

 Caching with “Good Enough”
Currency, Consistency, and Completeness

Hongfei Guo

University of Wisconsin
guo@cs.wisc.edu

Per-Åke Larson
Microsoft

palarson@microsoft.com

Raghu Ramakrishnan
University of Wisconsin

raghu@cs.wisc.edu

ABSTRACT

SQL extensions that allow queries to explicitly specify data
quality requirements in terms of currency and consistency
were proposed in an earlier paper. This paper develops a
data quality-aware, finer grained cache model and studies
cache design in terms of four fundamental properties: pres-
ence, consistency, completeness and currency. The model
provides an abstract view of the cache to the query process-
ing layer, and opens the door for adaptive cache manage-
ment. We describe an implementation approach that builds
on the MTCache framework for partially materialized views.
The optimizer checks most consistency constraints and gen-
erates a dynamic plan that includes currency checks and
inexpensive checks for dynamic consistency constraints that
cannot be validated during optimization. Our solution not
only supports transparent caching but also provides fine
grained data currency and consistency guarantees.

1. INTRODUCTION
Replicated data, in various forms, is widely used to improve
scalability, availability and performance. Applications that
use out-of-date replicas are clearly willing to accept results
that are not current, but typically have some limits on how
stale the data can be. SQL extensions that allow queries to
explicitly specify such data quality requirements in the form
of consistency and currency (C&C) constraints were pro-
posed in [GLRG04]. That work also described how support
for C&C constraints is implemented using MTCache
[LGGZ04], a prototype mid-tier database cache built on
Microsoft SQL Server.

We model cached data as materialized views over a pri-
mary copy. The work reported in [GLRG04] considered
only the restricted case where all rows of a cached view are
consistent, i.e., from the same database snapshot. This re-
quirement severely restricts the cache maintenance policies

that can be used. A pull policy, where the cache explicitly
refreshes data by issuing queries to the source database, of-
fers the option of using query results as the units for main-
taining consistency and other cache properties. In particular,
issuing the same parameterized query with different parame-
ter values returns different partitions of a cached view, offer-
ing a much more flexible unit of cache maintenance (view
partitions) than using entire views.

The extension to finer granularity cache management
fundamentally changes every aspect of the problem, impos-
ing non-trivial challenges: 1) how the cache tracks data qual-
ity; 2) how users specify cache properties; 3) how to main-
tain the cache efficiently; and 4) how to do query process-
ing. In this paper, we propose a comprehensive solution de-
scribed in Section 1.2.

Fig 1.1 shows our running example, where Q1 is a pa-
rameterized query, followed by different parameter settings.

1.1 Background and Motivation

We now motivate four properties of cached data that deter-
mine whether it can be used to answer a query. In the model
proposed in [GLRG04], a query’s C&C constraints are
stated in a currency clause. For example, in Q2, the currency
clause specifies three “quality” constraints on the query re-
sults: 1) “ON (A, B)” means that all Authors and Books
rows returned must be consistent, i.e., from the same data-
base snapshot. 2) “BOUND 10 min” means that these rows
must be current to within 10 minutes, that is, at most 10
minutes out of date. 3) “BY authorId” means that all result
rows with the same authorId value must be consistent. To
answer the query from cached data, the cache must guaran-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Authors (authorId, name, gender, city, state)
Books (isbn, authorId, publisherId, title, type)

Q1: SELECT * FROM Authors A WHERE authorId in (1,2,3)
CURRENCY BOUND 10 min on (A) BY $key

E1.1: $key = Ø
E1.2: $key = authorId
E1.3: $key = city

Q2: SELECT * FROM Authors A, Books B
WHERE authorId in (1,2,3) AND A.authorId = B.authorId
CURRENCY BOUND 10 min on (A, B) BY authorId

Q3: SELECT * FROM Authors A WHERE city = “Madison”
 CURRENCY BOUND 10 min ON (A) BY authorId

Figure 1.1: Running example

457

tee that the result satisfies these requirements and two more:
4) the Authors and Books rows for authors 1, 2, and 3 must
be present in the cache and 5) they must be complete, that
is, no rows are missing.

E1.1 requires that all three authors with id 1, 2 and 3 be
present in the cache, and that they be mutually consistent.
Suppose we have in the cache a partial copy of the Authors
table, AuthorCopy, which contains some frequently accessed
authors, say those with authorId 1-10. We could require the
cache to guarantee that all authors in AuthorCopy be mutu-
ally consistent, in order to ensure that we can use the rows
for authors with id 1, 2 and 3 to answer E1.1, if they are
present. However, query E1.1 can be answered using the
cache as long as authors 1, 2 and 3 are mutually consistent,
regardless of whether other author rows are consistent with
these rows. On the other hand, if the cache provides no con-
sistency guarantees, i.e., different authors could have been
copied from a different snapshot of the master database, the
query cannot be answered using the cache even if all re-
quested authors are present. In contrast, query E1.2, in
which the BY clause only requires rows for a given author to
be consistent, can be answered from the cache in this case.

Query Q3 illustrates the completeness property. It asks
for all authors from Madison, but the rows for different au-
thors do not have to be mutually consistent. Suppose we
keep track of which authors are in the cache by their au-
thorIds. Even if we have all the authors from Madison, we
cannot use the cached data unless the cache guarantees that
it has all the authors from Madison. Intuitively, the cache
guarantees that its content is complete w.r.t. the set of ob-
jects in the master database that satisfy a given predicate.

Regardless of the cache management mechanisms or
policies used, as long as cache properties are observed,
query processing can deliver correct results. Thus, cache
property descriptions serve as an abstraction layer between
query processing and cache management, enabling the im-
plementation of the former to be independent of the latter.

1.2 Our Contributions

We offer a comprehensive solution to finer granularity cache
management while still providing query results that satisfy
the query’s consistency and currency requirements. 1) We
build a solid foundation for cache description by formally
defining presence, consistency, completeness and currency
(Section 2). 2) We introduce a novel cache model that sup-
ports a specific way of partitioning and translate a rich class
of integrity constraints (expressed in extended SQL DDL
syntax) into properties required to hold over different parti-
tions (Section 3). 3) We identify an important property of
cached views, called safety, and show how safety aids in
efficient cache maintenance (Section 4). Further, we for-
mally define cache schemas and characterize when they are
safe, offering guidelines for cache schema design (Section
5). 4) We show how to efficiently enforce finer granularity

C&C constraints in query processing by extending the ap-
proach developed in [GLRG04] (Section 6). 5) We report
experimental results, providing insight into various perform-
ance trade-offs (Section 7).

2. CACHE PROPERTIES

The previous work in [GLRG04] describes the semantics of
C&C constraints, providing a correctness standard. In this
section, we define the properties of the cache using the same
model. To be self-contained, we summarize the model and
list some assumptions specific to this paper in Section 2.1.

2.1 Basic Concepts

A database is modeled as a collection of database objects
organized into one or more tables. Conceptually, the granu-
larity of an object may be a view, a table, a column, a row or
even a single cell in a row. To be specific, in this paper an
object is a row. Let identity of objects in a table be estab-
lished by a (possibly composite) key K. When we talk about
a key at the database level, we implicitly include the scope
of that key. Every object has a master and zero or more
copies. The collection of all master objects is called the
master database. We denote the database state after n
committed update transactions (T1..Tn) by Hn = (Tn ° Tn-1 °
… ° T1(H0)), where H0 is the initial database state, and “°” is
the usual notation for functional composition. Each database
state Hi is called a snapshot of the database. Assuming each
committed transaction is assigned a unique timestamp, we
sometimes use Tn and Hn interchangeably.

A cache is a collection of (local) materialized views,
each consisting of a collection of copies (of row-level ob-
jects). Although an object can have at most one copy in any
given view, multiple copies of the same object may co-exist
in different cached views. We only consider local material-
ized views defined by selection queries that select a subset
of data from a table or a view of the master database.

Self-Identification: master() applied to an object (mas-
ter or copy) returns the master version of that object.

Transaction Timestamps: The function xtime(T) re-
turns the transaction timestamp of transaction T. We over-
load the function xtime to apply to objects. The transaction
timestamp associated with a master object O, xtime(O, Hn),
is equal to xtime(A), where A is the latest transaction in
T1..Tn that modified O. For a copy C, the transaction time-
stamp xtime(C, Hn) is copied from the master object when
the copy is synchronized.

Copy Staleness: Given a database snapshot Hn, a copy C
is stale if master(C) was modified in Hn after xtime(C, Hn).
The time at which O becomes stale, called the stale point,
stale(C, Hn), is equal to xtime(A), where A is the first trans-
action in T1..Tn that modifies master(C) after xtime(C, Hn).
The currency of C in Hn is measured by how long it has
been stale, i.e., currency(C, Hn) = xtime(Tn) - stale(C, Hn).

458

2.2 Presence

The simplest type of query asks for an object identified by
its key (e.g., Q1). How to tell if an object is in the cache?

Intuitively, we require every object in the cache to be
copied from some valid snapshot. Let return(O, s) return
the value of object O in database state s. We say that copy C
in a cache state Scache is snapshot consistent w.r.t. a snap-
shot Hn of the master database if return(C, Scache) = re-
turn(master(C), Hn) and xtime(C, Hn) = xtime(master(C),
Hn). We also say CopiedFrom(C, Hn) holds.
Defn: (Presence) An object O is present in cache Scache iff
there is a copy C in Scache s.t. master(C) = O, and for some
master database snapshot Hn CopiedFrom(C, Hn) holds.

�

2.3 Consistency

When a query asks for more than one object, it can specify
mutual consistency requirements on them, as shown in E1.1.

For a subset U of the cache, we say that U is mutually
snapshot consistent (consistent for short) w.r.t. a snapshot
Hn of the master database iff CopiedFrom(O, Hn) holds for
every object O in U. We also say CopiedFrom(U, Hn) holds.

Besides specifying a consistency group by object keys
(e.g., authorId in E1.2), a query can also specify a consis-
tency group by a selection, as in E1.3. Suppose all authors
with id 1, 2 and 3 are from Madison. The master database
might contain other authors from Madison. The cache still
can be used to answer this query as long as all three authors
are mutually consistent and no more than 10 minutes old.
Given a query Q and a database state s, let Q(s) denote the
result of evaluating Q on s.

Defn: (Consistency) For a subset U of the cache Scache, if
there is a snapshot Hn of the master database s.t. Copied-
From(U, Hn) holds, and for some query Q, U⊆ Q(Hn), then
U is snapshot consistent (or consistent) w.r.t. Q and Hn.

�

U consists of copies from snapshot Hn and Q is a selec-
tion query. Thus the containment of U in Q(Hn) is well de-
fined. Note that object metadata, e.g., timestamps, are not
used in this comparison.

If a collection of objects is consistent, then any of its
subsets is also consistent. Formally,

Lemma 2.1: If a subset U of the cache Scache is consistent
w.r.t. a query Q and a snapshot Hn, then subset P(U) defined
by any selection query P is consistent w.r.t. P°Q and Hn.

�

Proof: See [GLR05] for all proofs omitted in this paper.
�

2.4 Completeness

As illustrated in Q3, a query might ask for a set of objects
defined by a predicate. How do we know that all the re-
quired objects are in the cache?

Defn: (Completeness) A subset U of the cache Scache is
complete w.r.t. a query Q and a snapshot Hn of the master
database iff CopiedFrom(U, Hn) holds and U = Q(Hn).

�

Lemma 2.2: If a subset U of the cache Scache is complete
w.r.t. a query Q and a snapshot Hn, then subset P(U) defined
by any selection query P is complete w.r.t. P°Q and Hn.

�

The above constraint is rather restrictive. Assuming that
objects’ keys are not modified, it is possible to allow subse-
quent updates of some objects in U to be reflected in the
cache, while still allowing certain queries (which require
completeness, but do not care about the modifications and
can therefore ignore consistency) to use cached objects in U.
See [GLR05] for key-completeness constraint.

Fig 2.1 illustrates cache properties, where an edge from
object O to C denotes that C is copied from O. Assuming all
objects are modified in H2, U1 is consistent but not complete
w.r.t. Q1 and H1, U2 is complete w.r.t. Q2 and H1, and U3 is
key-complete w.r.t. Q3 and both H1 and H2.

Lemma 2.3: If a subset U of the cache Scache is complete
w.r.t. a query Q and a database snapshot Hn, then U is both
key-complete and consistent w.r.t. Q and Hn.

�

2.5 Currency

We have defined stale point and currency for a single ob-
ject. Now we extend the concepts to a set of objects. Sup-
pose that at 1pm, there are only two authors from Madison
in the master database, and we copy them to the cache,
forming set U. At 2pm, a new author moves to Madison. At
3pm, how stale is U w.r.t. predicate “city = Madison”? Intui-
tively, the answer should be 1 hour, since U gets stale the
moment the new author is added to the master database.
However, we cannot use object currency to determine this
since both objects in U are current. For this reason we use
the snapshot where U is copied from as a reference.

We overload stale() to apply to a database snapshot Hm
w.r.t. a query Q: stale(Hm, Q, Hn) is equal to xtime(A),
where A is the first transaction that changes the result of Q
after Hm in Hn. Similarly, we overload the currency() func-
tion: currency(Hm, Q, Hn) = xtime(Hn) - stale(Hm, Q, Hn).

Defn: (Currency for complete set) If a subset U of the
cache Scache is complete w.r.t. a query Q and a snapshot Hm,
then the currency of U w.r.t. a snapshot Hn of the master
database is: currency(U, Q, Hn) = currency(Hm, Q, Hn).

�

Figure 2.1: Cache property example

Cache Master DB (H 1) Master DB (H 2)

Figure 2.2: Currency example

459

From the definition, the currency of U depends on the
snapshot Hm used in the calculation. This can be solved us-
ing a “ghost row” technique, see [GLR05] for details.

Fig 2.2 illustrates the currency of two complete sets,
where A1 and A2 are two copies of A’ and B is a copy of
B’, Q(Hi) = {A’, B’}, i = 1, 2, Q(H i) = {A’, B’, C’}, i = 3, 4.
{A1, B} and {A2, B} are complete w.r.t. Q and H1, H2.

3. DYNAMIC CACHING MODEL
In our model, a cache is a collection of materialized views V
= {V 1, …, Vm}, where each view Vi is defined using a query
expression Qi. We describe the properties of the cache in
terms of integrity constraints defined over V. In this section,
we introduce a class of metadata tables called control tables
that facilitate specification of cache integrity constraints, and
introduce extended SQL DDL syntax for constraint specifi-
cation. Fig 3.1 shows the set of DDL examples used in this
section. We start by defining two views as shown in D1.

3.1 View Partitions and Control tables

Instead of treating all rows of a view uniformly, we allow
them to be partitioned into smaller groups, where properties
(presence, currency, consistency or completeness) are guar-
anteed per group. The same view may be partitioned into
different sets of groups for different properties. Further, the
cache may provide a full or partial guarantee, that is, it may
guarantee that the property holds for all groups in the parti-
tioning or only for some of the groups. Although different
implementation mechanisms might be used for full and par-
tial guarantees, conceptually, the former is a special case of
the latter; we therefore focus on partial guarantees.

In this paper, we impose restrictions on how groups can
be defined and consider only groups defined by equality
predicates on one or more columns of the view. That is, two
rows belong to the same group if they agree on the value of
the grouping columns. For a partial guarantee, the grouping
values for which the guarantee holds are (conceptually)
listed in a separate table called a control table. Each value
in the control table corresponds to a group of rows of Vi that

we call a cache region (or simply region). Each view Vi in
V can be associated with three types of control tables: pres-
ence, consistency and completeness control tables. We use
presence/consistency/completeness region to refer to
cache regions defined for each type. Note that control tables
are conceptual; some might be explicitly maintained and
others might be implicitly defined in terms of other cached
tables in a given implementation.

3.1.1 Presence Control table (PCT)

Suppose we receive many queries looking for some authors,
as in Q1. Some authors are much more popular than others
and the popular authors change over time, i.e., the access
pattern is skewed and changes over time. We would like to
answer a large fraction of queries locally but maintenance
costs are too high to cache the complete Authors table. Fur-
ther, we want to be able to adjust cache contents for the
changing workload without changing the view definition.
These goals are achieved by presence control tables.

A presence control table (PCT) for view Vi is a table
with a 1-1 mapping between a subset K of its columns and a
subset K’ of Vi’s columns. We denote this by PCT[K, K’];
K ⊆ PCT is called the presence control-key (PCK) for Vi,
and K’⊆ V i is called the presence controlled-key (PCdK).
For simplicity, we will use PCK and PCdK interchangeably
under the mapping. A PCK defines the smallest group of
rows (i.e., an object) that can be admitted to or evicted from
the cache in the MTCache “pull” framework. We assume
that the cache maintenance algorithms materialize, update
and evict all rows within such a group together.

Presence Assumption: All rows associated with the same
presence control-key are assumed to be present, consistent
and complete. That is, for each row s in the presence control
table, subset U = σ K’=s.K (Vi) is complete and thus consistent
w.r.t. (σ K’=s.K ◦ Qi) and Hn, for some snapshot Hn of the mas-
ter database, where Qi is the query that defines Vi .

�

If V i has at least one presence control table, it is a par-
tially materialized view (PMV), otherwise it is a fully ma-
terialized view addressed in [GLRG04]. See [ZLG05] for
more general types of partial views, partial view matching,
and run-time presence checking.

 In our motivating example, we cache only the most
popular authors. This scenario can be handled by creating a
presence control table and adding a PRESENCE constraint
to AuthorCopy, as in D2. AuthorList_PCT acts as a pres-
ence control table and contains the ids of the authors who
are currently present in the view AuthorCopy, i.e., material-
ized in the view.

3.1.2 Consistency Control table (CsCT)

A local view may still be useful even when all its rows are
not kept mutually consistent, e.g., in a scenario where we
receive many queries like E1.3. Suppose AuthorCopy con-
tains all the required rows. If we compute the query from the
view, will the result satisfy the query’s consistency require-

D1: CREATE VIEW AuthorCopy AS SELECT * FROM Authors
 CREATE VIEW BookCopy AS SELECT * FROM Books

D2: CREATE TABLE AuthorList_PCT(authorId int)
 ALTER VIEW AuthorCopy ADD PRESENCE ON authorId IN
 (SELECT authorId FROM AuthorList_PCT)

D3: CREATE TABLE CityList_CsCT(city string)
 ALTER VIEW AuthorCopy ADD CONSISTENCY ON city IN
 (SELECT city FROM CityList_CsCT)

D4: CREATE TABLE CityList_CpCT(city string)
 ALTER VIEW AuthorCopy ADD COMPLETE ON city IN
 (SELECT city FROM CityList_CpCT)

D5: ALTER VIEW BookCopy ADD PRESENCE ON authorId IN
 (select authorId from AuthorCopy)

D6: ALTER VIEW BookCopy ADD CONSISTENCY ROOT

Figure 3.1: DDL examples for adding cache constrain ts

460

ments? The answer is “not necessarily” because the query
requires all result rows to be mutually consistent per city,
but AuthorCopy only guarantees that the rows for each au-
thor are consistent; nothing is guaranteed about authors from
a given city. The consistency control table provides the
means to specify a desired level of consistency.

A consistency control table (CsCT) for view Vi is de-
noted by CsCT[K], where a set of columns K⊆ CsCT is
also a subset of Vi, and is called the consistency control-
key (CsCK) for Vi. For each row s in CsCT, if there is a
row t in Vi, s.t. s.K = t.K, then subset U = σ K=s.K (Vi) must be
consistent w.r.t. (σ K=s.K ◦ Qi) and Hn for some snapshot Hn of
the master database.

In our example, it is desirable to guarantee consistency
for all authors from the same city, at least for some of the
popular cities. We propose an additional CONSISTENCY
constraint, for specifying this requirement. We first create a
consistency control table containing a set of cities and then
add a CONSISTENCY constraint to AuthorCopy, as in D3
of Fig 3.1. The CONSISTENCY clause specifies that the
cache must keep all rows related to the same city consistent
if the city is among the ones listed in CityList_CsCT; this is
in addition to the consistency requirements implicit in the
Presence Assumption. AuthorCopy can now be used to an-
swer queries like E1.3.

If we want the cache to guarantee consistency for every
city, we change the clause to CONSISTENCY ON city. If
we want the entire view to be consistent, we change the
clause to CONSISTENCY ON ALL. If we don’t specify a
consistency clause, the cache will not provide any consis-
tency guarantees beyond the minimal consistency implied by
the presence control table under the Presence Assumption.

3.1.3 Completeness Control table (CpCT)

A view with a presence control table can only be used to
answer point queries with an equality predicate on its control
columns. For example, AuthorCopy cannot answer Q3.

It is easy to find the rows in AuthorCopy that satisfy the
query but we cannot tell whether the view contains all re-
quired rows. If we want to answer a query with predicate P
on columns other than the control-keys, the cache must
guarantee that all rows defined by P appear in the cache or
none appear. Completeness constraints can be expressed
with completeness control tables.

A completeness control table (CpCT) for view Vi is
denoted by CpCT[K]. A completeness control table is a con-
sistency control table with an additional constraint: the sub-
set U in Vi defined as before is not only consistent but also
complete w.r.t. (σ K=s.K ◦ Qi) and Hn, for some snapshot Hn of
the master database. We say K is a completeness control-
key (CpCK). Note that all rows within the same complete-
ness region must also be consistent (Lemma 2.3).

We propose to instruct the cache about completeness re-
quirements using a COMPLETENESS constraint. Continuing
our example, we create a completeness control table and

then add a completeness clause to the AuthorCopy defini-
tion, as in D4 of Fig 3.1. Table CityList_CpCT serves as the
completeness control table for AuthorCopy. If a city is con-
tained in CityList_CpCT, then we know that either all au-
thors from that city are contained in AuthorCopy or none of
them are. Note that an entry in the completeness control
table does not imply presence. Full completeness is indi-
cated by dropping the clause starting with “IN”. Not specify-
ing a completeness clause indicates that the default com-
pleteness implicit in the Presence Assumption is sufficient.

A similar property is termed “domain completeness” in
DBCache [ABK+03]. However, our mechanism provides
more flexibility. The cache admin can specify: 1) the subset
of columns to be complete; 2) to force completeness on all
values or just a subset of values for these columns.

3.2 Correlated Presence Constraints

In our running example, we may not only receive queries
looking for some authors, but also follow-up queries looking
for related books. That is, the access pattern to BookCopy is
decided by the access pattern to AuthorCopy. In order to
capture this, we allow a view to use another view as a pres-
ence control table. To have BookCopy be controlled by Au-
thorCopy, we only need to declare AuthorCopy as a pres-
ence control table by a PRESENCE constraint in the defini-
tion of BookCopy, as in D5 of Fig 3.1.

If a presence control table is not controlled by another
one, we call it a root presence control table. Let L =
{V m+1, …, Vn} be the set of root presence control tables; W
= V ∪ L. We depict the presence correlation constraints by
a cache graph, denoted by <W, E>. An edge Vi

 → ', ,, jiji KK Vj means that Vi is a PCT[Ki,j, Ki,j ’] of V j.
Circular dependencies require special care in order to

avoid “unexpected loading”, a problem addressed in
[ABK+03]. In our model, we don’t allow circular dependen-
cies, as stated in Rule 1 in Fig 5.1. Thus we call a cache
graph a cache DAG.

Each view in the DAG has two sets of orthogonal proper-
ties. First, whether it is view-level or group-level consistent.
Second, to be explained shortly, whether it is consistency-
wise correlated to its parent. For illustration purposes, we
use shapes to represent the former: circles for view-level
consistent views and rectangles (default) for all others. We
use colors to denote the latter: gray if a view is consistency-
wise correlated to its parents, white (default) otherwise.

Defn: (Cache schema) A cache schema is a cache DAG
<W, E> together with the completeness and consistency
control tables associated with each view in W.

�

3.3 Correlated Consistency Constraints

In our running example, we have an edge AuthorCopy

 →authorId BookCopy, meaning if we add a new author
to AuthorCopy, we always bring in all of the author’s books.

461

The books of an author have to be mutually consistent, but
they are not required to be consistent with the author.

If we wish the dependent view to be consistent with the
controlling view, we add the consistency clause: CONSIS-
TENCY ROOT, as in D6 of Fig 3.1. A node with such con-
straint is colored gray; it cannot have its own consistency or
completeness control tables (Rule 2 in Fig 5.1).

For a gray node V, we call its closest white ancestor its
consistency root. For any of V’s cache regions Uj, if Uj is
controlled by a PCK value included in a cache region Ui in
its parent, we say that Ui consistency-wise controls Uj; and
that Ui and Uj are consistency-wise correlated.

Fig 3.2 illustrates a cache schema example, which con-
sists of four partially materialized views. AuthorCopy is
controlled by a presence control table AuthorList_PCT,
likewise for ReviewerCopy and ReviewerList_PCT. Besides
a presence control table, AuthorCopy has a consistency con-
trol table CityList_CsCT on city. BookCopy is both pres-
ence-wise and consistency-wise correlated to AuthorCopy.
In contrast, ReviewCopy has two presence control tables:
BookCopy and ReviewerCopy; it is view level consistent
and consistency-wise independent from its parents.

4. SAFE CACHED VIEWS
A cache has to perform two tasks: 1) populate the cache and
2) reflect updates to the contents of the cache, while main-
taining the specified cache constraints. Complex cache con-
straints can lead to unexpected additional fetches in a pull-
based maintenance strategy, causing severe performance
problems. We illustrate the problems through a series of
examples, and quantify the refresh cost for unrestricted
cache schemas in Theorem 4.1. We then identify an impor-
tant property of a cached view, safety, that allows us to op-
timize pull-based maintenance, and summarize the gains it
achieves in Theorem 4.2. We introduce the concept of ad-
hoc cache regions, used for adaptively refreshing the cache.

For convenience, we distinguish between the schema and
the instance of a cache region U. The schema of U is de-
noted by <V, K, k>, meaning that U is defined on view V by
a control-key K with value k. We use the italic form U to
denote the instance of U.

4.1 Pull-Based Maintenance

In the “pull” model, we obtain a consistent set of rows using
either a single query to the backend or multiple queries
wrapped in a transaction. As an example, suppose Author-
Copy, introduced in Section 3, does not have any children in

the cache DAG and that the cache needs to refresh a row t
(1, Rose, Female, Madison, WI).

First, consider the case where AuthorCopy does not have
any consistency or completeness control table, and so con-
sistency follows the presence table. Then all rows in the
presence region identified by authorId 1 need to be re-
freshed together. This can be done by issuing the presence
query shown in Fig 4.1 to the backend server.

Next, suppose we have CityList_CsCT (see Section
3.1.2). If Madison is not found in CityList_CsCT, the pres-
ence query described above is sufficient. Otherwise, we
must also refresh all other authors from Madison. If K is the
set of authors in AuthorCopy that are from Madison, the
consistency query in Fig 4.1 is sent to the backend server.

Finally, suppose we have CityList_CpCT (see Section
3.1.3). If Madison is found in CityList_CpCT, then besides
the consistency query, we must fetch all authors from Madi-
son using the completeness query in Fig 4.1.

Formally, given a cache region U<V, K, k>, let the set of
presence control tables of V be P1, …, Pn, with presence
control-keys K1, …, Kn. For Ki, i = 1..n, let Ki=

Π
Ki σ K=k(V),

the remote queries for U are: 1) the presence query, if U is a
presence region; 2) the consistency queries (i = 1..n), if U is
a consistency region; and 3) the consistency queries (i =
1..n) (and the completeness query if U ≠ Ø), if U is a com-
pleteness region. (The queries are shown in Fig 4.2.)

Lemma 4.1: For any cache region U <V, K, k> in the cache,
the results retrieved from the backend server using the re-
fresh queries in Fig 4.2 not only keeps U’s cache constraints,
but also keeps the presence constraints for the presence re-
gions in V that U overlaps.

�

As this example illustrates, when refreshing a cache re-
gion, in order to guarantee cache constraints, we may need
to refresh additional cache regions; the set of all such “af-
fected” cache regions is defined below.

Defn: (Affected closure) The affected closure of a cache
region U, denoted as AC(U), is defined transitively:
1) AC(U) = {U}
2) AC(U) = AC(U)∪ {U i | for Uj in AC(U), either Uj over-

laps Ui or Uj and Ui are consistency-wise correlated}.
�

For convenience, we assume that the calculation of
AC(U) always eliminates consistency region Ui, if there ex-
ists a completeness region Uj in AC(U), s.t. Ui = Uj, since
the completeness constraint is stricter (Lemma 2.3). The set
of regions in AC(U) is partially ordered by the set contain-

Presence query:

SELECT * FROM Authors
WHERE authorId = 1

Consistency query:

SELECT * FROM Authors
WHERE authorId in K

Completeness query:

SELECT * FROM Authors
WHERE city = “Madison”

Figure 4.1: Refresh query examples

Presence (Completeness) query:

SELECT * FROM V
WHERE K = k

Consistency query:

SELECT * FROM V
WHERE Ki in K i

Figure 4.2: Refresh queries

Figure 3.2: Cache schema example

462

ment relationship. From Lemma 2.1-2.3, we only need to
maintain the constraints of some “maximal” subset of
AC(U). Let Max(

�
) denote the set of the maximal elements

in the partially ordered set
�

.

Defn: (Maximal affected closure) The maximal affected
closure of a cache region U, MaxAC(U), is obtained by the
following two steps: Let

�
 = AC(U),

1) Constructing step. Let д , в be the set of all consistency
regions and completeness regions in

�
 respectively.

MaxAC(U) = Max(
�

 - д) ∪ Max(
�

 – в).
2) Cleaning step. Eliminate any consistency region Ui in

MaxAC(U) if there exists a completeness region Uj in
MaxAC(U), s.t. Ui ⊆ Uj.

�

Maintenance Rule:
1) We only choose a region to refresh from a white node.
2) When we refresh a region U, we do the following:

Step 1: Retrieve every region in MaxAC(U) by sending
proper remote queries according to its constraint.

Step 2: Delete the old rows covered by AC(U) or the re-
trieved tuple set; then insert the retrieved tuple set. �

Theorem 4.1: Assuming the partial order between any two
cache regions is constant, then given any region U, if we
apply the Maintenance Rule to a cache instance that satisfies
all cache constraints, let newTupleSet be the newly retrieved
tuple set, � = AC(newTupleSet), then
1) Every region other than those in (� -

�
) observes its cache

constraint after the refresh transaction is complete.
2) If (� -

�
) = Ø, then after the refresh transaction is com-

plete, all cache constraints are preserved.
3) If (� -

�
) = Ø, MaxAC(U) is the minimal set of regions

we have to refresh in order to refresh U while maintain-
ing all cache constraints for all cache instances. �

The last part of the theorem shows that when a region U
is refreshed, every region in MaxAC(U) must be simultane-
ously refreshed. Otherwise, there is some instance of the
cache that satisfies all constraints, yet running the refresh
transaction to refresh U will leave the cache in a state violat-
ing some constraint. If (� -

�
)

≠
Ø, multi-trip to the master

database is needed in order to maintain all cache constraints.
Given a region U in a white view V, how do we get

MaxAC(U)? For an arbitrary cache schema, we need to start
with U and add affected regions to it recursively. There are
two scenarios that potentially complicate the calculation of
MaxAC(U), and could cause it to be very large:
1) For any view Vi, adding a region Uj from Vi results in

adding all regions from Vi that overlap with Uj.
2) A circular dependency may exist between two views Vi

and Vj, i.e., adding new regions from Vi may result in
adding more regions from Vj, which in turn results in
adding yet more regions from Vi.

The potentially expensive calculation and the large size
of MaxAC(U), and hence the high cost of refreshing the
cache motivate the definition of safe views in Section 4.2.

4.1.1 Ad-hoc Cache Regions

Although the specified cache constraints are the minimum
constraints that the cache must guarantee, sometimes it is
desirable for the cache to provide additional “ad-hoc” guar-
antees. For example, a query workload like E1.1 asks for
authors from a set of popular authors and requires them to
be mutually consistent. Popularity changes over time. In
order to adapt to such workloads, we want the flexibility of
grouping and regrouping authors into cache regions on the
fly. For this purpose, we allow the cache to group regions
into “ad-hoc” cache regions. See [GLR05] for details.

4.1.2 Keeping Track of Currency

When using the pull model, we keep the last refresh time-
stamp for each cache region. If current time is t, a region
with timestamp T is no older than (t – T), since all updates
until T are reflected in the result of the refresh query.

4.2 Safe Views and Efficient Pulling

We now introduce the concept of safe views, motivated by
the potentially high refresh cost of pull-based maintenance
for unrestricted cache schemas.

Defn: (Safe PMV) A partially materialized view V is safe if
the two following conditions hold for every instance of the
cache that satisfies all integrity constraints:
1) For any pair of regions in V, either they don’t overlap or

one is contained in the other.
2) If V is gray, let X denote the set of presence regions in

V. X is a partitioning of V and no pair of regions in X is
contained in any one region defined on V. �
Intuitively, Condition 1 is to avoid unexpected refreshing

because of overlapping regions in V; Condition 2 is to avoid
unexpected refreshing because of consistency correlation
across nodes in the cache schema.

Lemma 4.2: For a safe white PMV V that doesn’t have any
children, given any cache region U in V, the partially or-
dered set AC(U) is a tree. �

Since AC(U) on V has a regular structure, we can main-
tain metadata to find the maximal element efficiently. We
omit the detailed mechanism because of space constraints.

Theorem 4.2: Consider a white PMV V, and let κ denote V
and all its gray descendants. If all nodes in κ are safe, when-
ever any region U defined on V is to be refreshed:
1) AC(U) can be calculated top-down in one pass.
2) Given the partially ordered set AC(U) on V, the calcula-

tion of MaxAC(U) on V can be done in one pass. �

5. DESIGN ISSUES FOR CACHES
In this section, we investigate conditions that lead to unsafe
cached views and propose appropriate restrictions on allow-
able cache constraints. In particular, we develop three addi-
tional rules to guide cache schema design, and show that

463

Rules 1-5 are a necessary and sufficient condition for (all
views in) the cache to be safe.

5.1 Shared-Row Problem

Let’s take a closer look at the AuthorCopy and BookCopy
example defined in Section 3. Suppose a book can have
multiple authors. If BookCopy is a rectangle, since co-
authoring is allowed, a book in BookCopy may correspond
to more than one control-key (authorId) value, and thus be-
long to more than one cache region. To reason about such
situations, we introduce cache-instance DAGs.

Defn: (Cache instance DAG) Given an instance of a cache
DAG <W, E>, we construct its cache instance DAG as
follows: make each row in each node of W a node; and for
each edge Vi  → ', ,, jiji KK Vj in E, for each pair of rows s in Vi
and t in Vj, if s.Ki,j = t.Ki,j’ then add an edge s � t. �

Defn: (Shared-row problem) For a cache DAG <W, E>, a
view V in W has the shared-row problem if there is an
instance DAG s.t. a row in V has more than one parents. �

There are two cases where a view V has the shared-row
problem. In the first case (Lemma 5.1), we can only elimi-
nate the potential overlap of regions in V defined by differ-
ent presence control tables if V is view-level consistent.
Considering the second condition in the definition of safe,
we have Rule 3 in Fig 5.1. For the second case (Lemma 5.2)
we enforce Rule 4 in Fig 5.1.

Lemma 5.1: Given a cache schema <W, E>, view V in W
has the shared-row problem if V has more than one parent.�

Lemma 5.2: Given a cache schema <W, E>, for any view
V, let the parent of V be V1. V has the shared-row problem
iff the presence key K in V1 for V is not a key in V1. �

5.2 Control table Hierarchy

For a white view V in the cache, if it has consistency or
completeness control tables beyond those implicit in the
Presence Assumption, then it may have overlapping regions.
In our running example, suppose BookCopy is a white rec-
tangle; an author may have more than one publisher. If there
is a consistency control table on publisherId, then Book-
Copy may have overlapping regions. As an example, Alice
has books 1 and 2, Bob has book 3, and while books 1 and 3
are published by publisher A, book 2 is published by pub-
lisher B. If publisher A is in the consistency control table for

BookCopy, then we have two overlapping regions: {book 1,
book 2} by Alice, and {book 1, book 3} by publisher A.

Defn: (Compatible control tables) For a view V in the
cache, let the presence controlled-key of V be K0, and let the
set of its consistency and completeness control-keys be K.
1) For any pair K1 and K2 in K, we say that K1 and K2 are

compatible iff FD K1� K2 or FD K2� K1.
2) We say K is compatible iff the elements in K are pair-

wise compatible, and for any K in K, FD K�K0. �

Rule 5 is stated in Fig 5.1. We require that a new cache
constraint can only be created in the system if its addition
does not violate Rules 1-5.

Theorem 5.1: Given a cache schema <W, E>, if it satisfies
rules 1-5, then every view in W is safe. Conversely, if the
schema violates one of these rules, there is an instance of the
cache satisfying all specified integrity constraints in which
some view is unsafe. �

6. ENFORCING C&C CONSTRAINTS
A traditional distributed query optimizer decides whether to
use local data based on data availability and estimated cost.
In our setting, it must also take into account local data prop-
erties (presence, consistency, completeness and currency).
Presence checking is addressed in [ZLG05]; the same ap-
proach can be extended to completeness checking. This sec-
tion describes efficient checking for C&C constraints in a
transformation-based optimizer. See [GLR05] for proofs.

In comparison to [GLRG04], the algorithms developed
here are more general and support finer granularity C&C
checking. In [GLRG04], consistency checking was done
completely at optimization time and currency checking at
run time, because view level cache region information is
stable and available at optimization, while currency informa-
tion is only available at run time. In this paper we still per-
form as much as possible of the consistency checking at
optimization time but part of it may have to be delayed to
run-time. For a view with partial consistency guarantees, we
don’t know at optimization time which actual groups will be
consistent at run time. Further, ad-hoc cache regions may
change over time, also prompting run-time checking.

6.1 Normalizing C&C Constraints

A query may contain multiple currency clauses, at most one
per SFW block. The first task is to combine the individual
clauses and convert the result to a normal form. To begin the
process, each currency clause is represented as follows.

Defn: (Currency and consistency constraint) A C&C
constraint CCr is a set of tuples, CCr = {<b1, K1, S1, G1>, ...,
<bn, Kn, Sn, Gn>}, where Si is a set of input operands (table
or view instances), bi is a currency bound specifying the
maximum acceptable staleness of the input operands in Si,
Gi is a grouping key and Ki a set of grouping key values. �

Rule 1 : A cache graph is a DAG.

Rule 2: Only white nodes can have independent completeness or
consistency control tables.

Rule 3 : A view with more than one parent must be a white circle.

Rule 4 : If a view has the shared-row problem according to
Lemma 5.2, then it cannot be gray.

Rule 5 : A view cannot have incompatible control tables.

Figure 5.1: Cache schema design rules

464

Each tuple has the following meaning: for any database
instance, if we group the input operands referenced in a tu-
ple by the tuple’s grouping key Gi, then for those groups
with one of the key values in Ki, each group is consistent.
The key value sets Ki will be used when constructing consis-
tency guard predicates to be checked at run time. Note that
the default value for each field is the strongest constraint.

All constraints from individual currency clauses are
merged together into a single constraint and converted into
an equivalent or stricter normalized form with no redundant
requirements. See [GLR05] for details.

6.2 Compile-time Consistency Checking

We take the following approach to consistency checking. At
optimization time, we proceed as if all consistency guaran-
tees were full. A plan is rejected if it would not produce a
result satisfying the query’s consistency requirements even
under that assumption. Whenever a view with partial consis-
tency guarantees is included in a plan, we add consistency
guards that check at run-time if the guarantee holds for the
groups actually used.

SQL Server uses a transformation-based optimizer. Con-
ceptually, optimization proceeds in two phases: an explora-
tion phase and an optimization phase. The former generates
new logical expressions; the latter recursively finds the best
physical plan. Physical plans are built bottom-up.

Required and delivered (physical) plan properties play a
very important role during optimization. To make use of the
plan property mechanism for consistency checking, we must
be able to perform the following three tasks: 1) transform
the query’s consistency constraints into required consistency
properties; 2) given a physical plan, derive its delivered con-
sistency properties from the properties of the local views it
refers to; 3) check whether delivered consistency properties
satisfy required consistency properties.

6.2.1 Required Consistency Plan Property

A query’s required consistency property consists of the nor-
malized consistency constraint described in section 6.1.

6.2.2 Delivered Consistency Plan Property

A delivered consistency property CPd consists of a set of
tuples {<Ri, Si, � i>} where Ri is the id of a cache region, Si
is a set of input operands, namely, the input operands of the
current expression that belong to region Ri, and � i is the set
of grouping keys for the input operands. Each operator
computes its delivered plan properties bottom-up based on
the delivered plan properties of its inputs. We omit the algo-
rithms due to space constraints; for details see [GLR05].

6.2.3 Satisfaction Rules

Now, given a required consistency property CCr and a de-
livered one CPd, how do we know whether CPd satisfies
CCr? Firstly, our consistency model does not allow two col-
umns from the same input table T to originate from different
snapshots, leading to the following property:

Conflicting consistency property: A delivered consistency
property CPd is conflicting if there exist two tuples < R1, S1, � 1 > and < R2, S2, � 2 > in CPd s.t. S1 ∩ S2 ≠ Ø and one of
the following conditions holds: 1) R1 ≠ R2, or 2) Ω1 ≠ Ω2. 

This property is conservative in that it assumes that two
cache regions U1 and U2 from different views can only be
consistent if they have the same set of control-keys.

Secondly, a complete plan satisfies the constraint if each
required consistency group is fully contained in some deliv-
ered cache region. We extend the consistency satisfaction
rule in [GLRG04] to include finer granularity cache regions.

Consistency satisfaction rule: A delivered consistency
property CPd satisfies a required CCr w.r.t. a cache schema Σ

 and functional dependencies F, iff CPd is not conflicting
and, for each tuple <br, Kr, Sr, Gr> in CCr, there is a tuple
<Rd, Sd, Ωd> in CPd s.t. Sr ⊆ Sd, and one of the following
conditions holds: 1) Ωd = Ø, or 2) let Gr

+ be the attribute
closure w.r.t. F. There exists a Gd∈Ωd s.t. Gd ⊆ Gr

+. 

For query Q2, suppose we have CCr = {<5, Ø, {Authors,
Books}, {isbn}>}, and that the cache schema is the one in
Fig 3.2. During view matching, AuthorCopy and BookCopy
will match Q2. Thus CPd = {<-1, {Authors, Books}, {Au-
thors.authorId, city}>}. If AuthorCopy joins with BookCopy
on authorId (as indicated by the presence correlation), and
the result is R, then from the key constraints of Authors and
Books we know that isbn is a key in R. Therefore
city∈{isbn} +. CPd satisfies CCr.

While a plan is being constructed, bottom-up, we want to
stop as soon as it is possible when the current subplan can-
not deliver the consistency required by the query. The con-
sistency satisfaction rule cannot be used for checking sub-
plans; a check may fail simply because the partial plan does
not include all inputs covered by the required consistency
property. Instead we apply the following violation rules. We
prove that a plan cannot satisfy the required plan properties
if a subplan violates any of the three rules [GLR05].

Consistency violation rules: A delivered consistency prop-
erty CPd violates a required consistency constraint CCr
w.r.t. a cache schema

Σ
 and functional dependencies F, if

one of the following conditions holds:
1) CPd is conflicting,
2) There exists a tuple < br, Kr, Sr, Gr > in CCr that inter-

sects more than one consistency group in CPd, that is,
there exist two tuples < R1d, S1d, Ω1d > and < R2d, S2d,
Ω2d > in CPd s.t. Sr ∩ S1d ≠ Ø and Sr ∩ S2d ≠ Ø,

3) There exists <b, Kr, Sr, Gr> in CCr, and < Rd, Sd, Ωd > in
CPd, s.t. Sr ⊆ Sd, Ωd ≠ Ø and the following condition
holds: let Gr+ be the attribute closure w.r.t.

Σ
 and F.

There does not exist Gd∈Ωd, s.t. Gd ⊆ Gr
+. 

6.3 Run-time C&C Checking

To include C&C checking at runtime, the optimizer must
produce plans that check whether a local view satisfies the

465

required C&C constraints and switch between using the lo-
cal view and retrieving the data from the backend server.
Such run-time decision-making is built in a plan by using a
SwitchUnion operator. A SwitchUnion operator has multiple
input streams but only one is selected at run-time based on
the result of a selector expression.

In MTCache, all local data is defined as materialized
views and logical plans making use of a local view are al-
ways created through view matching [LGZ04, GL01]. Con-
sider an (logical) expression E and a matching view V from
which E can be computed. If C&C checking is required, we
produce a substitute consisting of a SwitchUnion on top,
shown in Fig 6.1, with a selector expression that checks
whether V satisfies the currency and consistency constraint
and two input expressions: a local branch and a remote
branch. The local branch is a normal substitute expression
produced by view matching and the remote plan consists of
a remote SQL query created from the original expression E.
If the condition, which we call consistency guard or cur-
rency guard according to its purpose, evaluates to true, the
local branch is chosen, otherwise the remote one.

The discussion of when and what type of consistency
checking to generate and the inexpensive consistency check-
ing we support is deferred to Section 7.

7. PERFORMANCE STUDY
This section reports experimental results for consistency
checking; results for presence and currency checking are
reported in [ZLG05] and [GLRG04] respectively.

7.1 Experimental Setup

We used a single cache DBMS and a backend server.
The backend server hosted a TPCD database with scale fac-
tor 1.0 (about 1GB), where only the Customers and Orders
tables were used. The Customers table was clustered on its
primary key, c_custkey with an index on c_nationkey. The
Orders table was clustered on (o_custkey, o_orderkey). The
cache had a copy of each table, CustCopy and OrderCopy,
with the same indexes. The control table settings and queries

used are shown in Fig 7.1. We populated the ckey and nkey
columns with c_custkey and c_nationkey columns from the
views respectively.

C_PCT and O_PCT are the presence control tables of
CustCopy and OrderCopy respectively. C_CsCT is a consis-
tency control table on CustCopy. By setting the timestamp
field, we can control the outcome of the consistency guard.

The caching DBMS ran on an Intel Pentium 4CPU 2.4
GHz box with 500 MB RAM. The backend ran on an AMD
Athlon MP Processor 1800+ box with 2GB RAM. Both
machines ran Windows 2000 and were connected by LAN.

7.2 Consistency Guard Overhead

We made the design choice to only support certain inexpen-
sive types of run-time consistency guard. A natural question
is: what is the overhead of the consistency guards? Further-
more, how expensive are more complicated guards?

We experimentally evaluate the cost of a spectrum of
guards by means of emulation. Given a query Q, we gener-
ate another query Q’ that includes a consistency guard for Q,
and use the execution time difference between Q’ and Q to
approximate the overhead of the consistency guard. For each
query, depending on the result of the consistency guard, it
can be executed either locally or at the backend. We meas-
ure the overhead for both scenarios.

Figure 6.1: SwitchUnion with a C&C guard

Figure 7.2: Generating consistency guard

Settings: CREATE TABLE C_PCT (ckey int PRIMARY, rid int)
 CREATE TABLE C_CsCT(nkey int PRIMARY, rid int)
 CREATE TABLE O_PCT (ckey int PRIMARY, rid int)

Qa: SELECT * FROM customer C
 WHERE c_custkey in $custSet
 [CURRENCY BOUND 10 on (C) BY $key]

Qb: SELECT * FROM customer C, orders O
 WHERE c_custkey=o_custkey and c_custkey in $custSet
 [CURRENCY BOUND 10 on (C, O) BY $key]

Qc: SELECT * FROM customer C
 WHERE c_nationkey in $nationSet
 [CURRENCY 10 on (C) BY $key]

Figure 7.1: Settings & Queries used for experiments

A11a, A11b: SELECT 1 WHERE NOT EXISTS (
 SELECT 1 FROM CustCopy
 WHERE c_custkey IN $custSet
 GROUP BY c_nationkey
 HAVING [COUNT(*)>1 AND] c_nationkey NOT IN
 (SELECT nkey FROM C_CsCT))

A12: SELECT 1 WHERE |$nationSet| = (
 SELECT COUNT(*) FROM C_CsCT
 WHERE nkey IN $nationSet)

S11: SELECT 1 WHERE 1 = (
 SELECT COUNT(DISTINCT rid) FROM C_PCT
 WHERE ckey IN $custSet)

S12: SELECT 1 WHERE 1 =
 ALL (SELECT COUNT(DISTINCT rid) FROM C_PCT, CustCopy
 WHERE c_custkey IN $custSet AND ckey=c_custkey
 GROUP BY c_nationkey)

S21: SELECT 1 FROM(
 SELECT COUNT (DISTINCT rid1) AS count1,
 SUM (ABS(rid1-rid2)) AS count2
 FROM (SELECT A.rid AS rid1, B.rid AS rid2)
 FROM C_PCT A, O_PCT B
 WHERE A.ckey IN $custSet AND
 A.ckey = B.ckey)) AS FinalCount
 WHERE count1 = 1 AND count2 = 0)

S22: SELECT 1 WHERE NOT EXISTS (SELECT 1 FROM
 (SELECT c_custkey,c_nationkey,
 A.rid AS rid1, B.rid AS rid2
 FROM C_PCT A, O_PCT B, CustCopy C
 WHERE A.ckey IN $custSet AND
 A.ckey = c_custkey AND c_custkey = B.ckey
) AS FinalCount
 GROUP BY c_nationkey
 HAVING (MIN(rid1) <> MAX(rid1) OR
 MIN(rid2) <> MAX(rid2) OR MIN(rid1) <> MIN(rid2)))

Figure 7.3: A spectrum of consistency guards

466

7.2.1 Single Table Case

We first analyze what type of consistency guard is needed
for Qa when $key differs. The decision making process is
shown in Fig 7.2 and the consistency guards in Fig 7.3.

Condition A: Is each required consistency group equal to
or contained in a presence region?

If Yes, it follows from the Presence Assumption that all
the rows associated with each presence control-key are con-
sistent. No explicit consistency guard is needed. For exam-
ple, for Qa with $key = c_custkey.

Condition B: Is each required consistency group equal to
or contained by a consistency region?

If Yes, we check C, otherwise we check D.
Condition C: Is the consistency guarantee full?
If Yes, then no run-time consistency checking is neces-

sary. Otherwise, we need to probe the consistency control
table with the required key values at runtime. For example,
for Qa with $key = c_nationkey, we have two scenarios:

In the first scenario, we have to first calculate which na-
tions are in the results, and then check if they all appear in
the consistency control table C_CsCT (A11a). A more pre-
cise guard (A11b) only checks nations with more than one
customer, by adding the COUNT(*)>1 condition. Check-
ing like A11a, A11b and A12 is called assured consistency
checking in that it checks if the required consistency groups
are part of the guaranteed cache regions.

In the second scenario, a redundant equality predicate on
c_nationkey is included in the query, allowing us to simply
check if the required nations are in C_CsCT (A12). It elimi-
nates the need to examine the data for consistency checking.

Condition D: Can each required consistency group be
covered by a collection of cache regions.

If Yes, we have the opportunity to do ad-hoc consistency
checking. For Qa with $key = Ø, we check if all the required
customers are in the same ad-hoc cache region (S11). Such
checking (e.g., S11, S12 and S21, S22 from Section 7.1.2) is
called ad-hoc consistency checking.

If $key=c_nationkey and suppose we don’t have
C_CsCT, we need to check each group (S12).

Experiment 1 is designed to measure the overhead of the
simple consistency guards supported in our current frame-
work. We choose to support only run-time consistency
guards that 1) do not require touching the data in a view; 2)

only require probing a single control table. We fixed the
guards and measured the overhead for: Qa and Qb with
$custSet = (1); Qc with $nationSet = (1). The consistency
guard for Qa and Qb is S11 and the one for Qc is A12.

The results are shown in Table 7.1. As expected, in both
the local and remote case, the absolute cost remains roughly
the same, the relative cost decreases as the query execution
time increases. The overhead for remote execution is small
(< 2%). In the local case, the overhead for Qc (returning
~6000 rows) is less than 2%. Although the absolute over-
head for Qa and Qb is small (<0.1ms), since the queries are
inexpensive (returning 1 and 6 rows respectively), the rela-
tive overhead is ~15%.

In experiment 2, we used query Qa with $custSet = (2,
12), which returns 2 rows; and compared the overhead of
different types of consistency guards that involve one con-
trol table. The results are shown in Table 7.2.

For local execution, if the consistency guard has to touch
the data of the view (A11a, A11b and S12), the overhead
surges to ~70% for S12, because we literally execute the
local query twice. A11a and b show the benefit of being
more precise: the “sloppy” guard in A11a incurs 63% over-
head, while the overhead of the more precise guard (A11b)
is only 24%, because it is less likely to touch CustCopy. The
simple guard A12 incurs the smallest overhead (~17%).

7.2.2 Multi-Table Case

Different from Qa, the required consistency group in Qb has
objects from different views. In this case, we first check:

Condition E : Do they have the same consistency root?
If Yes, then the consistency guard generation reduces to

the single table case, because the guaranteed cache regions
are decided by the consistency root. Otherwise, we have to
perform ad-hoc checking involving joins of presence control
tables. There are two cases.

Case 1: $key = Ø. We check if all the required presence
control-keys point to the same cache region (S21).

Case 2: $key = c_nationkey. We first group the required
rows by c_nationkey, and check for each group if 1) all the
customers are from the same region; and 2) all the orders are
from the same region as the customers (S22).

In Experiment 3, we use query Qb with $custSet = (2,
12), which returns 7 rows, and measure the overhead of con-
sistency guards that involve multiple control tables. The
results are shown in Table 7.3. Guards S21 and S22 involve
not only accessing the data, but also performing joins. Such
complicated checking incurs huge overhead in the local exe-
cution case (~150%). Note that if CustCopy and OrderCopy
are consistency-wise correlated, then the overhead (refer to
single-table case) reduces dramatically.

Local Remote Cost
Qa Qb Qc Qa Qb Qc

ms .078 .08 1.17 .01 .19 1.13
% 16.56 14.00 <2 <1 <2 <1

Rows 1 6 5975 1 6 5975

Table 7.1: Simple consistency guard overhead

Local Remote Cost
A11a A11b A12 S11 S12 A11a A12 A12 S11 S12

ms .31 .12 .084 .29 .35 .33 .27 .13 .41 .48
% 62.85 23.77 16.98 58.32 71.41 6.06 4.95 2.33 7.48 8.79

Table 7.2: Single-table case overhead

Local Remote Cost
S21 S22 S21 S22

ms .90 .83 1.00 .98
% 155.83 143.82 24.82 24.36

Table 7.3: Multi-table case overhead

467

8. RELATED WORK
The work in [GLRG04] is the first that addresses C&C
aware database caching with a query centric approach. Re-
laxing data quality is an old concept in replica management,
distributed databases and warehousing and web views. Some
authors take a maintenance-centric approach [ABG88,
GN95, SK97], where queries are not allowed to express
their individual data quality requirements. Others have taken
a query-centric approach [OW00, HSW94, WXCJ98,
OLW01], but they focus on single object granularity and no
consistency guarantee is provided. FAS [RBSS02] enforces
consistency at the level of the complete cache. In concur-
rency control, Epsilon-serializability [PL91] allows higher
degree of concurrency by relaxing data quality.

Caching has been used in many areas. Regarding what to
cache, while some works [DFJ+96, APTP03] support arbi-
trary query results, others are tailored for certain simple
types of queries [KB96, LN01], or even just base tables
[AJL+02, CLL+01, LKM+02]. In the database caching con-
text, good surveys can be found in [DDT+01, Moh01].

The closest works to ours are DBCache [ABK+03] and
Constraint-based Database Caching (CBDC) [HB04]. Simi-
larly to us, they consider full-fledged DBMS caching; and
they define a cache with a set of constraints. However, there
are two fundamental differences. First, they don’t consider
relaxed data quality requirements, nor do they provide cur-
rency guarantees from the DBMS. Our work is more general
in the sense that the cache-key and RCC constraints (an ex-
tension to cache groups in [TT02]) they support can be seen
as a subset of ours. Second, in DBCache, local data avail-
ability checking is done outside of the optimizer, while in
our case, local data checking is integrated into query optimi-
zation, which not only allows finer granularity checking, but
also leaves the optimizer the freedom to choose the best plan
based on cost.

9. CONCLUSIONS
The goal of our work is to build a solid foundation for fine
granularity, C&C-aware adaptive DBMS caching. We for-
mally defined four fundamental cache properties: presence,
consistency, completeness, and currency. We proposed a
cache model in which users can specify a cache schema by
defining a set of local views, together with cache constraints
that specify what properties the cache must guarantee. We
enforced C&C constraints by integrating C&C checking into
query optimization and evaluation.

We envision three lines of future research. First, in our
current cache model, we only support groups defined by
equality conditions. For efficient cache management, we
plan to explore other predicates, e.g., range predicates. Sec-
ond, we plan to investigate C&C-aware cache replacement
and refresh policies that make decisions adaptively, based
on the workload. Third, we want to conduct a holistic system

performance study to evaluate the effectiveness of different
design choices in relaxed C&C database caching. One ex-
ample would be cache management granularity: view-level
(as described in [GLRG04]) vs. group-level cache regions.

10. REFERENCES
[ABG88] R. Alonso, D. Barbará, H. Garcia-Molina, and S. Abad.
Quasi-copies: Efficient Data Sharing For Information Retrieval Systems.
EDBT, 1988.
[ABK+03] M. Altinel et al., C. Bornhövd, S. Krishnamurthy, C.Mohan, H.
Pirahesh, and B. Reinwald. Cache Tables: Paving The Way For An Adap-
tive Database Cache. VLDB, 2003.
[AJL+02] J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, T. Zhong. Web
Caching for Database Applications with Oracle Web Cache. SIGMOD’02.
[APTP03] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A
Dynamic Data Cache for Web Applications. ICDE, 2003.
[CLL+01] K. S. Candan, W. Li, Q. Luo, W. Hsiung, and D. Agrawal.
Enabling Dynamic Content Caching for Database-Driven Web Sites. SIG-
MOD, 2001.
[DDT+01] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, K. Ramam-
ritham, D. Fishman. A Comparative Study of Alternative Middle Tier
Caching Solutions to Support Dynamic Web Content Acceleration. VLDB,
2001.
[DFJ+96] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava and M. Tan,
Semantic Data Caching and Replacement. VLDB, 1996.
[GN95] R. Gallersdörfer and M. Nicola. Improving Performance In Repli-
cated Databases Through Relaxed Coherency. VLDB, 1995.
[GL01] J. Goldstein and P. Larson. Optimizing Queries Using Materialized
Views: A Practical, Scalable Solution. SIGMOD, 2001.
[GLR05] H. Guo, P. Larson, R. Ramakrishnan. Caching with "Good
Enough" currency, consistency, and completeness”. TR1520, University of
Wisconsin, 2005. http://cs.wisc.edu/~guo/publications/TR1450.pdf
[GLRG04] H. Guo, P. Larson, R. Ramakrishnan, J. Goldstein: Relaxed
Currency and Consistency: How to Say "Good Enough" in SQL. SIGMOD,
2004.
[HB04] T. Härder, A. Bühmann. Query Processing in Constraint-Based
Database Caches. Data Engineering Bulletin 27(2), 2004.
[HSW94] Y. Huang, R. Sloan, and O. Wolfson. Divergence Caching in
Client Server Architectures. PDIS, 1994.
[KB96] A. Keller, J. Basu. A Predicate-Based Caching Scheme for Client-
Server Database Architectures. VLDB J. 5(1):35-57, 1996.
[LGZ04] P. Larson, J. Goldstein, and J. Zhou. MTCache: Transparent
Mid-Tier Database Caching In SQL Server. ICDE, 2004.
[LKM+02] Q. Luo, S. Krishnamurthy, C.Mohan, H. Woo, H. Pirahesh, B.
G. Lindsay, J. F. Naughton. Middle-tier database caching for e-Business.
SIGMOD, 2002.
[LN01] Q. Luo and Jeffrey F. Naughton. Form-Based Proxy Caching for
Database-Backed Web Sites”. VLDB 2001.
[Moh01] C. Mohan. Caching Technologies for Web Applications. VLDB,
2001.
[OLW01] C. Olston, B. Loo, and J. Widom. Adaptive Precision Setting for
Cached Approximate Values. SIGMOD, 2001.
[OW00] C. Olston and J. Widom. Offering A Precision-Performance
Tradeoff For Aggregation Queries Over Replicated Data. VLDB, 2000.
[TT02] The TimesTen Team. Mid-tier Caching: The FrontTier Approach.
SIGMOD, 2002.
[PL91] C. Pu and A. Leff. Replica Control In Distributed Systems: An
Asynchronous Approach. SIGMOD, 1991.
[RBSS02] U. Röhm, K. Böhm, H. Schek, and H. Schuldt. FAS - a Fresh-
ness-Sensitive Coordination Middleware for a Cluster of OLAP Compo-
nents. VLDB, 2002.
[SK97] L. Seligman and L. Kerschberg. A Mediator For Approximate
Consistency: Supporting ''Good Enough'' Materialized Views. JIIS, 1997.

[WXCJ98] O.Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving
Objects Databases: Issues And Solutions. SSDBM, 1998.

[ZLG05] J. Zhou, P. Larson, J. Goldstein. Partially Materialized Views.
MSR-TR-2005-77, Microsoft Research, 2005.
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-77.pdf

468

