
Stack-based Algorithms for Pattern Matching on DAGs

Li Chen Amarnath Gupta M. Erdem Kurul

SDSC, University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0505, USA

{lichen|gupta|erdem@sdsc.edu}

Abstract

Existing work for query processing over graph
data models often relies on pre-computing the
transitive closure or path indexes. In this pa-
per, we propose a family of stack-based algo-
rithms to handle path, twig, and dag pattern
queries for directed acyclic graphs (DAGs)
in particular. Our algorithms do not pre-
compute the transitive closure nor path in-
dexes for a given graph, however they achieve
an optimal runtime complexity quadratic in
the average size of the query variable bindings.
We prove the soundness and completeness of
our algorithms and present the experimental
results.

1 Introduction

1.1 Motivation

Graph-based database systems have been in existence
for more than a decade. Recently, graph data mod-
els have been increasingly in demand by modern ap-
plications that utilize graph-structured data such as
XML (if considering ID and IDREF), RDF and ontol-
ogy data.

Surprisingly, graph data in many application do-
mains can be represented as directed acyclic graphs
(DAG). For example, the gene ontology data avail-
able at http://www.geneontology.org can be modeled as
DAGs with nodes representing gene terms and edges
denoting their is-a and part-of relationships. Now
let’s consider another example – a patent (or publi-
cation) citation network. Suppose each patent is rep-
resented by a node, and it has incoming edges from

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

the patent nodes that it cites. Such a citation network
is DAG-structured induced by the cited-by relation-
ships assuming no cyclic references may occur. In this
example, each patent node is uniquely identifiable by
its number, and any property of user’s interest (e.g.,
the patent’s category, patentee’s affiliation or address)
may serve as a label type for users to specify filtering
conditions on. In this sense, we are concerned with
node-labeled (not edge-labeled) DAGs.

Suppose a citation link portal like citeseer sup-
ports accesses to such a DAG-structured data and
provides an advanced search tool that enables to
query the citation patterns, e.g., the citing tenden-
cies across categories or disciplines, among institu-
tions, or following certain geographical spreading pat-
terns. For example, one may be interested in finding
“the patents of the computer science category which are
directly or indirectly cited by patents of the biomedical
category and by those of the economy category”. This
can be expressed using a twig pattern query as illus-
trated in Figure 1(b), where a double-edge denotes the
transitive cited-by relationship. Figure 1(a) and (c)
are examples of path and dag pattern queries respec-
tively, inquiring the cross-institution and cross-country
citation patterns. The path and twig queries have been
extensively studied in the XML setting [3, 9, 2] where
data are modeled as trees instead of graphs.

Stanford c om p u te rs c i e nc e

b i om e di c al e c onom y
U W i s c ons i n

U P e nn
F ranc e

U SA

J ap an E ng l and

||
G e rm any

(b) cross-disciplines(a) cross-institutions (c) geographical dissemination

Figure 1: Path, Twig and Dag Pattern Queries

This work targets to provide efficient algorithms for
processing such pattern queries on DAGs. An example
DAG G, a twig query and its results are depicted in
Figure 2. For illustration purposes, both the data and
the query nodes are labeled with abbreviated letters,
e.g., ’c’ for “computer science”, ’b’ for “biomedical”,
etc. In addition, data nodes with the same label are

493

distinguished by the affixed numbers.

c1 c2

b 1 e1

c4

b 1 e2b 1 e1

c1 c2

b 1 e1

c4

b 1 e2b 1 e1
query solutions

c1

b 1 e2

a 1

m 1

e1

c4p 1

c2

m 2

co m p u t ers ci en ce

b i o m ed i ca l eco n o m y

co m p u t ers ci en ce

b i o m ed i ca l eco n o m y

(c)

(b) (e)
DAG-structured data Twig pattern query

Figure 2: Example G, Twig Query, and Results

Here, we borrow and extend the XPath syntax as
below to represent the pattern queries in Figure 1.

Step ::= / | // (/ matches a parent-child relat.)
NodeTest ::= label
Path ::= Step NodeTest | Step NodeTest Path
Twig ::= Path | Path ’(’Twig, . . ., Twig’)’
Dag ::= Twig (allows duplicated node labels)

In path and twig queries, each node has a unique
label. Although appearing the same as a twig
query, a dag query contains multiple occurrences of
node labels to indicate where the paths meet. For
example, the three queries in Figure 1 are expressed
respectively as “//Stanford//UPenn//UWisconsin”,
“//computer science(//biomedical, //economy)”, and
“//USA(//Japan//Germany, England//France//Germany)”.

1.2 Related Work

In a recent survey [19], methods of pattern match-
ing on graphs are categorized into exact and inexact
matching. The exact matching requires a total map-
ping from query nodes to data nodes, i.e., all query
nodes are exactly matched by their corresponding data
nodes, and each parent-child “/” (resp. ancestor-
descendant “//”) query edge is mapped to an edge
(resp. a path) in the data graph. The inexact match-
ing allows “approximation” either via a partial map-
ping from query nodes to data nodes, or by transform-
ing data nodes to establish a total mapping.

In this paper, we confine our work to the exact
matching only. The exact graph matching problem
is NP-complete in general [8]. However, efficient al-
gorithms exist for some special cases. For example,
polynomial algorithms in the size of the data graph
exist [16, 18] when the data graph is acyclic. In a re-
cent work [11], a near-quadratic algorithm in the data
graph size is presented for tree and dag pattern queries
on DAGs under the exact matching semantics.

As observed in [19], many graph searching systems
utilize a pre-filtering step based on customized tradi-
tional indexes and estimation methods for reducing the
search space before executing the graph matching al-
gorithms. The most popular indexing methods in use
are path-indexes with fixed or parameterized lengths
[15, 17, 19].

For queries that involve ancestor-descendant (i.e.,
“//”) edges, building path indexes for matching such
“//” edges is equivalent to computing the path from
every node to all of its descendants. This is known

as the transitive closure of a graph. In the tradeoff
between space and time, most existing graph matching
approaches assume static data graphs and hence prefer
to pre-compute the transitive closure or build variable-
length path indexes to trade space for efficient pattern
matching. The classic Floyd-Warshall algorithm [7]
used for computing the transitive closure is O(n3) (n
is the number of nodes in the graph) and the result
storage cost is O(n2). In addition, a polynomial cost
is incurred for maintaining the materialized transitive
closure upon data updates.

In [5], the selectivity estimation problem is inves-
tigated for searching twiglets with only “/” edges in
tree-structured data. The proposed selectivity esti-
mation method is likely inefficient or imprecise when
applied to the twiglets which contain also “//” edges.

The implementation of matching is classified in [19]
as either by traditional (sub)graph-to-graph matching
techniques, or by structural join approaches which de-
compose a query into a set of paths and then join
the branching nodes of each derived path [2, 13, 20].
However, such structural join approaches often induce
large intermediate results which may severely limit the
query efficiency.

1.3 Our Approach

We are motivated to provide efficient graph matching
algorithms with a minimal space cost. This work is in-
spired from the data streaming model exploited by the
stack-based algorithms proposed in [3] for processing
path and twig queries over the tree-structured XML
data. In this model, a stream is associated with each
query node (i.e., NodeTest) and it stores the corre-
sponding satisfying data nodes (i.e., those match the
label and are hence referred to as query variable bind-
ings). In addition, a set of linked stacks are utilized to
process each binding node only once, either discarding
it or creating a pointer from it to the top node in its
parent stack. These stack-based algorithms are linear
in the total size of the query variable bindings and
hence advantageous over those that read the entire in-
put data. Also, they are superior to the structural join
approaches for their effectiveness in dampening irrel-
evant intermediate results and capability of returning
the final solutions in a non-blocking manner.

In this paper, we extend the original stack-based al-
gorithms to handle path, twig and dag pattern queries
on DAGs. The following key techniques are employed.

1. The DAG-structured data is stored in the form
of a node table with interval encodings on a tree
cover (i.e., spanning tree) of the graph and a
customized predecessor index.

2. While still utilizing the data streaming model
and linked stacks, the new algorithms employ an
additional partial solution pool structure to selec-
tively hold the stack-popped nodes. These nodes
are then checked with each new read-in stream
data to find possible transitive connections.

494

3. The new algorithms exploit the temporal proper-
ties in the node processing to guarantee that the
returned solutions are sound and complete.

4. With only a linear storage cost for the data graph,
our approach achieves an optimal query perfor-
mance by adopting a pre-filtering step for prun-
ing nodes to be put in streams and heuristics for
quickly finding transitive connections.

Paper Outline. For the rest of the paper, we
first present our DAG representation in Section 2 and
then the stack-based algorithms extended for pattern
matchings on DAGs in Sections 3 and 4. A pre-filtering
step is described in Section 5. We show the experimen-
tal results in Section 6, and conclude in Section 7.

2 Representing DAG

In this work, we aim to develop time-efficient pattern
matching algorithms for DAGs yet based on a space-
efficient data storage. We assume that the given data
graph G consists of a single rooted DAG; disjoint com-
ponents can be hooked together by creating a virtual
root. Formally, G is represented as G = (V,≺d), where
V denotes all the nodes and ≺d is a patrial order (aka
transitive reduction) relation between node pairs. In-
tuitively, each directed edge e =<a, b> in G implies
b≺d a, assuming a is the parent and b is the child.

Several encoding schemes have been proposed for
trees and DAGs, including bit-vector encoding [10, 4,
24], prefix encoding [12] and interval encoding [23, 1,
14]. Among them, the interval encoding scheme has
recently attracted a lot of attention in XML research
due to its overall performance in finding leaves, an-
cestors, descendants and nearest common ancestors,
etc. [6]. In this scheme, each tree node is assigned
with an integer pair [start, end] (level may also be in-
cluded) according to the visited orders in a depth-first
traversal. In a tree, the ancestor-descendant (aka tran-
sitive closure ≺) relation between node pairs can be
checked by their overlapping intervals [23]. For exam-
ple, a node x is an ancestor of a node y, denoted y≺x,
if and only if y.start>x.start and y.end<x.end.

Different from the tree case, a node y in a DAG may
have more than one parent. Corresponding to such a
multiple inheritance hierarchy of a DAG, [1] proposes
to associate with a node multiple intervals that en-
capsulate reachability information for its descendant
nodes. This multiple interval encoding method induces
a O(n2) storage cost, which is the same as for directly
storing the transitive closure relation. Although the
space cost can be reduced by checking and discarding
subsumed intervals, the worst-case storage required for
the compressed closure is still O(n2) [1].

There is a line of research on further optimizing
and compressing the storage costs of various encod-
ings. However, we explore improvement opportunities
from the query processing itself while employing space-
efficient yet simple, adaptive storage structures.

In this spirit, we propose to represent a DAG G
using a combination of interval encodings on a span-
ning tree T of G, called tree-cover in [1], and a cus-
tomized predecessor index for nodes that are reachable
from other nodes via the remaining edges ER. ER

consists of edges in G excluding those covered by T .
Namely, ER =E−ET assuming E and ET denote the
edges in G and T respectively.

In Figure 3 (a), we illustrate a tree-cover T of the
example DAG G in Figure 2 obtained via a depth-
first traversal of G. The tree-cover edges are denoted
by solid edges, while the remaining graph edges are
depicted by dashed edges. By applying the interval
encoding scheme [23] on this T , we derive the encoding
for each node in G as show in Figure 3 (b).

c1

b 1 e 2

a 1

m 1

e 1

c4p 1

c2

m 2
(a)

−→ for e ∈ ET ,
−→ for e ∈ ER

nid label encoding

m1 m [1, 20]
c1 c [2, 9]
b1 b [3, 4]
c2 c [5, 8]
e1 e [6, 7]
p1 p [10, 17]
a1 a [11, 16]
e2 e [12, 13]
m2 m [14, 15]
c4 c [18, 19]

(b)interval encoding on T

nid preds

b1 {c2,a1}
a1 {c4}
e2 {a1}
m2 {a1}

(c) SSPI index

Figure 3: Illustration of DAG Representation

In a DAG G, any path p can be represented by p :=
(et|er)

+(et∈ET , er∈ER), i.e., p is formed by a mix of
tree-cover edges and remaining edges. Suppose a path
pmix contains at least one remaining edge (i.e., the er

type), then pmix:=(et|er)
∗eri e∗t is modified from p :=

(et|er)
+, where eri is the last remaining edge (may also

be the only one) followed by none or more tree-cover
edges. The complementary type of such a pmix path is
a path that consists of purely tree-cover edges, denoted
as ppure:=e+

t . It is obvious that if a node y in G can
be reached from a node x via a ppure path, then y≺x
and this reachability information can be revealed from
their intervals, namely, y.start > x.start ∧ y.end <
x.end. However, if x and y are connected solely by
pmix paths, then just the node intervals do not suffice
to infer the full transitive closure ≺ of G.

2.1 Surrogate&Surplus Predecessor Index

In this section, we propose a new index that holds
information complementary to the node intervals so
that the full transitive closure ≺ of G can be derived.
As explained earlier, the edge set E of G encapsulates
a minimal relation ≺d whose transitive closure is ≺.
Since E = ER +ET , the part of ≺ derivable from the
subset of ≺d preserved in ET is readily discoverable
from the node intervals. This part of ≺ corresponds
to all the ppure paths.

Our goal is hence to utilize a space-economic in-
dex to store information that is enough for the rest of
≺ to be inferred. We refer to this remaining part of
≺ as ≺rem, which corresponds to all the pmix paths.

495

Storing all the node pairs connected by pmix paths is
equivalent to materialize ≺rem, while storing just the
node pairs connected by the remaining edges is not
enough for deriving those pmix paths that consists of
both remaining and tree-cover edges.

Definition 2.1 Suppose x and y are respectively the
starting and ending nodes of a pmix path in G, i.e.,
y ≺rem x. Since pmix:=(et|er)

∗eri e∗t , there must be a
node w along the path such that w = child(eri).

1 We
call w a surrogate predecessor of y if w 6= y. Oth-
erwise, namely if eri is incident on y itself, we call
parent(eri) an immediate surplus predecessor of
y. We build a surrogate &surplus predecessor in-
dex (SSPI) to hold for each such y a sorted list of
predecessors of both types, denoted PL(y), in ascend-
ing order by their start interval values.

Example 2.1 In the SSPI shown in Figure 3 (c) for
the example G in Figure 2, PL(b1)={c2, a1}, both of
which are immediate surplus predecessors of b1. While
a1 is a surrogate predecessor for both e2 and m2.

2.2 Properties of Our DAG Representation

Theorem 2.1 For a DAG G represented using a node
interval table by encoding on its tree-cover T and a
SSPI index, the transitive closure ≺ can be losslessly

derived from 1) the overlapping node intervals, to-
gether with 2) the predecessors stored in SSPI. 2

Proof. It is obvious that the node intervals re-
veal the part of ≺ that corresponds to all the ppure

paths. We now prove that all the remaining ≺rem

corresponding to the pmix paths can also be inferred.
Suppose that nodes x and y in G are connected by
a pmix path that has i edges of the er type, e.g.,
pmix =e∗t er1e

∗
t er2..erie

∗
t . This y≺rem x can be discov-

ered by transitively looking up SSPI. That is, by first
searching through PL(y), the connecting node with
eri (either the parent or the child) can be found. If
this connecting node is child(eri), then we look up its
PL for wi = parent(eri). By recursively repeating the
above step(s), we will finally find w1 = parent(er1)
whose interval is subsumed by that of x. 2

Take Figure 3 as an example. e2≺rem c4 is true in
the example G, and it can be discovered by looking up
PL(e2) and then PL(a1) in our SSPI structure.

Creation Time and Space Cost. Suppose a DAG
G has n nodes and m edges (m≥n−1). The creation
time and space costs for our DAG representation are
both in linear proportion to the size of G. Specifically,
the cost break-down is as follows. First, it is obvious
that both the time and space costs on the node interval
table is O(n). Second, for populating SSPI, we con-
duct a tree traversal of G. At each node w, we check
its incoming edges that are of the er type and collect

1We use parent(e) and child(e) to represent the node where
edge e is originated and the node e is incident on respectively.

the corresponding immediate surplus predecessors into
PL(w). In addition, PL(w) inherits all the predeces-
sors from PL(tree pred(w)), where tree pred(w) is w’s
parent node in the tree-cover (i.e., w is connected to
it via the sole et type incoming edge). Therefore, the
computation time for building SSPI is O(m). Also,
the total number of predecessors stored in SSPI in the
worst case is bounded by m.

Compared to the adjacent list structure, SSPI does
not necessarily preserve the exact transitive reduction
relation ≺d of G. Instead, it stores a minimum sub-
set of ≺d and ≺ whose total size is no greater than
that of the adjacent lists so fewer computations may
be involved in deriving all of ≺. Furthermore, heuris-
tics can be applied to minimize the space of SSPI. For
example, we can adopt the technique given in [1] to
pick the “optimum” tree-cover of G which tends to
span along longer paths and hence reduces the inher-
ited predecessors in the PLs of SSPI.

3 Extending PathStack

In this section, we present our algorithm for path pat-
tern matching on DAGs that is extended from the orig-
inal stack-based PathStack algorithm [3] for trees. The
challenge here is to extend the original algorithm to
process the streaming-in nodes to derive query solu-
tions that cannot be discovered by the stack opera-
tions. Our algorithm utilizes an additional structure
collectively called partial solution pools besides the ini-
tial streams and the stacks in the matching process.

3.1 Partial Solution Pools

In the original PathStack algorithm, upon pushing a
node into its corresponding stack, it pops from stacks
the nodes that do not have overlapping intervals with
the new node. That is, the stacks operate accord-
ingly based on the tree-cover intervals. Once a node is
popped from its stack, it is discarded immediately. By
applying this algorithm directly to a DAG, e.g., the
G in Figure 2, the second and third solutions at the
rightmost part of Figure 2 will be lost. This is because
that when c2 is pushed into its stack S[c], b1 is already
popped out of its S[b] due to b1.end<c2.start. Hence
the valid path c2−b1 cannot be discovered. Similarly,
inducing the path c4−b1 (i.e., b1≺ c4) would involve
two remaining edges, which does not concern Path-
Stack designed for pattern matching on trees.

In our DAG context, when b1 is popped from its
stack due to the new incoming c2, we do not discard
b1 right away but hold it in a structure to check for
other potential solutions.

Definition 3.1 Partial Solution Pools are a data
structure we utilize to temporarily hold the stack-
popped nodes to be grown from intermediate partial so-
lutions to full solutions in a bottom-up fashion. Like
stacks and streams, pools are created corresponding to

496

each query variable for holding nodes that match the
label. Two operations are associated with pools:

• when pushing a node tq into its stack Sqi, we
sweep the child pool Poolqj (i.e., qi=parent(qj)
in the query pattern) to find with the aid of SSPI
all such nodes tqj that tqj ≺rem tq.

• for each such tqj , we build a parent pointer from
it to tq to expand the partial solutions headed by
tqj to those headed by tq.

The sweep operation makes sure that a node is put
into its pool only if it finds descendants in the child
pool. This hence guarantees a bottom-up expanding
of partial solutions. When a node is put into the root
pool corresponding to the query root variable, we out-
put all the solutions headed by it as final solutions.

3.2 PathStackD

We now depict in Figure 4 the extended PathStack al-
gorithm, called PathStackD, for handling path pat-
tern queries on DAGs. A new sweepPartialSolutions
procedure and a modified showSolutions procedure are
the only modifications to the original PathStack2.

3.2.1 Temporal Properties in Sweeping

In sweepPartialSolutions, an important temporal prop-
erty between a new incoming node tq (see line 01) and
each node h in Pool [child(q)] (line 02) is exploited.

Proposition 3.1 At any point during the query pro-
cessing, suppose tq is the newly pushed node, y is any
node remaining in the streams and x is any node in
the pools. Then x.start<tq .start<y.start. 2

The above property is determined by the data
streaming model featured by the stack-based algo-
rithms. Namely, function getMinSource makes sure
that nodes in the streams are always retrieved and pro-
cessed in their start value order. Nodes in the pools
are those that have been processed and those in the
streams have not, hence x.start<tq .start<y.start.

Next we explain in detail how sweepPartialSolutions
works in the aid of SSPI. As shown in the sweepPar-
tialSolutions procedure in Figure 4, we iterate through
each node h in the child pool of the new incoming
node tq, and call function checkContainment (line 05)
to check whether h≺ tq by recursively looking up pre-
decessors of h in SSPI.

Specifically, checkContainment iterates through
each node a ∈ PL(h) and concludes accordingly as in
the following case analysis:

Case 1). a’s interval is contained within tq ’s (line
04). This means a≺ tq and hence h≺ tq is true.

Case 2). a’s interval is not contained within but to
the right of tq’s (line 06). Then a≺/ tq . Since predeces-
sors in each PL entry of SSPI are sorted in ascending

2Functions getMinSource, next(Tq), etc. are introduced in [3].

while ¬end(q)
qmin = getMinSource(q)
for qi in subtree(q) / / clean stacks

while (¬empty(Sqi) ∧ top(Sqi).end < next(Tqmin).start)
pop(Sqi)

sweepPartialSolutions(qmin)
moveStreamToStack(Tqmin, Sqmin, pointer to top(Sparent(qmin)))
if (isleaf(qmin))

showSolutions(Sqmin, 1, null)
pop(Sqmin)

Algorithm PathStackD(q)
01

02

03

04

05

06

07

08

09

10

tq = next(Tq)
for each h in Pool[child(q)] //check if h < tq via predecessors in SSPI

if (checkContainment(tq, h) == true)
expand(q, tq, h)

found = false;
while(¬empty(PL[h]) ∧ ¬found)

a = first(PL[h]) // get the first node a in PL[h]
if (a.start>tq.start ∧ a.end<tq.end) // interval overlapping

return true
else if (a.start>tq.end) // a is to the right of tq

return false
else if (PL[a] == null) //a is to the left of tq & has no predecessor

remove a from PL[h]
else if ((found=checkContainment(tq, a)) == false)

add the remaining nodes in PL[a] into PL[h]
remove a from PL[h]

if (empty(PL[h]))
remove entry PL[h] from the predecessor lists

return found

put tq into Pool[q]
h.ptr_to_parentPool = tq
if (isroot(q)) // if Pool[q] is the root pool

output the solutions headed by tq in the root pool

Procedure sweepPartialSolutions(q)

Function checkContainment(tq, h)

01
02
03
04

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
Procedure expand(q, tq, h)
01
02
03
04

index[SN] = SP // the position SP of stack S[SN] is interested
expand(SN, S[SN].index[SN], S[SN+1].ChildSP)
if (SN==1)

output(S[1].index[1], …, S[n].index[n]) // a root-to-leaf solution
else

for i =1 to S[SN].index[SN].ptr_to_stackParent
showSolutions(SN-1, i, SP)

Procedure showSolutions(SN, SP, ChildSP)
01
02
03
04
05
06
07

Figure 4: Our PathStackD Algorithm

order by their start values (see Definition 2.1), we do
not have to check the rest of predecessors in PL(h) to
conclude that h≺ tq is false.

Case 3). a’s interval is not contained within but
to the left of tq ’s. In this case, we check if a itself is
indexed in SSPI. If not (i.e., PL(a)==null in line 08),
then a can be removed from PL[h]. Otherwise (line
10), we recursively call checkContainment to check if
any of a’s one-level-upper predecessors has its inter-
vals contained within tq ’s. If all fails, we delete a
from PL[h] while shifting the unchecked predecessors
in PL[a] into PL[h] (lines 11∼12).

In this sweeping process, the search space for check-
ing h≺ tq in SSPI is tightly restrained in the follow-
ing senses. First, tq is checked with not any random

497

graph node but only nodes in its child pool. These
checked nodes have smaller start values than tq ac-
cording to Proposition 3.1. Second, not all the stack-
popped nodes but only those that find their descen-
dants in the corresponding children pools are put in
pools themselves. Third, according to the algorithm,
even the child pool nodes are not exhaustively checked.

Also note that the size of SSPI is shrinking dur-
ing the sweeping process. That is, a node is removed
from a PL if it fails the checking of checkContainment
and has no upper-level predecessors in SSPI. Further-
more, lines 13∼ 14 in checkContainment indicate that
if PL[h] is found to be empty when the recursive calls
return (i.e., all the predecessors of h have been re-
moved), then the PL[h] entry is also removed. Such a
shrinking implies a reduced search space for the sub-
sequent containment tests. In sum, all these factors
help to improve the efficiency of sweeping and hence
of PathStackD. The detailed analysis is given next.

3.2.2 Analysis of PathStackD

We now introduce the following lemmas as the foun-
dation for establishing the correctness of PathStackD.

Lemma 3.1 During the checking for h≺ tq in check-
Containment, suppose that a is removed from PL[h] be-
cause a.start<tq .start ∧ PL[a]==null (case 3). Due
to Proposition 3.1, the subsequent incoming nodes,
e.g., t′q, after a all have larger start values than a.
Therefore, a.start < t′q .start always holds and the re-
moval of a hence will not cause any solution loss. 2

The following lemma reveals the reason why the
sweeping process guarantees to derive all the solu-
tions complementary to those discovered by the origi-
nal stack operations.

Lemma 3.2 Given a pair of nodes x and y in G such
that y ≺ x, then either 1) y.start > x.start ∧ y.end <
x.end or 2) y.end < x.start. That is, y’s interval is
either contained within or to the left of x’s. 2

Recall that Proposition 3.1 in [3] lists four possi-
ble cases of interval relationships between any pair of
nodes. We now show that the other two cases that are
not listed in Lemma 3.2 cannot co-exist with y ≺ x.
One case is y.start<x.start∧ y.end>x.end. This im-
plies x≺y which obviously conflicts with y≺x due to
our DAG assumption. The other is y.start > x.end
(i.e., y’s interval is to the right of x’s). Assume
y.start > x.end is true, it means that y is encoun-
tered in the tree traversal of G only after the spanning
tree rooted at x is fully traversed. This rules out the
possibility that y is within the spanning tree rooted at
x. Also, there can not be such a remaining edge that
goes out from any node in the spanning tree of x to
an ancestor of y because then y would be traversed to
within the spanning tree of x and hence the conflict.

We hence have the following theorem.

Theorem 3.1 Given a path query and a DAG, Path-
StackD correctly returns all the query answers. 2

We now analyze the time complexity of our Path-
StackD algorithm. As shown in sweepPartialSolutions
in Figure 4, each node h in the child pool is swept
through for a new incoming node tq to check if h≺ tq .
During each checking, suppose the number of nodes
being looked up in SSPI is ci and the shrinking size is
si. Then si≈ci−d (if ci≥d, si =0 otherwise), where d
is the number of recursive calls made to look up pre-
decessors in SSPI. This is induced from lines 02∼ 14
in checkContainment, where all the checked nodes, ex-
cept those in the linear recursive call stack (see line
10), are removed. We may use the diameter of G (i.e.,
the longest length of all shortest paths among data
nodes) to approximate d.

Since the total maximum shrinking size is the size of
SSPI which is bounded by the number of graph edges

m (see Section 2), we have m ≥ Σ
|b|
i=1si ≈ Σ

|b|
i=1(ci−d),

where |b| is the total size of query variable bindings in
the input streams. Thus the total number of nodes be-

ing looked up in SSPI is Σ
|b|
i=1ci ≤ m+|b|d. In addition

of the total number of pool nodes being checked, which

is Σ
|b|
i=1chi ≤ |pi| where |pi| is the size of a child pool

at the time upon each new incoming node, the total

cost is m+|b|d+ |bi|×|b|
2 , where |bi| is the average size of

one input stream, and |b| is the total of all stream sizes
which can be approximated by |q||bi| (|q| is the query
pattern size). The factor of 1/2 is because the size of
a pool dynamically grows from zero to the full stream
size. With the additional cost on outputing the final
solutions whose size is bounded by |b|, we derive the
following result:

Theorem 3.2 Given a path query and a DAG,
PathStackD has the worst-case3 I/O and CPU
time complexities of O(|q||bi|

2 + |q||bi|d + m),
i.e., max(m, |q||bi|(max(|bi|, d))). The worst-
case runtime space complexity of PathStackD is
min(|b|, pmax), where pmax is the maximum length of
a path in the DAG. 2

The above theorem states that the worst-case time
complexity of our PathStackD algorithm with respect
to the input data is either in linear in the number
of edges or quadratic in the average query variable
binding size, whichever is larger. With respect to the
input query, the time complexity is linear.

4 Twig Join Algorithm

Similarly, we generalize the original TwigStack algo-
rithm to derive solutions for a twig pattern query for
DAGs. Named TwigStackD, the extended algorithm
does not use PathStackD as a sub-routine and hence

3The best case is when the input DAG is in fact a tree. Path-
StackD in this case executes like PathStack since no partial so-
lution is build due to an empty SSPI.

498

avoids a suboptimal complexity caused by preserving
non-final answers in the intermediate results.

4.1 TwigStackD

Algorithm TwigStackD is presented in Figure 5. Like
TwigStack, it carries out operations in two stages. In
the first stage (lines 01 ∼14), solutions to individual
root-to-leaf paths are computed, then they are merge-
joined in the second phase (line 15) to derive the final
query solutions.

while ¬end(q)
qmin = getMinSource(q)
missings = getMissings(qmin, next(Tqmin))
if (¬ isroot(qmin))

cleanStack(parent(qact), next(Tqmin))
if ((complete = sweepPartialSolutionsTSD(qmin,missings))==true)

cleanStack(qmin, next(Tqmin))
if (isroot(qmin) ∨ ¬empty(Sparent(qmin)))

moveStreamToStack(Tqmin, Sqmin, pointer to top(Sparent(qmin)))
if (isleaf(qmin))

showSolutionsWithBlocking(Sqmin, 1, null)
pop(Sqmin)

else advance(Tqmin)
else advance(Tqmin)

mergeAllPathSolutions()

initialize missings as an empty set
for qi in children(q)

pos = 1
if (inSync=checkInSync(qi, pos, tq))==true)

allInSync = false
while(pos<=size(Tqi) ∧ Tqi[pos].start<tq.end ∧ ¬ allInSync)

mi = getMissings(qi, Tqi[pos])
if (¬empty(mi)) pos++
else allInSync = true

if (¬ allInSync)
missings.add(qi)

else missings.add(qi)
return missings

while (pos<=size(Tchildq) ∧ Tchildq[pos].start<tparent.start)
pos++

if (pos<=size(Tchildq) ∧ Tchildq[pos].start<tparent.end)
return true

else return false

Algorithm TwigStackD(q)
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Function getMissings(q, tq)
01

02

03

04

05

06

07

08

09

10

11

12

13

Function checkInSync(childq, pos, tparent)
01

02

03

04

05

Figure 5: Our TwigStackD Algorithm

The key ideas of the first stage of TwigStackD are
along the same line as those used in TwigStack. That
is, a node is pushed into its stack only if it has all
of the required descendant types. In TwigStack, the
satisfiability of this property of a node tq is ensured
by checking: (i) if the interval of tq contains that of at
least one node tqi in each of its children streams Tqi

(we refer to the situation where a child is contained
by its parent as “inSync”), and (ii) recursively check
descendant streams to see if each tqi satisfies the first
condition. However, this property is relatively more
difficult to be ensured for DAGs for the reasons below.

First, in the DAG setting, a descendant of tq may
exist in two forms: 1) in an input stream and not
yet pushed into a stack, or 2) popped from the stack

and put into a pool. TwigStack involves only the first
case. Second, stream nodes that are “out-of-Sync” (as
opposed to “inSync”) cannot be simply advanced out
of streams as in TwigStack since they may be used
for expanding partial solutions. Third, the expanding
of partial solutions is carried out only if tq has all of
the required descendant types, either located in partial
solution pools or still in streams.

for each qi in children(q)
for each h in Pool[qi]

if (checkContainment(next(Tq), h))==true)
candidateSet[qi].add(h)
if (qi ∈missing)

missings.remove(qi) //h <next(Tq) hence qi no longer missed
if (empty(missings)) // if all missings are complemented

for each qi in children(q)
for each h in candidateSet[qi]

expand(q, next(Tq), h)
return true

else return false

Function sweepPartialSolutionsTSD(q, missings)
01
02
03
04
05
06
07
08
09
10
11
12

Figure 6: Sweeping Function for TwigStackD

Below we present a series of functions to resolve
these difficulties. First, checkInSync is used to check
whether the stream Tchildq (i.e., Tqi since childq is
passed with a child qi of query variable q in getMiss-
ings) has any “inSync” node with respect to tparent
starting from the position marker pos (initially set as
1 i.e., the top, at line 03 in getMissings). Function get-
Missings collects all the child streams which miss any of
the required “inSync” children nodes or their descen-
dant streams miss the required “inSync” descendants
(lines 04∼12). If qi is not in the missings returned by
getMissings, then the node at the position marker pos
in stream Tqi is an “inSync” descendant.

With the returned missings, TwigStackD calls
sweepPartialSolutionsTSD (shown in Figure 6), which
is modified from sweepPartialSolutions used by Path-
StackD, to check whether every missing child can be
complemented by at least one node h in the corre-
sponding partial solution pool. Only if this is true
(line 07 in sweepPartialSolutionsTSD), partial solutions
headed by h are expanded to be headed by the new
node in Pool[q] (lines 08∼10). Due to the space limi-
tation, detailed explanations of these functions and of
the modified showSolutionsWithBlocking are skipped.

TwigStackD guarantees that every solution to ev-
ery individual root-to-leaf path is merge-joinable with
at least one solution to each other root-to-leaf path.
Hence the output individual solutions is no larger than
the final solutions to the twig pattern query.

4.2 Analysis of TwigStackD

In this section, we discuss the correctness of
TwigStackD and then analyze its complexity.

Definition 4.1 Suppose for an arbitrary query vari-
able node q in a twig pattern query, tq is the top node

499

in the stream Tq. If for each query variable node
qi ∈ subtreeNodes(q), there is a data node tqi in Tqi

which is “inSync” with tparent(qi) and there is no such
a node t′qi that 1) t′qi is also “inSync” with tparent(qi)

and 2) t′qi.start < tqi.start, then we say that these tqi

nodes compose a minimal inSync descendant ex-
tension of tq.

This concept can be seen an extension of a minimal
descendant extension defined in Definition 4.1 in [3].
We establish the following lemma based on it.

Lemma 4.1 Suppose that getMissings is invoked for
an obtained qmin, then the following properties hold:

• the top node tqmin of Tqmin has the minimal start
value among all stream top nodes.

• upon returning missings, the nodes at
the position marker pos of each stream
Tqi(qi ∈ subtreeNodes(qmin) ∧ qi 6∈ missings)
form a minimal inSync descendant extension of
tqmin.

• if missings 6= ∅, sweepPartialSolutionTSD returns
“true” if every missing child extension tqi can be
complemented by a node in Pool[qi], and “false”
otherwise. 2

Based on this lemma, we can prove that if sweepPar-
tialSolutionTSD returns true (line 06 in TwigStackD),
then tqmin is guaranteed to have a complete descen-
dant extension composed of nodes in the descendant
streams and in partial solution pools (detailed proof is
omitted due to the space limitation). By pushing tqmin

into the stack, we can later build the parent pointers
to it from its “inSync” descendants when they come
in (line 09). This way, nodes that belong to a final
solution will be preserved in the stacks to be output
(lines 10∼11).

Theorem 4.1 Given a twig pattern query and a
DAG, TwigStackD correctly returns all the query an-
swers. 2

Proof. In TwigStackD, we repeatedly get the
stream Tqmin with its top node tqmin satisfying
the first property of Lemma 4.1. Assume that
getMissings(qmin, tqmin)=Mqmin. For each query vari-
able node qi∈Mqmin, from lines 11∼12 in getMissings
we know that the stream Tqi either has no “inSync”
nodes to tqmin or no such nodes that recursively
have “inSync” descendants in the corresponding
descendant streams. If Pool[qi] has no such a node
connected to tqmin after the sweeping (line 06 in
TwigStackD), then tqmin cannot possibly participate
in any solution due to the lack of a descendant
extension. We can thus advance it out (line 14) and
continue with the next iteration. Otherwise, tqmin has
a full descendant extension composed of the minimal
“inSync” descendant extension in the streams and
partial solution pools. Line 08 ensures that tqmin

also has an ancestor extension, hence tqmin definitely
participates in at least one final solution so we push it
into its stack (line 09). Finally, a root-to-leaf solution
is obtained either when a node is pushed into its
leaf stack (lines 10∼ 11) or put into the root partial
solution pool (see expand in Figure 4). 2

The key to analyzing the complexity of TwigStackD
is to estimate the number of node checks (each count
corresponds to an advance of the position marker pos
by one node) in getMissings. Although each node may
be repeatedly checked for different ancestors, it is guar-
anteed that the maximum repetition of checking the
same node tqi in a stream Tqi is bounded by the stream
length. The rationale is given below.

Suppose getMissings(qmin, tqmin) is invoked to re-
cursively check nodes in the descendant streams. A
node tqi in each Tqi (qi ∈ descendant(qmin)) that sits
above the position marker is checked. Such checking
may be repeated for every node tqj (qi ≺ qj ≺ qmin in
terms of the twig tree order) chosen by getMinSources
prior to tqi. Otherwise, tqi will be advanced out of the
stream earlier than tqj and thus leave no chance for
being checking again. Since there is at most one tqj in
each ancestor stream qj that is a tree-cover ancestor of
tqi, the maximum number of checks for tqi is di−dmin,
where di and dmin are respectively the depths of qi

and qmin from the corresponding stream tops. There-
fore, the maximum total node checks by getMissings is

≈ Σ
|q|
i=1(di − 1)|bi| ≈

hq

2 |q||bi|, where |q| and hq are the
size and height of the twig pattern respectively. With
the other costs similar as those for PathStackD, we de-
rive the following complexity results for TwigStackD.

Theorem 4.2 Given a twig query and a DAG,
TwigStackD has the worst-case I/O and CPU time
complexities of O(|q||bi|2 + |q||bi|(d + hq) + m), i.e.,
max(m, |q||bi|(max(|bi|, d, hq))). The worst-case
runtime space complexity of TwigStackD is the same
as that of PathStackD, i.e., min(|b|, pmax). 2

This time complexity result is optimal compared
to a latest work in [11] whose time complexity is
O(n|q||bi|) for pattern matching on DAGs with a space
cost of O(n + m). The dominant factor in the time
complexities of our algorithms is |bi|2 or m (whichever
is bigger). Since |bi| < n and often m < n|q||bi| for a
reasonably large query variable binding size, our algo-
rithms are likely more efficient on average compared
to the alternative algorithms in [11].

4.3 DagStackD

We also extend our TwigStackD algorithm with a fil-
tering step for handling dag pattern queries. The ba-
sic idea is that for a “merge node” in the dag pattern
(i.e., a query variable that has more than one incom-
ing edges, for example, the node Germany in Figure 1),
the and semantics must be enforced. Namely, we first

500

conduct the TwigStackD algorithm to find the solu-
tions for the query requiring no and semantics yet.
Then, for each merge node qm in the dag query, we
enforce the and semantics by checking whether each
of its bindings tqm has also participated in at least one
solution to each other query path in the dag pattern
that also includes qm. If not, we filter it out similar
to what is described in [11]. We adopt some heuris-
tics in DagStackD to interleave such a filtering with
the regular stack and pool operations to prevent the
intermediate result nodes from overgrowing.

Due to the space limitation, we do not elaborate on
the details of DagStackD here. The time complexity of
DagStackD is that of TwigStackD with the addition of
the complexity for joining the solution bindings at each
query merge node among intersecting query paths. Its
complexity is still in quadratic in the average size of
the query variable bindings.

5 A Pre-filtering Step

The complexity analysis of our extended algorithms
suggests that a pruning of the nodes in the streams can
help to improve the runtime efficiency. In this section,
we describe a novel pre-filtering technique that can
prune the nodes to be put in the streams based on the
structural pattern constraints of a query.

The abstract idea of pre-filtering includes two parts.
First, we encode for each node in the query pattern the
correspondingly required structural constraint. Sec-
ond, we traverse the data graph and compute for each
node a code value that indicates the aggregated satis-
fied constraints. If the required constraint is subsumed
by the satisfied, then we put the data node is in the
stream. Otherwise, we discard the node. Below we
describe how the two types of encodings work.

5.1 Bit-vector Encoding of Query Pattern

For a given query, we assign a unique fixed-length bit-
vector to each query variable node. The bit-vector
length equals to the number of query nodes, and each
bit position is designated to represent a particular
query node. For example, we designate the i’th right-
most position to the query node qi assuming that qi’s
post-order is i during a depth-first traversal of the
query pattern. For qi, the bit at the position of itself
(i.e., the i’th rightmost) is set as ‘1’. The other ‘1’s are
set at the positions corresponding to the post-orders of
qi’s descendants. This way, the structural constraint
on qi in terms of the required descendant query nodes
is reflected by its bit-vector. This is inspired from the
bit-vector techniques used in [10, 4, 21].

5.2 Filtering Procedure

We employ two graph traversals to perform the node
filtering. One traversal is for pruning the nodes that do
not satisfy the downwards structural constraints while
the other is for checking the upwards constraints. The

graph traversals here are different from the one used
for tree-cover encoding in section 2. The former ones
visit each edge in the data graph exactly once while
the latter visits each node exactly once. As illustrated
in Figure 7, the structural constraints imposed by a
twig query are expressed by the combination of two
sets of bit-vectors. In the left top part, each query
variable node is assigned with a bit vector value (de-
noted by QBitVec) that reflects all the required de-
scendant query nodes. Note that the underlined ‘1’ in
a QBitV ec indicates that this bit position is the re-
served one for this particular query node. In contrast,
the set of QBitV ec values shown in the left bottom
part reflect the structural constraints in terms of the
corresponding ancestor query nodes required by the
query nodes.

0001

0011 0100

1111
a

b

c

d

data DAGquery bit-vectors Traverse the data DAG and perform filtering
Process nodes in postorder or topological-order

when exiting each edge directing from n to prev, do
// myBitVec is the bitVector value for n
myBitVec = bitOR(myBitVec,prevBitVec,QBit)
// prev is query relevant if it matches a query label
if (prev is query relevant &&

prev does not satisfies structural constraint)
then myBitVec=bitAND(myBitVec,~prevQBit)

if (n is query relevant &&
bitAND(myBitVec,QBitVec) == QBitVec)

then n satisfies structural constraint
put n into the corresponding stream

1011

1010 1100

1000
a

b

c

d

check downwards constraints

check upwards constraints

QBit

QBitVec

Figure 7: Illustration of Filtering Process

The node filtering process is depicted in the right
part of Figure 7. Before the filtering starts, each
data node is initiated with an all-zero bit-vector value.
For checking the downwards structural constraints, we
conduct a depth first traversal of the data graph to
visit each edge exactly once and process the touched
nodes in their post-order. Specifically, when leaving
each edge e, we apply bitOR to the bit-vector value
myBitV ec of parent(e) (i.e., prev in Figure 7), the
prevBitV ec of child(e) (i.e., n), and QBit whose only
’1’ bit is set at the position reserved for the query
node corresponding to n. This ensures n to inherit
the satisfied downwards constraint from the child node
prev. The post-order processing guarantees that when
computing the myBitV ec for a parent node n, the
prevBitV ec of any child node is already finalized to
be bitOR-ed. Then this myBitV ec is bitAND-ed with
QBitV ec which encodes the required downwards con-
straint to check if the satisfied constraint of n sub-
sumes what is required.

In the second graph traversal, nodes are processed
in a topological order to be checked with the upwards
structural constraints. Namely, x is processed prior to
y for any directed edge from x to y. This ensures that
the myBitV ec of any node is computed after those
computations for all its ancestor nodes are done. The
myBitV ec computation and checking with the corre-
sponding QBitV ec here is the same as that in the first

501

traversal. Only if a node satisfies the constraints in
both directions, we put it in its corresponding stream.

Although this pre-filtering technique helps to select
the stream nodes guaranteed to appear in the final
solutions, how exactly are the matched patterns (i.e.,
the final solutions with nodes linked to their particular
ascendants or descendants) remains to be resolved by
the stack-and-sweep process. The overhead of this pre-
filtering step is two traversals of the data graph, i.e.,
O(2m). We expect this overhead to be outweighed
by the performance gains achieved due to the reduced
stream sizes, especially when the data graph is large
and the screening ratio is high.

6 Experimental Studies

In this section, we conduct experiments to evaluate our
stack-based pattern matching algorithms for DAGs
in comparison to the alternative linear-storage algo-
rithms [11] (denoted by Nav in the experimental re-
sults). The basic idea of their algorithms in [11] is to
first topologically sort the query nodes. Then for each
query variable, an iteration over graph nodes is ini-
tiated to assign data bindings to it. For each such
assigned node, the overall graph is searched for its
child or descendant binding nodes. Both our algo-
rithms and the compared algorithms do not require
a time and space expensive path-index building nor
transitive closure computing, as opposed to most al-
gorithms surveyed in [19].

6.1 Experimental Setup

Our algorithms are implemented in Java
1.4 and use PSEPro from ObjectStore
(http://www.objectstore.net) as the light-weighted
storage engine for storing the DAG representation.
The advantage of using PSEPro is that it provides
us with not only the transparent persistency for the
graph data but also a virtual memory mapping ar-
chitecture (VMMA) which supports a direct mapping
of the object hierarchy in memory onto the disk
representation. This means that the accesses to the
part of a data structure such as SSPI that may be
stored on the secondary storage4 are automatically
translated by PSEPro to in-memory data accesses
during execution. We conduct all the experiments on
a 2.6Ghz Pentium IV PC with 1GB main memory
and 2GB disk space allocated for the virtual memory.

We have devised a synthetic DAG generator with
four tunable parameters: diameter, fan-out, fan-in
and number of distinct labels. For example, the typi-
cal configurations for our synthetic data sets use fan-
out and fan-in ranging from 2 to 20, diameter up to
20, and 10 to 50 distinct labels which are evenly dis-
tributed. For real-life data, we use a set of DAG-

4The chance that SSPI is too large to fit in memory is much
smaller than those space-expensive matching algorithms since
SSPI’s space cost is in linear (not quadratic) in the graph size.

structured gene ontology data from the Gene On-
tology Consortium and XML data generated from
the XMark benchmark [22] with random additions of
acyclic IDREFs. For all the conducted experiments,
we have validated the soundness and completeness of
our algorithms by comparing the output solutions with
those produced by the alternative algorithms.

6.2 Experimental Evaluation

In Figure 8, we show the query performance in terms
of response times (in seconds5) for different queries
over increasing sizes of the synthetic DAG data sets.
The different queries we use include a path query PQ=

//a//b//c//d, a twig query TQ=//a(//b(//d, //e), //c//f),
and a dag query DQ=//a(//b//d//f, //e//f). The DAG
sizes increase from 25K nodes to 400K nodes, how-
ever with the ratio of the number of edges and that
of the nodes fixed at 1.8, and the number of different
labels set as 20. We can see that for all the DAG data
sizes, the performance of our algorithms (shown in the
second bar in each group) is always better than that
of the alternative algorithms (denoted as Nav). The
response time of each of our algorithms is composed
of two parts, the pre-filtering time (denoted as Filter)
and the query execution time (denoted as Exec). With
each subsequent DAG doubling the size of its last one,
the Nav algorithms show an increase by about four
times in their response delays, while our algorithms
show less pronounced effect of the DAG size. Since
the pre-filtering cost is linear in the edge number of
the DAG, its percentage weight in the overall query
processing time reduces with the increase in DAG size.

Next we conduct experiments to show the query
performance of both algorithms influenced by varying
the densities of the DAG data sets. We start with a
seed tree with 5K nodes and 10 different labels, then
gradually increase the number of edges from 5K to
about 70K by tuning the fan-in parameter of the DAG
generator. Figure 9 shows that the response times to
a twig query TQ=//a(//b(//d, //e), //c//f) increase with
the growing ratio of the edges and the nodes for both
algorithms. It also shows that our algorithms win over
the Nav algorithms in all the cases, and that the im-
provements are more significant when the ratio is rel-
atively large. We reason that this is because when
the DAG is more dense, the search space for assigning
data nodes as query variable bindings in the Nav al-
gorithms is less likely restricted within local subtrees.
This may impact their performance considerably. In
contrast, our algorithms utilize the temporal proper-
ties and other techniques to help with space pruning
and to avoid a severe performance decline.

Furthermore, we show the effects of path query
length and twig query size on the query performance.
The experimented path and twig queries are illustrated

5In all the experiments that show the time on the y-axis, the
unit is second.

502

0

4

8

12

16

PQ TQ DQ

Nav
Exec
Filter

Nav
Exec
Filter

(a) 25K Nodes

0

20

40

60

0

20

40

60

0

20

40

60

PQ TQ DQ

Nav
Exec
Filter

Nav
Exec
Filter

(b) 50K Nodes

0

40

80

120

160

PQ TQ DQ

Nav
Exec
Filter

Nav
Exec
Filter

(c) 100K Nodes

0

100

200

300

400

500

PQ TQ DQ

Nav
Exec
Filter

Nav
Exec
Filter

(d) 200K Nodes

0

300

600

900

1200

1500

PQ TQ DQ

Nav
Exec
Filter

Nav
Exec
Filter

(e) 400K Nodes

Figure 8: Response Times of a Path, Twig and Dag Queries With Increasing DAG Sizes

0

2

4

6

5 10 20 30 40 50 60 70

Nav

TwigStackD

(K)

Figure 9: Effects of Graph Density

a

c
b

a
b

a

c
b

a

c
b

a

c
b

d d
e

d
e
f

a

c
b

d
e
f
g

PQ1 PQ2 PQ3 PQ4 PQ5 PQ6

b c

aTQ1

b c

aTQ1

b c

a

fd e

TQ2

b c

a

fd e

TQ2

i

b c

a

fd e

g h

TQ3

Figure 10: Queries used in Figures 11 and 12

in Figure 10. The test DAG data set has 100K nodes,
180K edges and 20 different labels. As shown in Fig-
ures 11 and 12, the processing time for the Nav al-
gorithms increase with the growing of the path query
length or the twig query size. Our stack-based algo-
rithms however sometimes show performance improve-
ments with more restricted query patterns (i.e., those
with more query nodes). This is attributed to the pre-
filtering step used for reducing the nodes to be put
in the streams as well as to the decreased result size
corresponding to the more restricted query patterns.

0

20

40

60

80

100

PQ1 PQ2 PQ3 PQ4 PQ5 PQ6

Nav
PathStackD

Figure 11: Effect of Path Length

0

50

100

150

200

TQ1 TQ2 TQ3

Nav

TwigStackD

Figure 12: Effect of Twig Size

To make sure that the performance gains brought
by the pre-filtering step indeed outweigh its over-
head, we compare the performance of our PathStackD
algorithm (PSD for short) for a path query PQ =

//a//b//c//d with pre-filtering and without pre-filtering.
Figure 13 shows that for a small DAG containing 1K
up to 5K nodes (the edge/node ratio is 1.8 and the
number of different labels is 20), the overhead of pre-
filtering outweighs its benefits. As the DAG size in-
creases to 25K or so, the performance of our Path-
StackD algorithm is better off to utilize pre-filtering.

0.17 0.5
1.32

4.2

0.09 0.41

1.4

10.4

0

4

8

12

1K 5K 25K 50K

PSD/Filtering

PSD/NoFiltering

Figure 13: Effects of Prefiltering

In Figure 14, we report the SSPI building time for
each DAG set used in the first experiment (see Fig-
ure 8) and the exact break-down of the processing time
of TwigStackD (i.e., TSD) for the same twig query TQ.
Also, we give out the number of nodes being touched
(i.e., #Scan) by TwigStackD and the result sizes.

We have tested two sources of real data sets, one is
the relatively small gene ontology data (17K nodes and
23K edges), and the other one is a 100MB XML doc-
ument (about 1.4M nodes and 1.6M edges) produced
by using the XMark [22] benchmark generator. For
both real data sets, our stack-based algorithms out-

503

21.11

8.25

3.84

1.86

1.26

481.724K37.7M94.768.31

148.714K10.9M28.354.38

127644K121M375.9019.06

51.85.6K2.34M6.271.94

14.52.4K0.58M1.581.02

21.11

8.25

3.84

1.86

1.26

481.724K37.7M94.768.31

148.714K10.9M28.354.38

127644K121M375.9019.06

51.85.6K2.34M6.271.94

14.52.4K0.58M1.581.02

BuildSSPI TSDFilter TSDExec #Scan #Result NavAlgo

25K

50K

100K

200K

400K

Figure 14: Scanned Nodes and Result Sizes

perform the Nav algorithms. For example, Figure 15
compares the performance of ours against Nav’s for
processing two particular queries over the real XML
data set. Note that although the data size is large, the
generated DAG is rather tree-like.

72.227.8K10.4M53.51

53.412.8K3.59M22.39

72.227.8K10.4M53.51

53.412.8K3.59M22.39

*StackD #Scan #Result NavAlgo

PQ

TQ

PQ=//site//person//age
TQ=//site(//item//description, //category//name, //person//age)

Figure 15: Experiments on Real XML Data

In sum, we have consistently observed the opti-
mal experimental performance of our stack-based algo-
rithms compared to the Nav algorithms. In particular,
a restricted query pattern imposed over a dense graph
is more likely favored by our algorithms.

7 Conclusions

In this paper, we have generalized the original stack-
based algorithms to be applied to DAGs. With only
a linear space cost for the data, our algorithms are
quadratic in the average size of the query variable
bindings in the worst-case time. A possible future
work is to investigate whether the bit-vector encod-
ing techniques can be extended and effectively used in
our SSPI structure to enhance the node connectivity
checking efficiency. We also plan on developing a gen-
eral framework that allows for flexibly choosing from
different options of DAG representations based on
the trade-off between space and efficiency and on the
structural properties of the particular input graph.

Acknowledgements. This work is supported by
NIH Human Brain Project Award No. 5RO1DC03192
and NSF ITR Grant EIA-0205061.

8 References
[1] R. Agrawal, A. Borgida, and H. V. Jagadish.

Efficient management of transitive relationships in
large data and knowledge bases. In SIGMOD,
Portland, Oregon, pages 253–262, 1989.

[2] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu,
N. Koudas, and D. Srivastava. Structural joins: A
primitive for efficient xml query pattern matching. In
ICDE, Taipei, Taiwan, pages 141–154, Feb. 2002.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic
twig joins: optimal xml pattern matching. In
SIGMOD, San Jose, CA, pages 310–321, June 2002.

[4] Y. Caseau. Efficient handling of multiple inheritance
hierarchies. In OOPSLA, pages 271–287, 1993.

[5] Z. Y. Chen, H. V. Jagadish, F. Korn, and
N. Koudas. Counting twig matches in a tree. In
ICDE, Heidelberg, Germany, pages 595–604, 2001.

[6] V. Christophides, D. Plexousakis, M. Scholl, and
S. Tourtounis. On labeling schemes for the semantic
web. In WWW, pages 544–555, 2003.

[7] T. H. Cormen and et. al. Introduction to Algorithms
(ISBN 0-262-530-910). MIT Press, 1994.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman, 1979.

[9] H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree:
Indexing xml data for efficient structural joins. In
ICDE, Bangalore, India, pages 253–264, March 2003.

[10] H. A. Kaci, R. Boyer, P. Lincoln, and R. Nasr.
Efficient implementation of lattice operations. ACM
Trans. Program. Lang. Syst., 11(1):115–146, 1989.

[11] A. Kanza, W. Nutt, and Y. Sagiv. Querying
incomplete information in semistructured data. J. of
Compu. and Sys. Sciences, 64(3):655–693, 2002.

[12] H. Kaplan, T. Milo, and R. Shabo. A comparison of
labeling schemes for ancestor queries. In Symposium
on Discrete Algorithms, pages 954–963, 2002.

[13] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F.
Korth. Covering indexes for branching path queries.
In SIGMOD, Madison, Wisconsin, pages 133–144,
2002.

[14] Q. Li and B. Moon. Indexing and querying xml data
for regular path expressions. In VLDB, Roma, Itlay,
pages 315–326, Sept 2001.

[15] J. McHugh and J. Widom. Query optimization for
XML. In The VLDB Journal, pages 315–326, 1999.

[16] A. O. Mendelzon and P. T. Wood. Finding Regular
Simple Paths in Graph Databases. In VLDB,
Amsterdam, Netherlands, pages 185–193, 1989.

[17] T. Milo and D. Suciu. Index structures for path
expressions. In ICDT, pages 277–295, 1999.

[18] P. Buneman and M. F. Fernandez and D. Suciu.
UnQL: A Query Language and Algebra for
Semistructured Data Based on Structural Recursion.
The VLDB Journal, 9(1):76–110, 2000.

[19] D. Shasha, J. T. Wang, and R. Giugno. Algorithmics
and applications of tree and graph serarching. In
PODS, Maddison, WI, pages 39–52, June 2002.

[20] Z. Vagena, M. M. Moro, and V. J. Tsotras. Twig
query processing over graph-structured xml data. In
WEBDB, Paris, Frence, pages 43–48, 2004.

[21] M. F. van Bommel and T. J. Beck. Incremental
encoding of multiple inheritance hierarchies. In
CIKM, Kansas City, Missouri, pages 507–513, 1999.

[22] Xmark. The xml-benchmark project.
http://www.xml-benchmark.org, Apr. 2001.

[23] C. Zhang, J. Naughton, D. Dewitt, and Q. L. et. al.
On supporting containment queries in relational
database management systems. In SIGMOD, Santa
Barbara, California, pages 425–436, 2001.

[24] Y. Zibin and J. Y. Gil. Efficient subtyping tests with
pq-encoding. In OOPSLA, pages 96–107, 2001.

504

