
MDL Summarization with Holes

Shaofeng Bu

Univ. of British Columbia

sfbu@cs.ubc.ca

Laks V.S. Lakshmanan

Univ. of British Columbia

laks@cs.ubc.ca

Raymond T. Ng

Univ. of British Columbia

rng@cs.ubc.ca

Abstract

Summarization of query results is an impor-
tant problem for many OLAP applications.
The Minimum Description Length principle
has been applied in various studies to pro-
vide summaries. In this paper, we consider a
new approach of applying the MDL principle.
We study the problem of finding summaries of
the form S 	 H for k-d cubes with tree hier-
archies. The S part generalizes the query re-
sults, while the H part describes all the excep-
tions to the generalizations. The optimization
problem is to minimize the combined cardi-
nalities of S and H . We first characterize the
problem by showing that solving the 1-d prob-
lem can be done in time linear to the size of
hierarchy, but solving the 2-d problem is NP-
hard. We then develop three different heuris-
tics, based on a greedy approach, a dynamic
programming approach and a quadratic pro-
gramming approach. We conduct a compre-
hensive experimental evaluation. Both the dy-
namic programming algorithm and the greedy
algorithm can be used for different circum-
stances. Both produce summaries that are
significantly shorter than those generated by
state-of-the-art alternatives.

1 Introduction and Motivation

It is well known that complex aggregate queries in-
volving millions of records are one of the hallmarks
of OLAP-style data analysis applications running on
data warehouses. Phenomenal strides have been made
over the past decade in the development of efficient al-
gorithms for computing the data cubes [4, 17], in ma-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

terialization of the cubes [5], in approximation [16], in
decomposition [9], and in compression [15]. An equally
important topic is the summarization of the query re-
sults. Instead of returning individual tuples satisfy-
ing a specified set of querying conditions, the tuples
are summarized into “rollup regions” using non-leaf
nodes in the hierarchies associated with the dimen-
sions [14, 8]. The Minimum Description Length Prin-
ciple (MDL) [11] is often used to do so.

Figure 1 shows a 2-dimensional data cube over the
dimensions location and clothes. The base table
contains the volume of sales of every type of cloth-
ing item in every location. The figure also shows the
hierarchies. Suppose a user asks the query “which lo-
cations grossed a sales volume of over 100,000 for any
clothing item?” This is an aggregate selection query.
The cells that satisfy this query is marked ©, and
we call them the blue cells. There are 36 blue cells in
this example. The MDL approach exploits rollups and
uses such regions as (SanFrancisco, men′s) to sum-
marize the 4 blue cells it covers. There are 5 other
MDL regions(i.e.,(Summit,men’s),(northwest, formal
wear),(northeast,men’s jeans),(northeast, dress

pants), (northeast,dress shirts)) and 15 single
blue cells left. The MDL summary reduces the origi-
nal length from 36 to 21. Thus, the user gets a more
succinct and intuitive answer.

X

X

to
ps

ja
ck

et
s

w
om

en
’s

 je
an

s

bl
ou

se
s

sk
irt

s

fo
rm

al
 w

ea
r

m
en

’s
 je

an
s

dr
es

s p
an

ts

tie
s

dr
es

s s
hi

rts

New York

San Francisco

no
rth

ea
st

no
rth

w
es

t

lo
ca

tio
n

women’s men’s

Albany

Summit

Boston

Vancouver

clothes

Edmonton

San Jose

Figure 1: Motivation Example

Note that an MDL region consists of blue cells only.
One approach that we have studied in [8] to get ad-
ditional summarization is the Generalized MDL ap-
proach. The idea is that by allowing non-blue cells to
be covered in the regions, the description length can

433

be further reduced. However, non-blue cells represent
impurities. GMDL controls the situation in two ways.
First, there are red cells that cannot be covered by
any region. For our example, any cell with sales below
80,000 may be coloured red. Second, there are white
cells, which are not that different from blue cells, and
can be covered in the regions, but only up to a max-
imum white budget. For example, any cell with sales
between 80,000 and 100,000 may be coloured white. In
Figure 1, red cells are marked X, and white cells are
unmarked. With a white budget of 3 cells, GMDL can
use the region (northeast, men′s). Then the GMDL
summary offers a length of 18, instead of 21.

In this paper, we ask whether there is a more ef-
fective mechanism to control impurities. We explore
whether a better control mechanism is to explicitly
identify the non-blue cells. Specifically, we consider
summaries of the form: S 	 H , where S is the set
of regions covering all the blue cells, and H explicitly
identifies the non-blue cells, also called holes, that are
covered in S. We call this an MDLH summary and its
length is the sum of the cardinalities of S and H . In
stark contrast to GMDL, there is no need to color non-
blue cells as red or white, and there is no white bud-
get to set. There is also no extra post-processing step
to identify which impure white cells are included in a
GMDL summary. MDLH can pick any non-blue cell
but its inclusion in H is counted towards the length.
We believe that the MDLH framework is easier for the
user to relate to. The open question is whether it gives
shorter summaries. For the example in Figure 1, the
optimal MDLH summary includes:

• 5 regions: (location, formal wear), (San
Francisco, clothes), (northwest, jackets),
(New York, clothes), and (northeast, men’s),
all of which are marked in the figure; and

• 5 holes: (New York, ties), (New York, formal

wear), (San Francisco, jackets), (Boston,
ties), and (Albany, ties).

The total length of the MDLH summary is 10. Note
that in some applications where approximate query
answering is acceptable, we envisage that the user may
be satisfied seeing the S part (i.e., only 5 regions in
our example), and the H part is shown only in “drill-
down” mode.

In this paper, we study the problem of finding opti-
mal MDLH summaries for aggregate selection queries
on k-d data cubes, where the dimensions have tree
hierarchies defined on them. We make the following
contributions.

• We characterize the hardness of finding optimal
MDLH summaries. The first positive, but unsur-
prising, result is that for a 1-d data cube, the
optimal MDLH summary can be found in time
linear in the size of the hierarchy. However, the
situation quickly deteriorates. We show that even

for 2-d and 2-level hierarchies, finding the optimal
MDLH summary is NP-hard (Section 2).

• We develop three heuristic algorithms based on
greedy, dynamic programming, and quadratic
programming approaches. The algorithmic devel-
opment is non-trivial and we illustrate how they
work with examples (Section 3).

• We ran a comprehensive set of experiments on
the TPC-H benchmark data set to measure: (i)
the added value of considering MDLH for summa-
rization; and (ii) the effectiveness of the proposed
heuristics, with respect to summary sizes and run-
times. We show that MDLH is a very promising
approach (Section 4).

• To further reduce the length of an MDLH sum-
mary, we apply the MDLH algorithms virtually
unchanged on the H part. That is, we now de-
scribe H as SH	HH . The final summary is, thus,
of the form: S 	 SH + HH (Section 5).

1.1 Related Work

In a series of papers [12, 13, 14], Sarawagi et al. study
the problem of automating data explorations around
specific tuples of interest to the user. In [14], they con-
sider the problem of finding maximal consistent gener-
alizations of “interesting” tuples. The summary per-
mits exceptions just like MDLH. Their framework re-
quires the specification of an upper bound on the num-
ber of exceptions, and an error function that charges
for the inclusion of “wrong” tuples and the exclusion
of other “right” tuples in the generalization. In their
generalization step, they exploit Apriori style pruning,
since a tuple can be generalized along a set of dimen-
sions only if it can be generalized along all subsets
of dimensions. This property does not hold when we
want to optimize description length. Indeed, we can
get global optimality without the sub-regions satisfy-
ing local optimality.

In [10], Mendelzon and Pu consider MDL descrip-
tions for subsets of structured sets. They show that
for k-d hierarchies, the problem is NP-hard. One simi-
larity between our framework and theirs is that excep-
tions are allowed. However, their framework is more
expressive (hence, an NP-hardness result is less sur-
prising) in that they allow Cartesian products to be
formed. For example, in a 2-d cube, (a + b) × w is
a valid expression to cover two cells (a, w) and (b, w),
where a, b are leaves in the first hierarchy, and w is a
leaf in the second. Thus, their framework is not purely
hierarchical because (a+b) may not correspond to any
non-leaf node in the hierarchy. Furthermore, algorith-
mic development is not the focus of their work.

In [8], we study GMDL summarization. A major
part of that study concerns the spatial case when there
is no hierarchy to restrict the formation of regions. For
the hierarchical case, the MDL-Tree and GMDL-Tree

434

algorithms are proposed. These two algorithms are
included in our experimental evaluation in Section 4,
which shows that MDLH produces significantly shorter
summaries. Description length aside, the MDLH re-
gion finding problem studied here is novel. Technically,
characterizing the MDLH problem is challenging; and
algorithmically, the MDLH heuristics are very differ-
ent from the existing algorithms. Last but not least,
the MDLH approach offers a summarization frame-
work easier for the user to understand.

2 Characterizing the Problem

2.1 Problem Definition

Let there be k categorical dimensions with each dimen-
sion consisting of a finite number of members associ-
ated with a hierarchy. In this paper, we restrict our
attention to tree hierarchies only. For the most part,
we assume that all the leaf nodes appear in the same
level. This assumption is satisfied with many real life
examples we encounter, and is not technically impor-
tant; it just serves to simplify the discussion whenever
possible. However, in Section 5, we explicitly consider
situations not meeting this assumption.

Let the k hierarchies be denoted as T1, . . . , Tk. A
cell is a tuple (c1, . . . , ck), where ci is a leaf node in
hierarchy Ti. A region is a tuple (x1, . . . , xk), where
xi is a leaf node or an internal node in hierarchy Ti.
Region (x1, . . . , xk) is said to cover cell (c1, . . . , ck), if
ci is a (not necessarily proper) descendant of xi, for
all 1 ≤ i ≤ k.

Given a collection D of blue cells (i.e., cells of inter-
est), an MDL summary or covering is a set of regions
that cover all the blue cells, and that each region cov-
ers blue cells only. An MDLH summary or covering
(“H” for “Holes”) is of the form: S 	 H , where:

• S is a set of regions covering all the blue cells;

• H is a set of non-blue cells (i.e., the holes); and

• a cell c is in H iff there exists a region x in S such
that x covers c and c is non-blue.

Thus, an MDLH covering with an empty H part is an
MDL covering. The description length of an MDLH
summary is the sum of cardinalities of S and H , i.e.,
|S|+ |H |. The MDLH region finding problem is to find
an MDLH covering S 	 H of the smallest description
length. The decision problem is whether there is an
MDLH covering of length ≤ K, K > 0.

2.2 Warming Up: Solving the 1-d Problem

Let us introduce the notion of benefit. For a given set
D of blue cells to be covered, let S 	 H be an MDLH
summary of D. Then the benefit of the summary is:

Ben(S 	 H) = |D| − (|S| + |H |).

In other words, given a fixed set D of blue cells,
minimizing the length of S 	 H is equivalent to max-
imizing the benefit of S 	 H . We can specialize the

a b c d e f g h i j k l m n o p q

t

r

s u v

x

z

w

y

Figure 2: An Example 1-d Problem

above definition to determine the benefit of a single re-
gion. Given a k-d region x = (x1, . . . , xk), let Cell(x)
denote the set of all cells that it covers. Moreover, let
BlueCell(x) and NonBlueCell(x) denote the sets of
blue cells and non-blue cells in Cell(x) respectively.
Then the benefit of x is:

Ben(x) = |BlueCell(x)| − (|NonBlueCell(x)| + 1) (1)

Let us use the 1-d example shown in Figure 2 to
illustrate. It is a 4-level hierarchy counting both the
root and the leaves. Consider internal node u. Ben(u)
= 3 - (1+1) = 1. This means that between the two
options of {g, h, i}, and ({u} 	 {j}), the latter has a
net reduction in length of 1.

Notice that Equation (1) extends to the boundary
case when x itself consists of a single cell. If x is a single
blue cell, then Ben(x) = 0; otherwise, Ben(x) = −2.
The following lemma is handy for evaluating Ben(x)
inductively and is used in the ensuing analysis exten-
sively. The lemma is straightforward.
Lemma 2.1 Let x be a k-d region x = (x1, . . . , xk),
such that there is an xi which is an internal node in
hierarchy Ti. Let Chd(xi) denote the child nodes of xi.
Then: Ben(x) = |Chd(xi)| − 1+ Σxij∈Chd(xi)Ben(x′),

where x′ = (x1, . . . , xi−1, xij , xi+1, . . . , xk).

To illustrate the lemma, let us consider internal node
x in Figure 2. A direct application of Equation (1)
gives: Ben(x) = 7 − (3 + 1) = 3. However, applying
the above lemma indicates that Ben(x) = 3 − 1 +
Ben(s) + Ben(t) + Ben(u). A further examination
reveals that Ben(s) = 1, Ben(t) = −1, and Ben(u) =
1. Thus, Ben(x) = 3 − 1 + 1 − 1 + 1 = 3. Notice that
even though Ben(t) is negative, the parent of t has a
positive benefit. This suggests that in the worst case,
every node in the hierarchy may need to be examined.
In terms of extracting the optimal covering, node x is
chosen (i.e., {x}	{d, f, j}), because there is a net gain
in benefits from its children. In contrast, node y is not
selected and the optimal descriptions of its children
are used instead. That is, for child v, the covering is
{v} 	 {n}, and for child w, the covering is {o}. Thus,
the final optimal covering is {x, v, o} 	 {d, f, j, n}.

The 1-d situation is not of practical OLAP value;
the discussion here only serves to introduce key aspects
of the MDLH problem. We omit the details of an
algorithm for finding optimal MDLH covering for the
1-d case; see [3] for details.
Lemma 2.2 The 1-d MDLH region finding problem
can be solved in O(|h|) time, where h is the number of
nodes in the hierarchy.

435

2.3 Understanding the Hardness of the 2-d

Problem

The tractability of the MDLH region finding problem
deteriorates rapidly from 1-d to 2-d. Let us consider
the following example. Figure 3 shows a 7 × 7 2-d,
2-level cube. There are 28 blue cells. In this simple
example, the optimal MDL covering merely enumer-
ates all the 28 blue cells.

g

a

b

c

d

e

f

i

1 2 3 4 5 6 7

8

Figure 3: An Example 2-d Problem

Applying the earlier definition of computing bene-
fits for regions, the following table shows the benefits
for all the rows and columns.

rows or columns benefits

(f,8),(g,8) 2
(c,8),(d,8),(e,8) 0

(a,8),(b,8) -2
(i,1) 2

(i,2),(i,3),(i,4),(i,6),(i,7) 0
(i,5) -2

If we are to apply a greedy strategy based on the ta-
bles above, we would pick (f, 8), (g, 8) and (i, 1). The
rest would be the individual cells. The part of the
covering corresponding to (f, 8) would be {(f, 8)}	
{(f, 5), (f, 7)}, for a length of 3 and a benefit of 2.
Similarly, the length of the covering corresponding to
(g, 8) and (i, 1) is also 3. Thus, the greedy approach
would generate an MDLH covering of length 24, yield-
ing a benefit of 4 over listing all the blue cells.

Obviously, treating columns and rows separately
causes double counting. For example, (i, 1) intersects
with both (f, 8) and (g, 8). The benefits of the inter-
sected cells (f, 1) and (g, 1) are doubly counted. Then
the question is: if we were more careful with count-
ing benefits, could we fix the greedy approach to give
the optimal solution? For example, if we have picked
(f, 8), we may need to re-calculate the benefit of (i, 1).

Unfortunately, re-calculation of benefits does not
solve the problem. Let us examine the optimal solu-
tion of the example: {(c, 8), (d, 8), (e, 8), (i, 2), (i, 3), (i, 4)

(f, 1), (g, 1), (f, 6), (g, 7)}	 {(c, 2), (c, 3), (c, 4), (d, 2), (d, 3),

(d, 4), (e, 2), (e, 3), (e, 4)}. That is, the optimal MDLH
covering is based on picking the rows of c, d, e and the
columns of 2, 3, 4. The odd thing is that none of (i, 1),
(f, 8) and (g, 8) is part of the optimal covering. In con-
trast, even though rows (c, 8), (d, 8), (e, 8) and columns
(i, 2), (i, 3), (i, 4) do not have positive benefits, we can
get more benefits by selecting all of them as a group.

In the 1-d problem, the computation of the optimal
MDLH covering is local in the sense that whether an
internal node is selected is based on the benefits of

its parent, itself and its children. In the 2-d problem,
rows and columns interact in complex ways, such as
the rows of c, d, e and the columns of 2, 3, 4 discussed
above. Thus, the tractability worsens in a hurry.

2.4 Proving NP-hardness

In the remainder of this section, we show that the
MDLH region finding problem is NP-hard even for
two dimensions/hierarchies and each hierarchy only
has two levels. We show a proof outline in two steps.
First, we show that it is NP-hard to find a maximum
induced subgraph in a complete edge-weighted (CEW)
bipartite graph, which has 2-value weights on edges.
Then we show how the CEW problem can be reduced
to the MDLH region finding problem.

A complete edge-weighted (CEW) bipartite graph
with 2-value weights is of the form Ge = (V, E), V =
V1 ∪ V2. For any vi ∈ V1, vj ∈ V2, the edge e = (vi, vj)
is in E. Furthermore, the weights on edges must be
one of two possible values, i.e., wt(e) ∈ {w1, w2}, and
at least one of w1, w2 is negative. See Figure 4(a) for
an example.

For any subgraph G′
e = (V ′, E′) in Ge induced by

V ′ ⊆ V , the weight of G′
e is defined as wt(G′

e) =∑
e∈E′ wt(e). The maximum induced subgraph prob-

lem in CEW bipartite graph is to find a subgraph G′
e =

(V ′, E′) induced by V ′ ⊆ V such that (wt(G′
e) + |V ′|)

is maximized. One can regard the graph also as node
weighted with each node having unit weight, so we just
compute the weight of the whole graph (or subgraph)
including both node weights and edge weights.

The proof of the following lemma is similar to the
one used in [6] for showing that the decision problem of
maximum edge-weighted biclique in a bipartite graph
is NP-complete. See [3] for details.

Lemma 2.3 The following decision problem associ-
ated with an induced subgraph in a CEW bipartite
graph is NP-complete: Does Ge contain an induced
subgraph G′

e = (V ′, E′) such that |V ′|+wt(G′
e) ≥ K?

To show that the decision problem associated with
the MDLH region finding problem is NP-complete, we
exhibit a reduction to the maximum induced graph
problem in CEW bipartite graph. While we suppress
the technical details of the proof, we show an example
of how to transform a given CEW bipartite graph into
a corresponding 2-d MDLH region finding problem.

Figure 4 shows a CEW bipartite graph G = (V, E).
Note that |V | = 9 and wt(G) = −4. Suppose that
K = 9, i.e., we want to find an induced subgraph
G′ = (V ′, E′) such that |V ′| + wt(G′) ≥ 9.

We can construct a 2-d, 2-level MDLH region find-
ing problem as in Figure 4. The cells marked by ’©’
are blue cells, and correspond to the edges with weight
−1 in graph G. The unmarked data cells are non-
blue cells and correspond to the edges with weight 1
in graph G. For the given induced subgraph decision

436

(a)CEW Bipartite Graph

1 2 3 4

1

1

1

−1

−1

−1

−1

−1−1

Weights on Edges

5
1 −1 1 −1 −1

1 −1

1 1

−1 −1

a

b

c

d

1

2

3

4

5

(b)2−d 2−level Data Cube

21 3 4 5

6

a
b
c
d

a

e

d
c
b

Figure 4: Example of Reduction

problem with K = 9, the corresponding MDLH de-
cision problem is with K ′ = −(|V | + wt(G)) + K =
−(9 − 4) + 9 = 4, i.e, we want to find whether there
is an MDLH covering with a benefit equal to 4 with
respect to enumerating all the individual cells.

Consider {(a, 6), (d, 6), (e, 1), (e, 3), (b, 5)}	 {(a, 1),
(a, 3), (d, 3)}. This covering is of length 8, representing
a net gain/benefit of 4. Essentially, the covering takes
the a, d rows and the 1, 3 columns. This covering in
turn gives the induced subgraph G′ = (V ′, E′) such
that V ′ = {b, c, 2, 4, 5}, induced by the complement
of the chosen rows/columns. As shown in the weight
matrix in Figure 4(a), the weight of G′ is wt(G′) = 5
- 1 = 4. In other words, the quantity |V ′| + wt(G′) is
equal to 5 + 4 = 9.
Theorem 2.1 The following decision problem associ-
ated with the MDLH region finding problem is NP-
complete. Given a 2-d, 2-level data cube with blue
cells, and an integer M , is there an MDLH covering
with description length ≤ M?

A proof of the above theorem can be found in [3].
The theorem says that even for a 2-d, 2-level data cube,
the MDLH region finding problem is already NP-hard.

3 Heuristic Algorithms

In this section, we develop heuristic algorithms for the
MDLH region finding problem. A greedy approach
is a very common strategy for heuristically solving
NP-hard problems; so we begin with a greedy algo-
rithm. Then we develop two more heuristics based
on a dynamic programming approach and a quadratic
programming approach. Experimental results will be
presented in the Section 4 comparing these heuristics.

3.1 MDLH-Greedy: a Greedy Approach

Recall the greedy approach discussed in Section 2.3.
The idea is to order regions in descending order of
benefits. Each time, the region with the most benefit
is selected till all the remaining regions have negative
benefits. A skeleton of this heuristic is shown in Fig-
ure 5.

Figure 6 gives a 2-d problem that we use as a run-
ning example. In step 2, all the parent regions are
generated, i.e., regions with one parent node from one
hierarchy but all the other nodes are leaves in the re-
maining hierarchies (e.g., (e, 1), (a, 10), but not (e, 10)
and (12, a)). The table below sorts the regions in de-
scending order of benefits and ascending order of the
number of holes.

Algorithm MDLH-Greedy
Input: a k-d data cube and the set of blue cells D
Output: an MDLH description for D

1. /* H and H′ are sets of holes. S	H is a description for D.
Each time we select a region x, S′ contains the blue cells in
S but not in x. H′ contains holes in H and x. S′ 	 H′ is
the new description by selecting x.*/
Initialize S = D and H = S′ = H′ = ∅.

2. Compute the benefit of each parent region and sort those re-
gions with non-negative benefits to form a sorted list in de-
scending order of benefits but in ascending order of the number
of holes.

3. Obtain the next best unprocessed region x from the sorted list.
Set S′ = S − BlueCell(x), and H′ = H + NonBlueCell(x).

4. If (|S′| + |H′| < |S| + |H|) then { S = S′ and H = H′ }.

5. If there is any unprocessed region in the sorted list, then go
to step 3.

6. Mark each cell in H as blue. Apply MDL-Tree algorithm on
all the blue cells and the description generated is stored in S.

7. Return S 	 H as the MDLH description for D.

Figure 5: A Skeleton Algorithm for MDLH-Greedy

b

c

d

a

e

61 2 3 4 5 7 8 9

10 11

12

Figure 6: An Example 2-d MDLH Problem

regions benefits holes
(e,6) 3 -
(d,10) 2 (d,5)
(e,1) 1 (a,1)
(e,2) 1 (b,2)
(e,3) 1 (b,3)
(e,8) 1 (a,8)
(a,11) 1 (a,8)

Within the first two iterations of the loop
between steps 3 and 5, the regions (e, 6) and
(d, 10) are selected. At this point, the state is: S =
{(e, 6), (d, 10), (a, 2), (a, 3), (b, 1), (b, 5), (c, 1), (c, 2), (c, 3),
(a, 7), (a, 9), (b, 8), (c, 8), (d, 8)}. And, H = {(d, 5)}, as
(d, 5) was added in step 3 when (d, 10) was selected.

Breaking ties, let us say that the next best region
is (e, 1). Then the addition of (e, 1) will cause (b, 1)
and (c, 1) to be deleted from the above S. Note that
(d, 1) has already been deleted from S when (d, 10) was
added. In essence, the benefit of (e, 1) is now updated
to 2 - 2 = 0. This is an important point because in
step 4, when a selection has been accepted, there is no
explicit re-computation of benefits.1 Instead, step 3
implements the benefit adjustment only when the re-
gion has been selected. To return to (e, 1), this change
brings no benefit and is not accepted in step 4.

The situation is similar for (e, 2) and (e, 3). Eventu-
ally, (e, 8) and (a, 11) are selected. The final output is:
{(e, 6), (d, 10), (a, 11), (e, 8), (a, 2), (a, 3), (b, 1), (b, 5),

1It is straightforward to adapt the algorithm so it does these
updates. In our preliminary experimentation, we implemented
a variant of the greedy heuristic with an explicit benefit update
step. We found that this variant offered little improvement over
the version of MDLH-Greedy presented here, but its runtime
was significantly higher.

437

(c, 1), (c, 2), (c, 3)} 	{(d, 5), (a, 8)}. The length is 13.
Note that the outcome is different when (a, 11) is

processed before (e, 8). The output of MDLH-Greedy
in general depends on the tie-breaking policy. Also
note that we restrict candidate regions to parents of
leaves. Clearly, we can also extend the candidates to
grandparents (e.g., (a, 12)), and parents with parents
(e.g. (e, 10)), and so on. The upside is that poten-
tially higher benefits can be obtained. The downside
is that we have more regions to process. Furthermore,
the need for (a, 12) may already be met by the child
regions of (a, 10) and (a, 11). The only problem is
that if both (a, 10) and (a, 11) are included in S, then
it would be beneficial to generalize to (a, 12). Step 6
is to cover this situation by applying the MDL-Tree
algorithm presented in [8] that gives optimal MDL re-
gions (i.e., regions covering only blue cells) with tree
hierarchies.

In terms of complexity, let n be the total number
of cells. Then there are at most kn parent regions.
The sorting in step 2 requires O(kn log kn) time. The
loop between step 3 and 5 takes O(kn) time in total.
Finally, as given in [8], the complexity for generating
optimal MDL regions is O(kt), where t is the maxi-
mum number of nodes in one of the k hierarchies. As
n is expected to be much larger than t, the overall
complexity of MDLH-Greedy is O(kn log kn).

3.2 MDLH-Dynamic: a Dynamic Program-

ming Approach

Dynamic programming is also a widely used method
to approximately solve NP-hard problems [1]. The
core of the dynamic programming approach is that for
each region, we consider the optimal solutions of the
child sub-problems, and piece together these solutions
to form a candidate solution for the original region.
Specifically, given a region x = (x1, . . . , xk), if xi is
a non-leaf node in hierarchy Ti, then one candidate
solution for x is:

MDLH(x, i) = ∪xij∈Chd(xi)MDLH(

(x1, . . . , xi−1, xij , xi+1, . . . , xk)) (2)

This is called the “local” solution from hierarchy Ti.
In general, there may be as many as k local solutions.
Furthermore, there is also a “global” solution, which is
simply taking x and enumerating all the holes covered
by x:

MDLH(x, global) = {x} 	 NonBlueCell(x) (3)

Thus, among the candidate solutions:
MDLH(x, global), MDLH(x, 1), . . . , MDLH(x, k),
the one with the minimum length is chosen. A
skeleton of this algorithm is shown in Figure 7.

Let us continue with the 2-d problem in Fig-
ure 6. We build two matrices: Len for measuring the
length of the partial description, and Sel for recording
whether a global solution is chosen or which of the lo-
cal solutions is picked. In the Len matrix, the entries

Algorithm MDLH-Dynamic
Input: a k-d data cube and the set of blue cells D
Output: an MDLH description for D

1. Allocate space for a k-d matrix Len of size t1× . . .× tk, where
ti is the number of nodes in hierarchy Ti. Label the nodes
in each hierarchy Ti by post-order. Allocate space for a k-d
matrix Sel in the same way.

2. For any data cell x = (x1, x2, . . . , xk), if x is a blue cell, then
set Len(x1, x2, . . . , xk) = 1, otherwise Len(x1, x2, . . . , xk) =
0. The corresponding entry in Sel is left empty.

3. For any data region x = (x1, x2, . . . , xk):

(a) For any 1 ≤ i ≤ k, if xi is a non-leaf, apply Equa-
tion 2 to construct a local solution. The length of the
local solution can be obtained by summing up the cor-
responding entries in the Len matrix.

(b) Construct a global solution based on Equation 3.
(c) Pick the minimum length description from the

above candidates and enter the minimum length as
Len(x1, . . . , xk).

(d) If the global solution gives the minimum length, then
set Sel(x1, . . . , xk) as g. Otherwise, if the minimum
length comes from the local solution corresponding to
hierarchy Ti, set Sel(x1, . . . , xk) as ti.

Figure 7: A Skeleton Algorithm for MDLH-Dynamic

correspond to the length of the solution that is picked
at every stage, while the Sel matrix keeps track of the
solution picked. An entry ‘g’ means a global solution is
picked while ‘ti’ means a local solution, corresponding
to hierarchy Ti (i = 1, 2) is picked.

Len 1 2 3 4 5 10 6 7 8 9 11 12

a 0 1 1 0 0 2 1 1 0 1 2 4
b 1 0 0 0 1 2 1 0 1 0 2 4
c 1 1 1 0 0 3 1 0 1 0 2 5
d 1 1 1 1 0 2 1 0 1 0 2 4

e 2 2 2 1 1 8 1 1 2 1 5 13

Sel 1 2 3 4 5 10 6 7 8 9 11 12

a t2 g t2
b t2 t2 t2
c t2 t2 t2
d g t2 t2

e g g g t1 t1 t2 g t1 g t1 t2 t2

We enumerate the nodes in each hierarchy by post-
order. The first hierarchy enumerates the nodes in the
order a, b, c, d, e, and the second in the order of 1, 2,
3, 4, 5, 10, etc. In step 2 of the algorithm, all data
cells are populated with 1 or 0 depending on whether
they are blue or not. This takes care of the entries for
a, b, c, d and 1, . . . , 5, 6, . . . , 9.

Next we consider the parent regions. For region
(a, 10), in step 3, the local solution of {(a, 2), (a, 3)}
is compared with the global solution of {(a, 10)} 	
{(a, 1), (a, 4), (a, 5)}. There is only one local solution
because node a is a leaf. In this case, the local so-
lution dominates. Thus, the entry for (a, 10) in the
Len matrix is 2, and the entry in the Sel matrix is t2,
indicating that the optimal solution comes from the
second hierarchy (i.e., the children of node 10).

The situation is similar for (b, 10) and (c, 10), but
(d, 10) is different. In this case, the local solution
is {(d, 1), . . . , (d, 4)}, whereas the global solution is
{(d, 10)} 	 {(d, 5)}. The latter dominates, giving rise
to the entry g in the Sel matrix for (d, 10).

438

e
b

c

d

a

61 2 3 4 5 7 8 9

10 11

12

e
b

c

d

a

61 2 3 4 5 7 8 9

10 11

12

e
b

c

d

a

61 2 3 4 5 7 8 9

10 11

12

(a)MDLH−Greedy (b)MDLH−Dynamic (c)Optimal Solution

Figure 8: Solutions based on the Three Approaches

Notice that when a local solution is picked, a row
(or a column) sum gives the corresponding entry in the
Len matrix (e.g., Len(c, 10) = Len(c, 1) + Len(c, 2) +
Len(c, 3)). However, when a global solution is se-
lected, the corresponding length is less than the row
sum (e.g., Len(d, 10)). The situation is similar for
(e, 1), (e, 2), (e, 3), all with the global solutions dom-
inating.

Lastly, let us consider (e, 10). There are two local
solutions: one by row and one by column. The for-
mer gives a length of 8 (i.e., row sum in the Len sub-
matrix) and the latter gives a length of 9 (i.e., column
sum). There is also the global solution with length 10.
Thus, for the Sel matrix, the entry for (e, 10) is t2,
indicating that the solution comes from the children
of node 10. Similarly, other entries are filled out.

The solution can be reconstructed from the Sel ma-
trix. To see this, let us begin with (e, 12) whose entry
is t2, meaning that node 12 should be expanded to its
children nodes 10 and 11. For both (e, 10) and (e, 11),
their entries in Sel indicate expansion on the second
hierarchy again. Thus, for (e, 10), the expansion points
to (e, 1), . . . , (e, 5). The entry g for Sel(e, 1) indicates
that Equation 3 applies, i.e., MDLH((e, 1), global) =
{(e, 1)} 	 {(a, 1)}. Constructed in similar fashion,
the final solution is: {(e, 1), (e, 2), (e, 3), (d, 4), (b, 5),
(e, 6), (a, 7), (e, 8), (a, 9)}	 {(a, 1), (b, 2), (b, 3), (a, 8)}.
The length is 13 which happens to be equal to
the length of the solution obtained from greedy, al-
though the solutions are different as shown in Fig-
ure 8. With a length of 12, the optimal solution
differs from the dynamic programming solution for
(e, 11). Specifically, for (e, 11), the optimal solution
is: {(e, 6), (e, 8), (a, 11)} 	 {(a, 8)}. Notice that the
optimal description calls for the combination of a row
(a, 11) and columns (e, 6), (e, 8), which is not possible
under Equation 2 and Equation 3. This is the reason
why the dynamic programming approach may not be
optimal.

Algorithm MDLH-Dynamic describes how the Sel
matrix is constructed, but does not indicate how the
solution can be extracted from the matrix. As shown
from the above example, the extraction is standard;
for space reasons, we omit the details.

In terms of complexity, let t be the maximum num-
ber of nodes in one of the k hierarchies. Then the
matrices has tk entries. For step 3, there may be k lo-
cal solutions, each of which corresponds to f children,
where f is the maximum fanout. Hence, the complex-

ity of MDLH-Dynamic is O(k f tk).

3.3 MDLH-Quad: a Quadratic Programming

Approach

Recall from the previous example that the dynamic
programming solution for region (e, 11) is not optimal
because it is not capable of picking a combination of
rows and columns (i.e., (e, 6), (e, 8) and (a, 11)). For
this particular example, quadratic programming gets
the optimal solution; this motivates the development
of MDLH-Quad, a quadratic programming heuristic.

A quadratic programming problem is of the form [2]:

Minimize f(y) = 1
2yT Qy + cy

s.t. Ay ≥ b, By = e, lb ≤ y ≤ ub

where y is a vector of real variables, and Q, A, B are
matrices. It has been proved that a quadratic function
f(y) is convex iff Q is positive semi-definite [2]. In
the ensuing discussion, we describe how to set up a
quadratic programming problem to solve the MDLH
region finding problem. To make the discussion easier
to follow, we use the 2-d problem to illustrate.

To solve a given 2-d problem, let y denote a vector
of variables, one for each row (ui) and one for each
column (vj), such that 0 ≤ ui, vj ≤ 1. Let Ri denotes
the i-th row and Cj denotes the j-th column. Then
the term ui ∗ Ben(Ri) gives the benefit of picking the
i-th row when ui is 1. When ui = 0, there is no benefit
contribution from this row. The situation is similar for
the columns. One complication is that if both the i-th
row and the j-th column are selected, we have double-
counted the cell (i, j). In particular, if (i, j) is a blue
cell, we have double-counted its positive contribution.
If (i, j) is a non-blue cell, we have double-counted its
negative contribution. Thus, the benefit function can
be formalized as follows:

TotBen =
∑

ui × Ben(Ri) +
∑

vj × Ben(Cj)

+
∑

non−blue dij

ui × vj −
∑

blue dij

ui × vj(4)

Then, the 2-d MDLH region finding problem can be
defined as:

Minimize f = −TotBen s.t. 0 ≤ ui, vj ≤ 1

The negative sign is to reflect that the intention of
maximizing total benefits. Note that ui, vj ’s are not in-
teger variables, as that would make computation hard.
Instead, they are treated as real variables. If the op-
timal quadratic programming solution is not integral,
then rounding is used to give an approximate solution.

Figure 9 shows a simple 2-d example. The benefits
of rows and columns are shown below:

regions variables benefits
(a, 5) u1 -1
(b, 5) u2 -1
(c, 5) u3 1
(d, 1) v1 2
(d, 2) v2 -2
(d, 3) v3 0
(d, 4) v4 -2

439

c

d

5

1 2 3 4
a

b

Figure 9: Example for Quadratic Programming

Algorithm MDLH-Quad
Input: a k-d data cube and the set of blue cells D
Output: an MDLH description for D

1. Follow steps 1 and 2 of Algorithm MDLH-Dynamic.

2. For any data region x = (x1, x2, . . . , xk):

(a) If there are exactly two non-leaf nodes xi, xj (1 ≤ i, j ≤
k),

i. Set up the 2-d quadratic programming objective
function as in Equation 4.

ii. Solve the quadratic programming problem.

iii. The solution is stored externally. Set
Sel(x1, . . . , xk) to point to this solution.

(b) Otherwise, just follow step 3 of Algorithm MDLH-
Dynamic.

Figure 10: A Skeleton Algorithm for MDLH-Quad

Then the objective function is f = −TotBen, where
TotBen is: (−u1−u2+u3)+(2v1−2v2−2v4)− u1v1+
u1v2−u1v3 +u1v4− u2v1 +u2v2−u2v3 +u2v4−u3v1−
u3v2 + u3v3 − u3v4.

The optimal solution here for the quadratic pro-
gramming problem is: u3 = v1 = v3 = 1, with the
remaining variables set to 0. This happens to be
the true optimal optimal solution: {(c, 5), (d, 1), (d, 3)}
	{(c, 3)}. For this example, both MDLH-Greedy and
MDLH-Dynamic compute sub-optimal solutions.

There are two key considerations in applying a
quadratic programming approach. First, the com-
plexity is high [7]. Let there be f1 rows and f2

columns. There is a polynomial time algorithm us-
ing the ellipsoid method and in the worst case per-
forms O((f1+f2)

6) arithmetic operations. Second, the
polynomial time algorithm only guarantees an optimal
solution if the objective function is convex. For our
MDLH region finding problem, however, it is not con-
vex. Thus, a quadratic programming approach is only
a heuristic, and given its expensive nature, it should
be applied cautiously. The compromise we strike is to
apply the quadratic programming approach to regions
(x1, x2, . . . , xk) only if there are exactly two non-leaf
nodes xi, xj . For regions where there are more two
non-leaf nodes, we resort back to dynamic program-
ming. This is summarized in Figure 10 which gives a
skeleton of the algorithm called MDLH-Quad.

The algorithm is identical to MDLH-Dynamic (i.e.,
Figure 7), except in two areas. First, if there are
exactly two non-leaf nodes for the region, then the
MDLH problem is solved as a 2-d quadratic program-
ming problem. In our implementation, we call the
Matlab function quadprog to find a solution. Second,
because this solution can include a combination of rows
and columns, it is not sufficient to store the solution
in the Sel matrix as in Figure 7. Instead, a bit vector
is used to record which rows and columns are selected.
The Sel entry then points to the bit vector.

This concludes our discussion on heuristic algo-
rithms for solving the MDLH region finding problem.
In the next section, we compare these three heuris-
tics empirically, with a specific focus on the tradeoffs
between length and computational efficiency.

4 Experimental Evaluation

4.1 Experimental setup

Dataset: Our experiments are based on the TPC-H
benchmark. We use the TPC-H database generator
to populate the datasets. There are eight tables and
the lineitem table contains 6 million records. From
those tables, we build a default data cube consisting
of 3 dimensions: customers, suppliers and parts.
Each dimension is a 3-level hierarchy with the fanout
of 1-5-5. On the customers dimension, there are 5
geographic regions; and each geographic region

contains 5 countries. The same hierarchy is used
for suppliers. On the parts dimension, there are 5
manufacturers, and each manufacturer produces 5
brands.

Given the fanout of 1-5-5, the total num-
ber of data cells is 25 × 25 × 25 = 15, 625
data cells. Each data cell is of the form:
(customerCountry, supplierCountry, partBrand).
Each data cell records the quantity of partBrand

that customers from customerCountry bought from
supplierCountry. By changing the threshold on
quantity, we generate sets of blue cells of different
cardinalities.

Algorithms: We implemented the three heuris-
tic algorithms MDLH-Greedy, MDLH-Dynamic and
MDLH-Quad, all in C++. To compare with other
alternatives, we use MDL-Tree and GMDL-Tree de-
veloped in [8]. The former produces MDL summaries
containing regions consisting of blue cells only; the lat-
ter generates GMDL summaries which can contain up
to a specified number of white cells. Recall that un-
der the GMDL framework, apart from the blue cells,
there are also white cells and red cells, which must be
excluded in any region.

Metrics: One obvious way to measure the effec-
tiveness of each algorithm is the length of the summary
it produces. For MDLH, the length is |S| + |H |. For
MDL and GMDL, the length is the total number of re-
gions (or cells). In the case of GMDL, the length does
not include the number of white cells. Thus, to some
extent, the GMDL framework has an unfair advantage.
We use the relative quantity called compression gain
ratio, which is the ratio of the number of blue cells to
the length of the MDL, MDLH and GMDL descrip-
tions. All the algorithms here produce a compression
gain ratio ≥ 1. Another way to measure the effective-
ness of the algorithms is the average size of each true
region (i.e., a region consisting of two or more cells).

The key question we would like to answer is whether

440

(a) Three 3-level hierarchies (b) One 4-level and Two 3-level Hierarchies

Figure 11: Compression Ratio: MDLH Against Other Alternatives

MDLH produces any additional compression gain on
top of MDL. The comparison with GMDL is less
straightforward because the GMDL summaries con-
tains non-blue cells, the total number of which is not
included in the length.

The gain in compression must be evaluated simulta-
neously with the time taken to produce the summaries.
We use absolute runtime figures based on a Sun Fire
880, 900MHz UltraSPARC-III machine.

4.2 TPC-H: 3-d, 3-level Cube

Figure 11(a) compares the compression gain ratios of
the various algorithms. The x-axis shows the total
number of blue cells, obtained by varying the thresh-
old of the quantity value. The number varies from
3916 to 11,307, corresponding to 25% and 72% respec-
tively (as there are 15,625 cells in total). Hereafter, we
refer to this percentage as the blue density. The y-axis
shows compression gain.

As expected, the worst performer is MDL. The gaps
between MDL and the MDLH algorithms are distinct.
Furthermore, the gaps widen as the number of blue
cells increases. For GMDL, two curves are included.
One has a white budget of 5% of the number of blue
cells, and the other has 10%. Clearly, the higher the
white budget, the higher the compression gain. Yet,
the more impure the description becomes, as it con-
tains more and more unidentified non-blue cells. In
comparing GMDL with MDLH, we make two observa-
tions:

• Just from Figure 11(a), initially GMDL(10%)
performs better than MDLH-Quad and MDLH-
Dynamic. But as the number of blue cells
increases, the latter two eventually outpace
GMDL(10%).

• For the GMDL algorithms, the white budget is
“free” as the budget is not included in the length
of the description. One way to level the playing

field is to include the white budget in the length,
as if the white cells were identified explicitly as
holes like in MDLH. Take the case with 10,537
blue cells as an example. The compression gain of
GMDL(10%) is around 2, meaning that the length
of the summary it produces is around 10537/2
= 5269. If we add back the number of white
cells, the total length of the GMDL summary can
be viewed as 5269 + (10% * 10537) = 6323.
This corresponds to a compression gain of about
1.67, definitely lower than those produced by the
MDLH algorithms including MDLH-Greedy.

The results for GMDL are based on red cells corre-
sponding to 5% of the number of blue cells. In other
words, if there are 10,537 blue cells, there are about
515 red cells. In practice, the number of red cells can
be higher, in which case the GMDL performance wors-
ens.

Among the MDLH algorithms, the best performer
is MDLH-Quad, with MDLH-Dynamic a close second.
One way to explain the superiority of these two algo-
rithms over MDLH-Greedy is to breakdown the sum-
mary S 	 H . Figure 12 shows the percentages of true
regions (i.e., regions consisting of two or more cells),
holes and single blue cells. Figure 12(a) shows that
as the number of blue cells increases, MDLH-Greedy
finds more and more true regions, with fewer and fewer
single blue cells. It is interesting to see that the per-
centage of holes remains rather steady. In contrast,
for MDLH-Dynamic in Figure 12(b), as the number of
blue cells increases, the percentage of holes grows at
the expense of single blue cells. Furthermore, the per-
centage of true regions grows and then shrinks. From
the point of view of compression gain, this could be
good news. The reason is that a reduction in true
regions may indicate that a grandparent region has
replaced several parent regions in the summary.

To verify this phenomenon, we measure the average

441

(a) MDLH-Greedy (b) MDLH-Dynamic

Figure 12: Percentage Composition of S 	 H

size of a true region, expressed in the number of data
cells it covers. The following table shows the snapshot
when there are 10,537 blue cells (67% density).

MDL GMDL MDLH- MDLH- MDLH-
(10%) Greedy Dynamic Quad

4 3.1 3.8 16.5 9.8

Recall that the fanout of the TPC-H hierarchies is 1-
5-5. Thus, an average size exceeding 5 indicates that
there are definitely some grandparent regions included
in the summary. On this note, both MDLH-Dynamic
and MDLH-Quad fare very well. To relate back to
Figure 12(b), MDLH-Dynamic is getting to the grand-
parent regions by including a fair number of holes.
In other words, MDLH-Dynamic is putting the holes
to good use. Figure 12 does not show the profile for
MDLH-Quad as it is very similar to that of MDLH-
Dynamic.

For some applications where approximate query an-
swering is acceptable, it may be sufficient in many sit-
uations for the user to see just the S part (with the
H part only shown in “drill-down” mode). Take the
case with 10,537 blue cells as an example. From Figure
11(a), the compression gain is about 2, meaning that
the total length of MDLH summary is about 5,269.
Then from Figure 12(b), the number of true regions
is only about 11% of the summary, corresponding to
about 550 regions. There are about double the num-
ber of single cells. Thus, the user may be satisfied
with seeing just the 550 true regions and the 1,100
single cells; the remaining list of holes can be shown
only if needed. This is a significant improvement over
showing the user all the 10,537 blue cells.

4.3 Increasing the Sizes of Hierarchies

The TPC-H cube is small because the hierarchies are
small and short. Thus, in this experiment, we in-
crease the size of the two 3-level hierarchies T1, T2 by
increasing the fanout. Instead of 1-5-5, we augment
the fanout to 1-5-10; for example, there are now 10

countries under each geographic region. Further-
more, we increase the number of levels of the third hi-
erarchy T3 from 3 to 4; for example, there are now 20
models under each brand in the manufacturer hierar-
chy. The fanout of this hierarchy is 1-5-5-20. In all, the
3-d cube grows from 15,625 cells to 1.25 million cells.
Instead of randomly generating quantity values to fill
the cells, we directly generate the blue cells. Specifi-
cally, we fix a clustered region of 10×10×500 = 5×104

cells (i.e., 10 leaves in T1 and T2 and 500 leaves in
T3). Within this clustered region, blue cells are ran-
domly generated. The number varies from 10,000 to
40,000. Thus, the blue density within the clustered
region varies from 20% to 80%.

Figure 11(b) compares the compression gain ratios
of the various algorithms. The x-axis and y-axis are
almost identical to those in Figure 11(a), except that
the range of the y-axis is larger. Compared with
the smaller cube in (a), the cube here has a larger
fanout. In general, a larger fanout allows the par-
ent region to have a higher potential benefit. This
gives more opportunity for MDLH to excel. Conse-
quently, the gaps between MDL, MDLH-Dynamic and
MDLH-Greedy widen significantly. Similarly, the gaps
between GMDL(10%), MDLH-Dynamic and MDLH-
Greedy widen as well. The figure no longer includes
MDLH-Quad because applying it to larger cube takes
much longer.

4.4 Scalability with Dimensions

So far, we have only experimented with 3 dimensions.
In this experiment, we further increase the size of the
cube by adding two more dimensions. Following the
previous experiment, we use four 3-level hierarchies
T1, . . . , T4 with the fanout 1-5-10 and one 4-level hi-
erarchy T5 with the fanout 1-5-5-20. Blue cells are
randomly picked from a clustered region of about 1
million cells (i.e., 10 leaves in T1 to T4 and 100 leaves
in T5). The number of blue cells varies from 200,000
to 800,000, a significant increase in the number from

442

Figure 13: Runtimes on the Three Cubes

the previous cube.
Again, we measure the compression gain ratio of

the various algorithm. The graph turns out to be very
similar to Figure 11(b). Thus, to save space, we do
not include this graph. Instead, we show in Figure 13,
the absolute runtimes of the algorithms on the var-
ious cubes used so far. The blue density is kept at
70%. In fact, for the first two cubes, the runtime is
rather insensitive to the blue density. On first glance,
MDL takes the least time; GMDL and MDLH-Greedy
take roughly double the time MDL takes; and MDLH-
Dynamic may take considerably longer.

However, let us take a closer look at Figure 13 to
evaluate scalability. Recall that the numbers of blue
cells for the 3 cubes at 70% blue density level cor-
respond to about 11,000, 35,000 and 700,000 respec-
tively. Thus, while the runtime of MDLH-Dynamic
appears to grow significantly from the second cube to
the third cube, the proportional growth in runtime rel-
ative to the number of blue cells is in fact sub-linear.
The same is true for MDLH-Greedy.

4.5 Summary: Recommendations

Among the three heuristics, MDLH-Quad, as ex-
pected, generates the shortest summary. However, it
is not scalable and is not recommended for use. The
only reason why we include the algorithm in this paper
is to use it as a yardstick of quality. From this stand-
point, we observe that MDLH-Dynamic comes very
close in quality to MDLH-Quad. In terms of runtime,
MDLH-Dynamic is scalable with respect to the num-
ber of blue cells. Even for 700,000 blue cells, MDLH-
Dynamic offers acceptable performance. But if a user
wants a shorter response time, MDLH-Greedy is rec-
ommended. As shown in Figure 11(b) and Figure 13,
it can keep a fine balance between compression gain
and runtime.

As compared with MDL, it is clear that MDLH-
Dynamic and MDLH-Greedy bring additional com-
pression. As discussed earlier, these two algorithms
offer significant advantages over the GMDL method.
As shown in Figure 11(b), the larger the fanout, the

more opportunities there are for MDLH to operate.
Thus, even for hierarchies with medium fanout, the
MDLH algorithms are the recommended methods.

5 Extension: Summarizing the Holes

5.1 Going One Step Further

Notice from Figure 12(b) that as the blue density be-
comes reasonably high, a large part of the MDLH de-
scription is made up of holes. Recall that in an MDLH
summary S 	 H , H is a set of non-blue cells. Just
as we try to summarize a set D of blue cells with
an MDLH description, we can imagine summarizing
H with an MDLH description. The motivation is the
same, namely to reduce the total length of the descrip-
tion. More formally, we have described D as S 	 H ,
and we now try to describe H as SH 	 HH . To put
the two parts back together, we can then describe D
as S 	 SH + HH . Notice that the ‘+’ sign is to be
interpreted as a set union.

Figure 14 gives an example, which is a slight mod-
ification of the example in Figure 6. Node 10 in
Figure 6 is removed, creating an unbalanced hierar-
chy. For the set of blue cells given in Figure 14, the
MDLH description is {(a, 12), (d, 12), (b, 6), (c, 8)}	
{(a, 6), (a, 8), (a, 9), (d, 6), (d, 7), (d, 8)}. The length
is 10. However, if we apply MDLH to summa-
rize the 6 holes, they can in turn be represented
as {(a, 11), (d, 11)} 	 {(a, 7), (d, 9)}. Thus, the total
length is reduced by 2.

e

a

c

d

b

6 753 8 941 2

12

11

Figure 14: Example of Nested Holes

Figure 15 gives a skeleton of how this can be done.
It amounts to simply instructing the various MDLH
algorithms to summarize a given set of non-blue cells.
No change is needed for any of the algorithms. In
theory, we can repeat the same exercise on HH to try
to summarize some of its cells into regions. We do not
recommend doing so because we feel that multiple-
level of nested negation can be hard for the user to
relate to.

5.2 Experimental Evaluation

Recall that when we first introduce the MDLH region
finding problem, we make the simplifying assumption
that all the leaf nodes appear in the same level. This
assumption of a balanced hierarchy is not necessarily
true for many datasets. In fact, as shown in the previ-
ous example, unbalanced hierarchies can be amenable
to hole summarization.

443

Algorithm SumHoles
Input: a k-d data cube and the set of blue cells D
Output: an MDLH description for D

1. Apply MDLH-Dynamic or MDLH-Greedy on D and get the
output S 	 H.

2. Feed H as input back into MDLH-Dynamic or MDLH-Greedy
to summarize the holes. The output is SH 	 HH .

3. Return S 	 SH + HH as the description for D.

Figure 15: A Skeleton Algo. for Hole Summarization

Here we experiment with unbalanced hierarchies,
modified from the TPC-H setup. For every parent
node x, we change its first leaf child c1 to be an internal
node. For the first two hierarchies T1, T2, which have
the original fanout 1-5-10, we add 5 leaf children to c1.
Thus, there are 70 leaves in each of T1 and T2. For T3,
which has the original fanout 1-5-5-20, we add 10 leaf
children to c1, creating a total of 725 leaves. Therefore
this cube contains 70 × 70 × 725 ≈ 3.5M data cells.
Blue cells are randomly picked from a clustered region
of about 140,000 cells (i.e., 14 leaves in T1, T2 and 725
leaves in T3). The following table shows the size of
the MDLH descriptions generated by MDLH-Dynamic
when the blue density is 70% corresponding to about
100,000 blue cells.

|S| |H| |SH | |HH | Total
Before 100 25365 25465
After 100 7227 8006 15327

Before summarization is applied to the holes, the
compression gain is about 100000/25465 = 4. After
the extra step, the compression gain improves to 6.5.
This shows that summarizing holes can lead to consid-
erable additional gain in compression.

6 Conclusions

In this paper, we study the problem of finding optimal
MDLH summaries of the form S 	 H for k-d cubes
with tree hierarchies. By a slight twist, the summaries
can be further generalized to the form of S	SH +HH .
We show that finding the optimal solution is NP-hard,
even for 2-d, 2-level cubes. We propose three heuris-
tics algorithms to find MDLH regions. Experimen-
tal results show that MDLH-Dynamic gives very high
quality summaries, almost as good as the ones pro-
duced by MDLH-Quad. MDLH-Dynamic is scalable
to higher dimensional and larger problems. However,
if a lighter weight computation is needed for quick ex-
ploration, MDLH-Greedy can run considerably faster
than MDLH-Dynamic, while delivering compact sum-
maries.

The results here confirms the philosophy of sum-
marization with holes. Compared with MDL, MDLH
gives much shorter summaries. Compared with
GMDL, MDLH does not need a white budget and ex-
plicitly identifies all the impure, non-blue cells in the
summary. This makes the MDLH framework simpler
for the user to use. Furthermore, experimental results
confirm that MDLH summaries, even with the num-
ber of holes included, can be significantly shorter than
GMDL summaries.

References

[1] G. Ausiello et al. Complexity and Approxima-
tions: Combinatorial Optimization Problems
and Their Approximability Properties. Springer
1999.

[2] J. Boot. Quadratic Programming: Algorithms,
Anomalies, Applications. North-Holland Pub-
lishing Company, 1964.

[3] S. Bu. The Summarization of Hierarchical Data
with Exceptions. Master Thesis, UBC, 2004.

[4] J. Gray et al. Data Cube: A Relational Aggre-
gation Operator Generalizing Group-By, Cross-
Tab, and Sub-Totals. Journal of Data Mining
and Knowledge Discovery, 1, 1, pp 29-53, 1997.

[5] V. Harinarayan et al. Implementing Data Cubes
Efficiently. SIGMOD 96, pp 205-216.

[6] D.Hochbaum. Approximating Clique and Bi-
clique Problems. Journal of Algorithms, 29, 1,
pp174-220, 1998.

[7] M. Kozlov et al. Polynomial solvability of con-
vex quadratic programming. Soviet Mathematics
Doklady. 20, pp 1108–1111,1979.

[8] L. Lakshmanan et al. The Generalized MDL Ap-
proach for Summarization, VLDB 02, pp 766-
777.

[9] L. Lakshmanan, J. Pei and J. Han. Quotient
Cube: How to Summarize the Semantics of a
Data Cube. VLDB 02, pp 778-789.

[10] A. Mendelzon and K.Pu. Concise descriptions of
subsets of structured sets. ACM PODS 03, pp
123-133.

[11] J. Rissanen. Modelling by shortest data descrip-
tion. Automatica, volumne 14, pp 465–471, 1978.

[12] S. Sarawagi. Explaining differences in multidi-
mensional aggregates. VLDB 99, pp 42-53.

[13] S. Sarawagi. User-adaptive exploration of multi-
dimensional data. VLDB 00, pp 307-316.

[14] G. Sathe and S. Sarawagi. Intelligent Rollups
in Multidimensional OLAP Data. VLDB 01, pp
531-540.

[15] Y. Sismanis et al. Dwarf: Shrinking the
petaCube. SIGMOD 02, pp 464-475.

[16] J. S. Vitter and M. Wang. Approximate Compu-
tation of Multidimensional Aggregates of Sparse
Data Using Wavelets. SIGMOD 99, pp 193-204.

[17] Y. Zhao et al. An Array-Based Algorithm for Si-
multaneous Multidimensional Aggregates. SIG-
MOD 97, pp 159-170.

444

