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Abstract

We study the problem of computing wavelet-
based synopses for massive data sets in static and
streaming environments. A compact representa-
tion of a data set is obtained after a thresholding
process is applied on the coefficients of its wavelet
decomposition. Existing polynomial-time thresh-
olding schemes that minimize maximum error
metrics are disadvantaged by impracticable time
and space complexities and are not applicable in a
data stream context. This is a cardinal issue, as the
problem at hand in its most practically interesting
form involves the time-efficient approximation of
huge amounts of data, potentially in a streaming
environment. In this paper we fill this gap by de-
veloping efficient and practicable wavelet thresh-
olding algorithms for maximum-error metrics, for
both a static and a streaming case. Our algorithms
achieve near-optimal accuracy and superior run-
time performance, as our experiments show, under
frugal space requirements in both contexts.

1 Introduction

Several database applications require the reduction of vast
amounts of data into a more manageable size. Such data re-
duction is useful in situations where exactness is not valued
as high as speed. For example, in order to evaluate a query
execution plan, it is imperative to estimate the selectivity of
the query components efficiently, while it is not necessary
to get precise knowledge about it. In Decision Support Sys-
tems (DSS) applications, a user is not primarily interested
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in the exact (expensive to retrieve) answer to a query, but in
a fairly accurate estimation of it, such that it would reveal
the basic features of the examined body of data. More-
over, the need for quick and reliable data approximation
is prominent in situations where massive data arrives in a
stream; in such settings the approximation needs to be also
extracted in a single pass over the data.

Wavelet decomposition [1] provides a very effective data
reduction tool, with applications in data mining [12], se-
lectivity estimation [13], and approximate and aggregate
query processing of massive relational tables [16, 4] and
data streams [7]. In simple terms, a wavelet synopsis is ex-
tracted by applying the wavelet decomposition on an input
collection (considered as a sequence of values) and then
summarizing it by retaining only a select subset of the pro-
duced wavelet coefficients. The original data can be ap-
proximately reconstructed based on this compact synop-
sis. Previous research has established that reliable and effi-
cient approximate query processing can then be performed
solely over such concise wavelet synopses [13, 16, 4].

Wavelet thresholding is the problem of determining the co-
efficients to be retained in the synopsis given an available
space budget B. A conventional approach to this prob-
lem features a polynomial-time deterministic thresholding
scheme that minimizes the overall mean squared error [15].
Still, the synopses produced by this method have some sig-
nificant drawbacks [6], such as the high variance in the
quality of data approximation, the tendency for severe bias
in favor of certain regions of the data and the lack of com-
prehensible error guarantees for individual approximate an-
swers. On the other hand, synopses that minimize max-
imum error metrics on individual data values prove more
robust in accurate data reconstruction [5, 6].

Garofalakis and Kumar [6] have proposed optimal, PTIME
deterministic thresholding algorithms for minimizing ab-
solute or relative maximum error metrics in the data ap-
proximation, based on dynamic programming. These so-
lutions improve upon an earlier probabilistic coefficient
thresholding scheme [5]. In spite of this progress, the cardi-
nal questions of time-performance and space-efficiency in
wavelet thresholding algorithms have not received the at-
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tention that they deserve to-date. Symptomatically, while
the latest contribution [6] provides comprehensible error
guarantees for individual approximate answers, it imposes
large time and space requirements on the algorithm. Such
requirements render the solution impracticable for the pur-
pose it is meant to be for, namely the quick and space-
efficient summarization of data into manageable general-
purpose synopses [4].

In this paper we address the ensuing need for efficient near-
linear deterministic algorithms, which extract accurate
enough wavelet synopses in practicable time and space. We
first propose efficient greedy thresholding algorithms that
achieve near-optimal results in terms of maximum-error
metrics and far superior performance in terms of running
time and space requirements. Then, we effectively extend
these techniques to the problem of compressing streaming
data. Such data (i) are not immediately available and may
not be accessed at anytime, (ii) they are seen only once,
and (iii) they may have fast arrival rate, calling for effi-
cient computation techniques. Previous work on extract-
ing synopses from streaming data [7, 9] are also based on
the conventional mean squared error minimization, which
as discussed is inadequate. On the other hand, our pro-
posed one-pass thresholding methods are suited for max-
error metrics. As demonstrated by experiments with real
and synthetic data, they achieve competitive results to their
static data counterparts.

The remainder of the paper is structured as follows. Section
2 provides some background and presents the fundamental
ideas behind the wavelet thresholding methodology and the
shortcomings of existing approaches. In section 3 we intro-
duce our new wavelet thresholding algorithms. These are
extended to one-pass versions for streaming data in sec-
tion 4. Experimental results on real-world and synthetic
data sets are outlined in Section 5. Section 6 presents some
further discussion and potential future research directions.
Finally, in Section 7 we outline our conclusions.

2 Background and Related Work

Wavelet analysis is a major mathematical technique that fa-
cilitates effective hierarchical decompositions of functions
[8, 1, 3]. Functions are represented by means of a coarse
overall shape, in addition to progressively narrower hier-
archical levels of detail that influence it at various scales.
Thus, wavelets can successfully approximate sharp discon-
tinuities. In this section, we provide the basic background
to the wavelet thresholding method and discuss the relation
of our work to past research.

2.1 Haar Wavelets

Haar wavelets constitute conceptually the simplest possi-
ble orthogonal wavelet system. The Haar wavelet decom-
position of an one-dimensional data vector consists of a co-
efficient representing the overall average of the data values
followed by detail coefficients in the order of increasing
resolution. Each detail coefficient is the difference of (the

second of) a pair of averaged values from the computed
pairwise average. Accordingly, a vector ~d = {d0, . . . , d7}
of 8 data values can be represented by 4 average values and
4 detail coefficients, from which the original data can be
easily reconstructed. After applying the same process re-
cursively, we end up with the full wavelet decomposition,
made of a single overall average value followed by three
hierarchical levels of 1, 2, and 4 detail coefficients respec-
tively, in order of increasing resolution. The original vector
~d of 8 data values can be fully reconstructed from the vector
W~d of these 8 wavelet coefficients.

Error Trees The error tree, introduced in [13], is a hier-
archical structure that illustrates the key properties of the
Haar wavelet decomposition. Each internal node ci(i =
0, . . . , 7) of this tree is associated with a wavelet coefficient
value, while each leaf node di(i = 0, . . . , 7) is associated
with a data value in the original array. Figure 1 shows the
Haar wavelet decomposition in the form of an error tree for
the data sequence ~d = {11,−1,−6, 8,−2, 6, 6, 10}. Given
an error tree T and an internal node ck of T , we let leavesk

denote the set of data nodes in the the subtree rooted at ck.
This notation is extended to leftleavesk (rightleavesk) for
the left (right) subtrees of ck. We let pathk be the set of all
nodes with nonzero coefficients in T which lie on the path
from a node ck (or dk) to the root of T . Finally, for any two
data nodes dl and dh, we use d(l : h) to denote the range
sum

∑h
i=l di.
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Figure 1: An error tree

Given the error tree representation T of a one-dimensional
Haar wavelet decomposition, we can reconstruct any data
value di using only the nodes that lie on the path to di.
In other words, di =

∑
cj∈pathi

δij · cj , where the (sign)
factor δij = +1 if di ∈ leftleavesj or j = 0. δij = −1,
otherwise. For example, in Figure 1, value d2 can be recon-
structed by following the path from the root to the third leaf
and adding/subtracting the visited coefficients, i.e., d2 =
+4 + (−1) − (2) + (−7) = −6. A range sum d(l :h) can
be computed using only nodes cj ∈ pathl ∪ pathh, by d(l :
h) =

∑
cj∈pathl∪pathh

xj , where xj = (h−l+1)·cj , if j =
0 and xj = (|leftleavesj,l:h| − |rightleavesj,l:h|) · cj , other-
wise. Here leftleavesj,l:h = leftleavesj ∩{dl, dl+1, . . . , dh}
and rightleavesj,l:h = rightleavesj ∩ {dl, dl+1, . . . , dh}. In
other words, node cj contributes to the range sum d(l : h)
positively as many times as there are leaf nodes of the
left subtree of cj in the summation range, and negatively
as many times as there are leaf nodes of the right sub-
tree of cj , while the value of c0 contributes positively for
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each leaf node in the summation range. In our example,
d(2 :7) = 6×4+(2−4)×(−1)+(0−2)×2 = 22. Hence,
if N is the size of the original data, the reconstruction of a
single data value involves a summation of log N + 1 coef-
ficients, while the reconstruction of a range sum involves a
summation of at most 2 log N + 1 coefficients.

2.2 Wavelet-based Data Reduction

The complete Haar wavelet decomposition W~d of a data
sequence ~d is a representation of equal size as the original
array. Given a constraint B < N , the problem of wavelet
thresholding is to select a subset of at most B coefficients
that minimize an aggregate error measure in the reconstruc-
tion of data values. The omitted coefficients are implicitly
set to zero. The resulting wavelet synopsis Ŵ~d can be used
as a compressed approximate representation of the original
data.

As an example, consider the decomposition of Figure 1 and
assume that only coefficients {c0, c5, c6} are retained in the
synopsis, whereas the rest of them are implicitly set to 0.
The reconstructed value d̂5 for d5 is d̂5 = 4 − (−4) = 8,
whereas the actual value d5 = 6. Popular aggregate er-
ror measures for assessing the quality of a wavelet syn-
opsis include the mean squared error (L2), the maximum
absolute error (max abs), and the maximum relative error
(max rel):

L2(Ŵ~d,W~d) =

√√√√ 1
N

N∑
i=1

(d̂i − di)2 (1)

max abs(Ŵ~d,W~d) =
N

max
i=1

{|d̂i − di|} (2)

max rel(Ŵ~d,W~d) =
N

max
i=1

{
|d̂i − di|

max{|di|, S}

}
(3)

In the above equations, d̂i denotes the reconstructed value
for di and S is a sanity bound used to prevent the influence
of very small values in the aggregate error.

2.2.1 The Conventional Approach

A preliminary approach to the thresholding problem is
based on two basic observations about a coefficient’s con-
tribution in the reconstruction of the original data values
(and range-sums). First, coefficients of larger values are
more important, since their absence causes larger absolute
error in reconstructed values. Second, a coefficient’s sig-
nificance is larger if its level in the error tree is higher, as it
then participates in more reconstruction paths of the error
tree. Putting both together, the significance c∗i of a coef-
ficient is defined by c∗i = |ci|/

√
2level(ci), where level(ci)

denotes the level of resolution at which the coefficient re-
sides (0 corresponds to the “coarsest” resolution level).

Accordingly, a conventional thresholding approach is to
retain the B wavelet coefficients with the greatest signif-
icance. It has been shown [15] that this scheme mini-
mizes the L2 error. Nevertheless, the L2 error minimization
does not provide maximum error guarantees for individual
approximate answers. As a result, the approximation er-
ror of individual values can be arbitrarily large, resulting
into high variance in the quality of data approximation and
severe bias in favor of certain regions of the data. This
problem is particularly striking whenever a series of omit-
ted coefficients lies along the same path of the error tree.
max abs and max rel prove more robust error measures
[5, 6], since they set a maximum error guarantee on indi-
vidual values.

Matias et al. [13] proposed greedy thresholding algorithms,
which, however, are based on an initial selection of large
coefficients that introduces bias towards L2-minimization.
In this paper, we also propose greedy algorithms; however,
our methods are suited for maximum error metrics. In addi-
tion, we study effective adaptations of them for streaming
data sequences.

2.2.2 Optimal Max-Error Thresholding

Garofalakis and Kumar [6] proposed a deterministic
wavelet thresholding algorithm, based on dynamic pro-
gramming, that succeeds in minimizing the maximum ab-
solute or relative error in the data approximation. This ap-
proach offers a way to alleviate the setbacks of the con-
ventional method. In addition, it improves upon an ear-
lier probabilistic scheme [5], which is flawed, according
to [10], since it is based on a questionable application of
probabilistic expectation.

Unfortunately, the optimal solution [6] has a high com-
plexity of O(N2B log B) in time and O(N2B) in total
space, where N is the total number of coefficients and B
the number of retained coefficients. This burden is too high
a price to pay for the minimization of maximum-error met-
rics. Given that the problem at hand involves the quick and
space-efficient summarization of vast amounts of data into
manageable general-purpose synopses, it is clear that the
complexity handicap renders the proposed techniques im-
practicable for their intended application. Thus, no compu-
tationally efficient technique has been proposed to-date that
can target these error metrics under tight time and space
constraints, and certainly not under the time and space lim-
its associated with streaming data.

2.2.3 Wavelet Thresholding over Streams

[7] studied the construction of L2-minimal wavelet syn-
opses for aggregate data values (e.g. frequency counters)
computed from a data stream and [9] extended this ap-
proach for data with multiple measures. Meanwhile, [2]
proposed a similar incremental approach for hierarchical
stream summarization which focuses on simple queries
and communication caching issues for wavelet coefficients,
while [14] developed an incremental algorithm for auto-
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matic sensor stream mining, using a wavelet representation
of the series and capturing correlations by applying linear
regression in the wavelet domain. These approaches do
not involve a sophisticated on-the-fly thresholding of co-
efficients. After all, obtaining a wavelet synopsis of min-
imal L2 error from a data stream sequence is straightfor-
ward, as it corresponds to an on-the-fly selection of the B
most significant coefficients. On the other hand, obtaining
an one-pass data stream wavelet synopsis that minimizes
max abs or max rel is not trivial. In this paper we deal
with this stream compression problem, without aggrega-
tion of streaming information involved. To our knowledge,
there is no previous work on this important problem.

3 Greedy Max-Error Thresholding

Given the impracticable cost of minimizing individual
maximum-error metrics in the synopsis, the question arises
whether we can design algorithms providing reliably low
individual error guarantees, of no practical disadvantage
in comparison to the optimal solution, while obtaining a
major practical advantage in terms of time and space ef-
ficiency. In this section we devise such techniques, based
on a greedy approach, that extract synopses of near-optimal
individual maximum error metrics in near-linear time and
space. We first focus on wavelet thresholding for static
data. Section 4 extends our solutions for streaming data.

3.1 Maximum Absolute Error

We first design a practicable greedy algorithm for the
wavelet thresholding problem aiming at a minimum pos-
sible absolute reconstruction error of individual values (see
Equation 2). The key idea behind this GreedyAbs algorithm
is to first compute the wavelet decomposition W~d and then
select the coefficients to discard one at a time. At each step,
the coefficient that causes the least maximum absolute er-
ror on the running synopsis if discarded is removed. This
process is repeated until B coefficients have been left in the
synopsis.

Let errj = d̂j − dj be the signed accumulated error for a
data node dj in a synopsis Ŵ~d, yielded by the deletions of
some coefficients. To assist the iterative step of the greedy
algorithm, for each coefficient ck, not yet discarded, we
introduce the maximum potential absolute error MAk that
ck will effect on the running synopsis, if discarded:

MAk = max
dj∈leavesk

{|errj − δjk · ck|} (4)

The computation of MAk normally requires information
about all errj in leavesk. A naive method to compute MAk

is to access all leavesk, where errj are explicitly main-
tained. The disadvantages of this approach are the explicit
maintenance of errj’s at each step and the aggregation cost
required to update MAk’s after the removal of a coefficient.

We can accelerate the computations and updates of MAk

by exploiting the fact that the removal of a coefficient

affects equally the signed costs of all data values in its
left or right subtree. For example, in Figure 1, the re-
moval of coefficient c2 = 2 decreases the signed errors
of data nodes d0, d1, and increases the signed errors of
d2, d3, by 2. Accordingly, the maximum and minimum
signed errors in the left (right) subtree of a removed co-
efficient ci are decreased (increased) by ci. The maxi-
mum absolute error incurred by the removal necessarily
occurs at one of these four positions of existing error ex-
tremum. Hence the computation of MAk requires that
only four quantities be maintained at each internal node
of the tree: maxdj∈leftleavesk

{errj}, mindj∈leftleavesk
{errj},

maxdj∈rightleavesk
{errj}, and mindj∈rightleavesk

{errj}, for
simplicity denoted as maxl

k, minl
k, maxr

k, and minr
k, re-

spectively. It follows that Equation 4 is equivalent to:

MAk = max{ |maxl
k − ck|, |minl

k − ck|,
|maxr

k + ck|, |minr
k + ck| } (5)

In the complete wavelet decomposition, these four quanti-
ties are all 0, since errj = 0,∀dj . Thus, MAk = |ck|,∀k
and our greedy algorithm removes the smallest |ck| first. In
general, in order to efficiently decide which coefficient to
choose next, all coefficients are organized in a heap struc-
ture H based on their MAk. After the removal of a co-
efficient ck, errj for all leavesk changes, so we must up-
date the information of all descendants and ancestors of ck.
All the error quantities of the descendants in the left (right)
sub-tree of ck are decreased (increased) by ck. During this
process, a new MAi is computed for each descendant ci of
ck. In accordance, the changes in error quantities are propa-
gated upwards to ancestors ci of ck and MAi’s are updated
as necessary. While updating error quantities and MA’s,
the positions of ck’s descendants and affected ancestors are
dynamically updated in H . Figure 2 summarizes the de-
scribed GreedyAbs algorithm.

Note that by maintaining the four error quantities at each
non-deleted node, we only need space to store these nodes.
In other words, we do not have to explicitly update errj for
each data node dj . In addition, the data nodes and deleted
coefficients do not have to be physically stored in mem-
ory. In section 4 we will see that this approach is very
convenient in a streaming environment, where the avail-
able memory has to be dynamically allocated only to re-
maining coefficients and we have no luxury of extra space.
Alternatively, we may choose to store only two quantities
maxdj∈leavesk

{errj} and mindj∈leavesk
{errj} at each coef-

ficient, and compute maxl
k, minl

k (maxr
k, minr

k) from the
left (right) child of ck.

Another important thing to note is that max abs (and
max rel) does not change monotonically when a coeffi-
cient is removed. In other words, after deleting a coefficient
ck the maximum absolute error of its affected data values
may decrease. As a result, choosing exactly B coefficients
may not be the best solution given a space budget B. A
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more effective variant of GreedyAbs is to keep removing
coefficients also after the limit of B has been reached, until
no coefficient remains in the tree. From all B + 1 coeffi-
cient sets (including the empty set) produced at the last B
steps of the algorithm, we keep the one with the minimum
max abs.

Algorithm GreedyAbs(W~d
, B)

Input: Set W~d
= [c0, . . . , cN−1] of N Haar wavelet coefficients

Output: Set Ŵ~d
⊂ W~d

of B Haar wavelet coefficients
1. H := create heap(W~d

); //create heap with all ck ∈ W~d
2. while (more than B coefficients in H)
3. discard ck := H.top; //coefficient with smallest MAk

4. maxl
k := maxl

k − ck; minl
k := minl

k − ck;
5. maxr

k := maxr
k + ck; minr

k := minr
k + ck;

6. for each node ci in left sub-tree of ck

7. decrease all error measures in ci by ck;
8. if ci not discarded
9. recalculate MAi; update ci’s position in H;
10. for each node ci in right sub-tree of ck

11. increase all error measures in ci by ck

12. if ci not discarded
13. recalculate MAi; update ci’s position in H;
14. maxerr := max(maxl

k, maxr
k);

15. minerr := min(minl
k, minr

k);
16. ci = ck.parent;
17. while (ci 6= NULL)
18. if (ck in the left subtree of ci) then
19. maxl

i := maxerr ; minl
i := minerr ;

20. else // ck in the right subtree of ci then
21. maxr

i := maxerr ; minr
i := minerr ;

22. if any of {maxl
i, minl

i, maxr
i , minr

i } changed then
23. if ci not discarded
24. recalculate MAi; update ci’s position in H;
25. maxerr := max(maxl

i, maxl
i);

26. minerr := min(minl
i, minr

i );
27. ci := ci.parent;
28. else break for-loop; //no other ancestor can change

Figure 2: Greedy thresholding for maximum absolute error

Complexity Analysis The initial heap H can be con-
structed in O(N) time. Assuming that B � N , the
algorithm performs O(N) coefficient discarding opera-
tions. A dropped coefficient ck at height h of the error-
tree has at most 2h non-deleted descendant coefficients
which must be updated and there are 2log N−h coefficients
at height h. Thus, the total number of updates in descen-
dants for all deleted coefficients is

∑log N
h=1 2h×2log N−h =∑log N

h=1 N = O(N log N). A dropped coefficient ck has
at most log N non-deleted ancestors, thus the total number
of updates in ancestors for all deleted coefficients is also
O(N log N). Each update in a descendant or ancestor costs
its re-positioning in H , which is a O(log N) operation.
Summing up, the overall worst-case cost of GreedyAbs is
O(N log2 N). As we will see in the experimental section,
the algorithm’s complexity is linear, in practice. The space
complexity is O(N), since constant information is kept for
every node of the error tree.

3.2 Maximum Relative Error

Minimizing the maximum relative error is arguably more
essential compared to absolute error minimization in ap-

proximate query processing, as the same absolute error in
two different data values may express huge differences in
relative error. At the same time, relative error measures
tend to be inordinately dominated by small data values.
For instance, returning 2 as the approximate answer for
1 amounts to an 100% relative error, while in fact it is
insignificant in a data context dominated by much larger
values. In order to overcome such problems, several tech-
niques have been developed for combining absolute and
relative error metrics [11, 16]. As in earlier approaches
[5, 6], we have opted for the relative error metric with a
sanity-bound S > 0. Our aim is to produce wavelet syn-
opses in near-linear time and space such that, for each ap-
proximation d̂i of a data value di, the ratio |d̂i−di|

max(|di|,S) is
kept lower than a feasible bound.

Accordingly, we can follow the greedy paradigm intro-
duced in the previous section, wherein, instead of using
MAk, we choose to discard the coefficient with the mini-
mum maximum potential relative error, defined as follows:

MRk = max
dj∈leavesk

{
|errj − δjk · ck|
max(|dj |, S)

}
(6)

Nevertheless, we can not simply use the four error quanti-
ties described in Section 3.1 in order to calculate or update
MRk. The reason is the denominator in 6, which implies
that the effect of removing a coefficient ck is different in
the signed relative error of different data values. Thus, in-
formation about the data leaves with the currently maxi-
mum/minimum signed accumulated error in the left/right
subtrees of ck is useless, as the leaf that determines MRk

does not necessarily belong to this quadruplet.

Thus, in order to apply greedy thresholding to the case at
hand, we need to explicitly maintain with each coefficient
ci the potential relative error pot errij caused by its re-
moval on each data value dj of the subtree rooted at ci. We
can then directly compute MRi using Equation 6. The cost
of computing MRi is not constant (as in the absolute error
case), but depends on the height of ci; in the worst case it
is O(N) (i.e., if ci is the root). In order to reduce this cost,
for each coefficient ck we organize the data values that ck

affects in an augmented heap Hk on ck, such that the data
value that causes the maximum potential error after the re-
moval of ck can be accessed in constant time. Therewith
the increase of cost in comparison to the GreedyAbs algo-
rithm is balanced to a log N factor in both time and space.
After removing a node ck, MRi is updated for every node
ci (ancestor or descendant of ck). This requires an update
in each Hi of the potential relative error for those data de-
scendants of ci which are also in the subtree of ck. Figure
3 shows a pseudo-code for the GreedyRel algorithm.

Complexity Analysis The space requirements of
GreedyRel are O(N log N), due to the the extra space
necessitated for storing the descendants’ heaps. The time
complexity is as follows. A dropped coefficient ck at
height h of the error-tree has at most 2h leaves, the error in
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Algorithm GreedyRel(W~d
, B)

Input: Set W~d
= [c0, . . . , cN−1] of N Haar wavelet coefficients

Output: Set Ŵ~d
⊂ W~d

of B Haar wavelet coefficients
1. for each ck ∈ W~d

Hk := create heap(leavesk);
2. H := create heap(W~d

); //create heap with all ck ∈ W~d
3. while (more than B coefficients are left)
3. discard ck := H.top; //coefficient with smallest MRk

4. propagate error(leftleavesk ,−ck);
5. propagate error(rightleavesk ,ck);
6. for each affected leaf dj do
7. for each non-discarded ancestor ci of dj do
8. pot errij :=

|acc errorj−signij ·ci|
max(|dj |,S)

;
9. update dj ’s position in heap Hi;
10. for each ancestor/descendant ci of ck do
11. update ci’s position in heap H;

Figure 3: Greedy thresholding for maximum relative error

which must be updated and there are 2log N−h coefficients
at height h. Thus, the total number of updates in leaves∑log N

h=1 2h × 2log N−h = O(N log N). Each update in
a leaf is propagated to all its O(log N) ancestors and
in each such ancestor an update in Hi costs O(log N).
Thus, the overall cost for updates in leaves and local heaps
of each coefficient is O(N log3 N) (lines 4–9). Finally,
after each removal, each of the affected nodes updates
its position in the global heap H at O(log N) time (lines
10–11). Summing up, the overall cost of GreedyRel is
O(N log3 N).

4 Extension to Data Streams

The case of streaming data is a major application area of the
suggested synopses. However, the heretofore presented al-
gorithms are not directly applicable on data streams, where
the totality of the data is not accessible at once and the
space is constrained. In such a context, we can assume
that the memory budget B sets not only an upper limit on
the size of the final synopsis, but also delimits the mem-
ory available for intermediate information storage. From
an asymptotic viewpoint, we can accordingly introduce an
O(B) bound to the required memory.

In order to adapt our techniques into such a streaming en-
vironment, we have to construct the wavelet transform and
greedily truncate it in an integrated one-pass process of
O(B) space complexity, while preserving the error tree
structure as well as information about the incurred errors.
In the following description we assume that a minimiza-
tion of max abs is aimed. Then, in Section 4.5, we dis-
cuss the differences required to adapt the same algorithm
for max rel minimization.

4.1 Algorithm overview

The wavelet decomposition and error-tree for the first B
data items is constructed straightforwardly. Thereafter, a
pair of coefficients is discarded for every arriving data pair.
This pair is selected greedily as in the static case, so as to
incur the least possible error, with the scope now limited by
necessity to the hitherto constructed part of the error tree.

During this process, as each pair of two new data values is

read, their error-tree ancestor(s) are constructed as neces-
sary. Therefrom a higher level of the error tree is created
for every higher power of two of data that arrives. While
the number of stream data that have arrived is unequal to a
power of two, the error tree includes unconnected, hanging
coefficient nodes. In order to accommodate such nodes, we
use an auxiliary data structure (frontline), which consists
of one node for each level of the error tree (blog Nc nodes
while N stream data have arrived). We use ‘fnode’ to refer
to a node in this structure, in order not to be confused with
a node of the error-tree. If all coefficients are kept, there
can be at most one hanging node in each error-tree level, as
two created nodes on the same level suffice for the creation
of their parent on the next level. The address of this single
hanging node is stored in the fnode at the same level.

The frontline structure also stores the average of the data
values in the subtree rooted at a hanging coefficient. For
instance, assume that a data stream generates the series of
numerical data {9, 3, 9, -5, 5, 13, 13, 17, 14, -2, 9, 7, 7,
3, . . . }. The error-tree construction process applied on this
series will produce the tree shown on Figure 4.
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Figure 4: Error tree construction from a data stream

A high-level description of the streaming algorithm is
shown in Figure 5.

Algorithm StreamGreedy(S, B)
Input: Data Stream S of raw data
Output: A synopsis WS of S under budget B
1. N := 0; //current number of data
2. for the first B data in S
3. N := N+2; read next two data (d1, d2);
4. climbup(N, d1, d2)
5. while (stream active)
6. N := N+2; read next two data (d1, d2);
7. climbup(N, d1, d2)
8. discard two coefficients from existing error-tree
9. perform padding on hanging edges of error-tree
10. return root node of error-tree
end

Figure 5: Thresholding on a data stream

As we discard coefficients from the error tree, the parent-
child relationships between nodes are reconfigured, thus a
node may now have several different direct descendants at
several different levels, if some immediate child has been
deleted. For this purpose, we represent the error tree as a
sibling tree. For instance, a view of the full error tree of
Figure 4 in its sibling tree form is shown in Figure 6.

The sparse error tree constructed during this process, can
then be used to produce a reconstruction of an approx-
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Figure 6: Sibling tree representation

variable meaning
vk coefficient value
maxl

k , minl
k , etc. error quantities

park ptr to ck’s parent
childk ptr to ck’s leftmost child
nextk ptr to ck’s next sibling
prevk ptr to ck’s previous sibling
frontk ptr to fnode where ck is hanged
lk level of ck in error-tree
ok order of ck in error-tree level lk
indexk index of ck in full error-tree

Table 1: Information in an error-tree node ck

imation for any data in the streamed data set, or of the
complete streamed data set as a whole. For that purpose
we have also developed a recursive reconstruction proce-
dure for sparse error-trees. Finally, our algorithm uses a
coefficient-padding procedure that fills in the gaps in the
constructed error-tree when the acquired data set has a size
unequal to a power of two.

4.2 Auxiliary Information

In order to facilitate the operations of our streaming algo-
rithm each node ck in the error tree stores the information
(of constant size) shown in Table 1. vk is the differential
value of the coefficient in node ck in the error tree.1 The
data error information corresponds (for maximum absolute
error) to the four quantities (maxl

k, minl
k, etc.) introduced

in Section 3.1. Pointers park, childk, nextk, prevk, and
frontk are used for easy navigation in the error-tree and
transition to the frontline structure.

The two integer values lk, ok are needed to calculate the
index of the stored coefficient in the final decomposition
array, and hence in the final synopsis. Since the length of
the stream is unknown in advance, the index can only be
computed after all the stream data has been read, using the
level lk in which the node resides, counting from the bot-
tom, and the order ok in which it appears in this level. After
the stream has been read, the total number of error tree lev-
els L is known. Then the index of a coefficient ck which has
been preserved in the ensuing synopsis can be calculated as
indexk(= k) = 2L−lk + ok − 1.

Besides, lk and ok are used to calculate a node’s relation-
ship (left or right child) to its parent. In contrast to the
static case, where discarded nodes were not permanently
withdrawn from the error-tree structure, in the streaming

1In the previous section, we used ck to denote both the coefficient and
its value; here we use vk to explicitly refer to its value.

variable meaning
f.ptr ptr to error-tree node hanging from f
f.v mean data value in subtree hanging from f
f.max, f.min error quantities from deleted orphans
f.prev ptr to previous (lower) fnode
f.next ptr to next (upper) fnode
f.l level of f

Table 2: Information in a frontline node f

case this relationship is dynamic, since the parent of a node
may have been physically deleted. If for a node ck, ok

mod 2 is 0, we know that ck is a right child of its parent
(and the left child, otherwise). In general, if ci is an an-
cestor of cj , we know that cj is in the left subtree of ci

if 2 · oj − 1 < (2 · oi − 1) · 2li−lj ; otherwise cj is the
right subtree of ci. The computation of this relationship is
encountered in several operations.

Information is also stored in the fnodes, in order to preserve
the error-tree structure and accommodate for the loss of in-
formation incurred by deleting error-tree nodes. Table 2
summarizes this information. The first three items in the
table are used when a new error-tree node is created in the
level above f : the hanging node f.ptr is attributed as child
to the newly created node; the mean value f.v in the subtree
hanging from f is used to calculate the coefficient value of
the new node, thus assisting in the one-pass decomposition
process; and the error quantities on f are used in order to
calculate the error quantities in the new node. These quanti-
ties receive error information from deleted orphan nodes in
the subtree under the scope of f and store it until their miss-
ing parent is created in the level above, thereby preventing
the loss of such information that would occur when an or-
phan path leading to a data item was deleted. In the case
of the maximum absolute error algorithm, this informa-
tion consists of the maximum and minimum error values,
f.max and f.min, among the deleted orphans. Note that,
since the tree is created from left to right, an orphan’s rela-
tionship to its missing parent is always left. A boolean vari-
able is used to denote whether error information is stored
on the fnode. f.prev and f.next are used to navigate in the
frontline structure. Finally, the error-tree level f.l to which
f corresponds is used for padding an incomplete error-tree
with nodes after the stream has ended.

4.3 Basic Operations

We now describe in more detail the basic operations of the
algorithm, assisted by the variables of Tables 1 and 2. The
climbup process updates the current error-tree/frontline
structures for every two data values that arrive from the
stream. A sketch of its operation is shown in Figure 7. For
a new pair of data values, a whole path in the error-tree may
be created (as many nodes as the factors of 2 in the number
n of data that have already been read). In each loop (lines
4–10) a new error node is created at a higher level. If the
fnode f in that level does not point to any error node (either
due to previous deletions or because the peak of the climb-
ing process is reached), then ci is hanged from it. In both
cases, the hanged node is duly connected to its parent when
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this is created in the next level.

It is important to note that at each iteration at level l > 1
a new error-tree node is created, while at the same time a
frontline node is released at the previous level (line 13).
Let h be the length of the path added by climbup in the
error tree. The process will create one new frontline node
at level h plus h error-tree nodes. In addition, h − 1 fn-
odes are released (one for every level, but the last). Thus,
the total space added by climbup is exactly two nodes (one
new error-tree leaf node and one new fnode). This space
is released by discarding the two nodes with the mini-
mum potential maximum error. Thus the space used by
StreamGreedy is always O(B).

In order to compute the error quantities (maxl
k, minl

k, etc.)
for a newly created node (line 11) we access the existing
direct descendants of ci using childi and following its sib-
ling pointers. Note that these direct descendants may be
multiple, as the left child of ci and, thereafter, additional
orphan nodes in its left subtree, may have been previously
discarded; in addtion, we access the error quantities that
have been stored in the previous frontline node, in order to
retrieve error information stemming from deleted orphan
paths which would have otherwise been lost.

Algorithm climbup(n, d1, d2)
Input: Number n of data already acquired from the Data Stream;

last two data items, d1, d2

1. f := bottom-most fnode; curavg := NULL; l := 0;
2. while (n > 0 ∧ n mod 2 = 0) // ascending is possible
3. n := n/2; l := l + 1; //n:order, l:level
4. if (curavg = NULL) then //first loop
5. avg := (d1 + d2)/2; v:=d1 − avg, ch := NULL
6. else
7. avg := (avg + curavg)/2; v := curavg − avg;
8. ch := f.prev.ptr; f.prev.ptr := NULL; //de-hang node
9. if (f.l = l) then s := last sibling of node hanging from f ;
10. ci := new node (li = l, oi = n, vi = v, childi = ch, previ = s);
11. compute error values for ci from children, fnode below f ;
12. compute MAi (or MRi); put ci in min-heap H;
13. delete fnode below f ;
14. if (no fnode in level l) then
15. f := new fnode at level l; f.v := avg;
16. else curavg := f.v;
17. if (f.ptr=NULL) then //no hanged on f
18. hang f.ptr := ci; //hang ci from f ;
19. f := f.next; // fnode at upper level

Figure 7: Ascending and constructing the error-tree on-the-
fly while reading the data stream

Line 12 of the climbup operation adds the computed MAi

(or MRi) for the new node ci to a min-heap H , used to
detect which two error nodes to delete (i.e. the ones with
the minimum MA) in order to compensate for the newly
occupied memory.

The discarding of a coefficient is similar to the case of
the static GreedyAbs algorithm presented in Section 3.1.
The main differences are that (i) the discarded node has to
be physically deleted from memory and pointers must be
adjusted accordingly and (ii) the propagation of the dele-
tion to the error quantities of ancestors and descendants
is not straightforward, since some nodes may have been

discarded. A sketch for this discard operation is shown in
Figure 8. Before the node is discarded, its error quantities
are propagated to its ancestors and descendants. The left-
most child childk of the deleted node (exists such) takes
its position in the structure: it is affiliated to the parent and
connected to the left sibling of ck; its rightmost sibling (or
itself, in appropriate cases) is attached to the right sibling
of ck; and it substitutes ck as a hanging node (if applica-
ble). Otherwise, if ck has no children, its position is taken
by its right sibling accordingly.

Algorithm discard(ck)
Input: error-tree node ck to be discarded
1. propagate error(ck);
2. if (childk 6= NULL) then //handle children/siblings
3. if (ck is hanged on frontline) hang childk in its place;
5. connect childk as right sibling of prevk;
6. connect last sibling of childk as left sibling of nextk;
7. else
8. if (ck is hanged on frontline) hang nextk in its place;
9. connect prevk and nexk to each other;
10. if (ck is first child of park) then //handle parent
11. if (childk 6= NULL) then childpark :=childk;
12. else childpark :=nextk;
13. delete ck

Figure 8: Discarding a coefficient ck

The propagate error function is illustrated in Figure 9. As
in the static case, information about the incurred error is
propagated to all existing ancestors and descendants of
the deleted node. If no ancestors exist, the information is
merged in the fnode that hangs the deleted node’s leftmost
sibling (it must be hanging from the frontline structure). If
no such sibling exists either, then the deleted orphan node
itself is hanging from an fnode, on which the error infor-
mation is stored/merged. This information is used when the
missing parent is later created by climbup.

Algorithm propagate error(ck)
Input: error-tree node ck being discarded
1. compute error incurred after deletion of ck

2. if (childk 6=NULL) then
3. propagate down(ck ,childk ,error)
4. if (park =NULL)
5. if ck is not hanging then
6. store/merge error in fnode of ck’s leftmost sibling
7. else
8. store/merge error in frontk
9. else
10. propagate up(park ,error)

Figure 9: Propagating error up and down

This procedure employs two sub-processes propagate up
and propagate down, handling the propagation of error up-
wards and downwards in the sibling error-tree. Propagation
is done in a similar way as in the static case. However,
upwards error propagation in the sparse sibling error tree
requires some elaboration. In the static case, the nodes of
discarded coefficients are maintained in the error-tree for
the sole purpose of assisting in error propagation; hence
a propagation step is always made from a child to its par-
ent at the next level. On the contrary, in the sparse sibling
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error-tree, propagation may be made from a node to its par-
ent several levels up if intermediate logical ancestors have
been discarded. In the cases where a sibling propagates up-
wards a new error quantity while the current correspond-
ing quantity on the parent was derived from another sib-
ling, or it was derived from the propagating sibling itself
and the propagated version is magnified, the propagation is
straightforward. Still, in the possible case that a propagat-
ing sibling’s previously prevalent error quantity has been
diminished, all the other siblings of the same affiliation (left
or right) have to be examined in order to determine the new
error quantity on the parent.

If the total number of stream data has not been a power of
two, then the inactivation of the stream leaves the error-tree
incomplete, with more than one of its nodes hanging on the
frontline. The decomposition is then finalized through a
padding process that uses average value and level informa-
tion in the frontline in order to create additional error-tree
nodes that turn the current structure into a rooted (sparse)
sibling tree, which may be used to reconstruct any data
value. By a traditional method [15], a full error-tree is
constructed by adding as many zero-value coefficients as
necessary. We use a similar coefficient padding approach,
yet without adding superfluous zero-value coefficients, but
only those necessitated to make the error-tree connected.
Details are omitted due to space constraints.

Complexity Analysis The space complexity of
GreedyStream is O(B), as discussed; at each step,
climbup creates two new (error-tree and/or frontline)
nodes and discard deletes two error-tree nodes. The
time complexity is O(B) at each step, as O(B) nodes
are affected by climbup and discard. If B is large, the
complexity of each step converges to that of the static
GreedyAbs algorithm; i.e., O(log2 N).

4.4 An example

We now illustrate the steps of the StreamGreedy algorithm
by an example. Assume that the data stream {9, 3, 9, -5, 5,
13, 13, 17, 14, -2, 9, 7, 7, 3, . . . } is read under a space bud-
get of B = 6. After reading the seventh and eighth items,
the algorithm discards the first two error tree nodes, result-
ing in the structure of Figure 10a. The values of the dis-
carded coefficients lead to minimization of the maximum
absolute error (to 2) for the first 8 values of the stream.
Figure 10b shows the tree after the next two values (14, -2)
are processed from the stream. A new node with value 8 is
created, which is hanged from a new frontline node at level
1. In addition, two error nodes are deleted (max abs is cur-
rently 5). Figures 10c and 10d show the resulting tree after
two more pairs arrive. Observe that the constructed synop-
sis always has B = 6 (error-tree and frontline) nodes.

Assume that we want to use the synopsis after having read
14 items from the stream (Figure 10d). We apply the
padding process, to convert the information stored in the
frontline to a connected error tree that reconstructs any data
value, as shown in Figure 11.
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Figure 10: On-the-fly thresholding example
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Figure 11: Sparse error tree after padding

4.5 Maximum Relative Error Thresholding for
Streaming Data

We have already discussed the extension of the static
thresholding solution into a streaming environment when
aiming at a minimum max abs error. An analogous deriva-
tion of a streaming algorithm for maximum relative error
from the static-case algorithm is not feasible; as we have
seen in Section 3.2, the relative error algorithm necessi-
tates additional storage for the accumulated errors on all
data leaves of the error-tree, so as to calculate the maxi-
mum potential relative error for each coefficient.

Given the importance of relative error minimization thresh-
olding, we device a heuristic to calculate a good estimate
for the maximum potential relative error incurred by a co-
efficient’s withdrawal at each step. In the absolute error
case, we store four error values on each coefficient node
ck of the error-tree, and calculate MAk, using Equation 5.
In order to compute an estimate for MRk, while processing
the streaming data, we store and maintain at each node ck:

• The four quantities maxl
k,minl

k,maxr
k,minr

k, used
for max abs, along with the corresponding data val-
ues with these errors.

• The minimum absolute data value ml
k (mr

k) in the left
(right) subtree together with its accumulated error.

• A sample data value sl
k (sr

k) in the left (right) subtree
together with its accumulated error. The error of this
sample serves as a speculative estimate for the maxi-
mum relative error in the left (right) subtree. For leaf
nodes of the error tree, sl

k = ml
k (and sr

k = mr
k). For

intermediate nodes, sl
k (sr

k) is the sample in the left
(right) subtree with the largest relative error. When a
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node ck is deleted, the sample with the maximum rel-
ative error in the subtree of ck is propagated upwards,
as long as its error is larger than the error of the sample
in the visited nodes.

The MRk estimate that our algorithm employs is set to be
the maximum relative error incurred by the deletion of ck

to the above eight data values. As our experiments have
shown, the maximum relative errors achieved through these
estimates are close to the ones of the explicit relative error
static algorithm and of the optimal solution itself.

5 Experimental Evaluation

In this section, we evaluate experimentally the effective-
ness of the greedy algorithms for static and streaming data,
denoted by GSTA and GSTR, respectively. GSTA corre-
sponds to the GreedyAbs algorithm when the goal is to
produce a synopsis with minimum absolute error, and to
the GreedyRel method, when aiming at maximum relative
error minimization. Accordingly, GSTR corresponds to the
StreamGreedy for maximum absolute or relative error, de-
pending on the target of thresholding. As a basis of com-
parison, we use the optimal algorithm [6], denoted by OPT,
and also the conventional approach of picking the B coef-
ficients with the largest significance (see Section 2.2.1) —
denoted by CON. All algorithms were implemented in C++
and the experiments were run on a Pentium 4 2.26GHz ma-
chine with 512MB of RAM.

5.1 Description of Data

For our experiments, we used synthetically generated and
real data. The synthetic datasets (SY) contain random in-
tegers, uniformly selected from [0, 1000). In addition, we
used three real datasets. The first is extracted from a rela-
tion of 581,012 tuples describing the forest cover type for
30 x 30 meter cells, obtained from US Forest Service. FC
is a histogram, counting the frequencies of the 360 distinct
values of attribute aspect in the relation. The frequencies
range quite uniformly, averaging at 1613 (standard devia-
tion: 730) and featuring spikes of large values (min value:
499, max value: 6308). The second real dataset contains
calibrated and re-sampled ring profiles based on the Voy-
ager 2 spacecraft Photopolarimeter Subsystem (PS) stel-
lar occultation experiments.2 We assembled a data file of
16,384 float values of mean photon counts received by the
PS instrument at its radial location, with the background
signal included. The average value in PS is 27.32 and
the set has a large standard deviation (14.02). The third
dataset (TM) is a sequence of 178,080 sea surface tem-
perature measures extracted from drifting buoys positioned
throughout the equatorial Pacific. The average value in TM
is 26.75 and the set has a small standard deviation (1.91).
FC and TM were downloaded from the UCI KDD Archive3

and postprocessed.

2Available at http://pds-rings.arc.nasa.gov/voyager/datasets/
3http://kdd.ics.uci.edu/

5.2 Experimental Results

Run-time comparison Figure 12 shows the time perfor-
mance of all techniques as a function of B for small
datasets (aiming at minimization of max abs). Note that
all algorithms finish instantaneously, except from the opti-
mal algorithm, which requires a long time to complete even
for small values of B.
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Figure 12: Run-time comparison

The next experiment evaluates the run-time scalability
of the thresholding techniques, with respect to N , us-
ing various-sized subsets of the TM dataset and setting
B = N/16. Figure 13 shows the time required for each
algorithm to complete. All algorithms scale well with N ,
except from OPT which is extremely expensive and inap-
plicable even for moderately-sized datasets. Naturally, the
conventional approach is the fastest of all.4 For max rel
error minimization, we also used a static implementation
(GSTA-2) employing the heuristic error measures intro-
duced in Section 4.5 in order to achieve O(N log2 N) time
complexity (i.e., same as GSTA for absolute error). This
version has lower running-time than the original GreedyRel
algorithm (denoted by GSTA). As expected, the streaming
versions of our greedy algorithms are faster than the static
ones, since they scan the data only once and they do not op-
erate on an initially large dataset. On the other hand, OPT
is not scalable and can only be applied for the approxima-
tion of tiny datasets.
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Figure 13: Scalability with N

Approximation Quality We first compare the resulting
synopses when applying the thresholding algorithms on SY
and FC. For these small datasets OPT can be applied, so we
can directly evaluate the synopses, using the optimal error
as a basis. Figure 14 compares the thresholding methods,

4We implemented a streaming version of this algorithm, which con-
structs coefficients on-the-fly and maintains the set of B most significant
ones, using a priority queue.
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when aiming at a max abs minimization. Observe that the
error of GSTA is very close to the optimal (4.5% and 3.5%
worse than OPT on the average for SY and FC, respec-
tively) for all values of B. GSTR has also low error (7.5%
and 10% worse than OPT on the average for SY and FC, re-
spectively), which improves over B. On the other hand, the
synopsis obtained by the conventional approach of keeping
the greatest B coefficients in terms of significance has a rel-
atively high absolute error (38% and 55% worse than OPT
on the average for SY and FC, respectively).
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Figure 14: Quality comparison for max abs

Next, we compare the approximation quality of the thresh-
olding methods, when aiming at a max rel minimiza-
tion. In this case we compare the maximum relative error
achieved by the corresponding optimal algorithm (OPT)
and the conventional L2-minimization scheme (CON) to
three different implementations of our greedy techniques:
static (GSTA), streaming (GSTR), and the alternative sta-
tic implementation (GSTA-2). Note that in cases where the
optimal algorithm cannot achieve a maximum relative error
lower than 1, it resorts to the trivial solution of discarding
all wavelet coefficients in order to achieve a zero approxi-
mation value for all data and a maximum relative error by
definition equal to 1. Since this trivial solution can be also
achieved without employing computational resources, we
decided to tune the sanity bound S for a given B so that the
optimal algorithm will achieve maximum relative error less
than 1.

Figure 15 shows the qualitative comparison for various val-
ues of B when approximating SY and FC. The x-axis of
Figure 15a shows the chosen value for S, for each B. In
Figure 15b, S is not used, since all values to be approxi-
mated in FC are already quite large. The error of GSTA
is very close to the optimal in this case as well (6.4% and
4.7% worse than OPT on the average for SY and FC, re-
spectively). GSTR is less effective (on the average, 17%
and 11% worse than OPT), yet quite close to optimal when
compared to the conventional approach. GSTA-2 performs
well for SY (8% worse than OPT), but not well for FC
(18% worse than OPT), indicating that the heuristic mea-
sures of Section 4.5 are not always effective in choosing a
good coefficients set for maximum relative error minimiza-
tion. The synopsis obtained by CON is always far worse
than that of the greedy algorithms.

Scalability The last set of experiments verifies the abil-
ity of our methods to produce good synopses for larger
datasets of different characteristics. We first validate the

SYN N=256

B Sanity OPT GSTA GSTR CON
8 500 0.91518 0.965774 1.05341 1.17021

16 450 0.889862 0.944193 1.01236 1.22964
24 400 0.891643 0.942218 1.00084 1.38334
32 350 0.910447 0.956854 1.02125 1.58096
40 300 0.956289 0.978857 1.06966 1.84446
48 300 0.845717 0.925523 0.961043 1.43373
56 250 0.876188 0.966972 1.1004 1.72047
64 200 0.900785 0.96434 1.19352 1.89829
72 200 0.80805 0.903063 0.926709 1.89829
80 100 0.896957 0.963954 1.18828 3.25899
88 100 0.808146 0.877123 1.18828 1.83618
96 100 0.689961 0.79891 1.18828 1.83618

104 100 0.604531 0.61305 1.18828 1.83618
112 100 0.53369 0.594885 1.18828 1.83118
120 100 0.503678 0.521789 0.541565 1.83118
128 100 0.446183 0.46985 0.541406 1.83118

SYN N=256
errpr/opterror

B Sanity OPT GSTA GSTR CON
8 500 1 1.055283114 1.151041325 1.278666492

Approximation Quality (Relative Error)
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16 450 1 1.061055534 1.137659547 1.381832239
24 400 1 1.056721132 1.122467176 1.551450524
32 350 1 1.050971666 1.121701757 1.736465714
40 300 1 1.02359956 1.118553073 1.928768395
48 300 1 1.0943649 1.136364765 1.69528341
56 250 1 1.103612467 1.255894854 1.963585441
64 200 1 1.070555127 1.324977658 2.107373014
72 200 1 1.11758307 1.146846111 2.349223439
80 100 1 1.074693659 1.324790375 3.633384878
88 100 1 1.085352152 1.470377877 2.272089449
96 100 1 1.157906027 1.722242272 2.661280855

104 100 1 1.014091916 1.965622937 3.037362848
112 100 1 1.114663943 2.226536004 3.431167906
120 100 1 1.035957497 1.075220677 3.635616406
128 100 1 1.053043258 1.213416916 4.104100784

FCA, N=360, S=150<all data values

B Maximum Relative Errror
OPT GSTA GSTR CON GSTA-2

20 0.571249 0.626695 0.637389 1.07955 0.626695
30 0.438694 0.47679 0.597948 0.859373 0.583851
40 0.349984 0.36499 0.417697 0.566397 0.485201
50 0.304934 0.320981 0.309168 0.646144 0.485201
60 0.269522 0.282495 0.284335 0.646144 0.269522
70 0.221402 0.2214 0.225549 0.468487 0.2214
80 0.193046 0.19451 0.209856 0.468487 0.194509
90 0.176677 0.184684 0.185734 0.468487 0.184682
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Figure 15: Quality comparison for max rel

quality of the approximations, using PS and various values
of B. OPT could not be used, due to its extreme space/time
requirements. Thus, we only verified the maximum ab-
solute/relative error produced by the other algorithms. Fig-
ure 16a shows the maximum absolute reconstruction error
of GSTA, GSTR, and CON when the goal is minimization
of max abs. GSTA has good performance, which becomes
increasingly better with B. For B = 600 or with space bud-
get just 3.6% of N the maximum absolute error stabilizes
at a small value (4.65) compared to the standard deviation
(14.02). Although we could not run the optimal algorithm
for this case, we can speculate that its error will be very
close to GSTA, as the trends of Figures 14 show. The er-
ror of the one-pass GSTR algorithm is very close to that
of GSTA (just 9% higher on the average). CON is inap-
propriate also for this dataset. Figure 16b compares the
algorithms aiming at min rel minimization. The trend is
similar; the static greedy algorithm performs best and the
error improves with B. GSTR does not succeed as much
in achieving errors similar to GSTA as for smaller datasets
(see Figure 15), although it is still better compared to CON
(especially for small B).

N=
16384 B

OPT GSTA GSTR CON
300 7.1407 8.6567 12.9923
400 5.9481 6.0404 10.113
500 5.2911 5.6854 8.3004
600 4.6529 5.6854 8.3004
700 4.3091 5.0511 8.3004
800 3.9935 5.0511 7.484
900 3.719 3.9392 7.484

1000 3.4943 3.5053 5.9713
1100 3.2916 3.3056 5.9713
1200 3.11211 3.1916 5.7433
1300 2.9665 3.1575 4.9074
1400 2.8347 3.094 4.9074
1500 2.7307 2.8481 4.9074

error/static
B/N OPT GSTA GSTR CON
0.018311 300 1 1.212304116 1.81947148
0.024414 400 1 1.01551756 1.700206789
0.030518 500 1 1.074521366 1.568747519
0.036621 600 1 1.221904619 1.783919706
0.042725 700 1 1.17219373 1.926249101
0.048828 800 1 1.264830349 1.874045324
0.054932 900 1 1.059209465 2.012368916
0.061035 1000 1 1.003147984 1.708868729
0.067139 1100 1 1.004253251 1.814102564
0.073242 1200 1 1.025542156 1.845468187
0.079346 1300 1 1.06438564 1.654272712
0.085449 1400 1 1.091473525 1.731188486
0.091553 1500 1 1.042992639 1.797121617

1.096328954 1.78738701
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Figure 16: Quality comparison for the PS dataset

Finally, we evaluate the performance of the thresholding al-
gorithms on various-sized subsets of the TM dataset, keep-
ing B constant to N/16. Figure 17 shows the maximum er-
rors produced by the synopses for max abs and max rel
minimization. The results show that accuracy is not af-
fected much by N . In the relative error minimization case,
GSTA and GSTA-2 improve a little, since the data pattern
does not change much with N and the additional space by
a larger B helps improving the compression quality. The
errors are very small, due to the low variance of the data.
The relative performances of the algorithms are consistent
with previous experiments; for max abs the greedy algo-
rithms have similar results and for max rel GSTR com-
putes a worse synopsis than the static algorithms, albeit still
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much better than that computed by CON.

El-nino-temp stats

Conventional
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94 avg 26.74537
47 min 17.05
15 max 31.48
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Figure 17: Quality comparison for the TM dataset

6 Discussion

As we have seen in Section 3.2, our static relative error al-
gorithm requires explicit error computation using the syn-
opsized data. This method has been adopted in a stream-
ing environment in Section 4.5 through a heuristic tech-
nique with satisfactory results, but not always very close to
those of the static solution. On the other hand, the stream-
ing adaptation of GreedyAbs has always very good perfor-
mance (close to that of the static algorithm). This situa-
tion is a result of the inherently more demanding nature of
the relative error measure. In the future, we plan to devise
alternative heuristics towards achieving better approxima-
tions for this measure.

Another direction for future research is the extension of
the introduced greedy wavelet thresholding techniques for
multi-dimentional wavelets. In the multidimensional case,
the optimal solution is computationally harder to derive and
approximation techniques have been proposed for it [6].
Our methods are easily extendable, towards this direction;
an interesting question is how extensions of greedy algo-
rithms would compare to the techniques of [6].

7 Conclusions

In this paper, we proposed efficient and effective greedy al-
gorithms for wavelet thresholding aiming at the minimiza-
tion of maximum absolute and relative error metrics. We
studied both cases of (i) static, apriori available and directly
accessible data and (ii) data that arrive from a data stream
and must be processed in one-pass, by the order they ar-
rive, at the availability of a small memory budget. Con-
trary to the optimal max-error thresholding algorithm [6],
our methods are not constrained by large space/time com-
plexities, thus they can be applied in large real-world prob-
lems, such as signal compression and approximate query
evaluation. In addition, as demonstrated by experiments,
our time-efficient solutions achieve near-optimal quality of
results. Finally, we demonstrate that the conventional ap-
proach of choosing the largest normalized coefficients, al-
though effective in minimizing the L2 metric, does not pro-
duce synopses with small maximum individual errors.
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