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Abstract

Histograms and Wavelet synopses have been
found to be useful in query optimization, ap-
proximate query answering and mining. Over
the last few years several good synopsis al-
gorithms have been proposed. These have
mostly focused on the running time of the
synopsis constructions, optimum or approx-
imate, vis-a-vis their quality. However the
space complexity of synopsis construction al-
gorithms has not been investigated as thor-
oughly. Many of the optimum synopsis con-
struction algorithms (as well as few of the ap-
proximate ones) are expensive in space. In
this paper, we propose a general technique
that reduces space complexity. We show that
the notion of “working space” proposed in
these contexts is redundant. We believe that
our algorithm also generalizes to a broader
range of dynamic programs beyond synopsis
construction. Our modifications can be easily
adapted to existing algorithms. We demon-
strate the performance benefits through ex-
periments on real-life and synthetic data.

1 Introduction

Wavelet and Histogram representations are important
data analysis tools and have been used in image anal-
ysis and signal processing for a long time. Most appli-
cations of these techniques consider representing the
input in terms of the broader characteristics of the
data, referred to as a synopsis or signature. These syn-
opses or signatures, typically constructed to minimize
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some desired error criterion, are used subsequently in
a variety of ways. A few of the highlights include ap-
plications in OLAP/DSS systems by Haas et. al. [18],
in approximate query answering by Amsaleg et. al. [2]
and Acharya et. al. [1], and more recently in mining
time series by Chakraborty et. al. [5].

Histograms were one of the earliest synopses used
in the context of database query optimization [29, 25].
Since the introduction of serial histograms by Ioan-
nidis [19] this area has been a focus of a significant
body of research, e.g., [20, 28, 21, 11, 16] among many
others. Matias, Vitter and Wang [24] gave one of the
first proposals for using Wavelet based synopsis and
over the last few years this topic has also received sig-
nificant attention from different groups of researchers
[4, 12, 9, 8, 26]. Histograms and Wavelets are not the
only synopses structures – quantiles and samples have
been used widely as well. We will not be able to cover
the entire literature and point the reader to the survey
of Gibbons and Matias [10]. In this paper we will fo-
cus on histograms and wavelets mostly, but the ideas
have broad applicability.

Most of the existing histogram and wavelet syn-
opsis construction algorithms employ a dynamic
programming (DP) approach and several of them
are expensive in space. It is sometimes opined that
space used by these algorithms is not a problem with
modern computers – consider O(n2B) space. For
B = 50 and n = 1024 and using 4 bytes to represent
a number, storing n2B numbers amounts to 200
Megabytes; at n = 8192 we are at 12 Gigabytes. Such
an algorithm will have difficulty as n increases, but
a large n is exactly the situation where synopses are
important. Issues of handling super-linear space have
been important in synopsis construction algorithms.
Jagadish et. al. [21], along with the first polytime
V-Optimal histogram construction algorithm, intro-
duced the notion of working space in the context of
synopsis construction problems. They observed that
the optimum algorithm had a local structure and
suggested storing only the local information in main
memory and storing the rest of the data structures
in disk. They also suggested an alternate approach
which blows up the running time by a factor of B, but
maintains linear space. The working space approach
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has since been used widely and we shall shortly see
three examples in context of synopsis construction
problems. However the idea of working space raises
more questions – what is the best partitioning of data,
the organization on disk, the choice between cache
aware or oblivious algorithms, etc. The discussion
leads to the area of external memory algorithms; see
[3, 30] for surveys.

In this paper, we show that for a number of synopsis
construction problems the local structure/information
is the only information we need to store. We can re-
compute the rest of the information without a signifi-
cant increase in running time. Therefore, in a partial
sense, we show that the notion of “working space” is
redundant for a variety of these problems. We believe
our ideas will find use in a broader class of problems
as well.
The space issue assumes more importance in

emerging applications such as a sliding window data
stream. In a fast data rate situation the total space
is best allocated in the main memory. And if we had
larger space available then we could store larger size
synopses or consider larger size windows, and increase
the accuracy of the overall application. This brings
us to the central questions we study in this paper.

Question We consider the following:

1. To construct a O(B) size synopsis for O(n) num-
bers can we design algorithms that use O(n)
space? Note that for offline algorithms a space
complexity of O(n) is optimal.

2. Are there general techniques that apply uniformly
to a range of synopsis structures?

3. Can we demonstrate that the working space is the
total space for many relevant applications?

4. Do such techniques allow “more”, i.e., improve
the running time using cleaner approaches ?

5. Are the techniques easily implementable ? Do we
actually benefit from these new algorithms?

We answer “yes” to the questions above. We take
a fresh look at the approaches and identify the key
ideas that lead us to space efficiency. We focus on
three active areas.

Example 1: Histograms. The V-Optimal his-
togram was introduced by Ioannidis and Poosala in
[20]. Given n numbers, and a parameter B, the goal
in this problem is to find the best piecewise constant
representation of the data with at most B pieces, such
that the sum of squares error between the data and the
representation is minimized. In [28] this was shown to
be a good measure for estimating point queries. Ja-
gadish et. al. [21] gave an O(n2B) time O(nB) space

algorithm to find the optimum B bucket histogram
synopsis. Their result was based on a DP approach
which extends easily to a wide variety of error mea-
sures, workloads, etc. We note that this paper is also
not concerned with any particular error measure and
our ideas extend to the same space of measures as in
[21]. As mentioned earlier, the notion of working space
was shown to be effective in this context by the authors
of [21], and they also proposed an O(n2B2) algorithm
which uses O(n) space. Their algorithms implied that
a “penalty” of O(B) has to be paid in running time
or space. We provide an algorithm which uses O(n)
space and O(n2B) time and improve the state-of-the-
art, which shows that the working space notion is re-
dundant for these problems.

Unfortunately due to space restrictions we cannot
discuss generalizations to other error measures,
workloads, range query histograms and various ap-
proximations; they can be found in [13].

Example 2: Wavelets Optimization problems
Haar Wavelets are highly popular synopsis techniques,
and in case of Euclidean error (or its square), the
largest (normalized) coefficients of the data produce
the best synopsis. This is not true for other measures
such as maximum error and the problem remained
open. Recently Garofalakis and Kumar [8] proposed
an algorithm that uses O(n2B logB) time and O(n2B)
total space using a working space of O(nB) to find the
best B coefficients of the data which give the smallest
maximum error. Since [8] several researchers[26, 23]
observed improvements but the total space complex-
ity remained above O(nB).

The same question arises – do we need super-linear
space? We show that we can find the best B coefficient
that minimize the maximum error (also maximum rel-
ative error) in O(n2) time and O(n) space, indepen-
dent of B. Therefore, again we show that the “work-
ing space” is redundant in this context. For other er-
ror measures, e.g., workloads, weighted `p norms, the
running time is O(n2 logB). Our result also shows
that the error (not the coefficients) of choosing the
best B coefficients can be solved simultaneously for all
0 ≤ B ≤ n in time O(n2). Thus we can choose the
“right” B where the marginal benefit drops by look-
ing at the entire “spectrum”. This solves the “dual
problem” i.e., given an error bound, find the minimum
B such that the best B term synopsis will be within
the error bound, also in O(n2) time and O(n) space.
Note, storing all the coefficients in the answer for all
0 ≤ B ≤ n seem to require Ω(n2) space – in O(n)
space we can compute the coefficients (as well as the
error) for any single B or only the error for all B.

The technique we describe here, in the context
of wavelet optimization algorithms, applies only
to offline algorithms since various quantities are
recomputed. In [14] we provide provably guaranteed
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streaming approximations for these problems. We also
discuss generalizations where the synopsis need not
be restricted to coefficients of the data. See also the
work of Karras and Mamoulis [22] in this proceeding.

Example 3: Extended Wavelets. Extended
wavelets were proposed by Deligiannakis and
Rossopoulos [7] for wavelet representations in pres-
ence of multiple measures. They proposed a knapsack
type computation for the optimum solution in
O(nMB) space and working space O(nM + MB)
for n items with M measures and size of synopsis
B. In a recent work, [17], we were able to improve
the space complexity of the optimum solution to
O(B2 + BM). Our algorithm showed that there
were a few, O(B), “critical” elements in the data
and the optimum algorithm only needed to consider
them. But the central problem remained the same
on those “critical” elements. The state-of-the-art
is a fundamental O(nB) behaviour of the optimum
algorithm (plugging n = B). Using the techniques in
this paper, we improve the total space complexity to
O(BM), which was the “working space” (for n = B)
thereby showing that the working space notion is
redundant in this case as well.

Approximation Algorithms: So far, we have dis-
cussed optimum algorithms only. The space issue is
also important in approximation algorithms – the dis-
cussion on Extended Wavelets provides some intuition.
Most approximation algorithms reduce a search space
by not considering all the elements. For Extended
Wavelets the reduced set was also optimal. In gen-
eral for approximation algorithms, the reduced search
space achieves near optimality, e.g., in approximate
histograms [16] the search space to extend the DP ta-
ble by one was reduced from O(n) to O(Bε−1 log n).
In [15, 27] it was shown that finding the best solu-
tion which is restricted to O(Bε−2 log2 n) well chosen
boundary elements, gives us a near optimum solution
for the entire dataset. But the central issue of space
did not disappear - it is no surprise that the space
complexity of the algorithms are O(B2ε−1 log n) and
O(B2ε−2 log2 n) (unless we pay the factor B in the
running time) and we are back at the same situation
where we were with the optimum algorithms. The cen-
tral idea of the paper does carry over to approximate
histograms. However they require significantly more
technical details. In the interest of space we limit our-
selves to optimum algorithms for the rest of this paper.
The interested reader is referred to [13].

1.1 Our contributions and overview:

As mentioned earlier, our main contribution is a broad
technique that improves a significant number of syn-
opsis construction problems. More specifically

• We present the general framework and the key

ideas in Section 3.

• We present three examples where our ideas im-
prove the algorithms for optimum synopsis con-
struction. We focus on:

1. Histograms, discussed in Section 4. We give
the first O(n2B) time O(n) space optimum
algorithm which applies to a large number of
error measures.

2. Wavelet reconstruction, discussed in Sec-
tion 5. We give the first O(n) space algo-
rithm for a wide variety or error measures
including all known measures. The running
time is O(n2) for the maximum error (rela-
tive, absolute, or weighted/workload) mea-
sures and O(n2 logB) for the others which
involve sum.

3. Extended Wavelets, discussed in Section 6.
We reduce the space requirement of the al-
gorithm to O(BM) from O(MB +B2).

• We demonstrate that the approach is not merely
theoretical – there are no large constants hiding
in O() notations. Using synthetic and real life
data sets which were used in previous papers we
show that the space efficient algorithms give us
the benefit they promise. In case of Wavelets, our
algorithm was superior to alternatives.

Note that we do not discuss quality of synopses
across techniques or error measures, which are of inde-
pendent interest. Our goal in this paper is to develop
space efficient algorithms which apply to a multitude
of measures and synopsis techniques.

2 Definitions and Preliminaries

The V-Optimal histogram construction problem is:

Problem 1 Given a set of n numbers X = x1, . . . , xn

the problem seeks to construct a B piecewise constant
representation (function) H such that ‖X − H‖22 =
∑

i(xi−H(i))
2 is minimized. Each “piece” is a bucket

and defines a subrange [p, q] of the range [1, n].

Many other error measures exist, notably work-
loads or weighted `p norms, maximum error
‖X − H‖∞ = maxi |xi − H(i)| etc. Several re-
searchers have proposed the relative error metric

which uses some function of xi−H(i)
max{|xi|,c}

to compute the

error, e.g., maximum relative error maxi

∣

∣

∣

xi−H(i)
max{|xi|,c}

∣

∣

∣
.

The definitions also extend to range query histograms
which we discuss in [13].

Wavelets are multi-resolution representations of the
data. There is a huge literature on this topic, including
excellent textbooks [6]. Most of the database literature

411



focus on Haar wavelets, due to their simplicity and the
existence of fast algorithms for transforming the data
to a wavelet representation. The inverse transforma-
tion is even simpler, it is simply the addition of at most
log n numbers. Haar Wavelets represent the dataX (of
length n, assumed power of 2) by the set of orthogonal
vectors, ψi, defined below:

ψ1(j) = 1 for all j

ψ2s+t(j) =

{

1
−1

if (t− 1) n
2s + 1 ≤ j ≤ tn

2s −
n
2s+1

if nt
2s −

n
2s+1 + 1 ≤ j ≤ tn

2s

(1 ≤ t ≤ 2s, 1 ≤ s ≤ log n)

For n = 4 the (non-normalized) {ψi} are shown below

{1, 1, 1, 1}, {1, 1,−1,−1}, {1,−1, 0, 0}, {0, 0, 1,−1}

and they extend naturally to larger powers of 2.
The inverse transform of Z is defined as W−1(Z) =
∑

i Ziψi; it is convenient that W
−1(Z)i can be com-

puted in O(log n) time without generating the full in-
verse. To compute W(X), we compute the average
x2i+1+x2i+2

2 and the difference x2i+1−x2i+2

2 for each pair
of consecutive elements as i ranges over 0, 2, 4, 6, . . ..
The difference coefficients form the last n/2 entries
of W(X). The process is repeated on the n/2 aver-
age coefficients – their difference coefficients yield the
n/4 + 1, . . . , n/2’th coefficients of W(X). The process
stops when we compute the overall average, which is
the first element ofW(X). The support of a vector ψi

is the set {j|ψi(j) 6= 0}. These support sets are nested
and are of cardinality which are powers of 2 (dyadic).
Therefore we naturally have a complete binary “co-
efficient tree”. The xj correspond to the leaves, and
the coefficients correspond to the non-leaf nodes of the
tree. Assigning a value ci to a coefficient corresponds
to assigning +ci to all leaves j that are left descen-
dants (descendants of the left child) and −cj to all
right descendants. The wavelet synopsis construction
problem is defined below:

Problem 2 (Minimize Error) Given a set of n
numbers X = x1, . . . , xn the problem seeks to choose at
most B terms from the wavelet representation W(X)
of X, say denoted by Z, s.t. a suitable function of
X−W−1(Z) denoting the error is minimized. For ex-
ample, ‖X − W−1(Z)‖∞ is the minimum maximum
absolute error problem.

The above definition extends to a broader class ∗, e.g.,
weighted-`p/workloads. As mentioned earlier, we can
also solve the dual problem.

Problem 3 ( Minimizing synopsis size) Given a
target error ε find the wavelet reconstruction with
smallest number of coefficients that is within the er-
ror bound for a suitable error function.

The definition of Extended wavelets is in Section 6.
∗Note that ‖X −W−1(Z)‖2

2 follows from Parseval’s equality.

3 The general technique

The fundamental basis of our approach is the follow-
ing: we want to use a divide and conquer algorithm.
However simple divide and conquer (think merge-sort)
does not work in these scenarios. There are two main
problems in synopsis construction scenarios.

• Partition. For example, we may take the following
approach: we find the best b-bucket histogram for
the range [1, . . . , n

2 ] and the range [
n
2+1, . . . , n] for

all b ≤ B and try to merge them to find the best
B bucket histogram for [1, . . . n]. The idea fails
because the optimum solution may not conform
to a bucket ending at n

2 ! Apriori it is not clear
where any of the bucket boundaries will be.

• Interaction. The above problem of bucket bound-
ary disappears in the context of Wavelets, since
the boundaries are aligned since the set {j|ψi(j) 6=
0} has cardinality a power of 2 (dyadic). But a
different problem arises: the wavelets are hierar-
chical and overlap. Thus in our simple strategy,
there will be interaction between the two subprob-
lems through their ancestors.

The problem is that we do not know how to divide the
problem into manageable subproblems, i.e., eliminate
interaction and partition problems simultaneously.
We will use the following strategy:

We will use a dynamic program to find the interface
– the paradigm can be viewed as Dynamic Program-
ming meeting (being used for) Divide and Conquer.

For histograms the interface would be the boundary
bucket which contains the partition; for wavelets this
would be the interaction with the sibling. It may
appear that we have achieved circularity, we have
avoided a DP based solution to use another DP ! But
the central observation is:

If the interface is small, i.e., can be specified
succinctly, the new DP can be smaller.

The reader has probably guessed the game-plan by
now, we will write a much smaller DP to find the in-
terface and then recurse in each part. The parts can
reuse the same space, since we will only be solving at
most one subproblem at a time ! The above is easier
said than done. We need to answer the following:

• Does such an interface exist ? Given a problem
at hand, this will be the first step.

• Can the interface be described succinctly ? This
affects the simplicity and the implementability of
any algorithm as well as space complexity.
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• How to compute it ? This would often involve
solving for part of the original problem, e.g., if
someone told us that the minimum error was 10,
can we use the fact ? The answer is, no, we cannot
use the fact that the error is 10. But if one could
“prove” that 10 was the minimum – we can use
that proof to find a good division/interface. The
fact that we also know the error is an accident. We
shall shortly see examples, but thinking ahead, a
DP is a recursive “proof”.

The central part of the paper will be the following
general theorem, the proof of the theorem is almost
self evident, the difficulty is in applying it.

Theorem 3.1 Suppose there exists a partitioning that
decomposes the problem into two subproblems of size
no more than half the original, and we take g(n,B)
time to find the partitioning. Then the overall synopsis
construction problem can be solved in time f(n,B),
where f(n,B) is at most g(n,B) + 2f(n

2 , B), using a
divide and conquer approach. In fact the running time
can be further tightened to

f(n,B) ≤ g(n,B) + max
B1≤B

{f(
n

2
, B1) + f(

n

2
, B −B1)}

The proof follows if we assume f(n,B) is monotone
non-decreasing in n,B.

4 Example I: Histograms

Given a set of n numbers X = x1, . . . , xn the V-
Optimal histogram construction problem searches for
a piecewise constant representation H with at most B
pieces which minimizes ‖X − H‖22. In [21] a O(n

2B)
time algorithm was given to find the optimum his-
togram using O(nB) space. They also observed that
the space could be reduced to O(n) at the expense of
increasing the running time to O(n2B2).
Several different optimization criteria have been

proposed for histogram construction, e.g., `1, `∞,
weighted variant/workloads, relative error, χ2 to name
a few, as well as extension to piecewise polynomials.
However they are solved by a similar DP and the V-
Opt histograms provide an excellent foil to discuss all
of the measures at the same time.

4.1 V-OPT Algorithm of [21]

Jagadish et. al. [21] show that if a “bucket” or range
[j + 1, . . . , i] is approximated by one value, as is the
case in histograms, the best value v which minimizes

the error e(j + 1, i) =
∑i

r=j+1(xr − v)2 is the mean
∑i

r=j+1 xr. Based on this they gave a natural DP
algorithm which is given in Figure 1.
To compute e(j + 1, i) in O(1) time we maintain two

arrays Sum[i] =
∑i

r=1 xi and Sq[i] =
∑i

r=1 x
2
i .

e(j +1, i) = Sq[i]− Sq[j]− (Sum[i]− Sum[j])2/(i− j)

Algorithm VOPT
1. Let E[i, b] = min. error b bucket histogram for [1, . . . , i].
2. Initially E[i, 1] = e(1, i) for all 1 ≤ i ≤ n
3. For b = 2 to B do
4. For i = 2 to n do {
5. E[i, b] =∞
6. For j = i− 1 downto 1 do {
7. E[i, b] = min{E[i, b], E[j, b− 1] + e(j + 1, i)}

/* perform book-keeping if minimum is changed */
8. (Optional) If (E[i, b] < e(j + 1, i)) break;
9. } }

Figure 1: The VOPT algorithm

The strength of the above algorithm is its general-
ity; it operates with virtually any reasonable defini-
tion of error in Line (7) as long as we can compute
e(j + 1, i) efficiently. The O(n2B2) algorithm uses
the array E[∗, b − 1] to construct E[∗, b] but discards
E[∗, b − 1] immediately. It performs no bookkeeping
since it cannot store O(nB) items. So when the algo-
rithm computes E[∗, B], it uses the minimizing j, i.e.,
argmin1≤j≤n E[j, B − 1] + e(j + 1, n), to recursively
find the buckets for [1, . . . , j]. The optional statement
in Line (8) significantly improves performance since it
avoids useless searching.

4.2 Applying Our paradigm

We will try to find the “interface” or the bucket that
“contains” n

2 .

Definition 4.1 Given n,B, define the middle bucket
MB(1, i, b) to be the bucket [p, q] in the optimal b-
bucket histogram for [1, . . . , i] that contains bn

2 c. If
that optimum solution uses b buckets to the left of p,
we specify the middle bucket by the triple (p, q, b).

Lemma 4.2 If MB(1, n,B) is the triple (p, q, b) then
the partitioning [1, p−1] and [q+1, n] satisfy the three
criterion in the previous section.

Proof: Follows immediately if we show an O(n2B)
time O(n) space algorithm to compute the triple.

Assuming that such an algorithm exists (which we
will see shortly), we can apply the Theorem 3.1 and
the running time of the overall algorithm f(n,B) can
be bounded by

f(n,B) ≤ g(n,B) + 2f(
n

2
, B)

Since p ≤ n
2 ≤ q the two subproblems on [1, . . . , p− 1]

and [q + 1, . . . , n] are of size at most n
2 . If the run-

ning time of the algorithm that finds the division is
g(n,B) = an2B for some constant a, then f(n,B) ≤
2cn2B solves the above equation since

f(n,B) ≤ an2B + 2f(
n

2
, B)

≤ an2B + 2a(
n

2
)2B + 4f(

n

4
, B)
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≤ an2B +
an2B

2
+ 4f(

n

4
, B)

≤ an2B +
an2B

2
+
an2B

4
+ · · · ≤ 2an2B

Therefore summing up, if we can find the middle
bucket in time O(n2B) and space O(n) then we
can solve the V-Optimal histogram problem in time
O(n2B) and space O(n) using our framework (the sub-
problems can use the same space).

4.3 Finding Middle-bucket efficiently

Lemma 4.3 Suppose the last bucket for the optimum
b-bucket histogram for [1, . . . , i] is [j + 1, i]. If j < n

2
then MB(1, i, b + 1) = (j, i, b) otherwise MB(1, i, b +
1) =MB(1, j, b).

Proof: If j ≥ n
2 , the fact that any prefix of the buck-

ets in an optimum histogram are optimum for their
range (otherwise, the overall error would go down by
choosing a different histogram) allow us to conclude
that MB(1, j, b) is also the bucket that contains n

2 for
the best b + 1 bucket histogram of [1, i]. In the other
case, MB(1, i, b+ 1) = (j, i, b) by construction.

The above lemma gives us a DP for comput-
ing MB(1, i, b). The pseudocode is given in Fig-
ure 2. The overall idea is to construct M(1, n,B)
from MB(1, n,B − 1). The array M [i] keeps track
of the MB(1, n, b) for various b and is initialized for
b = 1. Note that we are computing E[i, b] in newE,
and MB(1, i, b) in newM [i]. We are using them to
compute the analogous quantities for b + 1. Observe
that we know the minimum error in E[n] at the end
of the computation – but we do not know the buckets
that give the error. We need the divide and conquer
strategy to give us the buckets.

Algorithm Middle-Bucket(1,n,B)
1. For i = 2 to n {
2. M [i]← (1, i, 0)
3. E[i]← e(1, i)
4. }
5. For b = 2 to B do {
6. newE[i] =∞
7. For i = 2 to n do {
8. For j = i− 1 downto 1 do {
9. If (newE[i] > E[j] + e(j + 1, i)) {
10. newE[i] = E[j] + e(j + 1, i)
11. If (j ≥ n

2
) then newM [i]←M [j]

12. else newM [i]← (j + 1, n, b− 1)
13. }
14. (Optional) If (newM [i] < e(j + 1, i)) break;
15. }
16. M ← newM ;E ← newE;
17. }
18. Now M [n] contains MB(1, n, B)

Figure 2: Algorithm to find MB(1, n,B)

Therefore we are ready to conclude the following

Theorem 4.4 We can compute the V-Optimal his-
togram in time O(n2B) and space O(n) by repeatedly

Algorithm Wavelet Reconstruction
1. We proceed bottom to top in the coefficient tree.
2. At each node i (assuming the children are iL and iR),

set E[i, b, S] as follows

min

{

minb′ max{E[iL, b′, S ∪ {i}], E[iR, b− 1− b′, S ∪ {i}]}
minb′ max{E[iL, b′, S], E[iR, b− b′, S]}

Figure 3: The algorithm in [8].

finding the middle bucket and solving the two subprob-
lems.

Implementation details: The above pseudocode is
almost the actual code. We need a stack to keep track
of the recursion. If we are solving to find a b > 1
bucket histogram for [s, t], which is at the top of stack,
we find the middle bucket (the 1 in the pseudocode is
s and t = n, so n

2 is
t−s
2 for this subproblem); if that

is (p, q, b′), then we pop the top of stack and push a
b′-bucket problem for [s, p− 1] and a b− b′ − 1 bucket
problem for [q + 1, t] to the stack. If b = 1, we have
our bucket ! We simply pop and output it.

5 Example II: Wavelets

Recall that the Wavelet construction problem is that
given a set of n numbers X = x1, . . . , xn the prob-
lem seeks to choose at most B terms from the wavelet
representation W(X) of X, represented by Z s.t. a
suitable error, e.g., ‖X −W−1(Z)‖∞ is minimized.

5.1 Previous algorithm(s)

Recall that the interaction between two sibling inter-
vals in the coefficient tree was through their ancestors.
The idea is to enumerate all possible interactions. We
follow the description of Garofalakis and Kumar [8].
The value of W−1(Z)j is fixed by the choices of all
coefficients i such that j belongs to the support of i.
Suppose S is a subset of the ancestors of a coefficient
i. A natural DP emerges where E[i, b, S] is defined to
be the minimum error such that exactly b coefficients
that are descendants of i are chosen along with the
coefficients of S. The algorithm is given in Figure 3.
We can extend the algorithm to handle other er-

rors by changing minb′ max to minb′
∑

, i.e., adding
the contribution from the children. Clearly the num-
ber of entries in the array E[] is Bn times 2r where r
is the maximum number of ancestors of any node. It
is easy to see that r = log n + 1 and thus the num-
ber of entries (space) is n2B. For maximum relative
error, we may perform binary search for the minimiza-
tion and only need logB time (see [8]) and the overall
time is O(n2B logB). The running time increases to
O(n2B2) for other measures.

5.2 Dynamic Program to Divide and Conquer

As our game-plan suggests, we will write a DP to
discover the “interface”. In this case, the “interface”
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Algorithm WaveOpt(i,v)
/* Computes the best way of allocating 0 ≤ b ≤ B
coefficients to the two subtrees at a node i. Returns
an array of size B with the partition info, error etc.

1. If (i == root) { /* root has no ancestor so v = 0 */
2. A← WaveOpt(child, W [root]);
3. C ← WaveOpt(child, 0);
4. We return the array D[b] = min{A[b− 1], C[b]}
5. D[b] stores the error as well as if it was from A,C
6. } else {
7. If (i == leaf) Return D[b] = |x[i]− v| for all b
8. /* change for other errors */
9. else {
10. A← WaveOpt(iL, v + w[i]);
11. C ← WaveOpt(iR, v − w[i]);
12. P ← WaveOpt(iL, v);
13. Q← WaveOpt(iR, v);
14. For b = 0 to B do {
15. Let t1[b] be the best error if w[i] is chosen
16. t1[b] = min0≤r≤b−1max{A[r], C[b− 1− r]}

17. Likewise, t2[b] = min0≤r≤bmax{A[r], P [b− r]},
18. for the case w[i] is not chosen
19. }
20. Return array D[b] = min{t1[b], t2[b]}. D[b] stores
21. the error, the split r, and min was from t1 or t2.
22. }

Figure 4: The algorithm WaveOpt

consists of two pieces of information (i) Is the parent
chosen ? (ii) How are the coefficients divided between
the two subtrees? Immediately, we come across a
problem; (i) is recursive! The parent depends on
its parent and so on. We definitely do not want to
consider so many cases since we want “small inter-
faces”. We observe that the dependence on the parent
(and through it, on its parent) can be expressed
in one number v as a sum or bias introduced by a
combination of all of them. But we do not want to
write down all possibilities, since there will be at least
O(n) of them for each node. The main idea we use is:

We can recurse within the DP to generate the set
on the fly (without storing them).

We note that although we analyze the same cases
as before, the sophistication of the recurse-within-DP
is higher than the previous algorithm. This is a new
algorithm in itself, and further, is needed to get to
a much better result. The overall implementation is
not complicated - the pseudocode is presented in Fig-
ure 4. The top-level call is WaveOpt(root, 0). The
next lemma follows from induction.
The top-level call is WaveOpt(root, 0). But before

we proceed further, we must assure ourselves that this
recursion-within-DP does not go out of hand.

Lemma 5.1 Each node with ` ancestors is called at
most 2` < 2n times. Therefore the running time of
WaveOpt(root, 0) is O(n2B logB).

Now WaveOpt(root, 0) returns the information of
the split and if the root coefficient was chosen for the
best solution. Based on that information, we could

recursively compute the coefficients – but we did not
do so since we intended this algorithm to serve as a
baseline representing all algorithms that computed the
same table as [8].

Implementation Details: The new algorithm sim-
ply needs a stack. At most one WaveOpt call will
be active between children of the same parent – the
depth of the stack would be O(log n). Therefore for
WaveOpt(root, 0) we need O(B log n) space.

5.3 Further Optimization: SpaceWave

We make the following observation: if a node has t
descendants including itself, then at most t (always be
a power of 2) coefficients can be chosen in its subtree!
We define the algorithm Spacewave(i, v, t) which is
almost the same as described in Figure 4 except it uses
a localB which is min{B, t} at the lines 4, 14, 20 and
passes t/2 to its children on lines 10–13. Note that
we compute a significantly smaller size table overall
compared to [8].

Lemma 5.2 If a node has ` ancestors and t descen-
dants (including itself) then 2`t = 2n.

Thus we return arrays of size min{B, t} from
SpaceWave(i, v, t) – since more than t coefficients can-
not be chosen. A node with ` ancestor needs time

2`min{B, t} logmin{B, t}

Number of nodes with ` > 1 ancestors is at most 2`.
Thus the total time taken over all the nodes is

logn+1
∑

`=0

2`2`min{B, t} logmin{B, t}

The worst case is B = n ≥ t. Using Lemma 5.2 and
change of variables, r = (1 + log n)− `, we get

logn+1
∑

`=0

2n2` log
2n

2`
=

logn+1
∑

r=0

4n2r

2r
= O(n2)

Observe the above holds for all B. For errors
like workload/weighted-`p norms the the sum is over

22`min2{B, t} which evaluates to O(n2 logB). The

space required is likewise
∑log n+1

`=0 min{B, t} which is
B(log n− logB) from the part where ` < log n− logB.
For the other part t forms a geometric series in de-
creasing powers of 2 as ` increases (From Lemma 5.2)
and adds up to O(B). Observe B(log n − logB) =
B log(n/B) ≤ n (for B ≤ n)

Theorem 5.3 We can solve the maximum error
wavelet reconstruction in time O(n2) and space O(n)
using SpaceWave(). For other errors such as weighted-
`p or workloads the running time is O(n

2 logB).
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Implementation Details: We know the “split” in
the top level and allocation of coefficients to the halves
as well as if the root coefficient is chosen. In fact is all
numbers are non-negative the root must be chosen.
We use an additional stack to store the subproblems –
at most one subproblem is solved at a time. Further in
the recursive calls in the subproblems, while we search
for b coefficients we can set localB to be min{b, t}.

The dual Problem: As mentioned in the introduc-
tion, the above algorithm allows us to construct the
entire spectrum of error. Using the spectrum we can
compute the minimum number B′ of coefficients re-
quired for a target error ε. Using this minimum num-
ber B′ found, we can now compute the B′ coefficients
that minimizes the error. The entire algorithm can be
made to work in O(n) space. We can summarize:

Theorem 5.4 We can solve the dual wavelet recon-
struction problem in time O(n2) and space O(n) for
maximum (relative or absolute) error metrics. For
other metrics the running time is O(n2 log n).

However in terms of implementations the dual op-
timization can use significant amount of pruning – we
relegate the discussion of pruning techniques to [13].

6 Example III: Extended Wavelets

Extended wavelets were introduced by Deligiannakis
and Rossopoulos in [7]. They point out that for multi-
measure data, there can be significant saving of space
if we use a non-standard way of storing the informa-
tion. There are several standard ways of extending
1-dimensional (Haar) wavelets to multiple dimensions,
but irrespective of the number of dimensions, the for-
mat of the synopsis is a pair of numbers (coefficient in-
dex,value). In multiple dimensions the size of the coef-
ficient index is larger in bits, whereas in 1-dimensional
transforms taken independently, we may not be tak-
ing correlations into account effectively. In Extended
Wavelets we perform wavelet decomposition indepen-
dently in each dimension. We then store tuples con-
sisting of the coefficient index, a bitmap indicating the
dimensions for which the coefficient in that dimension
is chosen, and a list of values. Since the coefficient
number and the bitmap is shared across the coeffi-
cients, we can store more coefficients than a simple
union of unidimensional transforms or a full-fledged
multi-dimensional representation.
Notice that there is no interaction between the ben-

efits of storing a subset of coefficients for i and a sub-
set for i′. The problem reduces naturally to a Knap-
sack problem where each item (coefficient i) can be
present in increasing sizes si1, si2 . . . , siM (which are
integers) with increasing profits pi1, pi2 . . . , piM (arbi-
trary) whereM is the number of measures. This allows
a dynamic program of O(nMB) time and space, [7].

In [17] we reduce the interesting set of items from n to
O(B) – but the inherent problem remains the same.

Algorithm Ext-Opt
1. For i = 1 to n do
2. For b = 0 to B do {

3. E[i, b] = max

{

E[i− 1, b], max
1≤j≤M

{E[i− 1, b− sj ] + pj}

}

Figure 5: The DP in [7, 17]

Due to shortage of space, we only indicate the broad
picture. There are significant details which can be
found in [13]. The central idea is to find in O(n) time
a partitioning as in histograms. But for this problem
we need a double-cut which partitions both n and B
and creates three pieces. In O(nMB) time we can
find the space allocation to all the pieces and get a
O(nMB) time O(B+nM) space algorithm improving
[7, 17].

7 Experimental Results

The main issue we investigated is the effect of the vari-
ous additional data structures that were defined for the
space efficient algorithms. We use both synthetic and
real life data used in previous papers [9, 17, 16]. We
did not write data to disk for the working space based
algorithms – since organizing that data in the disk well
is a nontrivial task and influences the running time of
the working space based algorithms. For purposes of
comparison we implemented baseline algorithms that
compute the errors only.
We first describe the data sets and then in Sec-

tion 7.2 we present the results on V-Optimal his-
tograms. In Section 7.4 we present the result on max-
imum error wavelets. All experiments reported in this
section were performed on Pentium-4 1.8 GHz machine
with 1 GB of main memory, running RedHat Linux
9.0. All the methods were implemented using GCC
compiler of Version 3.2.2.
See http://www.cis.upenn.edu/∼sudipto/synopsis.html

for some of the executables and more discussion.

7.1 Data Sets

Synthetic Data Sets: The synthetic data sets were
generated with Zipfian frequencies for various levels
of skew that is controlled by the z parameter of the
Zipfian. The z parameter values between 0.3 (low
skew) and 1.5 (moderate skew), the distinct values
between 256 (= 28) and 16384 (= 216), and the tuple
count was set to 1,000,000. Note that the time and
space complexities are not dependent on number of
tuples and thus we did not vary this parameter. A
permutation step was also applied on the produced
Zipfian frequencies to decide the order of frequencies
over the data domain. We show results with the
Normal permutation as described in [9, 16].
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Real Life Data Sets: We also experimented with
real-life data sets. We used the Cover Type data set
from the National Forest Service, which was down-
loaded from UC Irvine†. There are 581,012 tuples in
the data set. Among 54 attributes, we report “hill-
shade3pm” (CovType-HS3) and “aspect” (CovType-A).
Because these attributes have widely different distri-
butions, they were used for performance study in [9].
CovType-HS3 measures a hillshade index (from 0 to
255) at 3 pm on the summer solstice. Its histogram
is bell-shaped and relatively smooth. CovType-A has
uniformly spread distribution with a pipe-organ-style
fluctuation and considerable peaks of noise. It had 360
distinct values and was padded with 0 to make the
same dataset amenable for wavelets. To show scale up
experiments on real life data we use the Dow-Jones In-
dustrial Average (DJIA) data set available at StatLib‡

that contains Dow-Jones Industrial Average (DJIA)
closing values from 1900 to 1993. There were a few
negative values (e.g. −9), which we removed. We fo-
cused on prefixes of the dataset of size upto 16384.

7.2 Experimental study: Histograms

We compared the following:

• VOPT-EO: This is a baseline implementation
which uses O(n) space, and does not maintain the
table (and therefore cannot compute the buckets).
The running time of the algorithm is a good lower
bound on all O(n) space algorithms.

• VOPT-R: It represents the O(n2B2) time and
O(n) space algorithm given in [21] which com-
putes the error as well as the buckets. This algo-
rithm uses the VOPT-EO algorithm recursively.

• SpaceOpt: It represents the space efficient algo-
rithm given in Figure 2.

The algorithms compute the same quantity and we
present the running times under various situations to
see the increase in running time due to our recursive
approach. We do not show the space comparison since
the space usage of all the algorithms is almost exactly
the size of the table times the size of a double/int.
The space usage of the O(nB) space V-Opt algorithm
jumped from 2.8MB to 20MB as B was raised from
10 to 100. The algorithms VOPT-EO and VOPT-R
used 1.4MB and SpaceOpt used 1.6MB for entire
range of settings of B. The space benefit is quite clear
and as is the theme of this paper, we focus only on
the algorithms which have O(n) space complexity.

Dependence on Skew: In Figure 6 we present the
running times of the algorithms for n = 4096 for vari-
ous settings of the skew in the synthetic data.

†See ftp://ftp.ics.uci.edu/pub/machine-learning-databases.
‡See http://lib.stat.cmu.edu/datasets/djdc0093.
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Figure 6: Running times for V-Opt and Space-Opt

Since the algorithm VOPT-R is much slower than
the others to be attractive, we do not include that
algorithm for any further experiments.

Dependence on n: We also investigate the depen-
dence of n keeping B = 50 a fixed constant, this
is presented in Figure 7. We show the graph for
skew = 1. The separation between the lines is insuffi-
cient to show the results for more than one skew value
in the graph, results for other skew settings are similar.

Real life data sets: We show the performance for
fixed size real life data sets in Figure 8. The scale up
experiments on the prefixes of DJIA data set is shown
in Figure 9.

7.3 Summary: Histograms

• Figure 6 shows clearly that the running time of
VOPT-R has quadratic dependence on B, it is
O(n2B2), and the other algorithms have linear
dependence on B. The conclusion holds across
different settings of skew and B. This shows that
SpaceOpt is a significantly better algorithm com-
pared to the previous space efficient algorithms.

417



 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

 256  512  1024  2048  4096  8192  16384

T
im

e(
se

c.
)

Number of Items

"VOPT-EO-25-1.0"
"VOPT-EO-50-1.0"

"Space-OPT-25-1.0"
"Space-OPT-50-1.0"

Figure 7: Running times for B = 50

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10  20  30  40  50  60  70  80  90  100

T
im

e 
(s

ec
.)

Number of buckets

"Space-OPT-CovType-A"
"VOPT-EO-CovType-A"

"Space-OPT-CovType-HS3"
"VOPT-EO-CovType-HS3"

Figure 8: Running times for real life data sets

• Figures 7 and 9 show the running time of VOPT-
EO and Space-OPT on a log-log scale, for syn-
thetic and real life data the dependence is almost
quadratic in n (as expected).

• As expected, for the same setting of B in synthetic
(Figure 7) and real life (Figure 8) data, VOPT-
EO was always faster than SpaceOpt.

The experiments confirm that SpaceOpt is slower than
the baseline algorithm. However, baseline algorithm
only tells us the error whereas SpaceOpt returns us the
entire histogram! We lose a small (but fixed) factor in
running time and save space by a factor of B.

7.4 Experimental study: Wavelets

For the Wavelet synopsis construction problem we
show only the results for the maximum relative er-
ror measure. We could not use the O(n2B) space
algorithm described in [8] since we ran out of mem-
ory quickly. As mentioned earlier, choosing param-
eters of a working space based algorithm is always
unclear and biases comparisons; we eschewed the ap-
proach. We therefore restrict ourselves to compar-
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Figure 9: The DJIA dataset

ing the O(B log n) space WaveOpt() algorithm and
the optimized algorithm SpaceWave(). As discussed
earlier, the algorithm WaveOpt() serves as a lower
bound/baseline for any algorithm that computes the
same table as in [8]. We reiterate that the algorithms
compute the same quantity and we only compare the
running times.

• WaveOpt: This algorithm is described in Sec-
tion 5.2. Since the algorithm is only a baseline,
as mentioned earlier, we did not compute the co-
efficients/answer but the final error only.

• SpaceWave: It represents the space efficient al-
gorithm with the optimization mentioned in Sec-
tion 5.3. This algorithm computes the error as
well as the coefficients, and the final reconstruc-
tion based on those coefficients.

Dependence on Skew We present the compar-
ison of running times for various settings of the
skew parameter in Figure 10. We will only present
the results for skew setting 1 in the rest of this section.

Dependence on n: We present the comparison of
running times if B is fixed and we vary n Figure 11.

Real life data sets: We present the running times
for the real life data sets in Figure 12. We present the
result as B varies for CovType-A and as the size of
the prefix n varies for the DJIA data. For the DJIA
data we also show the time to compute the spectrum,
i.e., the error for all 0 ≤ B ≤ n. The spectrum of the
datasets are shown in Figure 13.

7.5 Summary: Wavelets

• The Wavelet algorithms were far more insensitive
to skew, Figures 10, compared to Histograms, Fig-
ure 6. Once n,B were fixed, the algorithm has
little variation (except the binary search) that de-
pends on the data. There are no obvious pruning
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Figure 10: Running times as skew varies, n = 1024

strategies which we believe remains an open prob-
lem in this area, i.e., can the wavelet algorithms
be made more data driven?.

• All the algorithms are (approximately) quadratic
in n as can be seen from the slopes of the lines in
the log-log plot in Figure 11 and 12(b).

• Recall that the running time of Waveopt is
O(n2B logB). Figures 10, 12(a) & (b) verify that
the running time is almost linear in B.

• SpaceWave is the clear winner and its running
time is almost independent of B as the anal-
ysis suggested. It took less less time to com-
pute the spectrum than to evaluate the coeffi-
cients for a fixed B since there were no recur-
sion/recomputation involved.

8 Summary

In this paper we took a fresh look at DP techniques for
synopsis construction problems. We provided an algo-
rithmic framework using recursion, divide and conquer
and DP to give O(n) space algorithms for Wavelet and
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Histogram synopsis construction problems. We im-
proved the state-of-the-art in many problems simulta-
neously and eliminated the use of working space notion
in those problems. We indicated how the ideas affect
other synopsis construction problems based on DP.
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