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ABSTRACT 

SQL extensions that allow queries to explicitly specify data 
quality requirements in terms of currency and consistency 
were proposed in an earlier paper. This paper develops a 
data quality-aware, finer grained cache model and studies 
cache design in terms of four fundamental properties: pres-
ence, consistency, completeness and currency. The model 
provides an abstract view of the cache to the query process-
ing layer, and opens the door for adaptive cache manage-
ment. We describe an implementation approach that builds 
on the MTCache framework for partially materialized views. 
The optimizer checks most consistency constraints and gen-
erates a dynamic plan that includes currency checks and 
inexpensive checks for dynamic consistency constraints that 
cannot be validated during optimization. Our solution not 
only supports transparent caching but also provides fine 
grained data currency and consistency guarantees.  

1. INTRODUCTION 
Replicated data, in various forms, is widely used to improve 
scalability, availability and performance. Applications that 
use out-of-date replicas are clearly willing to accept results 
that are not current, but typically have some limits on how 
stale the data can be. SQL extensions that allow queries to 
explicitly specify such data quality requirements in the form 
of consistency and currency (C&C) constraints were pro-
posed in [GLRG04]. That work also described how support 
for C&C constraints is implemented using MTCache 
[LGGZ04], a prototype mid-tier database cache built on 
Microsoft SQL Server. 

We model cached data as materialized views over a pri-
mary copy. The work reported in [GLRG04] considered 
only the restricted case where all rows of a cached view are 
consistent, i.e., from the same database snapshot. This re-
quirement severely restricts the cache maintenance policies 

that can be used. A pull policy, where the cache explicitly 
refreshes data by issuing queries to the source database, of-
fers the option of using query results as the units for main-
taining consistency and other cache properties. In particular, 
issuing the same parameterized query with different parame-
ter values returns different partitions of a cached view, offer-
ing a much more flexible unit of cache maintenance (view 
partitions) than using entire views.  

The extension to finer granularity cache management 
fundamentally changes every aspect of the problem, impos-
ing non-trivial challenges: 1) how the cache tracks data qual-
ity; 2) how users specify cache properties; 3) how to main-
tain the cache efficiently; and 4) how to do query process-
ing. In this paper, we propose a comprehensive solution de-
scribed in Section 1.2. 

Fig 1.1 shows our running example, where Q1 is a pa-
rameterized query, followed by different parameter settings.  

1.1 Background and Motivation 

We now motivate four properties of cached data that deter-
mine whether it can be used to answer a query. In the model 
proposed in [GLRG04], a query’s C&C constraints are 
stated in a currency clause. For example, in Q2, the currency 
clause specifies three “quality” constraints on the query re-
sults: 1) “ON (A, B)” means that all Authors and Books 
rows returned must be consistent, i.e., from the same data-
base snapshot. 2) “BOUND 10 min” means that these rows 
must be current to within 10 minutes, that is, at most 10 
minutes out of date. 3) “BY authorId” means that all result 
rows with the same authorId value must be consistent. To 
answer the query from cached data, the cache must guaran-
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Authors (authorId, name, gender, city, state)  
Books (isbn, authorId, publisherId, title, type) 
 

Q1: SELECT * FROM Authors A WHERE authorId in (1,2,3) 
CURRENCY BOUND 10 min on (A) BY $key 

E1.1: $key = Ø 
E1.2: $key = authorId  
E1.3: $key = city 
 

Q2: SELECT * FROM Authors A, Books B  
WHERE authorId in (1,2,3) AND A.authorId = B.authorId 
CURRENCY BOUND 10 min on (A, B) BY authorId 

 

Q3:  SELECT * FROM Authors A WHERE city = “Madison” 
 CURRENCY BOUND 10 min ON (A) BY authorId 

Figure 1.1: Running example  
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tee that the result satisfies these requirements and two more: 
4) the Authors and Books rows for authors 1, 2, and 3 must 
be present in the cache and 5) they must be complete, that 
is, no rows are missing. 

E1.1 requires that all three authors with id 1, 2 and 3 be 
present in the cache, and that they be mutually consistent. 
Suppose we have in the cache a partial copy of the Authors 
table, AuthorCopy, which contains some frequently accessed 
authors, say those with authorId 1-10. We could require the 
cache to guarantee that all authors in AuthorCopy be mutu-
ally consistent, in order to ensure that we can use the rows 
for authors with id 1, 2 and 3 to answer E1.1, if they are 
present. However, query E1.1 can be answered using the 
cache as long as authors 1, 2 and 3 are mutually consistent, 
regardless of whether other author rows are consistent with 
these rows. On the other hand, if the cache provides no con-
sistency guarantees, i.e., different authors could have been 
copied from a different snapshot of the master database, the 
query cannot be answered using the cache even if all re-
quested authors are present. In contrast, query E1.2, in 
which the BY clause only requires rows for a given author to 
be consistent, can be answered from the cache in this case. 

Query Q3 illustrates the completeness property. It asks 
for all authors from Madison, but the rows for different au-
thors do not have to be mutually consistent. Suppose we 
keep track of which authors are in the cache by their au-
thorIds. Even if we have all the authors from Madison, we 
cannot use the cached data unless the cache guarantees that 
it has all the authors from Madison. Intuitively, the cache 
guarantees that its content is complete w.r.t. the set of ob-
jects in the master database that satisfy a given predicate.  

Regardless of the cache management mechanisms or 
policies used, as long as cache properties are observed, 
query processing can deliver correct results. Thus, cache 
property descriptions serve as an abstraction layer between 
query processing and cache management, enabling the im-
plementation of the former to be independent of the latter.  

1.2 Our Contributions 

We offer a comprehensive solution to finer granularity cache 
management while still providing query results that satisfy 
the query’s consistency and currency requirements. 1) We 
build a solid foundation for cache description by formally 
defining presence, consistency, completeness and currency 
(Section 2). 2) We introduce a novel cache model that sup-
ports a specific way of partitioning and translate a rich class 
of integrity constraints (expressed in extended SQL DDL 
syntax) into properties required to hold over different parti-
tions (Section 3). 3) We identify an important property of 
cached views, called safety, and show how safety aids in 
efficient cache maintenance (Section 4). Further, we for-
mally define cache schemas and characterize when they are 
safe, offering guidelines for cache schema design (Section 
5). 4) We show how to efficiently enforce finer granularity 

C&C constraints in query processing by extending the ap-
proach developed in [GLRG04] (Section 6). 5) We report 
experimental results, providing insight into various perform-
ance trade-offs (Section 7). 

2. CACHE PROPERTIES 

The previous work in [GLRG04] describes the semantics of 
C&C constraints, providing a correctness standard. In this 
section, we define the properties of the cache using the same 
model. To be self-contained, we summarize the model and 
list some assumptions specific to this paper in Section 2.1. 

2.1 Basic Concepts 

A database is modeled as a collection of database objects 
organized into one or more tables. Conceptually, the granu-
larity of an object may be a view, a table, a column, a row or 
even a single cell in a row. To be specific, in this paper an 
object is a row. Let identity of objects in a table be estab-
lished by a (possibly composite) key K. When we talk about 
a key at the database level, we implicitly include the scope 
of that key. Every object has a master and zero or more 
copies. The collection of all master objects is called the 
master database. We denote the database state after n 
committed update transactions (T1..Tn) by Hn = (Tn ° Tn-1 ° 
… ° T1(H0)), where H0 is the initial database state, and “°” is 
the usual notation for functional composition. Each database 
state Hi is called a snapshot of the database. Assuming each 
committed transaction is assigned a unique timestamp, we 
sometimes use Tn and Hn interchangeably. 

A cache is a collection of (local) materialized views, 
each consisting of a collection of copies (of row-level ob-
jects). Although an object can have at most one copy in any 
given view, multiple copies of the same object may co-exist 
in different cached views. We only consider local material-
ized views defined by selection queries that select a subset 
of data from a table or a view of the master database.  

Self-Identification: master() applied to an object (mas-
ter or copy) returns the master version of that object. 

Transaction Timestamps: The function xtime(T) re-
turns the transaction timestamp of transaction T. We over-
load the function xtime to apply to objects. The transaction 
timestamp associated with a master object O, xtime(O, Hn), 
is equal to xtime(A), where A is the latest transaction in 
T1..Tn that modified O. For a copy C, the transaction time-
stamp xtime(C, Hn) is copied from the master object when 
the copy is synchronized.  

Copy Staleness: Given a database snapshot Hn, a copy C 
is stale if master(C) was modified in Hn after xtime(C, Hn). 
The time at which O becomes stale, called the stale point, 
stale(C, Hn), is equal to xtime(A), where A is the first trans-
action in T1..Tn that modifies master(C) after xtime(C, Hn). 
The currency of C in Hn is measured by how long it has 
been stale, i.e., currency(C, Hn) = xtime(Tn) - stale(C, Hn). 
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2.2 Presence 

The simplest type of query asks for an object identified by 
its key (e.g., Q1). How to tell if an object is in the cache?  

Intuitively, we require every object in the cache to be 
copied from some valid snapshot. Let return(O, s) return 
the value of object O in database state s. We say that copy C 
in a cache state Scache is snapshot consistent w.r.t. a snap-
shot Hn of the master database if return(C, Scache) = re-
turn(master(C), Hn) and xtime(C, Hn) = xtime(master(C), 
Hn). We also say CopiedFrom(C, Hn) holds.  
Defn: (Presence) An object O is present in cache Scache iff 
there is a copy C in Scache s.t. master(C) = O, and for some 
master database snapshot Hn CopiedFrom(C, Hn) holds. 

�
 

2.3 Consistency 

When a query asks for more than one object, it can specify 
mutual consistency requirements on them, as shown in E1.1.  

For a subset U of the cache, we say that U is mutually 
snapshot consistent (consistent for short) w.r.t. a snapshot 
Hn of the master database iff CopiedFrom(O, Hn) holds for 
every object O in U. We also say CopiedFrom(U, Hn) holds. 

Besides specifying a consistency group by object keys 
(e.g., authorId in E1.2), a query can also specify a consis-
tency group by a selection, as in E1.3. Suppose all authors 
with id 1, 2 and 3 are from Madison. The master database 
might contain other authors from Madison. The cache still 
can be used to answer this query as long as all three authors 
are mutually consistent and no more than 10 minutes old. 
Given a query Q and a database state s, let Q(s) denote the 
result of evaluating Q on s. 

Defn: (Consistency) For a subset U of the cache Scache, if 
there is a snapshot Hn of the master database s.t. Copied-
From(U, Hn) holds, and for some query Q, U⊆ Q(Hn), then 
U is snapshot consistent (or consistent) w.r.t. Q and Hn. 

�
 

U consists of copies from snapshot Hn and Q is a selec-
tion query. Thus the containment of U in Q(Hn) is well de-
fined. Note that object metadata, e.g., timestamps, are not 
used in this comparison. 

If a collection of objects is consistent, then any of its 
subsets is also consistent. Formally, 

Lemma 2.1: If a subset U of the cache Scache is consistent 
w.r.t. a query Q and a snapshot Hn, then subset P(U) defined 
by any selection query P is consistent w.r.t. P°Q and Hn. 

�
 

Proof: See [GLR05] for all proofs omitted in this paper. 
�

 

2.4 Completeness 

As illustrated in Q3, a query might ask for a set of objects 
defined by a predicate. How do we know that all the re-
quired objects are in the cache? 

Defn: (Completeness) A subset U of the cache Scache is 
complete w.r.t. a query Q and a snapshot Hn of the master 
database iff CopiedFrom(U, Hn) holds and U = Q(Hn). 

�
 

Lemma 2.2: If a subset U of the cache Scache is complete 
w.r.t. a query Q and a snapshot Hn, then subset P(U) defined 
by any selection query P is complete w.r.t. P°Q and Hn. 

�
 

The above constraint is rather restrictive. Assuming that 
objects’ keys are not modified, it is possible to allow subse-
quent updates of some objects in U to be reflected in the 
cache, while still allowing certain queries (which require 
completeness, but do not care about the modifications and 
can therefore ignore consistency) to use cached objects in U. 
See [GLR05] for key-completeness constraint.  

Fig 2.1 illustrates cache properties, where an edge from 
object O to C denotes that C is copied from O. Assuming all 
objects are modified in H2, U1 is consistent but not complete 
w.r.t. Q1 and H1, U2 is complete w.r.t. Q2 and H1, and U3 is 
key-complete w.r.t. Q3 and both H1 and H2. 

Lemma 2.3: If a subset U of the cache Scache is complete 
w.r.t. a query Q and a database snapshot Hn, then U is both 
key-complete and consistent w.r.t. Q and Hn.   

�
 

2.5 Currency 

We have defined stale point and currency for a single ob-
ject. Now we extend the concepts to a set of objects. Sup-
pose that at 1pm, there are only two authors from Madison 
in the master database, and we copy them to the cache, 
forming set U. At 2pm, a new author moves to Madison. At 
3pm, how stale is U w.r.t. predicate “city = Madison”? Intui-
tively, the answer should be 1 hour, since U gets stale the 
moment the new author is added to the master database. 
However, we cannot use object currency to determine this 
since both objects in U are current. For this reason we use 
the snapshot where U is copied from as a reference.  

We overload stale() to apply to a database snapshot Hm 
w.r.t. a query Q: stale(Hm, Q, Hn) is equal to xtime(A), 
where A is the first transaction that changes the result of Q 
after Hm in Hn. Similarly, we overload the currency() func-
tion: currency(Hm, Q, Hn) = xtime(Hn) - stale(Hm, Q, Hn). 

Defn: (Currency for complete set) If a subset U of the 
cache Scache is complete w.r.t. a query Q and a snapshot Hm, 
then the currency of U w.r.t. a snapshot Hn of the master 
database is: currency(U, Q, Hn) = currency(Hm, Q, Hn). 

�
 

 
 

Figure 2.1: Cache property example 

Cache Master DB (H 1) Master DB (H 2) 

 

Figure 2.2: Currency example 
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From the definition, the currency of U depends on the 
snapshot Hm used in the calculation. This can be solved us-
ing a “ghost row” technique, see [GLR05] for details. 

Fig 2.2 illustrates the currency of two complete sets, 
where A1 and A2 are two copies of A’ and B is a copy of 
B’, Q(Hi) = {A’, B’}, i = 1, 2, Q(H i) = {A’, B’, C’}, i = 3, 4. 
{A1, B} and {A2, B} are complete w.r.t. Q and H1, H2. 

3. DYNAMIC CACHING MODEL 
In our model, a cache is a collection of materialized views V 
= {V 1, …, Vm}, where each view Vi is defined using a query 
expression Qi. We describe the properties of the cache in 
terms of integrity constraints defined over V. In this section, 
we introduce a class of metadata tables called control tables 
that facilitate specification of cache integrity constraints, and 
introduce extended SQL DDL syntax for constraint specifi-
cation. Fig 3.1 shows the set of DDL examples used in this 
section. We start by defining two views as shown in D1.  

3.1 View Partitions and Control tables 

Instead of treating all rows of a view uniformly, we allow 
them to be partitioned into smaller groups, where properties 
(presence, currency, consistency or completeness) are guar-
anteed per group. The same view may be partitioned into 
different sets of groups for different properties. Further, the 
cache may provide a full or partial guarantee, that is, it may 
guarantee that the property holds for all groups in the parti-
tioning or only for some of the groups. Although different 
implementation mechanisms might be used for full and par-
tial guarantees, conceptually, the former is a special case of 
the latter; we therefore focus on partial guarantees. 

In this paper, we impose restrictions on how groups can 
be defined and consider only groups defined by equality 
predicates on one or more columns of the view. That is, two 
rows belong to the same group if they agree on the value of 
the grouping columns. For a partial guarantee, the grouping 
values for which the guarantee holds are (conceptually) 
listed in a separate table called a control table. Each value 
in the control table corresponds to a group of rows of Vi that 

we call a cache region (or simply region). Each view Vi in 
V can be associated with three types of control tables: pres-
ence, consistency and completeness control tables. We use 
presence/consistency/completeness region to refer to 
cache regions defined for each type. Note that control tables 
are conceptual; some might be explicitly maintained and 
others might be implicitly defined in terms of other cached 
tables in a given implementation. 

3.1.1 Presence Control table (PCT) 

Suppose we receive many queries looking for some authors, 
as in Q1. Some authors are much more popular than others 
and the popular authors change over time, i.e., the access 
pattern is skewed and changes over time. We would like to 
answer a large fraction of queries locally but maintenance 
costs are too high to cache the complete Authors table. Fur-
ther, we want to be able to adjust cache contents for the 
changing workload without changing the view definition. 
These goals are achieved by presence control tables. 

A presence control table (PCT) for view Vi is a table 
with a 1-1 mapping between a subset K of its columns and a 
subset K’ of Vi’s columns. We denote this by PCT[K, K’]; 
K ⊆ PCT is called the presence control-key (PCK) for Vi, 
and K’⊆ V i is called the presence controlled-key (PCdK). 
For simplicity, we will use PCK and PCdK interchangeably 
under the mapping. A PCK defines the smallest group of 
rows (i.e., an object) that can be admitted to or evicted from 
the cache in the MTCache “pull” framework. We assume 
that the cache maintenance algorithms materialize, update 
and evict all rows within such a group together. 

Presence Assumption: All rows associated with the same 
presence control-key are assumed to be present, consistent 
and complete. That is, for each row s in the presence control 
table, subset U = σ K’=s.K (Vi) is complete and thus consistent 
w.r.t. (σ K’=s.K ◦  Qi) and Hn, for some snapshot Hn of the mas-
ter database, where Qi is the query that defines Vi . 

�
 

If V i has at least one presence control table, it is a par-
tially materialized view (PMV), otherwise it is a fully ma-
terialized view addressed in [GLRG04]. See [ZLG05] for 
more general types of partial views, partial view matching, 
and run-time presence checking. 

 In our motivating example, we cache only the most 
popular authors. This scenario can be handled by creating a 
presence control table and adding a PRESENCE constraint 
to AuthorCopy, as in D2. AuthorList_PCT acts as a pres-
ence control table and contains the ids of the authors who 
are currently present in the view AuthorCopy, i.e., material-
ized in the view.  

3.1.2 Consistency Control table (CsCT) 

A local view may still be useful even when all its rows are 
not kept mutually consistent, e.g., in a scenario where we 
receive many queries like E1.3. Suppose AuthorCopy con-
tains all the required rows. If we compute the query from the 
view, will the result satisfy the query’s consistency require-

D1: CREATE VIEW AuthorCopy AS SELECT * FROM Authors 
 CREATE VIEW BookCopy AS SELECT * FROM Books 
 

D2: CREATE TABLE AuthorList_PCT(authorId int) 
 ALTER VIEW AuthorCopy ADD PRESENCE ON authorId IN  
   (SELECT authorId FROM AuthorList_PCT) 
 

D3: CREATE TABLE CityList_CsCT(city string) 
 ALTER VIEW AuthorCopy ADD CONSISTENCY ON city IN  
   (SELECT city FROM CityList_CsCT) 
 

D4: CREATE TABLE CityList_CpCT(city string) 
 ALTER VIEW AuthorCopy ADD COMPLETE ON city IN  
   (SELECT city FROM CityList_CpCT) 
 

D5: ALTER VIEW BookCopy ADD PRESENCE ON authorId IN 
   (select authorId from AuthorCopy) 
 

D6: ALTER VIEW BookCopy ADD CONSISTENCY ROOT 

Figure 3.1: DDL examples for adding cache constrain ts  
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ments? The answer is “not necessarily” because the query 
requires all result rows to be mutually consistent per city, 
but AuthorCopy only guarantees that the rows for each au-
thor are consistent; nothing is guaranteed about authors from 
a given city. The consistency control table provides the 
means to specify a desired level of consistency.  

A consistency control table (CsCT) for view Vi is de-
noted by CsCT[K], where a set of columns K⊆ CsCT is 
also a subset of Vi, and is called the consistency control-
key (CsCK) for Vi. For each row s in CsCT, if there is a 
row t in Vi, s.t. s.K = t.K, then subset U = σ K=s.K (Vi) must be 
consistent w.r.t. (σ K=s.K ◦  Qi) and Hn for some snapshot Hn of 
the master database.  

In our example, it is desirable to guarantee consistency 
for all authors from the same city, at least for some of the 
popular cities. We propose an additional CONSISTENCY 
constraint, for specifying this requirement. We first create a 
consistency control table containing a set of cities and then 
add a CONSISTENCY constraint to AuthorCopy, as in D3 
of Fig 3.1. The CONSISTENCY clause specifies that the 
cache must keep all rows related to the same city consistent 
if the city is among the ones listed in CityList_CsCT; this is 
in addition to the consistency requirements implicit in the 
Presence Assumption. AuthorCopy can now be used to an-
swer queries like E1.3.  

If we want the cache to guarantee consistency for every 
city, we change the clause to CONSISTENCY ON city. If 
we want the entire view to be consistent, we change the 
clause to CONSISTENCY ON ALL. If we don’t specify a 
consistency clause, the cache will not provide any consis-
tency guarantees beyond the minimal consistency implied by 
the presence control table under the Presence Assumption.  

3.1.3 Completeness Control table (CpCT) 

A view with a presence control table can only be used to 
answer point queries with an equality predicate on its control 
columns. For example, AuthorCopy cannot answer Q3. 

It is easy to find the rows in AuthorCopy that satisfy the 
query but we cannot tell whether the view contains all re-
quired rows. If we want to answer a query with predicate P 
on columns other than the control-keys, the cache must 
guarantee that all rows defined by P appear in the cache or 
none appear. Completeness constraints can be expressed 
with completeness control tables. 

A completeness control table (CpCT) for view Vi is 
denoted by CpCT[K]. A completeness control table is a con-
sistency control table with an additional constraint: the sub-
set U in Vi defined as before is not only consistent but also 
complete w.r.t. (σ K=s.K ◦  Qi) and Hn, for some snapshot Hn of 
the master database. We say K is a completeness control-
key (CpCK). Note that all rows within the same complete-
ness region must also be consistent (Lemma 2.3). 

We propose to instruct the cache about completeness re-
quirements using a COMPLETENESS constraint. Continuing 
our example, we create a completeness control table and 

then add a completeness clause to the AuthorCopy defini-
tion, as in D4 of Fig 3.1. Table CityList_CpCT serves as the 
completeness control table for AuthorCopy. If a city is con-
tained in CityList_CpCT, then we know that either all au-
thors from that city are contained in AuthorCopy or none of 
them are. Note that an entry in the completeness control 
table does not imply presence. Full completeness is indi-
cated by dropping the clause starting with “IN”. Not specify-
ing a completeness clause indicates that the default com-
pleteness implicit in the Presence Assumption is sufficient. 

A similar property is termed “domain completeness” in 
DBCache [ABK+03]. However, our mechanism provides 
more flexibility. The cache admin can specify: 1) the subset 
of columns to be complete; 2) to force completeness on all 
values or just a subset of values for these columns. 

3.2 Correlated Presence Constraints 

In our running example, we may not only receive queries 
looking for some authors, but also follow-up queries looking 
for related books. That is, the access pattern to BookCopy is 
decided by the access pattern to AuthorCopy. In order to 
capture this, we allow a view to use another view as a pres-
ence control table. To have BookCopy be controlled by Au-
thorCopy, we only need to declare AuthorCopy as a pres-
ence control table by a PRESENCE constraint in the defini-
tion of BookCopy, as in D5 of Fig 3.1. 

If a presence control table is not controlled by another 
one, we call it a root presence control table. Let L = 
{V m+1, …, Vn} be the set of root presence control tables; W 
= V ∪  L. We depict the presence correlation constraints by 
a cache graph, denoted by <W, E>. An edge Vi 

 → ', ,, jiji KK  Vj means that Vi is a PCT[Ki,j, Ki,j ’] of V j.  
Circular dependencies require special care in order to 

avoid “unexpected loading”, a problem addressed in 
[ABK+03]. In our model, we don’t allow circular dependen-
cies, as stated in Rule 1 in Fig 5.1. Thus we call a cache 
graph a cache DAG. 

Each view in the DAG has two sets of orthogonal proper-
ties. First, whether it is view-level or group-level consistent. 
Second, to be explained shortly, whether it is consistency-
wise correlated to its parent. For illustration purposes, we 
use shapes to represent the former: circles for view-level 
consistent views and rectangles (default) for all others. We 
use colors to denote the latter: gray if a view is consistency-
wise correlated to its parents, white (default) otherwise. 

Defn: (Cache schema) A cache schema is a cache DAG 
<W, E> together with the completeness and consistency 
control tables associated with each view in W.    

�
 

3.3 Correlated Consistency Constraints 

In our running example, we have an edge AuthorCopy 

 →authorId  BookCopy, meaning if we add a new author 
to AuthorCopy, we always bring in all of the author’s books. 
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The books of an author have to be mutually consistent, but 
they are not required to be consistent with the author. 

If we wish the dependent view to be consistent with the 
controlling view, we add the consistency clause: CONSIS-
TENCY ROOT, as in D6 of Fig 3.1. A node with such con-
straint is colored gray; it cannot have its own consistency or 
completeness control tables (Rule 2 in Fig 5.1). 

For a gray node V, we call its closest white ancestor its 
consistency root. For any of V’s cache regions Uj, if Uj is 
controlled by a PCK value included in a cache region Ui in 
its parent, we say that Ui consistency-wise controls Uj; and 
that Ui and Uj are consistency-wise correlated. 

Fig 3.2 illustrates a cache schema example, which con-
sists of four partially materialized views. AuthorCopy is 
controlled by a presence control table AuthorList_PCT, 
likewise for ReviewerCopy and ReviewerList_PCT. Besides 
a presence control table, AuthorCopy has a consistency con-
trol table CityList_CsCT on city. BookCopy is both pres-
ence-wise and consistency-wise correlated to AuthorCopy. 
In contrast, ReviewCopy has two presence control tables: 
BookCopy and ReviewerCopy; it is view level consistent 
and consistency-wise independent from its parents. 

4. SAFE CACHED VIEWS  
A cache has to perform two tasks: 1) populate the cache and 
2) reflect updates to the contents of the cache, while main-
taining the specified cache constraints. Complex cache con-
straints can lead to unexpected additional fetches in a pull-
based maintenance strategy, causing severe performance 
problems. We illustrate the problems through a series of 
examples, and quantify the refresh cost for unrestricted 
cache schemas in Theorem 4.1. We then identify an impor-
tant property of a cached view, safety, that allows us to op-
timize pull-based maintenance, and summarize the gains it 
achieves in Theorem 4.2. We introduce the concept of ad-
hoc cache regions, used for adaptively refreshing the cache. 

For convenience, we distinguish between the schema and 
the instance of a cache region U. The schema of U is de-
noted by <V, K, k>, meaning that U is defined on view V by 
a control-key K with value k. We use the italic form U to 
denote the instance of U.  

4.1 Pull-Based Maintenance 

In the “pull” model, we obtain a consistent set of rows using 
either a single query to the backend or multiple queries 
wrapped in a transaction. As an example, suppose Author-
Copy, introduced in Section 3, does not have any children in 

the cache DAG and that the cache needs to refresh a row t 
(1, Rose, Female, Madison, WI). 

First, consider the case where AuthorCopy does not have 
any consistency or completeness control table, and so con-
sistency follows the presence table. Then all rows in the 
presence region identified by authorId 1 need to be re-
freshed together. This can be done by issuing the presence 
query shown in Fig 4.1 to the backend server. 

Next, suppose we have CityList_CsCT (see Section 
3.1.2). If Madison is not found in CityList_CsCT, the pres-
ence query described above is sufficient. Otherwise, we 
must also refresh all other authors from Madison. If K is the 
set of authors in AuthorCopy that are from Madison, the 
consistency query in Fig 4.1 is sent to the backend server. 

Finally, suppose we have CityList_CpCT (see Section 
3.1.3). If Madison is found in CityList_CpCT, then besides 
the consistency query, we must fetch all authors from Madi-
son using the completeness query in Fig 4.1. 

Formally, given a cache region U<V, K, k>, let the set of 
presence control tables of V be P1, …, Pn, with presence 
control-keys K1, …, Kn. For Ki, i = 1..n, let Ki=

Π
Ki σ K=k(V), 

the remote queries for U are: 1) the presence query, if U is a 
presence region; 2) the consistency queries (i = 1..n), if U is 
a consistency region; and 3) the consistency queries (i = 
1..n) (and the completeness query if U ≠  Ø), if U is a com-
pleteness region. (The queries are shown in Fig 4.2.)  

Lemma 4.1: For any cache region U <V, K, k> in the cache, 
the results retrieved from the backend server using the re-
fresh queries in Fig 4.2 not only keeps U’s cache constraints, 
but also keeps the presence constraints for the presence re-
gions in V that U overlaps.     

�
 

As this example illustrates, when refreshing a cache re-
gion, in order to guarantee cache constraints, we may need 
to refresh additional cache regions; the set of all such “af-
fected” cache regions is defined below. 

Defn: (Affected closure) The affected closure of a cache 
region U, denoted as AC(U), is defined transitively: 
1) AC(U) = {U} 
2) AC(U) = AC(U)∪ {U i | for Uj in AC(U), either Uj over-

laps Ui or Uj and Ui are consistency-wise correlated}. 
�

 

For convenience, we assume that the calculation of 
AC(U) always eliminates consistency region Ui, if there ex-
ists a completeness region Uj in AC(U), s.t. Ui = Uj, since 
the completeness constraint is stricter (Lemma 2.3). The set 
of regions in AC(U) is partially ordered by the set contain-

Presence query: 

 

SELECT  * FROM Authors  
WHERE authorId = 1  
   

Consistency query:  
 

SELECT * FROM Authors  
WHERE authorId in K 
 

Completeness query:  
 

SELECT * FROM Authors  
WHERE city = “Madison” 
 

Figure 4.1: Refresh query examples  

Presence (Completeness) query: 
 

SELECT * FROM V   
WHERE K = k 
   

Consistency query: 
 

SELECT * FROM V  
WHERE Ki in K i 

Figure 4.2: Refresh queries  

 
Figure 3.2: Cache schema example   
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ment relationship. From Lemma 2.1-2.3, we only need to 
maintain the constraints of some “maximal” subset of 
AC(U). Let Max(

�
) denote the set of the maximal elements 

in the partially ordered set 
�

. 

Defn: (Maximal affected closure) The maximal affected 
closure of a cache region U, MaxAC(U), is obtained by the 
following two steps: Let 

�
 = AC(U),  

1) Constructing step. Let д , в  be the set of all consistency 
regions and completeness regions in 

�
 respectively. 

MaxAC(U) = Max(
�

 - д ) ∪ Max(
�

 – в ). 
2) Cleaning step. Eliminate any consistency region Ui in 

MaxAC(U) if there exists a completeness region Uj in 
MaxAC(U), s.t. Ui ⊆ Uj.          

�
 

Maintenance Rule:  
1) We only choose a region to refresh from a white node. 
2) When we refresh a region U, we do the following: 

Step 1: Retrieve every region in MaxAC(U) by sending 
proper remote queries according to its constraint. 

Step 2: Delete the old rows covered by AC(U) or the re-
trieved tuple set; then insert the retrieved tuple set.     � 

Theorem 4.1: Assuming the partial order between any two 
cache regions is constant, then given any region U, if we 
apply the Maintenance Rule to a cache instance that satisfies 
all cache constraints, let newTupleSet be the newly retrieved 
tuple set, �  = AC(newTupleSet), then  
1) Every region other than those in (� -

�
) observes its cache 

constraint after the refresh transaction is complete. 
2) If ( � -

�
) = Ø, then after the refresh transaction is com-

plete, all cache constraints are preserved. 
3) If ( � -

�
) = Ø, MaxAC(U) is the minimal set of regions 

we have to refresh in order to refresh U while maintain-
ing all cache constraints for all cache instances.  �   

The last part of the theorem shows that when a region U 
is refreshed, every region in MaxAC(U) must be simultane-
ously refreshed. Otherwise, there is some instance of the 
cache that satisfies all constraints, yet running the refresh 
transaction to refresh U will leave the cache in a state violat-
ing some constraint. If (� -

�
)

≠
Ø, multi-trip to the master 

database is needed in order to maintain all cache constraints.  
Given a region U in a white view V, how do we get 

MaxAC(U)? For an arbitrary cache schema, we need to start 
with U and add affected regions to it recursively. There are 
two scenarios that potentially complicate the calculation of 
MaxAC(U), and could cause it to be very large: 
1) For any view Vi, adding a region Uj from Vi results in 

adding all regions from Vi that overlap with Uj. 
2) A circular dependency may exist between two views Vi 

and Vj, i.e., adding new regions from Vi may result in 
adding more regions from Vj, which in turn results in 
adding yet more regions from Vi.  

The potentially expensive calculation and the large size 
of MaxAC(U), and hence the high cost of refreshing the 
cache motivate the definition of safe views in Section 4.2.  

4.1.1 Ad-hoc Cache Regions 

Although the specified cache constraints are the minimum 
constraints that the cache must guarantee, sometimes it is 
desirable for the cache to provide additional “ad-hoc” guar-
antees. For example, a query workload like E1.1 asks for 
authors from a set of popular authors and requires them to 
be mutually consistent. Popularity changes over time. In 
order to adapt to such workloads, we want the flexibility of 
grouping and regrouping authors into cache regions on the 
fly. For this purpose, we allow the cache to group regions 
into “ad-hoc” cache regions. See [GLR05] for details. 

4.1.2 Keeping Track of Currency 

When using the pull model, we keep the last refresh time-
stamp for each cache region. If current time is t, a region 
with timestamp T is no older than (t – T), since all updates 
until T are reflected in the result of the refresh query.  

4.2 Safe Views and Efficient Pulling 

We now introduce the concept of safe views, motivated by 
the potentially high refresh cost of pull-based maintenance 
for unrestricted cache schemas.  

Defn: (Safe PMV) A partially materialized view V is safe if 
the two following conditions hold for every instance of the 
cache that satisfies all integrity constraints: 
1) For any pair of regions in V, either they don’t overlap or 

one is contained in the other.  
2) If V is gray, let X denote the set of presence regions in 

V. X is a partitioning of V and no pair of regions in X is 
contained in any one region defined on V. �  
Intuitively, Condition 1 is to avoid unexpected refreshing 

because of overlapping regions in V; Condition 2 is to avoid 
unexpected refreshing because of consistency correlation 
across nodes in the cache schema. 

Lemma 4.2: For a safe white PMV V that doesn’t have any 
children, given any cache region U in V, the partially or-
dered set AC(U) is a tree.  �  

Since AC(U) on V has a regular structure, we can main-
tain metadata to find the maximal element efficiently. We 
omit the detailed mechanism because of space constraints. 

Theorem 4.2: Consider a white PMV V, and let κ  denote V 
and all its gray descendants. If all nodes in κ  are safe, when-
ever any region U defined on V is to be refreshed:  
1) AC(U) can be calculated top-down in one pass. 
2) Given the partially ordered set AC(U) on V, the calcula-

tion of MaxAC(U) on V can be done in one pass.    �  

5. DESIGN ISSUES FOR CACHES  
In this section, we investigate conditions that lead to unsafe 
cached views and propose appropriate restrictions on allow-
able cache constraints. In particular, we develop three addi-
tional rules to guide cache schema design, and show that 
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Rules 1-5 are a necessary and sufficient condition for (all 
views in) the cache to be safe. 

5.1 Shared-Row Problem 

Let’s take a closer look at the AuthorCopy and BookCopy 
example defined in Section 3. Suppose a book can have 
multiple authors. If BookCopy is a rectangle, since co-
authoring is allowed, a book in BookCopy may correspond 
to more than one control-key (authorId) value, and thus be-
long to more than one cache region. To reason about such 
situations, we introduce cache-instance DAGs. 

Defn: (Cache instance DAG) Given an instance of a cache 
DAG <W, E>, we construct its cache instance DAG as 
follows: make each row in each node of W a node; and for 
each edge Vi  → ', ,, jiji KK  Vj in E, for each pair of rows s in Vi 
and t in Vj, if s.Ki,j = t.Ki,j’ then add an edge s � t. �  

Defn: (Shared-row problem) For a cache DAG <W, E>, a 
view V in W has the shared-row problem if there is an 
instance DAG s.t. a row in V has more than one parents. �  

There are two cases where a view V has the shared-row 
problem. In the first case (Lemma 5.1), we can only elimi-
nate the potential overlap of regions in V defined by differ-
ent presence control tables if V is view-level consistent. 
Considering the second condition in the definition of safe, 
we have Rule 3 in Fig 5.1. For the second case (Lemma 5.2) 
we enforce Rule 4 in Fig 5.1. 

Lemma 5.1: Given a cache schema <W, E>, view V in W 
has the shared-row problem if V has more than one parent.�  

Lemma 5.2: Given a cache schema <W, E>, for any view 
V, let the parent of V be V1. V has the shared-row problem 
iff the presence key K in V1 for V is not a key in V1.   �  

5.2 Control table Hierarchy 

For a white view V in the cache, if it has consistency or 
completeness control tables beyond those implicit in the 
Presence Assumption, then it may have overlapping regions. 
In our running example, suppose BookCopy is a white rec-
tangle; an author may have more than one publisher. If there 
is a consistency control table on publisherId, then Book-
Copy may have overlapping regions. As an example, Alice 
has books 1 and 2, Bob has book 3, and while books 1 and 3 
are published by publisher A, book 2 is published by pub-
lisher B. If publisher A is in the consistency control table for 

BookCopy, then we have two overlapping regions: {book 1, 
book 2} by Alice, and {book 1, book 3} by publisher A. 

Defn: (Compatible control tables) For a view V in the 
cache, let the presence controlled-key of V be K0, and let the 
set of its consistency and completeness control-keys be K. 
1) For any pair K1 and K2 in K, we say that K1 and K2 are 

compatible iff FD K1� K2 or FD K2� K1.  
2) We say K is compatible iff the elements in K are pair-

wise compatible, and for any K in K, FD K�K0.  �  

Rule 5 is stated in Fig 5.1. We require that a new cache 
constraint can only be created in the system if its addition 
does not violate Rules 1-5. 

Theorem 5.1: Given a cache schema <W, E>, if it satisfies 
rules 1-5, then every view in W is safe. Conversely, if the 
schema violates one of these rules, there is an instance of the 
cache satisfying all specified integrity constraints in which 
some view is unsafe. �  

6. ENFORCING C&C CONSTRAINTS  
A traditional distributed query optimizer decides whether to 
use local data based on data availability and estimated cost. 
In our setting, it must also take into account local data prop-
erties (presence, consistency, completeness and currency). 
Presence checking is addressed in [ZLG05]; the same ap-
proach can be extended to completeness checking. This sec-
tion describes efficient checking for C&C constraints in a 
transformation-based optimizer. See [GLR05] for proofs. 

In comparison to [GLRG04], the algorithms developed 
here are more general and support finer granularity C&C 
checking. In [GLRG04], consistency checking was done 
completely at optimization time and currency checking at 
run time, because view level cache region information is 
stable and available at optimization, while currency informa-
tion is only available at run time. In this paper we still per-
form as much as possible of the consistency checking at 
optimization time but part of it may have to be delayed to 
run-time. For a view with partial consistency guarantees, we 
don’t know at optimization time which actual groups will be 
consistent at run time. Further, ad-hoc cache regions may 
change over time, also prompting run-time checking. 

6.1 Normalizing C&C Constraints 

A query may contain multiple currency clauses, at most one 
per SFW block. The first task is to combine the individual 
clauses and convert the result to a normal form. To begin the 
process, each currency clause is represented as follows. 

Defn: (Currency and consistency constraint) A C&C 
constraint CCr is a set of tuples, CCr = {<b1, K1, S1, G1>, ..., 
<bn, Kn, Sn, Gn>}, where Si is a set of input operands (table 
or view instances), bi is a currency bound specifying the 
maximum acceptable staleness of the input operands in Si, 
Gi is a grouping key and Ki  a set of grouping key values. �  

Rule 1 :  A cache graph is a DAG. 
 

Rule 2: Only white nodes can have independent completeness or 
consistency control tables. 

 

Rule 3 :  A view with more than one parent must be a white circle. 
 

Rule 4 :  If a view has the shared-row problem according to 
Lemma 5.2, then it cannot be gray. 

 

Rule 5 :  A view cannot have incompatible control tables. 

Figure 5.1: Cache schema design rules  
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Each tuple has the following meaning: for any database 
instance, if we group the input operands referenced in a tu-
ple by the tuple’s grouping key Gi, then for those groups 
with one of the key values in Ki, each group is consistent. 
The key value sets Ki will be used when constructing consis-
tency guard predicates to be checked at run time. Note that 
the default value for each field is the strongest constraint. 

All constraints from individual currency clauses are 
merged together into a single constraint and converted into 
an equivalent or stricter normalized form with no redundant 
requirements. See [GLR05] for details. 

6.2 Compile-time Consistency Checking 

We take the following approach to consistency checking. At 
optimization time, we proceed as if all consistency guaran-
tees were full. A plan is rejected if it would not produce a 
result satisfying the query’s consistency requirements even 
under that assumption. Whenever a view with partial consis-
tency guarantees is included in a plan, we add consistency 
guards that check at run-time if the guarantee holds for the 
groups actually used. 

SQL Server uses a transformation-based optimizer. Con-
ceptually, optimization proceeds in two phases: an explora-
tion phase and an optimization phase. The former generates 
new logical expressions; the latter recursively finds the best 
physical plan. Physical plans are built bottom-up.  

Required and delivered (physical) plan properties play a 
very important role during optimization. To make use of the 
plan property mechanism for consistency checking, we must 
be able to perform the following three tasks: 1) transform 
the query’s consistency constraints into required consistency 
properties; 2) given a physical plan, derive its delivered con-
sistency properties from the properties of the local views it 
refers to; 3) check whether delivered consistency properties 
satisfy required consistency properties.  

6.2.1 Required Consistency Plan Property 

A query’s required consistency property consists of the nor-
malized consistency constraint described in section 6.1. 

6.2.2 Delivered Consistency Plan Property 

A delivered consistency property CPd consists of a set of 
tuples {<Ri, Si, � i>} where Ri is the id of a cache region, Si 
is a set of input operands, namely, the input operands of the 
current expression that belong to region Ri, and � i is the set 
of grouping keys for the input operands. Each operator 
computes its delivered plan properties bottom-up based on 
the delivered plan properties of its inputs. We omit the algo-
rithms due to space constraints; for details see [GLR05].  

6.2.3 Satisfaction Rules 

Now, given a required consistency property CCr and a de-
livered one CPd, how do we know whether CPd satisfies 
CCr? Firstly, our consistency model does not allow two col-
umns from the same input table T to originate from different 
snapshots, leading to the following property: 

Conflicting consistency property: A delivered consistency 
property CPd is conflicting if there exist two tuples < R1, S1, � 1 > and < R2, S2, � 2 > in CPd s.t. S1 ∩  S2 ≠  Ø and one of 
the following conditions holds: 1) R1 ≠ R2, or 2) Ω1 ≠ Ω2.  

This property is conservative in that it assumes that two 
cache regions U1 and U2 from different views can only be 
consistent if they have the same set of control-keys.  

Secondly, a complete plan satisfies the constraint if each 
required consistency group is fully contained in some deliv-
ered cache region. We extend the consistency satisfaction 
rule in [GLRG04] to include finer granularity cache regions.  

Consistency satisfaction rule: A delivered consistency 
property CPd satisfies a required CCr w.r.t. a cache schema Σ

 and functional dependencies F, iff CPd is not conflicting 
and, for each tuple <br, Kr, Sr, Gr> in CCr, there is a tuple 
<Rd, Sd, Ωd> in CPd s.t. Sr ⊆ Sd, and one of the following 
conditions holds: 1) Ωd = Ø, or 2) let Gr

+ be the attribute 
closure w.r.t. F. There exists a Gd∈Ωd s.t. Gd ⊆ Gr

+.    

For query Q2, suppose we have CCr = {<5, Ø, {Authors, 
Books}, {isbn}>}, and that the cache schema is the one in 
Fig 3.2. During view matching, AuthorCopy and BookCopy 
will match Q2. Thus CPd = {<-1, {Authors, Books}, {Au-
thors.authorId, city}>}. If AuthorCopy joins with BookCopy 
on authorId (as indicated by the presence correlation), and 
the result is R, then from the key constraints of Authors and 
Books we know that isbn is a key in R. Therefore 
city∈{isbn} +. CPd satisfies CCr. 

While a plan is being constructed, bottom-up, we want to 
stop as soon as it is possible when the current subplan can-
not deliver the consistency required by the query. The con-
sistency satisfaction rule cannot be used for checking sub-
plans; a check may fail simply because the partial plan does 
not include all inputs covered by the required consistency 
property. Instead we apply the following violation rules. We 
prove that a plan cannot satisfy the required plan properties 
if a subplan violates any of the three rules [GLR05].  

Consistency violation rules: A delivered consistency prop-
erty CPd violates a required consistency constraint CCr 
w.r.t. a cache schema 

Σ
 and functional dependencies F, if 

one of the following conditions holds: 
1) CPd is conflicting, 
2) There exists a tuple < br, Kr, Sr, Gr > in CCr that inter-

sects more than one consistency group in CPd, that is, 
there exist two tuples < R1d, S1d, Ω1d > and < R2d, S2d, 
Ω2d > in CPd s.t. Sr ∩  S1d ≠  Ø and Sr ∩  S2d ≠  Ø,  

3) There exists <b, Kr, Sr, Gr> in CCr, and < Rd, Sd, Ωd > in 
CPd, s.t. Sr ⊆ Sd, Ωd ≠  Ø and the following condition 
holds: let Gr+ be the attribute closure w.r.t. 

Σ
 and F. 

There does not exist Gd∈Ωd, s.t. Gd ⊆ Gr
+.  

6.3 Run-time C&C Checking 

To include C&C checking at runtime, the optimizer must 
produce plans that check whether a local view satisfies the 
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required C&C constraints and switch between using the lo-
cal view and retrieving the data from the backend server. 
Such run-time decision-making is built in a plan by using a 
SwitchUnion operator. A SwitchUnion operator has multiple 
input streams but only one is selected at run-time based on 
the result of a selector expression. 

In MTCache, all local data is defined as materialized 
views and logical plans making use of a local view are al-
ways created through view matching [LGZ04, GL01]. Con-
sider an (logical) expression E and a matching view V from 
which E can be computed. If C&C checking is required, we 
produce a substitute consisting of a SwitchUnion on top, 
shown in Fig 6.1, with a selector expression that checks 
whether V satisfies the currency and consistency constraint 
and two input expressions: a local branch and a remote 
branch. The local branch is a normal substitute expression 
produced by view matching and the remote plan consists of 
a remote SQL query created from the original expression E. 
If the condition, which we call consistency guard or cur-
rency guard according to its purpose, evaluates to true, the 
local branch is chosen, otherwise the remote one.  

The discussion of when and what type of consistency 
checking to generate and the inexpensive consistency check-
ing we support is deferred to Section 7.  

7. PERFORMANCE STUDY 
This section reports experimental results for consistency 
checking; results for presence and currency checking are 
reported in [ZLG05] and [GLRG04] respectively.  

7.1 Experimental Setup 

We used a single cache DBMS and a backend server. 
The backend server hosted a TPCD database with scale fac-
tor 1.0 (about 1GB), where only the Customers and Orders 
tables were used. The Customers table was clustered on its 
primary key, c_custkey with an index on c_nationkey. The 
Orders table was clustered on (o_custkey, o_orderkey). The 
cache had a copy of each table, CustCopy and OrderCopy, 
with the same indexes. The control table settings and queries 

used are shown in Fig 7.1. We populated the ckey and nkey 
columns with c_custkey and c_nationkey columns from the 
views respectively. 

C_PCT and O_PCT are the presence control tables of 
CustCopy and OrderCopy respectively. C_CsCT is a consis-
tency control table on CustCopy. By setting the timestamp 
field, we can control the outcome of the consistency guard. 

The caching DBMS ran on an Intel Pentium 4CPU 2.4 
GHz box with 500 MB RAM. The backend ran on an AMD 
Athlon MP Processor 1800+ box with 2GB RAM. Both 
machines ran Windows 2000 and were connected by LAN. 

7.2 Consistency Guard Overhead 

We made the design choice to only support certain inexpen-
sive types of run-time consistency guard. A natural question 
is: what is the overhead of the consistency guards? Further-
more, how expensive are more complicated guards?  

We experimentally evaluate the cost of a spectrum of 
guards by means of emulation. Given a query Q, we gener-
ate another query Q’ that includes a consistency guard for Q, 
and use the execution time difference between Q’ and Q to 
approximate the overhead of the consistency guard. For each 
query, depending on the result of the consistency guard, it 
can be executed either locally or at the backend. We meas-
ure the overhead for both scenarios.  

 

Figure 6.1: SwitchUnion with a C&C guard 
 

Figure 7.2: Generating consistency guard  

Settings:  CREATE TABLE C_PCT (ckey int PRIMARY, rid int) 
 CREATE TABLE C_CsCT(nkey int PRIMARY, rid int) 
 CREATE TABLE O_PCT (ckey int PRIMARY, rid int) 
 

Qa: SELECT *  FROM  customer C 
   WHERE c_custkey in $custSet 
   [CURRENCY BOUND 10 on (C) BY $key] 
 

Qb:  SELECT * FROM customer C, orders O  
   WHERE c_custkey=o_custkey and c_custkey in $custSet   
   [CURRENCY BOUND 10 on (C, O) BY $key] 
 

Qc:  SELECT  * FROM customer C 
  WHERE c_nationkey in $nationSet 
 [CURRENCY 10 on (C) BY $key] 

Figure 7.1: Settings & Queries used for experiments   

 

A11a, A11b:  SELECT 1 WHERE NOT EXISTS ( 
 SELECT 1 FROM CustCopy 
 WHERE c_custkey IN $custSet   
 GROUP BY c_nationkey 
 HAVING [COUNT(*)>1 AND] c_nationkey NOT IN  
  (SELECT nkey FROM C_CsCT) ) 
 

A12:  SELECT 1 WHERE |$nationSet| =  ( 
  SELECT COUNT(*) FROM C_CsCT  
  WHERE  nkey IN $nationSet) 
 

S11: SELECT 1 WHERE 1 = ( 
  SELECT COUNT(DISTINCT rid) FROM C_PCT 
  WHERE ckey IN $custSet ) 
 

S12: SELECT 1 WHERE 1 = 
  ALL (SELECT COUNT(DISTINCT rid) FROM C_PCT, CustCopy  
   WHERE c_custkey IN $custSet AND ckey=c_custkey 
   GROUP BY c_nationkey) 
 

S21: SELECT 1 FROM(  
  SELECT COUNT (DISTINCT rid1) AS count1,  
   SUM (ABS(rid1-rid2)) AS count2  
  FROM  ( SELECT A.rid AS rid1, B.rid AS rid2) 
     FROM C_PCT A, O_PCT B 
     WHERE A.ckey IN $custSet AND 
       A.ckey = B.ckey) ) AS FinalCount 
  WHERE count1 = 1 AND count2 = 0) 
 

S22: SELECT 1 WHERE NOT EXISTS (SELECT 1 FROM  
  ( SELECT c_custkey,c_nationkey, 
     A.rid AS rid1, B.rid AS rid2 
   FROM  C_PCT A, O_PCT B, CustCopy C  
   WHERE A.ckey IN $custSet AND 
    A.ckey = c_custkey AND c_custkey = B.ckey 
  ) AS FinalCount 
  GROUP BY c_nationkey 
  HAVING (MIN(rid1) <> MAX(rid1) OR 
   MIN(rid2) <> MAX(rid2) OR MIN(rid1) <> MIN(rid2)))  
 

Figure 7.3: A spectrum of consistency guards   
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7.2.1 Single Table Case 

We first analyze what type of consistency guard is needed 
for Qa when $key differs. The decision making process is 
shown in Fig 7.2 and the consistency guards in Fig 7.3. 

Condition A: Is each required consistency group equal to 
or contained in a presence region? 

If Yes, it follows from the Presence Assumption that all 
the rows associated with each presence control-key are con-
sistent. No explicit consistency guard is needed. For exam-
ple, for Qa with $key = c_custkey. 

Condition B: Is each required consistency group equal to 
or contained by a consistency region?  

If Yes, we check C, otherwise we check D.  
Condition C: Is the consistency guarantee full? 
If Yes, then no run-time consistency checking is neces-

sary. Otherwise, we need to probe the consistency control 
table with the required key values at runtime. For example, 
for Qa with $key = c_nationkey, we have two scenarios: 

In the first scenario, we have to first calculate which na-
tions are in the results, and then check if they all appear in 
the consistency control table C_CsCT (A11a). A more pre-
cise guard (A11b) only checks nations with more than one 
customer, by adding the COUNT(*)>1 condition. Check-
ing like A11a, A11b and A12 is called assured consistency 
checking in that it checks if the required consistency groups 
are part of the guaranteed cache regions. 

In the second scenario, a redundant equality predicate on 
c_nationkey is included in the query, allowing us to simply 
check if the required nations are in C_CsCT (A12). It elimi-
nates the need to examine the data for consistency checking. 

Condition D: Can each required consistency group be 
covered by a collection of cache regions. 

If Yes, we have the opportunity to do ad-hoc consistency 
checking. For Qa with $key = Ø, we check if all the required 
customers are in the same ad-hoc cache region (S11). Such 
checking (e.g., S11, S12 and S21, S22 from Section 7.1.2) is 
called ad-hoc consistency checking.  

If  $key=c_nationkey and suppose we don’t have 
C_CsCT, we need to check each group (S12). 

Experiment 1 is designed to measure the overhead of the 
simple consistency guards supported in our current frame-
work. We choose to support only run-time consistency 
guards that 1) do not require touching the data in a view; 2) 

only require probing a single control table. We fixed the 
guards and measured the overhead for: Qa and Qb with 
$custSet = (1); Qc with $nationSet = (1). The consistency 
guard for Qa and Qb is S11 and the one for Qc is A12.  

The results are shown in Table 7.1. As expected, in both 
the local and remote case, the absolute cost remains roughly 
the same, the relative cost decreases as the query execution 
time increases. The overhead for remote execution is small 
(< 2%). In the local case, the overhead for Qc (returning 
~6000 rows) is less than 2%. Although the absolute over-
head for Qa and Qb is small (<0.1ms), since the queries are 
inexpensive (returning 1 and 6 rows respectively), the rela-
tive overhead is ~15%. 

In experiment 2, we used query Qa with $custSet = (2, 
12), which returns 2 rows; and compared the overhead of 
different types of consistency guards that involve one con-
trol table. The results are shown in Table 7.2. 

For local execution, if the consistency guard has to touch 
the data of the view (A11a, A11b and S12), the overhead 
surges to ~70% for S12, because we literally execute the 
local query twice. A11a and b show the benefit of being 
more precise: the “sloppy” guard in A11a incurs 63% over-
head, while the overhead of the more precise guard (A11b) 
is only 24%, because it is less likely to touch CustCopy. The 
simple guard A12 incurs the smallest overhead (~17%). 

7.2.2 Multi-Table Case 

Different from Qa, the required consistency group in Qb has 
objects from different views. In this case, we first check: 

Condition E : Do they have the same consistency root? 
If Yes, then the consistency guard generation reduces to 

the single table case, because the guaranteed cache regions 
are decided by the consistency root. Otherwise, we have to 
perform ad-hoc checking involving joins of presence control 
tables. There are two cases. 

Case 1: $key = Ø. We check if all the required presence 
control-keys point to the same cache region (S21). 

Case 2: $key = c_nationkey. We first group the required 
rows by c_nationkey, and check for each group if 1) all the 
customers are from the same region; and 2) all the orders are 
from the same region as the customers (S22). 

In Experiment 3, we use query Qb with $custSet = (2, 
12), which returns 7 rows, and measure the overhead of con-
sistency guards that involve multiple control tables. The 
results are shown in Table 7.3. Guards S21 and S22 involve 
not only accessing the data, but also performing joins. Such 
complicated checking incurs huge overhead in the local exe-
cution case (~150%). Note that if CustCopy and OrderCopy 
are consistency-wise correlated, then the overhead (refer to 
single-table case) reduces dramatically. 

Local  Remote  Cost 
Qa Qb Qc Qa Qb Qc 

ms  .078 .08 1.17 .01 .19 1.13 
% 16.56 14.00 <2 <1 <2 <1 

# Rows  1 6 5975 1 6 5975 

Table 7.1: Simple consistency guard overhead  

Local  Remote  Cost 
A11a A11b A12 S11 S12 A11a A12 A12 S11 S12 

ms .31 .12 .084 .29 .35 .33 .27 .13 .41 .48 
% 62.85 23.77 16.98 58.32 71.41 6.06 4.95 2.33 7.48 8.79 

Table 7.2: Single-table case overhead 

 

Local  Remote Cost 
S21 S22 S21 S22 

ms .90 .83 1.00 .98 
% 155.83 143.82 24.82 24.36 

Table 7.3: Multi-table case overhead 
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8. RELATED WORK 
The work in [GLRG04] is the first that addresses C&C 
aware database caching with a query centric approach. Re-
laxing data quality is an old concept in replica management, 
distributed databases and warehousing and web views. Some 
authors take a maintenance-centric approach [ABG88, 
GN95, SK97], where queries are not allowed to express 
their individual data quality requirements. Others have taken 
a query-centric approach [OW00, HSW94, WXCJ98, 
OLW01], but they focus on single object granularity and no 
consistency guarantee is provided. FAS [RBSS02] enforces 
consistency at the level of the complete cache. In concur-
rency control, Epsilon-serializability [PL91] allows higher 
degree of concurrency by relaxing data quality. 

Caching has been used in many areas. Regarding what to 
cache, while some works [DFJ+96, APTP03] support arbi-
trary query results, others are tailored for certain simple 
types of queries [KB96, LN01], or even just base tables 
[AJL+02, CLL+01, LKM+02]. In the database caching con-
text, good surveys can be found in [DDT+01, Moh01]. 

The closest works to ours are DBCache [ABK+03] and 
Constraint-based Database Caching (CBDC) [HB04]. Simi-
larly to us, they consider full-fledged DBMS caching; and 
they define a cache with a set of constraints. However, there 
are two fundamental differences. First, they don’t consider 
relaxed data quality requirements, nor do they provide cur-
rency guarantees from the DBMS. Our work is more general 
in the sense that the cache-key and RCC constraints (an ex-
tension to cache groups in [TT02]) they support can be seen 
as a subset of ours. Second, in DBCache, local data avail-
ability checking is done outside of the optimizer, while in 
our case, local data checking is integrated into query optimi-
zation, which not only allows finer granularity checking, but 
also leaves the optimizer the freedom to choose the best plan 
based on cost. 

9. CONCLUSIONS 
The goal of our work is to build a solid foundation for fine 
granularity, C&C-aware adaptive DBMS caching. We for-
mally defined four fundamental cache properties: presence, 
consistency, completeness, and currency. We proposed a 
cache model in which users can specify a cache schema by 
defining a set of local views, together with cache constraints 
that specify what properties the cache must guarantee. We 
enforced C&C constraints by integrating C&C checking into 
query optimization and evaluation.  

We envision three lines of future research. First, in our 
current cache model, we only support groups defined by 
equality conditions. For efficient cache management, we 
plan to explore other predicates, e.g., range predicates. Sec-
ond, we plan to investigate C&C-aware cache replacement 
and refresh policies that make decisions adaptively, based 
on the workload. Third, we want to conduct a holistic system 

performance study to evaluate the effectiveness of different 
design choices in relaxed C&C database caching. One ex-
ample would be cache management granularity: view-level 
(as described in [GLRG04]) vs. group-level cache regions.  
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