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Abstract

In this paper, we propose a method for
maintaining a semantic cache of material-
ized XPath views. The cached views include
queries that have been previously asked, and
additional selected views. The cache can be
stored inside or outside the database. We
describe a notion of XPath query/view an-
swerability, which allows us to reduce tree op-
erations to string operations for matching a
query/view pair. We show how to store and
maintain the cached views in relational tables,
so that cache lookup is very efficient. We
also describe a technique for view selection,
given a warm-up workload. We experimen-
tally demonstrate the efficiency of our caching
techniques, and performance gains obtained
by employing such a cache.

1 Introduction

XML is increasingly being used in data intensive ap-
plications. Major database vendors are incorporating
native XML support in the latest versions of their re-
lational database products. Data meant for web ser-
vices, and data exchange applications is often most
conveniently stored directly as XML. In this scenario,
the number and size of XML databases is rapidly in-
creasing, and XML data becomes the focus of query
evaluators and optimizers.

In a relational database system, the in-memory
buffer cache is crucial for good performance. A similar
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buffer cache can, and is, employed in XML systems.
However, XML query processing presents a different
set of challenges. Query execution on semistructured
data is intrinsically harder to optimize. The buffer
cache reduces the disk I/O cost, but not the computa-
tional cost. We propose maintaining a semantic cache
of query results [DFJ+96]. It will address the compu-
tational cost and thus, complement the buffer cache.
It is simple to have the semantic cache. In our scheme,
it is maintained in three tables in the database (two
purely relational, and one with an XML column). Fur-
ther, the semantic cache can also be maintained on a
different database system, on a remote host. Thus,
unlike the page-based buffer cache, it can be employed
in a distributed setting too.

We describe in this paper, a framework for main-
taining and using a semantic cache of query results.
The cached queries are basically materialized views,
which can be used in query processing. Thus, at
any moment, the semantic cache contains some views
{V1, . . . , Vn}. When the system has to evaluate a new
query Q, it inspects each view V in the cache and de-
termines whether it is possible to answer Q from the
result of V. In our setting, the views are XPath expres-
sions, while the queries are either XPath or a restricted
XQuery fragment (which we describe later). For now,
we will take Q to be XPath, and describe the extension
to XQuery, later. We say that view V answers query
Q if there exists some other query C which, when ex-
ecuted on the result of V, gives the result of Q. We
write this as C◦V = Q. We call C the Composing
Query (CQ). When some cached view answers a posed
query, we have a hit; otherwise we have a miss.

There are several applications for such a semantic
cache. First, consider its use inside the XML database
system. Suppose some query Q is answered by view V,
with C being the CQ. Then Q is answered by executing
C, which is simpler than Q, on the result of V, which is
a much smaller XML fragment than the original data
instance. This can result in a significant speedup, as
we show in our experiments. The semantic cache can
also be maintained at the application tier. Here, there
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will be additional savings for a hit, from not having to
connect to the backend database. For a heavily loaded
backend server, these savings can be large. This kind
of middle-tier caching has become popular for web ap-
plications using relational databases [LKM+02]. Fi-
nally, the semantic cache can also be employed in a
setting like distributed XQuery [RBHS04] where sub-
queries of a query might refer to remote XML data
sources, connected over a WAN. Here, a subquery that
hits in the local cache, will not have to be sent over
the network, and the savings can be huge.

Checking query/view answerability requires match-
ing operations between the tree patterns of the query
and view (we discuss this in Section 3). Looking up
the semantic cache by iterating over all views, will be
very inefficient when the number of views is large. We
list below our main contributions:

• We show a method for checking query/view an-
swerability ∃C.Q ≡ C ◦ V , by string operations
which capture the semantics of the required tree
operations.

• We describe a novel cache organization, in which
view expressions are stored in relational tables,
and cache lookup is done by issuing SQL queries.

• We demonstrate that cache lookup is very effi-
cient, even when there are several hundred thou-
sand cached views.

• We describe a method for warm-up view selection,
when given a warm-up query workload.

• We demonstrate impressive speedups for query
workloads having locality.

Example: We now present some examples of how
queries are answered from the cache. They will make
clearer the challenges in doing efficient lookup in a
large cache, and also illustrate query rewriting for
cache hits. Suppose we have three cached views, as
shown below.

V1 /a[u[@v]/w][x]
V2 /a[x//y][p//r]
V3 //a[@v>50]

Suppose query Q1 is /a[x][u[w]/@v]/b. It is clear V1
answers it, with the Composing Query C1 being /*/b.
In this case, a recursive reordering of predicates will
make V1 a prefix string of Q1. Consider query Q2 =
/a[p/q/r][x/y//z]/b. It is answered by V2, with C2
being just Q2. In this case, we need to check that view
predicate [p//r] “contains” query predicate [p/q/r],
and so on. Finally, let query Q3 be //a[@v>100]. It
is answered by V3, with C3 being /*[@v>100].

The rest of this paper is organized as follows. We
start with related work in Section 2. Section 3 de-
scribes how we determine query/view answerability.

Section 4 describes how our cache is stored, and looked
up. Section 5 talks about view selection, based on the
warm-up workload of queries. In Section 6, we present
our experimental results, and then conclude in Sec-
tion 7.

2 Related Work

A related problem is that of containment between
XPath queries. In [MS02], this problem is shown to be
coNP-complete. A polynomial time algorithm is also
presented for checking containment, which is sound
but not complete. However, note that V contains Q
does not imply V answers Q. For example, let V =
/a/b, and Q = /a[x]/b. Then Q is contained in V.
But it is not possible to answer Q from the result of
V.

[BOB+04] also proposes using materialized XPath
views. They do not address the problem of speed-
ing up lookup when there are a large number of views
to consider. Further, their criterion for query/view
answerability is exactly containment between them.
Their version of what we call Composing Queries can
require navigating up from the result nodes of the
view being used. For each view, they store one or
more of XML fragments, object ids, and typed data
values. We chose to restrict ourselves to just XML
fragments, and defined query/view answerability ac-
cordingly. This choice allows us to maintain our
cache outside the database too, and target applica-
tions like middle-tier caching and distributed XQuery,
which we mentioned earlier. Application-tier caching
for relational databases has received a lot of atten-
tion lately, in the context of database-driven web
sites [LKM+02, YFIV00]. Our caching framework en-
ables the same for XML databases. Further, when the
cache is maintained inside the XML database system,
object ids of the result nodes can be stored instead
of the entire result fragment. The techniques that we
describe in this paper will remain equally applicable.

[CR02] proposes a semantic cache of XQuery views.
It focuses on various aspects of the query/view match-
ing problem, which is harder for XQuery. Having
XQuery views will result in smaller cached results and
concise rewritten queries, which will speed up cache
hits. However, optimizing lookup is harder due to the
more complex matching involved, and lookup is likely
to become the bottleneck when there are a large num-
ber of cached views to consider.

3 Using XPath Views

We now look at query/view answerability. The ques-
tion that we consider is this: Given a view V and query
Q, does V answer Q, and if yes, then what should C be
so that C◦V ≡ Q. XPath queries are naturally repre-
sented as tree patterns. We are going to reason using
these, to derive a sound but incomplete procedure for
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Figure 1: Example Tree Pattern

answering this question.
We first present an example showing how

a XPath query is represented as a tree pat-
tern. Figure 1 shows the tree pattern for Q
= a[v]/b[@w=”val1”][x[.//y]]//c[z>val2]. Child
and descendant axes are respectively shown by single
line and double line edges. The ellipse-shaped nodes
are predicates qualifying their parent nodes. Note that
the result node “c” of the query is marked by double
circles.

Defn 1 The Query Axis is the path from the root
node to the result, in the query tree pattern. Nodes
on this path are the “axis nodes”, while the others are
“predicate nodes”. The Query Depth is the number
of axis nodes.

Defn 2 Prefix(Q,k) is the query obtained by trun-
cating query Q at its k-th axis node. The k-th axis node
is included, but its predicates are not. Preds(Q,k) is
the set of predicates of the k-th axis node of Q.

Example: Consider the query Q of Figure 1. It
has depth three, with a,b,c respectively being its first,
second and third axis nodes. Prefix(Q,2) = a[v]/b,
and Preds(Q,2) = {[@w=”val1”],[x[.//y]]}.

The XPath fragment we cover includes the ’//’ axis,
and ’*’ node labels. Predicates can be any of these:
equalities with string or numeric constants, compar-
isons with numeric constants, or an arbitrary XPath
expression from this fragment. We don’t support join
predicates yet.

3.1 Criteria for Answerability

Given some C, we will check equivalence between C◦V
and Q, by checking equivalence between their tree pat-
terns. We first describe how the tree pattern for C◦V
is obtained from C and V. Let the axis of V (from root
to result) be (x1, x2, . . . , xk) (see Figure 2). Observe
that C is applied to the result of V. The label of the
root of C must match that of the result of V if C◦V is
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Figure 2: Tree Patterns for C◦V and Q

to return anything. Let C have axis (xk, xk+1, . . . , xn).
Then, to obtain the tree for C◦V, we combine the trees
of V and C by fusing the result node of V with the root
node of C. Figure 2 illustrates this, and shows the two
tree patterns we have to check for equivalence. Qk de-
notes the subtree of Q rooted at its k-th axis node.
We now briefly talk about XPath minimality and con-
tainment.

Defn 3 (XPath Minimality) A XPath query Q is
minimal [FFM03] if it is not possible to drop a subtree
from its tree pattern, and get an equivalent query.

XPath Containment Mappings: A containment
mapping [MS02] from XPath query A to B, is a map-
ping from nodes in the A tree pattern to those in the
B tree pattern such that:

• Labels of mapped nodes match.

• A’s root and result nodes respectively go to B’s
root and result.

• Child edges go child edges, and descendant edges
to downward paths.

The existence of such a mapping is sufficient, but not
necessary, for B ⊆ A to hold. However, in most prac-
tical settings, we expect this mapping to exist when
containment holds. In this paper, we check contain-
ment using these mappings.

Theorem 1 If two tree patterns are minimal, and
containment mappings exist both ways (so that they
are equivalent), then they are isomorphic i.e., they are
the same tree.

Table 1 lists a set of sufficient (but not necessary)
conditions for checking if view V answers query Q.

Example: Let V = /a[u[@v]/w]/b[x//y][p//r],
and Q = /a[u[w]/@v]/b[x/y//z][p/q/r]/c. V
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V answers Q if:
1. Prefix(V,k) and Prefix(Q,k) have isomorphic

trees, where k is the query depth of V.
2. ∀ view–pred ∈ Preds(V,k) ∃ qry–pred ∈

Preds(Q,k) such that qry–pred ⊆ view–pred.

Table 1: Criteria for answerability

has depth 2. Prefix(V,2) = /a[u[@v]/w]/b,
and Prefix(Q,2) = /a[u[w]/@v]/b. They are
equivalent, and the first condition is satisfied.
Preds(V,2) = {[x//y],[p//r]}, and Preds(Q,2) =
{[x/y//z],[p/q/r]}. Containment between corre-
sponding predicates can be easily checked by contain-
ment mappings, and the second condition too is satis-
fied. Thus, V answers Q.

We now present the intuition behind these condi-
tions. Assume that V and Q are minimal. As in the
relational case, we expect real, user-written queries to
be minimal. Since we can choose to minimize the Com-
posing Query C, we take C too to be minimal. By
Theorem 1, we need the minimized tree of C◦V to be
isomorphic to the tree of Q. In minimizing, suppose the
tree for Prefix(V,k) remains unchanged, where k is the
query depth of V. Note that it is a subtree of V, and
thus, minimal to start with. Then, we can see from
Figure 2 that the tree for Prefix(V,k) needs to be iso-
morphic to that of Prefix(Q,k). This gives us the first
condition. We now need to make the lower subtrees
isomorphic. Note that the subtree rooted at xk is sim-
ply C, with the predicates at its root node augmented
by Preds(V,k). Minimizing this subtree should give us
Qk, the subtree of Q rooted at its k-th axis node yk.
From Theorem 2 below, C is just Qk. Thus, if we add
the predicates Preds(V,k) to the root node of Qk, and
then minimize, we get back Qk. Then, from Lemma
5 in [FFM03], each of these predicates must contain
some subtree rooted at a child of Qk. This gives us
the second condition.

Theorem 2 Suppose view V of depth k answers query
Q. Then the Composing Query C is just Qk, the subtree
of Q rooted at its k-th axis node.

Proof: Denote by C’, C with its root node augmented
by Preds(V,k). As observed above, minimizing C’
should give us Qk. Thus, they are equivalent, and
Qk◦V ≡ C’◦V. Observe that C’◦V ≡ C◦V. The for-
mer is just the latter, with the predicates at node xk

augmented by Preds(V,k). But xk already has this
set of predicates, in the latter. Adding them again
leaves the semantics of the query unchanged. Com-
bining these equivalences, we get that Qk◦V ≡ C◦V.
We can choose C to be Qk. ¥

We now have the conditions for determining if V
answers Q. If it does, we also know how to find C. The
first condition requires checking isomorphism between
two trees, and the second condition requires setting

Normalize-Tree(T)
1. Let T have axis (x1,. . . ,xk).
2. For i=1,. . . ,k Normalize-Node(xi).
3. Concatenate the node labels of x1,. . . ,xk, with

appropriate axes in between.
4. Return the query string formed.
Normalize-Node(x)
1. Let x have predicate node children p1,. . . ,pn.
2. For i=1,. . . ,n Normalize-Node(pi).
3. Sort p1,. . . ,pn lexicographically by their labels.
4. For i=1,. . . ,n append “[pi.label]” to x.label.

Table 2: Normalizing a tree pattern

up containment mappings between trees representing
predicates. Looking up a cache storing a large number
of views, by checking these tree-based conditions for
each view, will give a very high lookup overhead.

3.2 String-Based Answerability Checking

To achieve efficient cache lookup, we will look to check
answerability using string matching. This will be
cheaper, and more importantly, amenable to index-
ing. The first condition in Table 1 is not the same as
string equality between Prefix(V,k) and Prefix(Q,k).
This is because of reordered predicates, use of differ-
ent syntax for the same predicate (e.g. “[x/y]” instead
of “[x[y]]”), and so on. We describe in Table 2 a proce-
dure for obtaining a unique XPath query string from
a tree pattern T. Recall that axis nodes are the nodes
lying on the query axis, while all others are predicate
nodes. We obtain the “normal form” of a query by
normalizing its tree pattern.

Example: Let Q = /a[q][p]/b[x[z]/y]. Its tree
T has axis (a,b). Normalize-Node(a) results in the
node label ’a’ being replaced by ’a[p][q]’. Normalize-
Node(b) makes a recursive call to Normalize-Node(x)
which replaces ’x’ with ’x[y][z]’, and when it returns,
’b’ has been replaced by ’b[x[y][z]]’. Concatenating
these node labels, we get the normal form of Q as
/a[p][q]/b[x[y][z]].

It is clear from our definition that a given tree pat-
tern has a unique normal form. Thus, if V and Q
are rewritten in normal form, the first condition re-
duces to just string equality between Prefix(V,k) and
Prefix(Q,k).

To check the second condition, for each result node
predicate that the view has, we have to look for a con-
tainment mapping from its tree to trees of, potentially,
each of the predicates in Preds(Q,k). Having to do this
for a large number of candidate views for a query can
be quite expensive. Note that, we need to check this
condition only for views that satisfy the first condi-
tion. However, for a cache with a very large number
of views, the number of views satisfying the first con-
dition may not be small. We want to avoid the over-
head of repeatedly setting up containment mappings.
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V answers Q if:
1. Prefix(V,k) = Prefix(Q,k) where k is the depth

of V.
2. Preds(V,k) ⊆ ConPreds(Q,k)

Table 3: Checking answerability by string matching

This is what we do. For the tree of each predicate in
Preds(Q,k), we generate all the trees that map to it.
We normalize the root nodes of these trees, obtain-
ing the set of all normalized predicates that contain
some predicate in Preds(Q,k). We denote this set by
ConPreds(Q,k). Now, checking the second condition
is simple. We just need to check that every predi-
cate in Preds(V,k) is also present in ConPreds(Q,k).
This only requires string matching between predicate
strings.

Generating Containing Trees: We now describe
how all the trees mapping to a given tree T can be
generated. Consider any subset S of the node set of
T. Consider each pair of nodes x, y ∈ S such that no
other node on the path from x to y in T is in S. If
this path is a single child edge, put either a child or
descendant edge between x and y. Otherwise, put a
descendant edge. This gives us a tree with node set S
which contains T. Iterating over all possible choices of
S, and for each such S, taking all possible combinations
of edges between such node pairs x, y in S, gives us all
the trees that map to T.

Example: The set of all predicates containing the
predicate [x/y//z] is listed in the table below. For
the sake of clarity, we have not normalized them, thus
avoiding the nested square brackets.
[x] [x/y] [x/y//z]
[x//y] [x//y//z] [x//z]
[.//y] [.//y//z] [.//z]

The number of containing trees that we generate for
a tree T, and the time taken to generate these trees, is
exponential in the number of nodes of T. For example,
when T is a linear tree (a path) with n nodes, we
determined the number of containing trees to grow as
2.62n. However, tree patterns of individual predicates
are typically very small. Further, these trees have to
be generated only once for a given query.

In Table 3, we restate the conditions for checking
if view V answers query Q. They capture the same
semantics as the tree-based conditions, and use only
string operations. V and Q are assumed to have been
rewritten in normal form.

3.3 Supporting Comparison Predicates

The last thing we need to do for our query/view match-
ing procedure, is incorporate support for compari-
son predicates. So far, when generating containing
trees, we had assumed that in a containment map-
ping, if two nodes match, their labels have to be

XmlData (viewId int, fragment XML)
Prefix (prefixId int, prefix string)
View (viewId int, prefixId int, pred string, allPreds
string, CTs string)

Table 4: Schema of the cache tables

identical. However, tree patterns can include nodes
which are comparison predicates qualifying their par-
ent node (see Figure 1). We will refer to them as
Comparison Tags, or CTs. Our current scheme will re-
turn that view //book[@price>50] can’t answer the
query //book[@price>100], which is clearly wrong.
We need to allow two CT nodes to match in a con-
tainment mapping, if the node label in the contain-
ing tree is “more general” than that in the contained
tree. Thus, label “> x” can map to “> y” provided
y ≥ x. Similarly, “< x” can go to “< y” provided
y ≤ x. This is what we do to allow this. For each
predicate being checked, we yank out all the CTs it
contains, and store them separately. Thus, in the
predicate sets involved in the second condition in Ta-
ble 3, each predicate now has two components: the
first stores the predicate string, and the second stores
the CT’s, and their positional information. For ex-
ample, the predicate “@price>50” would be stored
as “(@price,(6,>50))” indicating that CT with label
“>50” occurs at position 6. When comparing some
predicate p in Preds(V,k) with q in ConPreds(Q,k),
we first match the string components. If they match,
we then match the CT components, with CT labels
being matched as described above. If the CTs also
match, then p ∈ ConPreds(Q,k).

4 Cache Organization and Use

This section describes how our semantic cache is
stored, maintained and used. Our views are stored in
relational tables, and their results are stored as XML
fragments. The scheme we present here assumes a re-
lational database with native XML support. It can
trivially be adapted to the case when the relational
and XML database systems are different. Table 4
shows the schema of the three tables storing the cache.
Note that the “fragment” column is of type XML. In
our experiments, we used the beta release of Microsoft
SQL Server 2005, which supports storing and querying
XML.

4.1 Inserting a View

We will illustrate how the cache is stored by show-
ing how a new view V is inserted into the cache. We
first rewrite V in its normal form (see Section 3.2). Its
result XML fragment is inserted into the fragment col-
umn in table XmlData. The viewId field is a system
generated key, and we record the value that it takes
in the inserted tuple. Suppose V has depth k. We
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insert Prefix(V,k) in the prefix column in table Prefix,
if it is not already present. prefixId is again a system
generated key, and we record the value that it takes.
We finish by inserting a tuple in table View for V. The
viewId and prefixId fields in View are foreign keys, and
they take the values we have just recorded for them.
Consider Preds(V,k), the set of predicates at the re-
sult node of V. Each predicate has a string portion and
a CTs (Comparison Tags) portion. Thus, we have a
set of strings and an associated set of CTs. From the
strings, we choose one to insert into the pred column.
Section 4.3 describes how we make a “good” choice.
The remaining strings are combined, and inserted into
the allPreds column. One or both of these columns
will be NULL, when Preds(V,k) respectively has one
or zero elements. Finally, we combine all the CTs and
insert them into the CTs column. The values for the
allPreds and CTs columns are constructed so that the
constituent strings and CTs can be recovered (we can
insert suitable delimiters, for example). Thus, view V
and its result XML can be recovered from the cache.

Example: Let V = /a[v]/b[x][@y=50][z>100].
If 1 and 2 are generated for viewId and pre-
fixId, then tuple (1,XML Result) goes into Xml-
Data, tuple (2,”/a[v]/b”) into Prefix, and tuple
(1,2,”@y=50”,”z|x”,”|(1,>100)|”) into View.

4.2 Cache Lookup

We now describe how the cache is looked up, for a
given query Q. Recall from Table 3 the conditions we
need to check to determine if some view V answers Q.
Suppose Q has depth n. From the first condition, it is
clear that any V of depth k can possibly work only if
k ≤ n. Further, we will prefer using a V with as large
a k as possible. A larger k will mean a Composing
Query C of lesser depth, executed on a smaller view
result fragment. Observe that the query-dependent
part of the conditions in Table 3 involves Prefix(Q,k)
and ConPreds(Q,k). Once we fix k, these get fixed.
Our approach will be this. We will iterate over k go-
ing from n to 1. For each k value, we will execute
a single SQL query which will return all “promising”
views of depth k. If any of them works, we have a
hit. Otherwise we try the next value of k, and so on.
Figure 3 lists this algorithm, including the SQL query
used. If no view was found which answers Q, we have
a cache miss. Q is executed on the XML database,
and inserted as a new view.

In the SQL query shown, ConPreds(Q,k) stands
for the list of string portions of the predicates in
ConPreds(Q,k). Consider any returned tuple. It rep-
resents a single cached view V. The prefix field for
V is Prefix(Q,k). Thus, V satisfies the first condi-
tion for answering Q. Further, its pred field is either
NULL, which means Preds(V,k) is empty and the sec-
ond condition is trivially satisfied. Or it matches the
string portion of some predicate in ConPreds(Q,k),

Cache-Lookup(Q)

For k = n,. . . ,1
Execute this SQL query:

Select V.*
From Prefix P, View V
Where P.prefix = Prefix(Q,k) and

P.prefixId = V.prefixId and
(V.pred is NULL
or V.pred in (ConPreds(Q,k)))

Inspect the returned views.
If some view answers Q, return it and exit.

Return null.

Figure 3: Cache lookup for query Q

which means the second condition is partially satis-
fied. ConPreds(Q,k) will be tiny relative to the set of
result node predicates of all cached views. We expect
the selection on the pred field to make the query very
selective, and return a small set of candidate views for
us to inspect. We examine the returned views for the
second condition, till we find one that satisfies it.

If Q is a cache hit, and some V of depth k answers
it, the Composing Query C is just the subtree of Q
rooted at its k-th axis node, as we saw in Theorem 2.
We further simplify C by removing from its root node,
those predicates which also occur in Preds(V,k).

Example: Suppose our cache has three views, as
shown below.
V1 /a/b[z]/c
V2 /a/b[@y=”str”][z>200]
V3 /a/b[w][@y=”str”]

Suppose Q = /a/b[w[x]][@y=”str”][z>100]/c. For
k = 3, we get no candidate views. For k = 2, the SQL
query returns V2 and V3. The matching of Compari-
son Tags for Preds(V2,2) fails, since [z>200] does not
contain [z>100]. However, V3 is found to answer Q,
with C being /b[w[x]][z>100]/c.

4.3 Cache Policies

To support the SQL query, we create clustered in-
dexes on Prefix(prefix) and View(prefixId,pred). We
now complete our discussion of view insertion (see Sec-
tion 4.1) by describing how the predicate to put in the
pred column is chosen. The selectivity of our SQL
query depends a lot on this choice. Among all views
having the right prefix, the query returns those whose
pred field lies in ConPreds(Q,k). If we choose a rela-
tively popular predicate for the pred column, then this
view is likely to more often be retrieved as a false pos-
itive. If we choose a rarer predicate, then this view
has a much lesser chance of being retrieved as a false
positive. So, we need to identify the rarer predicates
in Preds(V,k). We classify predicates as equalities,
comparisons, or paths (XPath expressions without any
equality or comparison predicates). Equality predi-
cates can take a lot of different values, since a typical
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attribute or element will take many different values
in the XML data instance. Path predicates are how-
ever, restricted by what the DTD allows, and can take
far fewer values. The CTs of comparison predicates
are stored separately, reducing the string portion to
just a path predicate. Equality predicates are the best
choice. If Preds(V,k) has any equality predicates, we
randomly choose one of them as the one that goes into
the pred column.

When some query Q is a cache miss, we insert it as
a new view. However, there is a catch here. We do
not want to insert Q if its result size is very large. Our
motivation for caching is to be able to execute simpler
queries on small fragments when we have a cache hit.
In fact, caching large fragments could potentially hurt
the overall performance, as we next explain. The XML
database will typically maintain suitable indexes over
the data. However, we don’t maintain any indexes
for the cached fragments. The overhead of indexing
them was found to be more than the benefit. Running
a query on a large, unindexed fragment could easily
be worse than running it on the XML database itself.
Thus, we impose a size limit on cached views. If some
view has result size greater than this limit, we choose
not to cache it. However, we do not want the size limit
to be too small. Otherwise, too many views would not
be inserted, and the hit rate would fall. A high cache
hit rate is crucial for achieving the benefits of caching.
Thus, there is a tradeoff involved here. We chose a
size limit of 128 KB in our experiments. We chose this
value because we weren’t getting much higher hit rates
at higher size limits (upto a maximum of 512 KB). In
hindsight, this value is probably specific to our query
workload, and the optimal value may be higher for
other workloads.

4.4 Answering XQuery

We first describe the XQuery fragment we cover.
Given an XQuery X, we define any XPath query em-
bedded in X to be a base XPath of X, if evaluating its
value requires accessing the data, and can’t be done
from the current environment. For example, suppose
X were this:
for $b in /site/regions
return $b//item
Then, the XPath in the “for” clause is a base XPath
of X. It determines the binding for $b. However, the
XPath in the “return” clause can be evaluated from
the binding for $b, and is not a base XPath. Thus,
the results of the base XPaths of X define all the XML
data needed to evaluate X. The XQuery fragment we
cover consists of those X whose base XPath queries do
not contain references to other variables in X (they are
meaningful queries independently), and which belong
to the XPath fragment that we cover.

We now describe how we can use the cache in an-
swering an XQuery X in this fragment. Suppose the

base XPaths of X are {Q1,. . . ,Qk}. We lookup each
Qi in the cache, setting Vi to the view that answers it,
and Ci to the corresponding CQ. If Qi is a cache miss,
it will be executed, and inserted as a new view. We
then rewrite X by replacing each Qi with the query Ci,
over the result fragment of Vi. This rewritten query is
equivalent to X, and can be evaluated using only the
cached data. Due to our fragment size limit, it may
not be possible to have a Vi in the cache that answers
Qi, for some i. In that case, we execute X directly on
the XML database.

5 Warm-up View Selection

We now describe how we warm-up the cache, given a
warm-up workload of queries. The conventional way
would be to just pose the queries in the warm-up work-
load to the cache. Those that are cache misses would
be inserted as new views, and the cache would be pop-
ulated. We can look to do better by being more proac-
tive in choosing which views to insert. If the warm-up
workload is representative of the test workload, then
we can use it to obtain a much larger workload S which
the test workload is likely to have a lot of overlap with.
We can then warm-up by inserting an optimal set of
views that answers all of S, and thus, formulate cache
warm-up as a view selection problem.

5.1 Generating Potential Queries

We first consider the problem of obtaining workload
S from the warm-up workload W , under the assump-
tion that W and the test workload both come from
the same hypothetical probability distribution over
all queries. Further, we assume this distribution is
skewed, and exhibits locality.

We obtain the template of a XPath query by
yanking out all string and numeric constants oc-
curring inside predicates. The template is a
parameterized query, which captures the struc-
ture of the original query. For example, the
template for /a[v]/b[w][@x=”str1”][y/z>50] is
/a[v]/b[w][@x=#][y/z>#], where the # symbols
indicate parameters to be filled in. An instance of this
template is created by inserting a string value for the
first parameter, and a numeric value for the second.
We record all the distinct templates we see in W . The
set S we generate will consist of instances of exactly
these templates.

We next describe how we obtain the parameter val-
ues that we will use in instantiating these templates.
The label for a template parameter is created by com-
bining the labels of the corresponding predicate, and
the axis node to which this predicate is attached. In
the above example, the label of the first parameter is
b[@x], and that of the second is b[y/z]. Note that dif-
ferent query templates can have parameters with the
same label. For example, the template //b[@x=#]/c
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has a parameter with label b[@x]. We treat param-
eters with the same label as the same. This is be-
cause, in most cases, the parameter label will identify
a unique path expression from the root element to the
parameter. Thus, parameters with the same label will
have the same domain of meaningful values that they
can take, and are considered as same. For each pa-
rameter, we record all the different values that it takes
in W , and the number of times each of these values is
taken.

We now have a set of templates and a set of pa-
rameter values, extracted from the warm-up workload
W . Locality in a workload will come from locality in
the templates and parameter values used. Further, we
make the simplifying assumption that query template
and parameter values are independent variables for the
hypothetical probability distribution over all queries.
This will often be the case. For example, we expect the
“hot” values for some parameter like book[@author]
to be the same, across different templates that it oc-
curs in. This is how we we create the workload S: we
create instances of each recorded template by trying
all combinations of recorded values of its parameters,
and then, take the union over all templates. Under
our assumption of locality, the test workload will have
overlap with S. We now want to insert views so as to
be able to answer the queries in S.

The main cost in warm-up is that of executing
queries on the XML database to bring in new views.
The size of S will typically be orders of magnitude
larger than W . To ensure that the time taken for
cache warm-up is reasonable, we put a bound M on
the maximum number of views that we may insert dur-
ing warm-up. In our experiments, we set M to be three
times the size of the warm-up workload. Under this
constraint, we want to select a set of views that an-
swers as large a subset of S as possible. This defines
our view selection problem.

5.2 View Selection

The views that we will consider for selection are the
queries making up S. We define the utility of a view
to be the cardinality of the subset of S that it an-
swers. The larger this value, the better the view is
for caching. The problem setting here is a variant
of the set cover problem, which is known to be NP-
complete. Each view represents a subset of S. We
want to pick subsets which together cover a maximal
subset of S, under the constraint that we can pick
at most M subsets. The algorithm we will use is a
simplification of the popular greedy approximation al-
gorithm for this problem [CLR90]. We pick potential
views in order of decreasing utilities. Each picked view
is posed as a query. If its a cache miss, it gets inserted
as a new view. We stop when we have inserted M

views, or there are no more views left. Unfortunately,
the algorithm as described, is computationally very ex-

View-Select()

1. Compute Utility(T) for each template T.
2. Sort templates in order of decreasing utilities.
3. Suppose the sorted order is (T1,. . . ,Tn)
4. Set Inserted = 0.
5. For i = 1,. . . ,n

If Ti is marked covered, skip to next iteration.
Obtain all query instances (Q1,. . . ,Qk) of Ti

For j = 1,. . . ,k
Pose Qj to cache.
If its a cache miss, do Inserted++.
If Inserted = M , exit.

Mark as covered each Ti’ that Ti answers.

Figure 4: Warm-up View Selection

pensive. Computing the utilities of all views requires
query/view matching between all pairs of queries of S,
and S is very much larger than the warm-up workload
W .

It turns out that the same result can be achieved
at a much lesser cost, if we work directly with the
query templates, instead of their instances. Given
templates T and T’, we say T answers T’ if, for ev-
ery instance of T’, there exists an instance of T which
answers it. For example, /a/b[p//r=#] answers
/a/b[@x=#][p/q/r=#]/c. We just need to make
the values of the parameters b[p//r] and b[p/q/r]
equal. It can be easily shown that if some instance
q′ of T’ is answered by q of T, then T answers T’.
Further, every parameter in T will have a matching
parameter in T’. The instances of T’ that some in-
stance of T answers, are obtained by varying those T’
parameters which either don’t have matching parame-
ters in T, or match with a T parameter which occurs in
a result node comparison predicate in T (we explain
this later). In the above example, there is a single
such T’ parameter, b[@x]. Thus, each instance of T
answers exactly the same number of instances of T’.
This implies that, for any template T, all instances of
T answer the same number of queries in S, and thus
have the same utility. We call this the utility of the
template, and its value is given by:

Utility(T) =

∑
T’ count(T’)

count(T)

where the sum is taken over all T’ that T answers,
and count(T’) denotes the number of instances that T’
generates. Observe that computing the utilities for all
templates requires query/view matching between all
pairs of templates, as opposed to all pairs of instances
of these templates. Thus, the potential views can be
obtained in the required order by sorting the templates
in order of decreasing utilities, and then replacing each
template with all the instances it generates. Figure 4
shows the view selection algorithm.
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5.3 Some Warm-up Heuristics

The above algorithm may fail to bring in views that
cover all of the queries in workload S. We now briefly
describe three heuristics to improve the view selection,
and obtain a higher cache hit rate.

Recall that, when recording values taken by a pa-
rameter, we also record the number of times each of
these values is seen. We can put a bound K on the
maximum number of values that we store for a param-
eter. If some parameter takes more than K values, we
retain only the top K. We set K to 30 in our experi-
ments.

Suppose some template parameter occurs in a
comparison predicate at the result node. For example,
the template //book[@price>#][@author=#]
has such a parameter book[@price]. Suppose
the smallest value in the value list for this pa-
rameter is v. Observe that if we can answer
the instance //book[@price>v][@author=
”str”], we can answer any other instance
//book[@price>w][@author=”str”], since w ≥ v

will hold. A similar comment holds when we have a
“<” comparison. In that case, we choose v to be the
largest value instead. Thus, for all templates, we can
fix the values of such parameters (which no longer
remain parameters). When applicable for a template
T, this reduces the number “count(T)” of instances
that T generates, and increases its utility value. Thus,
this optimization has an important effect on which
views get inserted.

For selecting views, we have so far considered only
the warm-up workload templates. However, it might
be the case that there are other, better views. Re-
call that a view is good if it has a high utility value,
and if its result size is less than our size limit (oth-
erwise it won’t be cached at all). We now describe a
heuristic to add new templates to those we are con-
sidering. We “generalize” a template by truncating
it as much as possible, while still retaining one pa-
rameterized predicate. For example, the generalization
of /a/b[@x=#][y/z>#]/c[v=#] is /a/b[@x=#].
For each template T, we add its generalization G to our
set of templates. We expect such a G to be a good tem-
plate for views. It clearly answers T. It will be a short
template, and is likely to answer a few other warm-up
templates too. Further, since it has a parameterized
predicate, instances of G will typically not have very
large results, and will be cacheable. Thus, the set of
templates we consider in the view selection algorithm
of Figure 4 now becomes larger.

6 Experiments

6.1 XPath Generator

We implemented an elaborate XPath query generator,
to create real-looking workloads for our experiments.
To generate a query, it first generates a simple path,

Generate-Path()
1. Set cur to the root node.
2. Set path = “/cur.label”; depth = 1.
3. With probability (depth/max depth)2, exit.
4. If cur has no outgoing edges, exit.
5. If cur has outgoing edges {e1,. . . ,ek}, take one,

where probability of taking ei is ∝ w(ei).
6. Set cur to the new node reached.
7. Set path = path + “/cur.label”; depth++.
8. Go back to step 3.

Figure 5: Simple Path Generation

and then creates and inserts predicates. A key feature
of the query generator is that predicates are created us-
ing values actually taken by elements and attributes in
the XML data. Thus, it generates meaningful queries,
many of which return non-null results when executed.
We used a 300 MB XML document generated by the
XMark [SWK+01] generator, in our experiments. We
now describe the steps involved in generating a query.

Generating a Simple Path: The document DTD
is preprocessed, and converted into a directed graph
the usual way. We insert an edge from x to y if y is
a child or attribute of element x. Any path from the
root node to any other node represents a simple path
expression, without predicates. Each edge e, going
from some node x to y is assigned a weight w(e) which
is the average number of y children that each x element
has, in the XML data instance (this value is obtained
by executing suitable “count” queries). We have a
parameter max depth which is the maximum depth
of any generated query. Figure 5 shows how a simple
path is generated. Note that we are not generating the
descendant axis or wildcard node labels.

Choosing Predicates: The number n of predi-
cates that we choose to insert is given by (r × depth)
rounded to the nearest integer, where depth is the
number of nodes in the generated path, and r is a real-
valued parameter. The set of available predicate types,
considering only structure, consists of path predicates
and attributes of the path nodes. We count a path
predicate at each path node as a single predicate type.
Children of path nodes having textual (#PCDATA)
content are also included among the attribute predi-
cates, to give us more choices of predicate types. We
then randomly choose some n predicate types from
this set. For each of them, a predicate is created, and
inserted at the appropriate place in the query.

Creating Attribute Predicates: In a prepro-
cessing phase before we generate queries, for each at-
tribute we extract and store all the distinct values that
it takes in the XML data. We also store whether its a
string or numeric attribute. To create a predicate for
some chosen attribute, we take the attribute name,
and append an ’=’ for string attributes, or randomly
one of ’=’, ’>’ or ’<’ for numeric attributes. We then
select a value from the stored values for this attribute
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using a zipf distribution with exponent z, where z is a
parameter. Thus, the probability of choosing the i-th
value is ∝ 1/iz. We then append this chosen value,
completing the predicate.

Creating Path Predicates: We restrict ourselves
to simple paths, instead of arbitrary trees. Our ap-
proach here is similar to the one we used in generating
simple paths. We first choose a child of the path node
for which we are creating the predicate. This is done
as in step 5 in Figure 5. We set the current node cur to
this child, and set the predicate to “cur.label”. If cur

has some m attributes then with an equal probability
of 1/(m+2), we either choose one of the m attributes,
or stop at cur itself, or choose to take an outgoing
edge to some child of cur (again as in step 5 in
Figure 5). If we choose an attribute then we create an
attribute predicate as described above, and append it
to complete the path predicate. If we move to a child
of cur, we set cur to that child, append “cur.label”” to
the predicate, and proceed similarly for this new node.

Workloads Used: For the workloads we generated
for our experiments, the max depth parameter was set
to 7, and r was 0.6. Thus, queries of depths 3, 4 and 5
had 2, 2 and 3 predicates respectively. We show three
example generated queries below:

• /site/open auctions/open auction[initial][@id =
”open auction1001”]

• /site/people/person[homepage][name=”Aenne
Ermakov”]/emailaddress

• /site/regions/samerica/item[quantity>2][name]
[@id=”item14898”]/location

6.2 Cache Lookup Performance

Cache lookup for a query Q involves returning the
viewId (see Table 4) of a view V that answers Q, and
the query C to be applied to result of V. We now see
how much time it takes to lookup the semantic cache.
Note that lookup does not include actually obtaining
the result of Q, by executing C (for a cache hit) or
Q (for a cache miss). In fact, for the experiments in
this subsection, we did not execute the XPath queries
at all. Thus, when some Q missed in the cache, it
was inserted as a new view without its accompanying
result fragment. In Section 6.3, we report results ob-
tained from a separate set of experiments in which the
XPath queries were completely answered. The experi-
ments were run on a Pentium 4 machine with 512 MB
RAM, running Windows. We used the beta release
of Microsoft SQL Server 2005 for both the cache and
XML databases. The cache parameter M , which is the
maximum number of views inserted during warm-up,
was set to three times the size of the warm-up work-
load. For warm-up heuristics (see Section 5.3), K was
set to 30, and the “generalized templates” heuristic
was not used.
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Figure 6: Hit Rate vs Zipf Exponent

We will compare our semantic cache with a naive
semantic cache which is based on matching of query
strings. It stores (query, result) pairs in a table with
schema (query string, result XML). A Query Q is a hit
only if the exact same query string is present in the
cache. In our experiments, we will call this cache the
“Naive Cache”, and refer to our proposed cache as the
“Semantic Cache”.

Figure 6 shows how the hit rate varies with the
zipf exponent z used for creating attribute predicates
when generating the query workload (see Section 6.1).
As z increases, the locality of the workload increases,
and thus, the hit rates for both caches increase. We
used warm-up and test workloads of 5,000 and 50,000
queries respectively, for each z value. The semantic
cache gives hit rates which are more than 30% higher.
The query/view answerability that we capture is much
richer than naive query string matching. For the re-
maining experiments, we used workloads generated
with z = 1.5.

Figure 7 shows how the average cache lookup time
varies with the size of the test workload. Here we
are looking to determine how well lookup scales to a
large number of stored views. In all cases, the same
warm-up workload of size 20,000 was used. We can see
that the lookup time for the semantic cache remains
constant at around 13 ms, even as the workload size
increases to half a million queries. This time is very
small compared to the time taken to execute a typical
XPath query in the workload. This is exactly what we
would like. The naive cache takes a mere 0.47 ms per
lookup. However, in query processing performance,
this difference will be offset by the higher hit rate of
the semantic cache, as we will see later.

Recall that lookup for a query Q of depth n will
require executing some k SQL queries where k ≤ n,
and inspecting their results (see Figure 3). The depth
of the Composing Query C will be exactly k. If Q is
a cache miss, then k will be n. Figure 8 shows lookup
times separately for different subsets of the test work-
load, which consisted of 500,000 queries. Hit-k denotes
the subset of queries whose Composing Queries were of
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Figure 7: Cache Lookup Time vs Workload Size
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notes hits having Composing Queries of depth d
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Figure 9: Hit Rate vs Workload Size

depth k. As expected, as k increases, the lookup time
for Hit-k increases, but the increase is quite moder-
ate. Finally, Figure 9 shows how the hit rate varies
with the test workload size. The hit rate for the naive
cache does not shoot up as the test workload size in-
creases. Thus, the fraction of repeated queries in the
generated workloads increases quite slowly with work-
load size. This is a desirable property for our XPath
generator to have.
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Figure 10: Query Processing Times
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Figure 11: Query Times by Lookup Outcomes

6.3 Query Processing Performance

We now show the speedup obtained in query process-
ing, by employing our semantic cache. The experi-
mental setup is the same as before, with two differ-
ences. First, we employed the “generalized templates”
heuristic to further boost the hit rate. Second, we fil-
tered the generated queries, and included in the test
workload only those which were found to finish exe-
cuting in at most 5 seconds. Some of the generated
queries were taking more than a minute on the 300
MB XML database, even after creating the path in-
dex for XML data that SQL Server allows [PCS+04].
These queries, when answered from the cache, could
give us speedup results which were misleadingly high,
since the bulk of the speedup would come from a few
select cache hits. So, we chose not to include these
queries. The workload zipf exponent z, used in creat-
ing attribute predicates, was again 1.5. Though this
seems high, note that for many attributes, we were
sampling from tens of thousands of different values.
Further, our XPath generator generates query struc-
ture completely randomly, and a higher z value com-
pensates for this absence of locality in the structure of
the generated queries.

We used warm-up and test workloads of 1500 and
8500 queries respectively. Figure 10 shows the aver-
age time per query, for three different configurations.
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Semantic Naive
Cache Cache

Avg Time/Hit (ms) 26.11 5.03
Avg Time/Miss (ms) 1428.39 1255.22
Final Size (KB) 6037.29 3634.29
Hit Rate 0.78 0.44

Table 5: Cache measurements

When not caching, the queries took 880 milliseconds
each. Having the naive cache brought this down to 700
ms, while employing the semantic cache brought this
down to 340 ms, which is a speedup by a factor of 2.6.
Recall that Hit-k denotes the subset of queries having
Composing Queries of depth k. Figure 11 shows, for
different values of k, the average time taken to answer
queries in Hit-k. As k increases, the increase in time
is much sharper than what we saw for cache lookup
alone in Figure 8. This confirms one of our main mo-
tivations for caching: small depth queries executed on
small fragments run faster than larger depth queries
executed on larger fragments. A cache miss of depth
n can be thought of as an extreme case, where a query
of depth n is executed on a very large fragment, the
entire XML data.

Finally, Table 5 shows some additional measure-
ments. For a cache hit, the semantic cache needs to
query a cached fragment. On the other hand, the naive
cache simply retrieves the whole fragment (at least for
XPath workloads). Considering this, the average hit
time of 26 ms for the semantic cache is impressive.
It is interesting to observe that the average time per
miss for the semantic cache is 1428 ms, which is much
higher than the overall average of 880 ms, for the en-
tire test workload. We know that cache lookup only
takes an extra 15 ms. Thus, the workload queries that
are cache misses, take longer to execute on the XML
database than those which are cache hits. This can be
explained as follows. If query Q is a hit and is answered
using view V, then the database can clearly answer Q
from the disk pages it needed for answering V. It is
likely that some or all of these disk pages are still in
memory, when Q is presented. Thus, when not using a
semantic cache, queries which would have been cache
hits still execute faster on average than those which
would have been misses. Finally, despite a higher hit
rate, the final size of the semantic cache is larger than
the naive cache. This is because of its proactive view
selection during warm-up.

7 Conclusions

We described a technique for employing a semantic
cache of materialized XPath views. Our notion of
query/view answerability gave a much higher hit rate
than naive query string matching. We used string op-
erations for cache lookup, and demonstrated the scala-
bility of our lookup method to a large number of stored
views. Cache hits were processed well over an order of

magnitude faster than misses. We obtained impressive
speedups on XPath workloads having locality. Seman-
tic caching is likely to prove very useful where applica-
ble. Interesting directions for future work would be to
answer a larger XQuery fragment, to study more so-
phisticated methods for view selection, and to explore
methods for maintaining these views in the presence
of XML database updates.
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