenario when there are two uncon-
nected farms, and (m−k)/2 boosting pages simply get
“moved” from the larger farm to the smaller one.

4.1.2 Connected Target Pages with Links to
Boosting Pages

Instead of connecting all boosting pages to both tar-
gets, one could connect the two targets only, so that
each would point to the other. In this case, the boost-
ing pages in each of the two farms would still point to
their respective target only. Also, targets would point
back to the boosting pages in their own farms.

A simple analysis, similar to the one for Theorem 4,
reveals that the effect achieved by this interconnection
structure is exactly the same as in the case when all
boosting pages are shared: both targets have the same
score (p̄0 + q̄0)/2.

Please note that while all that we achieved is still
a redistribution, rather than an increase of the target
PageRank scores, this structure bears an advantage
over the one presented in Section 4.1.1: the number of
interconnecting links that have to be added is reduced
from (k + m) to only 2.

4.1.3 Connected Target Pages without Links
to Boosting Pages

We can form a third possible structure by connecting
the two target pages and removing all links to boost-
ing pages, as shown in Figure 6. The corresponding
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Figure 6: Two spam farms with interlinked target
pages.

PageRank equations yield the target score p0 (q0 is
symmetrical)

p0 =
ck + c2m

(1 + c)N
+

1
N

. (3)

The following theorem states that the scores of both
target pages increase as compared to the maximum for
unconnected farms.

Theorem 5 For the structure presented in Figure 6,
(p0 − p̄0) ∝ m and (q0 − q̄0) ∝ k.

The natural question that arises is how such an im-
provement was possible. A simple informal analysis
reveals the reason.

Let us first take a look at the total PageRank of the
three discussed alliances, that is, the sum of the Page-
Rank scores of all target and boosting pages in each
alliance. It turns out, that the total score is exactly the
same in all three cases, being equal to (k + m + 2)/N .
It also turns out that in the general case there is al-
ways an upper bound on the total PageRank score of
a structure with fixed connectivity to the rest of the
web [1].

Now let us focus on the individual PageRank scores
of the boosting pages. For the third structure, the
PageRank of each boosting page is minimal. In con-
trast, for the first two structures the boosting pages
have higher score, for the reason that the target
pages have links pointing back to the boosting pages.
By eliminating these links in the third structure, we
avoided the distribution of a precious fraction of the
total PageRank score to the boosting pages, which are
irrelevant anyway.

Our conclusion is that the third structure yielded
higher target scores because of a better “housekeep-
ing.” The total PageRank being limited, it assured
that boosting pages stay low, while all the rest of score
gets properly distributed among the targets. In fact,
it can be shown that this structure is the optimal one
for two farms, in the sense that it maximizes the sum
of target PageRank scores.

4.2 Web Rings

Now, as we know how to join two spam farms, it makes
sense to try to extend our discussion to larger alliances.

521



 
 

 
 

 
 

p1 

p2 

pk 

p0 

q1

q2

qm

q0 

q1

q2

qm
q0 

p1 

p2 

pk 
p0 

r1 r2 rn 

r0 

q0 p0 

r0 

k m

n Figure 7: Three spam farms with target pages forming
a ring.

We will call the subgraph of the target pages the core
of the alliance. In the extreme case, the core of a single
spam farm is the target page alone. From among the
plethora of possible core structures for larger alliances
(surveyed briefly in Section 4.4) in this paper we focus
on two:

• Web rings represent the simplest way of intercon-
necting several target pages. Also, such structures
are frequently encountered on the real web, and
not necessarily in the context of spam only. Web
ring structures have been popular among groups
of authors interested in the same topic for long.
In fact, web rings are one of the earliest forms in
which web content was organized.

• Alliances with completely connected subgraphs of
targets, or complete cores, are the extreme for a
strongly connected group of targets.

We investigate each of these two structures in turn.
Our first way of connecting targets is by forming a

ring, i.e., a cycle that includes all target pages. Fig-
ure 7 shows such a structure for three spam farms.

Solving the corresponding matrix equation yields
the following PageRank score for the first farm’s tar-
get:

p0 =
ck + c2m + c3n

(1 + c + c2)N
+

1
N

. (4)

For the more general case of F farms interconnected
by forming a ring of the target pages, let us denote
the score of each target page by ti, and the number of
boosting pages in each farm by bi, where i = 1, . . . , F .
For this structure, the score of the first target will be

t1 =

∑F
j=1 cjbj

N
∑F

j=1 cj−1
+

1
N

,

and, more generally, the PageRank score of target i
will be

ti =

∑F
j=i cj−i+1bj +

∑i−1
j=1 cj+F−i+1bj

N
∑F

j=1 cj−1
+

1
N

. (5)
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Figure 8: Three spam farms with target pages forming
a complete core.

4.3 Alliances with Complete Cores

Beside web rings, connecting each spam farm with all
the others is another way to move to larger structures
from two collaborating spam farms.

Figure 8 shows the case when three spam farms col-
laborate by setting up a completely connected sub-
graph of the targets. (Please note that the links from
targets to boosting pages are removed, just as for web
rings. Boosting pages are not shown.)

Solving the corresponding matrix equation yields
the following PageRank score for the first farm’s tar-
get:

p0 =
2ck − c2k + c2m + c2n

(2 + c)N
+

1
N

.

Again, the PageRank score of each target is greater
than the maximum for unconnected farms. The ad-
ditional score comes from the other target pages, and
each other target’s contribution is proportional to the
number of boosting pages in that target’s farm.

In the general case, we might have F farms with bi

boosting pages each, and target page scores ti, where
i = 1, . . . , F . The PageRank scores of the targets are:

ti =
c(1− c)(F − 1)bi + c2

∑F
j=1 bj

(F + c− 1)N
+

1
N

. (6)

4.4 Other Core Structures

We have analyzed two possible ways of connecting the
target pages of an alliance. While we will continue
to focus on the presented two structures in the rest
of this paper, it is important to emphasize that there
are other ways to construct the core of an alliance.
It is also important to emphasize that the analysis of
these other structures is similar to what is presented
for rings and alliances with complete cores. In this
section we take a cursory look at an entire family of
possible cores.

Let us consider the F target pages of the farms in an
alliance. There are 2(F−1)F possible ways to connect
F nodes and form a directed graph without self-loops.
However, not all of these possible graphs could act as
an alliance core. In particular, the farms are actually
allied only if the core is weakly connected, that is, the
underlying undirected graph is connected. Moreover,
the core is optimal (the sum of the target PageRank
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scores is maximal) only if it is strongly connected, that
is, there is a directed path from each target page to
every other.

In Sections 4.2 and 4.3 we have seen two alliance
structures with optimal cores. But how many optimal
cores exist for a specific F? What are the PageRank
scores of the targets in each of them?

It turns out that answering the first question is not
trivial. The number of strongly connected directed
graphs of F = 3, 4, 5, . . . nodes is 18, 1606, 565080, . . .
This is Sloane’s integer sequence A003030 [10] and we
are not currently aware of any simple analytic genera-
tor function for it.

To answer the second question, we note the follow-
ing: for each optimal core, it is possible to produce
the equations that yield the target PageRank scores,
exactly as we did in case of the ring and the complete
core. In what follows, we attempt to provide a quan-
titative intuition of the possible outcomes through an
example.

Consider the alliance formed of F = 4 spam farms,
each having 100 boosting pages. As mentioned before,
there are 1606 different optimal cores made up of 4
strongly connected target pages. In a simple experi-
ment, we computed the target PageRank scores (with
c = 0.85) for all the cores. Depending on the actual
structure, each target PageRank can have one of 206
distinct values that range from 32.14/N to 165.07/N .
The values cover the range fairly uniformly. Hence,
we conclude that it is possible to obtain roughly any
distribution of PageRank scores among the targets by
picking an appropriate core structure. The discussion
on how to select a core that matches a specific distri-
bution constitutes the topic of future research.

5 Alliance Dynamics

In the previous sections we derived a number of formu-
las that help us determine the target PageRank scores
for different structures adopted in spam farm alliances.
In this section we put our formulas at work, showing
how our results could help us answer a number of prac-
tical questions of special importance. Among others,
we seek answers to questions like: Why has one target
in an alliance larger score than another? Does it make
sense for a new farm to join an existing alliance? Does
it make sense for a farm to leave an existing alliance
in which it participates? How do additional boosting
pages added to a farm influence its position within the
alliance?

5.1 Being in an Alliance

Let us first look at what happens to some spam farms
as soon as they form an alliance.

To illustrate, consider ten spam farms with target
pages t1, . . . , t10. The first farm has b1 = 1000 boost-
ing pages, the second has b2 = 2000, and so on with
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Figure 9: Scaled target PageRank scores with the
farms connected in different ways.

the last having b10 = 10000 boosting pages. We dis-
cuss three scenarios. First, each farm could stay un-
connected to the others, maximizing its target score
by adopting the structure presented in Figure 1. Sec-
ond, the farms could form an alliance with the targets
connected in a ring: t1 points to t10, t10 to t9, and
so on until the cycle gets closed by t2 pointing to t1.
Third, the farms could be interconnected so that the
targets form a complete core.

Now let us take a look at the PageRank of each tar-
get in all three scenarios. Figure 9 presents the scores.
The horizontal axis marks the ten farms. The vertical
axis corresponds to the scaled PageRank scores of the
targets. (We scaled the PageRank scores by multiply-
ing them by N, the total number of web pages. This
way, the obtained scaled scores are independent of the
size of the web.) The three curves correspond to the
three scenarios.

As we can see, for unconnected farms the target
PageRank is linear in the farm size. If the targets
form a complete core, each of the target PageRank
scores increases with respect to the unconnected case.
Moreover, the increase is so that the smallest farm
gains the most additional PageRank and the largest
gains the least. Even more intriguing, in case of the
web ring some target scores increase while some others
drop below the unconnected case. In particular, the
target of the largest farm in the ring loses score.

Figure 10 helps us understand these phenomena. It
shows the contributions of farm 1 to the PageRank
scores of different target pages that are either in a
ring, or form a complete core. The horizontal axis once
again represents the farms. For each farm i, the verti-
cal axis shows the fraction of the scaled PageRank of
ti that is due to the presence of farm 1 in the alliance.

Intuitively, Figure 10 shows what advantage of each
farm draws from being connected to farm 1. Please
note that for the complete core a larger fraction of
the PageRank is preserved for farm 1’s own target,
and the other targets receive a considerably smaller,
identical contribution. In comparison, in a web ring
the contributions to itself and others are closer to each
other, and decrease with the distance from farm 1.
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Figure 10: Scaled PageRank contribution of the first
farm to the others.

Let us derive the formulas that yielded Figure 10.
Please note that Equation 5 and 6 can be easily decom-
posed into independent terms corresponding to each
farm in the alliance. Accordingly, for a web ring the
PageRank score contribution cr(i, i) of farm i to its
own target i is

cr(i, i) =
c(1− c)bi

(1− cF )N
+

1
N

,

while the contribution cr(i, j) of farm i to target j,
i 6= j, is

cr(i, j) =
cd(i,j)+1(1− c)bi

(1− cF )N
+

1
N

,

where d(i, j) denotes the distance, or number of hops,
on the ring between targets i and j. For instance, the
distance between target t3 and t1 is 2, while between
targets t1 and t3 it is 8.

Similarly, the self-contribution cc(i, i) for a com-
plete core is

cc(i, i) =
c(1− c)(F − 1)bi + c2bi

(F + c− 1)N
+

1
N

,

and the contribution cc(i, j) of farm i to target j, i 6= j,
is

cc(i, j) =
c2bi

(F + c− 1)N
+

1
N

.

Indeed, in case of the ring the contribution to others
depends on the distance, while for the complete core
it is uniform. Also, it is easy to see that the total
contribution of a farm is the same for both structures:

F∑
j=1

cr(i, j) =
F∑

j=1

cc(i, j) =
cbi

N
.

Please note that the total contribution made by a
farm is proportional to the number of boosting pages.
The contribution is independent of the interconnec-
tion structure between targets, as long as the targets
are not sinks and only point to other targets.

5.2 Joining an Alliance

With the interplay of contributions in our mind, we
may ask a new set of questions. First, consider an
existing alliance and a new spammer who would like
to join the alliance. Absent any payments, existing
members of the alliance should allow the newcomer
to join only if the PageRank scores of existing target
pages increase. We would like to find out under what
circumstances a new farm satisfies this criterion.

5.2.1 Web Rings

We first answer the previous question for web rings.
For example, consider the case of adding a new farm
(farm 3, with target PageRank r0) to a ring of two
farms 1 and 2 (with target PageRank scores p0 and q0,
respectively). Using Equations 3 and 4, we can derive
that the owner of farm 1 gains score by allowing farm
3 to join only if

ck + c2m + c3n

(1 + c + c2)N
>

ck + c2m

(1 + c)N
,

hence,

n >
k + cm

1 + c
.

That is, the sizes of farms 1 and 2 determine the
minimum size of farm 3 above which it is beneficial for
ring members to let the newcomer in. For instance, if
k = 20 and m = 10, existing members should let the
new farm join the ring only if it has at least n = 16 >
15.4 boosting pages.

In general, it is beneficial to append a new farm at
the end of the ring of F farms (i.e., between tF and
t1) if the following inequality is satisfied:

bF+1 >

∑F
i=1 ci−1bi∑F
i=1 ci−1

. (7)

As we can see, the lower bound on farm size is a
weighted mean of the farm sizes already in the alliance.
Moreover, the weights depend on the position where
the new farm is to be inserted.

It is interesting to follow how the insertion point
influences minimum size. For instance, consider Fig-
ure 11, which shows the minimum size of a new farm as
a function of the insertion point. The horizontal axis
shows the farm in the ring before which the new one
would be inserted. For instance, if the farm after the
new one is 3 then the new farm would be inserted be-
tween farms 2 and 3, pointing to t2. The vertical axis
shows the minimum size as required by Equation 7.
For instance, if the new farm is inserted before farm
1 the minimum size is only 4216, whereas if inserted
before farm 7, the minimum size is 6167.
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Figure 11: Minimum farm size as function of the in-
sertion point in a ring.

5.2.2 Alliances with Complete Cores

Let us also investigate when it is beneficial to let a
newcomer join an existing complete-core alliance. Un-
fortunately, it turns out that the answer for completely
connected targets is not as straightforward as it is for
rings. In this case, a newcomer with bF+1 boosting
pages is welcome (i.e., it increases every existing tar-
get’s score) only if it satisfies the following inequalities
for i = 1, . . . , F :

(1− c)Fbi + c
∑F+1

j=1 bj

F + c
≥

(1− c)(F − 1)bi + c
∑F

j=1 bj

F + c− 1
.

Simplifying the terms we get an inequality for each bi:

bF+1 ≥

(∑F
j=1 bj

)
− (1− c)bi

F + c− 1
.

Fortunately, a closer look at the inequalities reveals
that it is enough to satisfy one of them in order to also
satisfy all the rest:

Theorem 6 The inequality corresponding to the
smallest farm already in the alliance determines alone
the minimum size of the newcomer farm.

It follows that the lower bound on the number of
boosting pages for the newcomer is given by the in-
equality

bF+1 ≥

(∑F
j=1 bj

)
− (1− c)minF

i=1{bi}

F + c− 1
. (8)

From this result, we can find a convenient approxi-
mate lower bound to the size of the new farm. Let us
introduce η ≥ 1 so that ηb∗ corresponds to the arith-
metic mean of farm sizes in the alliance. Then, the
previous inequality can be written as

bF+1 ≥
Fηb∗ − (1− c)b∗

F + c− 1
=

Fη + c− 1
F + c− 1

b∗ .

As F � (c− 1), we can safely assume that

Fη + c− 1
F + c− 1

' η .

Hence, if the new farm satisfies Equation 8, it also
satisfies bF+1 ≥ ηb∗, and the current average farm size
ηb∗ is very close to (but below) the lower bound on the
new farm’s minimum size.

To illustrate the previous results, consider the al-
liance of two interconnected farms with k = 20 and
m = 10 boosting pages. It makes sense to accept a
third and form a complete-core alliance if{

t3 ≥ 15.4054 for farm with 10 boosting pages,
t3 ≥ 14.5946 for farm with 20 boosting pages.

Therefore, the third farm should have at least 16
boosting pages.

5.3 Leaving an Alliance

We may also ask: When does it make sense for a farm
that is part of an existing alliance to split off from the
alliance and continue to exist as a stand-alone farm
instead? We have seen in Figure 9 that target t10 had
a lower PageRank in a ring than it would have had if
it were alone. Our intuition is that the contribution
of farm 10 to the others is too large, and it does not
receive enough contribution from the others in return.
Let us formalize this intuition by deriving the appro-
priate inequalities for rings and alliances with complete
cores.

5.3.1 Web Rings

A farm should leave an alliance if the PageRank of its
target is lower than it would be when the farm were
unconnected to others, and had an optimal internal
structure as shown in Figure 1. The corresponding
inequality for the first farm in a ring is

cb1 + 1
(1 + c)N

≥
∑F

i=1 cibi

N
∑F

i=1 ci−1
+

1
N

,

with the solution

b1 ≥
cF − c(1− c2)

∑F−1
i=1 cibi+1

c2 − cF
. (9)

For instance, farm 1 should have 11389 boosting
pages for it to make sense to leave the ring. On the
other hand, the limit for farm 10 is 9091. As its size is
10000, which is above the limit, the PageRank of farm
10’s target is lower than it would be if the farm were
unconnected.

5.3.2 Alliances with Complete Cores

Similarly, it makes sense for farm 1 to leave an alliance
with complete core if the following inequality is satis-
fied:

cb1 + 1
(1 + c)N

≥
c(1− c)(F − 1)b1 + c2

∑F
i=1 bi

F + c− 1
+

1
N

.
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The solution is

b1 ≥
F + c− 1 + (1 + c)

∑F
i=1 bi

c2(F − 2)
. (10)

Here the differences between the minimum sizes for
the various farms are less than they were for web rings,
as the contributions get distributed more uniformly.
For instance, the limit for farm 1 is 14693, while for
farm 10 is 12445. As none of the farms reaches the
size limit in Figure 9, it makes sense for all of them to
stay in the alliance.

5.4 Adding More Boosting Pages

Another situation that might arise is when a spammer
participating in an alliance wishes to add more boost-
ing pages to its own farm. Such increase in the number
of boosting pages increases the contribution of that
farm to its own target and all others in the alliance,
following the patterns shown in Figure 10. Obviously,
the more new boosting pages are added, the closer the
farm gets to the limit for leaving, as stated in Inequal-
ities 9 and 10. The question is, given the current size
of farm i, how many pages need to be added to farm i
before it is better off on its own?

We can find the answer to this question by tak-
ing a look at the difference between the minimum size
as determined by Inequalities 9 and 10 and the cur-
rent size of the farm. Figure 12 presents the corre-
sponding results for our 10 spam farms connected ei-
ther in a ring or in an alliance with complete core.
The horizontal axis shows farm numbers, while the
vertical axis represents the minimum number of addi-
tional boosting pages a spammer should add, so that
the target PageRank after leaving the alliance would
be higher than the PageRank when staying in the al-
liance. For instance, if farm 3 with a current number
of 3000 boosting pages would receive approximately
10000 more boosting pages, it could achieve higher
target PageRank by splitting off from a complete-core
alliance than staying within it. Please note that farm
10 is already above the limit for the ring structure. In
such an instance, the spammer might want to leave
the alliance, drop some boosting pages, or charge the
others for the “loss” incurred due to staying in the
alliance.

6 Generalized Link Spam Structures

Our analysis so far has focused on optimal spam farms
and how they can be interconnected. However, the use
of optimal structures makes it easier to detect spam
farms (see Section 7), so spammers might try to de-
viate from the best structures, even if the rankings of
their target pages decrease somewhat. Still, to avoid
losing too much PageRank, spammers may not want to
deviate too much. This means that “real” structures
will still resemble the ones we have studied.
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Figure 12: Additional boosting pages required before
leaving.
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Figure 13: A spam alliance with irregular structure.

To illustrate, consider the graph in Figure 13. What
seems to be an irregular, convoluted structure at first,
is in fact an alliance of seven spam farms, and can be
analyzed as such.

For instance, we can identify several special boost-
ing structures in the figure. The group of pages
{p, q, r} is one such structure that boosts target t.
Boosting structures can always be modeled through
an equivalent number of simple boosting pages with
an only link pointing to the target. For instance, the
contribution of the group {p, q, r} in Figure 13 is equiv-
alent to that of 2 ·0.85+1 = 2.7 simple boosting pages.
The total boosting target t gets is equal to that pro-
duced by b1 = 5.2 simple boosting pages. After ac-
counting for all boosting structures, we find that the
total boosting effect for the entire alliance is equivalent
to that of b = 11.55 simple boosting pages.

We also discover that the target pages (gray nodes)
form an optimal core. Accordingly, the total target
PageRank is (cb + 7)/N .

Thus, the structures encountered in practice can be
modeled by equivalent optimal structures. In partic-
ular, the effect of complex boosting structures can be
modeled easily through an equivalent number of sim-
ple boosting pages, as illustrated in the previous ex-
ample. Leakage can also be incorporated as if it were
some additional boosting pages, as mentioned in Sec-
tion 3.4. The structure that interconnects the target
pages may be a ring or a complete core, or one of the
graphs discussed in Section 4.4. In conclusion, we be-
lieve that the insights obtained for the regular spam
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farms and alliances also hold for the generalized link
spam structures.

7 Countermeasures

In this paper we have studied spam farms and alliances
from the point of view of the spammer: What are
the optimal structures? How can they be intercon-
nected? What are the costs and benefits when spam-
mers collaborate? We have argued that understanding
the spammer’s side can provide essential insights for
combating spam. After all, how can one fight spam
without knowing what one is up against?

Of course, understanding farms and alliances does
not automatically solve the spam detection problem.
As a matter of fact, detection is in its infancy, and as
one develops better tools for combating spam, spam-
mers adapt and devise more resistant schemes. In
this closing section we briefly summarize some of the
spam detection techniques that have been developed
to date, and we argue that understanding the spam-
mer’s side played an important role in developing these
techniques.

The basic idea for detecting link spam is to identify,
directly or indirectly, structures like the ones we have
studied in this paper. While the presence of these
structures does not necessarily mean link spamming,
it does indicate potential candidates. We next outline
three schemes used in counteracting some forms of link
spamming.

1. In practice, large spam farms are often machine-
generated and have very regular structures. A
number of techniques are available to detect such
instances of link spam. For example, Fetterly et
al. [2] analyze the indegree and outdegree distri-
butions of web pages. Most pages have in- and
outdegrees that follow a Zipfian distribution. Oc-
casionally, however, one encounters substantially
more pages with the exact same in- or outdegrees
as expected according to the distribution. The au-
thors find that the vast majority of such outliers
are spam pages that belong to large farms.

2. A common feature of the alliances presented in
this paper is that target pages are very effective at
harnessing the boosting provided by other pages.
For instance, the two target pages of the alliance
in Section 4.1.3 have a total PageRank score p0 +
q0 = [c(k + m) + 2] /N , most of it coming from
the (k + m) boosting pages. At the same time,
the contribution of the boosting pages is only

c

 k∑
i=1

pi +
m∑

j=1

qj

 =
c(1− c)(k + m)

N
.

The ratio between the two sums is of order

p0 + q0∑k
i=1 pi +

∑m
j=1 qj

= O

(
1

1− c

)
, (11)

that is, the target pages amplify the contribution
of the boosting pages by a factor of approximately
1/(1 − c). This effect is achieved through the
strong interconnection between the target pages,
and can also be observed for the other optimal
alliances that we presented.

Based on the previous observation, Zhang et
al. [11] provide a method for identifying strongly
interconnected groups of web pages. For any
group of web pages H, they define the amplifi-
cation factor Amp(H), which is just the the ratio
between the total PageRank of the pages in the
group and the contribution received from other
pages outside the group, as illustrated in Equa-
tion 11. If the amplification factor of a group
is close to 1/(1 − c), it is said that the pages in
the group are colluding. Since the target pages
of spam alliances collude, the corresponding large
amplification factors reveal them.

3. Another observation that we can make about
spam alliances is that most of the target Page-
Rank scores are accumulated through boosting.
Accordingly, boosting pages contribute their min-
imal score (which is due to the random jump) to
increase the ranking of the target(s). We can mea-
sure the magnitude of the boosting effect as fol-
lows. Consider for instance the farm structure in
Figure 1. The PageRank score of the target is

p0 =
1

1− c2

[
cλ +

(1− c)(ck + 1)
N

]
.

Now, if one “cuts off” the random jump going
to the pages in the farm, the target score is only
p̃0 = 1

1−c2 cλ, and the difference (p0 − p̃0) is large.
Thus, for target pages that benefit from signifi-
cant boosting, the ratio (p0 − p̃0)/p0 is large. On
the other hand, for web pages that do not benefit
from boosting, the ratio is close to zero.

Based on our understanding of farms and al-
liances, and using this observation, we have de-
veloped a new spam detection scheme [3]. The
method combines two scores for each web page i:
the regular PageRank pi and a biased PageRank
p̃i, for which the random jump is “cut off” (set
to zero) for all but some known non-spam pages.
The ratio (pi − p̃i)/pi, is called the relative spam
mass Mass(i) of page i, and used to identify the
target pages of the largest spam farms. In our ex-
periments (using the full August 2003 index of the
AltaVista search engine) we have found that on
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the order of 95% of the sites identified by our de-
tection scheme (25000 out of 31 million sites) are
actual link spam target sites of very large farms.

The techniques we have outlined are useful, but are
still far from perfect. Solution 1 often fails to identify
non-regular farm structures (like the one shown in Fig-
ure 13), which are typical of more sophisticated (and
higher-ranking) spammers. Solution 2 identifies any
colluding group of pages, which may or may not be
spam. (For example, the colluding pages could simply
be weblogs frequently referencing each other.) Thus,
it is not a spam detection technique per se, though it
could have a pivotal role in spam detection. Solution 3
is effective in detecting instances of significant boost-
ing, but, for example, it fails to detect target pages
that obtain most of their scores through leakage. On
the positive side, both Solutions 2 and 3 are effective
as spammers deviate from the optimal structures in an
effort to conceal their farms and alliances, as discussed
in Section 6.

Incidentally, Solutions 2 and 3 could be used to-
gether: first, relative mass can help spotting out some
pages of a spam farm, then the amplification factor
can be used to identify neighboring pages that together
render a very effectively organized (highly colluding)
link spam structure.

The presented solutions identify only some of the
pages of a farm or alliance, typically the core. Other
techniques, such as the spectral analysis of the co-
reference matrix, could then be used to reveal the other
connected spam pages.

8 Conclusions

The analysis that we have presented shows how the
PageRank of target pages can be maximized in spam
farms. Most importantly, we find that there is an
entire class of farm structures that yield the largest
achievable target PageRank score. All such optimal
farm structures share the following properties:

• All boosting pages point to and only to the target,

• All hijacked links point to the target,

• There are some links from the target to one or
more boosting pages.

We have investigated how spammers with origi-
nally unconnected farms could cooperate and set up
alliances that increase the target PageRank scores. We
presented the optimal alliance for two farms, and intro-
duced two possible structures for larger alliances, one
with the targets forming a rings and another with the
targets forming a complete core. Our major finding is
that alliances could further improve the PageRank of
each target in the alliance; the distribution of target
PageRank scores depends on the way the targets are
interconnected.

We have also analyzed the dynamics of alliances,
determining under what conditions should new farm
be added, or should current members leave an existing
alliance.

As argued, a first, critical step in combating link
spam is understanding what one is up against. We
believe that our analysis of spam farms and alliances
provides a solid understanding of some spamming tech-
niques, and could lead to effective schemes for combat-
ing link spam.
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[4] Z. Gyöngyi and H. Garcia-Molina. Link spam
alliances. Technical report, Stanford Univer-
sity, 2005. http://infolab.stanford.edu/
∼zoltan/publications.html
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