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Abstract

Many database applications have the emerg-
ing need to support fuzzy queries that ask for
strings that are similar to a given string, such
as “name similar to smith” and “telephone
number similar to 412-0964.” Query opti-
mization needs the selectivity of such a fuzzy
predicate, i.e., the fraction of records in the
database that satisfy the condition. In this
paper, we study the problem of estimating se-
lectivities of fuzzy string predicates. We de-
velop a novel technique, called SEPIA, to solve
the problem. It groups strings into clusters,
builds a histogram structure for each cluster,
and constructs a global histogram for the data-
base. It is based on the following intuition:
given a query string ¢, a preselected string
p in a cluster, and a string s in the cluster,
based on the proximity between ¢ and p, and
the proximity between p and s, we can obtain
a probability distribution from a global his-
togram about the similarity between ¢ and s.
We give a full specification of the technique
using the edit distance function. We study
challenges in adopting this technique, includ-
ing how to construct the histogram structures,
how to use them to do selectivity estimation,
and how to alleviate the effect of non-uniform
errors in the estimation. We discuss how to
extend the techniques to other similarity func-
tions. Our extensive experiments on real data
sets show that this technique can accurately
estimate selectivities of fuzzy string predicates.
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1 Introduction

Optimizers in database systems need various types of
information to improve the performance of query exe-
cutions. One important type of information is selectiv-
ities of query predicates. Consider a table in a database
with a large number of employee records, including in-
formation such as names, telephone numbers, ages, and
salaries. A query can ask for records that satisfy two
predicates “age < 40 & salary > 55.” To decide an
efficient execution plan, it is critical for the database
optimizer to estimate the selectivity of each predicate,
i.e., the fraction of records in the table that satisfy the
predicate. Such information helps the optimizer choose
an efficient plan to answer the query.

Textual information is prevalent in databases. Re-
cent applications see an emerging need to support
queries with fuzzy (approximate) predicates on string
attributes, such as “name similar_to Smith” and “tele-
phone similar_to 472-0964,” where “similar_to” uses a
predefined, domain-specific function to specify the sim-
ilarity between two strings. Such functions include edit
distance [12], cosine similarity [10], Jaccard coefficient
distance [9], and variants thereof [7, 30]. They could
classify Smith and Smyth to be similar strings. There
are many reasons to support queries with fuzzy string
predicates. To name a few: (1) The user might not
remember exactly the name or the telephone number
when issuing the query. (2) There could be typos in
the conditions of a query. (3) There could be errors
or inconsistencies even in the database, especially in
applications such as data cleaning [2, 11, 14, 19, 24].

There are recent studies on how to process such a
fuzzy predicate efficiently in large databases (e.g.,[2, 4,
11, 18]. In order to utilize these techniques to decide
an efficient execution plan for a query with fuzzy string
predicates (and possibly other predicates), it is impor-
tant for the query optimizer to know the selectivity of
a fuzzy predicate. For instance, consider a query with
two predicates “name similar_to Smith” and “salary >
85.” If there are many records that satisfy the first
predicate and only few satisfy the second, processing
the second predicate first might be a good choice. On



the other hand, if we replace the name Smith with a less
popular name such as Schwarzenegger, then process-
ing the first predicate on the name attribute may pro-
duce a good plan (assuming there is no index on the
salary attribute).

In this paper, we study how to estimate selectivities
of fuzzy string predicates in large databases. Specifi-
cally, we are given a string similarity function f, which
returns f(s1,s2) as the similarity value between two
strings s; and so. Given a bag of strings, a query
string ¢, and a threshold value 0, we want to estimate
how many strings s in the bag satisfy the predicate
f(g,s) <.

Assume we adopt edit distance for the function f.
Our goal thus becomes estimating how many strings
in a database have an edit distance to a given query
string within a given threshold. We develop a novel
technique, called SEPIA, for solving this problem.' Its
main idea is to group strings into clusters, and build a
histogram for the strings in each cluster. In particular,
all the strings within the cluster that have the same
proximity from the pivot string are summarized in the
histogram. Given a query string g, we look at the prox-
imity v; from the string ¢ to the pivot string p in each
cluster. We also look at the proximity v, from the pivot
to each group G of strings in the cluster. We obtain a
distribution of the similarities between the query string
and the strings in the group G, based on this proximity
pair (v1,v2). We obtain this distribution by analyzing
the strings in the database, and storing the informa-
tion in a global histogram. This distribution helps us
estimate how many strings in the group G satisfy the
condition in the query predicate.

In this work, we make the following contributions:

e We propose and fully specify SEPIA as a solution
to the problem of estimating selectivities of fuzzy
string predicates. To the best of our knowledge,
our work is the first attempt to solve this impor-
tant problem.

e We study challenges in adopting SEPIA, including
how to construct effective histogram structures,
how to use the structures to do estimation, and
how to dynamically maintain the structures in the
presence of database changes.

e We study how to extend the technique developed
using edit distance to other string similarity func-
tions, using Jaccard coefficient distance as an ex-
ample.

e We conduct a thorough experimental evaluation
of our technique. The results show that our tech-
nique can provide accurate selectivity estimations.

14SEpIA” stands for “Selectivity Estimation of approximate
PredIcAtes.”
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The rest of the paper is organized as follows. Sec-
tion 2 formulates the selectivity estimation problem.
Section 3 describes the histograms used in SEPIA. Sec-
tion 4 studies how to construct and maintain the his-
togram structures. Section 5 discusses how to improve
the estimation accuracy using an error-correction step,
and how to extend the technique to other similarity
functions. Section 6 reports the results of our experi-
ments. We conclude the work in Section 7.

1.1 Related Work

Many techniques have been developed to estimate se-
lectivities of range conditions on single or multiple nu-
meric attributes (e.g., [16, 22, 27, 28, 29]). Most of
them are based on summary structures in the form of
histograms. They partition the domain of attribute(s)
using certain measurement. Based on different parti-
tioning rules, we can have different kinds of histograms,
such as equi-width histograms and equi-height his-
tograms [29]. One could extend these histograms and
use their partitioning rules for strings based on some
order such as their lexicographic order. However, two
similar strings might not appear close to each other in
such an order. For example, the edit distance between
two telephone numbers 412-0964 and 472-0964 is only
1, but they can appear arbitrarily far from each other
in a lexicographic order. Thus a histogram based on
such an ordering does not provide accurate selectivity
estimation for a fuzzy string predicate.

There are studies on estimating selectivities of string
predicates with a substring and wildcards such as name
LIKE ’%Smith?%’. [15, 23] proposed techniques that
use summary structures such as pruned suffix trees
or Markov tables to store the frequencies of carefully
selected substrings. To estimate the selectivity of a
wildcard predicate, these techniques divide the query
string into disjoint or overlapping substrings, and esti-
mate the selectivity of each substring using the sum-
mary structure. They combine these selectivities to
compute the selectivity of the query string based on
different assumptions. Chaudhuri et al. [5] develop
an estimation technique based on a hypothesis called
“shortest identifying substring.” Informally, it states
that the selectivity of a string is close to the selectiv-
ity of one of its substrings. Their approach guesses
a set of shortest identifying substrings, and combines
the selectivities of those substrings using a regression
tree model. [1, 25] study how to estimate selectivities
of XML path expressions. These techniques cannot be
directly adopted to solve our selectivity problem for
fuzzy string predicates.

Some string similarity functions, such as edit dis-
tance and Jaccard coefficient distance, are metrics.
Traina et al. [20] show that many diverse metric
datasets follow a “power law” distribution. That is, for
a metric-space dataset, the average number of neigh-
bors within a given distance r is proportional to 77,



where D is a constant. (A similar intuition was used
in [32] for multi-dimensional data sets.) They propose
a technique to estimate the D value by building an
optimal M-tree for the dataset. This technique can-
not be applied to solve our problem because of two
reasons. First, their technique estimates the average
number of neighbors in a data set given a distance,
while the actual number of neighbors for each individ-
ual string could be very different for different strings.
Second, our experiments on real string data sets show
that this power law property does not hold under sim-
ilarity functions such as edit distance due to the large
number of pairs of words within the same distance [20].
There have been studies on efficiently answering
queries with fuzzy string predicates, especially in the
context of data cleansing [24, 31]. Gravano et al. [11]
present a technique to do similar string joins inside
a relational database system. Jin et al. [19] develop
an efficient approach to approximate string joins using
mapping techniques. Chaudhuri et al. [4] propose an
indexing structure to support fuzzy queries efficiently.
Jin et al. [18] develop a novel indexing structure called
“MAT-tree” to support fuzzy predicates with mixed
types. The solution in this paper compensates these
studies since it can help the query optimizer decide a
good execution plan using one of these techniques.

2 Problem Formulation

In this section, we introduce basic definitions and for-
mulate the problem of estimating selectivities for fuzzy
string predicates. We focus on selectivity estimation
using edit distance. Section 5.2 discusses how to ex-
tend our technique to other similarity functions.

The edit distance (a.k.a. Levenshtein distance) be-
tween two strings s; and so, is the minimum number of
edit operations of single characters that are needed to
transform s; to sy. Edit operations include insertion,
deletion, and substitution. We denote the edit distance
between two strings s; and so as ed(s1, s2). For ex-
ample, ed(Michael Jordan, Michal Jordon) = 2. In
particular, to convert the first string to the second, the
minimum number of edit operations are to delete the
first e (in the first string) and substitute the last a with
an o. The edit distance between two strings s; and so
can be computed using a dynamic programming algo-
rithm, with a time complexity O(|s1| X |sz2]|), where |s|
and |s2| are the length of s; and sa, respectively [34].

Let B be a bag with |B| strings. Examples include all
names in an employee table, or all telephone numbers
in such a table. A fuzzy string predicate P is in the
format of P(q,d), where ¢ is a query string, and 0§ is
a threshold, i.e., the maximal edit distance. A string
s in the bag B satisfies this predicate if ed(q,s) < 4.
The frequency f(P) of the predicate is the number of
strings in B that satisfy the predicate. The selectivity
of the predicate is f(P)/|B|. We assume the size |B] is
known. Thus our problem becomes the following.
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Problem Statement: Given a fuzzy string
predicate P(q, d) on a bag of strings, estimate
how many strings s in the bag satisfy the
predicate, i.e., ed(gq, s) < 4.

3 Selectivity Estimation Using SEPIA

This section presents our novel approach to the prob-
lem above. Its main idea is to group strings in the
database into clusters, and construct histogram struc-
tures to support estimation. Figure 1 illustrates the
intuition behind our technique. Given a fuzzy predi-
cate P(q,9), consider a pivot string p in a cluster of
strings. Let v; be a measure of the proximity between
q and p. (We will discuss how to choose the pivot string
and measure the proximity shortly.) For each string s
in the cluster, let vy be a measure of the proximity be-
tween p and s. If we have a probability distribution of
the edit distance between ¢ and s, then we can utilize
this distribution to compute the expected number of
strings in the cluster with this proximity vs that sat-
isfy the query predicate. This distribution depends on
the proximity v, and the proximity vo. We can analyze
the strings in the data set to obtain such a distribution.

Query
String: ¢

Figure 1: Intuition of SEPIA.

3.1 Measuring String Proximity

A simple, natural way to represent the proximity be-
tween two strings is to use their edit distance. How-
ever, this number is imprecise in terms of differenti-
ating strings with the same edit distance to a pivot
string. For instance, Figure 2(a) shows a cluster with
a pivot string p = lucia. Two strings in the cluster,
lucas and luciano, have the same edit distance 2 to p.
Consider an approximate query predicate P(lukas, 3).
String lucas is closer to the query string (with an edit
distance 1) than luciano (with an edit distance 4), but
we cannot differentiate these two strings based on their
same edit distance to the pivot string p.

To more precisely describe the proximity between
two strings, we introduce a new representation, called
edit vector, to keep track of the edit operations dur-
ing the computation of the edit distance between the
strings.

Definition 3.1 (Edit Vector) Let s; and so be two
strings. An edit vector from sy to so is a three-number



(a) Edit distances (b) Edit vectors
Figure 2: Using edit vectors to better describe string
proximity than edit distances.

vector in the form (I, D, S}, in which I, D, and S are
the number of insertions, deletions, and substitutions,
respectively, in a sequence of edit operations of single
characters that transforms s; to so with the minimum
number of edit operations. Let v be such an edit vector.
Clearly the edit distance between the two strings is
vl =14+ D+S. O

For instance, an edit vector from string lucia to
luciano is (2,0,0), since two character insertions are
needed to transform the former to the latter. An edit
vector from string lucia to lucas is (1, 1,0), since we
need an insertion and a deletion of single characters to
transform the former to the latter. Figure 2(b) shows
the edit vectors for some of the string pairs. The ad-
vantage of using edit vectors over edit distances is that
edit vectors are more discriminative for string pairs
with the same edit distance, while it can still maintain
the edit distance information between the strings.

There can be different edit vectors from a string s;
and a string so, since there can be different sequences
with the minimum number of edit operations. We can
choose any of them as a representation of their prox-
imity. Our experiments with real data strings showed
that there tends to be a unique edit vector from a
string to a similar string. In our experiments, more
than 91% of string pairs with an edit distance within
3 have a unique edit vector. We can compute an edit
vector from s; to s by slightly modifying the dynamic
programming algorithm that computes their edit dis-
tance [34]. Notice that an edit vector from s; to so
might not be the same as an edit vector from ss to sq,
i.e., edit vectors are not symmetric.

3.2 Histogram Structures

Figure 3 illustrates the histogram structures used in
our approach. We group the strings in the database
into clusters. Let C4,...,Cy be the clusters. For each
of them C;, we choose one of its strings as the pivot
for the cluster. This pivot, denoted as p;, is a rep-
resentative of the strings in C;. We assume that the
pivot is not part of the data set for the purpose of easy
dynamic maintenance, as discussed in Section 4. (The
idea of selecting a pivot for a cluster is also adopted
in [3, 8, 17, 33].) This string is selected in such a way
that it is close to the strings in C;. We also keep the
radius 7; of this cluster, which is the maximum edit
distance between p; and any string in the cluster.
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Global PPD Table

Cluster 1
ghotel Edit . Percentage
Frequency Table ° Vector v1 | Vector v2 Distance Count %)
Edit Vector | # of Strings <1,0,1> | <1,1,0> 1 9 30
<0.0,0> 4 <1,01> [ <L1Lo> | 2 18 60
ig?(‘; 172 101> | <1,L0> | 3 30 100
2 110> | <LLI> 2 3 32
<1,1,0> | <1,1,1> 3 19 76
Cluster 2 <1,1,0> | <I,1,1> 4 22 88
Pivot p2 <LLLo> [ <LLI> | 5 25 100
Edit Vector | # of Strings ° L
<0,0,0> 3
<0,1,0> 40 Edit Vector | # of Strings Cluster k
<0,0,0> 2
<10.2> 34 Pi?t pk

Figure 3: Histograms used in SEPIA.

Frequency Tables: For each cluster, we compute
an edit vector from its pivot to each string in the clus-
ter. We group these strings based on their edit vector
from the pivot. We summarize these strings by storing
the number of strings for each group. These numbers
are stored in a structure, called “frequency table,” for
this cluster. Each entry in the table has an edit vector
and the number of strings that have this edit vector
from the pivot. For instance, the frequency table for
cluster 1 shows that 4 strings in this cluster have an
edit vector (0,0,0) from the pivot string (i.e., there
are 4 identical strings), 12 strings with the edit vector
(0,0, 1) from the pivot, and 7 strings with (0, 1,0). In-
tuitively, this table summarizes the distribution of the
strings in the cluster in terms of their proximity from
the pivot.

PPD Table: We also construct a histogram, called
“proximity-pair-distribution table” (“PPD table” for
short), to store global statistical information about the
strings in the database. As illustrated in Figure 1,
the goal of having this histogram is to store informa-
tion about the edit-distance distribution given a pair
(v1,v2) of edit vectors. Each entry in the table is in
the format of:

(Edit Vector, Edit Vector, EditDist, Count, Percentage).

Each entry (v1, v2, €, ¢, f) means that, for a query string
that has an edit vector v; to the pivot of a cluster,
among all the strings in the cluster that have an edit
vector vy from the pivot, statistically, on the average
f (percentage) of these strings have an edit distance
within e to the query string. The count ¢ is the number
of generated triplets (vy,vg,€e’) (where e < e) in the
construction of this table (discussed in Section 4.2).
We keep this count in order to support incremental
maintenance of this table.

For instance, consider the PPD table in Figure 3.
The first three entries mean the following. If a query
string has an edit vector (1,0, 1) to the pivot of a clus-
ter, for all the strings in the cluster that have an edit
vector (1,1,0) from the pivot, 30%, 60%, and 100%
of these strings have an edit distance within 1, 2, and
3, respectively, to the query string. In addition, dur-
ing the construction of this table, there are 9, 18, and



30 triplets (v1,vq,¢€’), where €' is within 1, 2, and 3,
respectively. To support efficient lookups, the PPD ta-
ble can be implemented as a hash table using the first
three values of each entry as the hash key.

3.3 Frequency Estimation

Figure 4 shows the pseudo code of our estimation al-
gorithm. To estimate the frequency of a fuzzy string
predicate P(q,d), we scan through the pivots of the
clusters. For the pivot p; of cluster C; with a radius
r;, we compute an edit vector vy from ¢ to p; and their
edit distance ed(q,p;). If |v1| > r; + 0, based on the
triangular inequality, we can ignore this cluster since
no string in this cluster can satisfy the predicate.

For each remaining cluster with a pivot p;, we go
through the entries in its frequency table. Recall that
each entry (ve,n) in the frequency table means that
there are n strings in this cluster with an edit vector
vy from the pivot p;. If |v1 |+ |vz| < J, by the triangular
inequality, all these n strings satisfy the predicate, so
we add n to the total estimation. If ||v1]| — |va|| > 4,
then we can ignore this entry based on the triangular
inequality. Otherwise, we use the triplet (vy,v9,9) to
look up the PPD table, and find the corresponding
percentage f. The product of f and n gives us an
estimation about how many in these n strings have an
edit distance within ¢ to the query string q. We take
the sum of these products for different v, vectors in
this cluster, and for all the clusters.

Data Structures:
e String clusters (1, ..., Ck, each C; has a pivot
string p;, a radius r;, and a frequency table F'T;.
e Global proximity-pair-distribution table PPD.
Estimation Algorithm
Input: A fuzzy string predicate P(q,d), where
e ¢ is a query string, and
e J is an edit-distance threshold.
Output: Estimated # of strings satisfying the predicate.
Method:
est «— 0;
for i=1tok){
Compute an edit vector v from ¢ to p;;
if (|v1] > r: + ) continue; // ignore this cluster
for (each entry (ve,n) in FT;) {
if (Ju1| + |v2| < 6)) { est — est + n; continue;}
if (||v1| — |v2|| > 0)) continue;
Use (v1,v2,0) to find a percentage f in PPD;
if (f is not found) continue; // no such entry
est «— est + f X n;
}
}

return (est);

Figure 4: Estimation algorithm.
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4 Construction and Maintenance

In this section we study how to construct and maintain
the histograms in SEPIA.

4.1 Clustering Strings

Clustering has been studied in the literature due to
its importance in many applications. Clustering al-
gorithms developed for Euclidean spaces (e.g., the k-
means algorithm [13]) are not directly applicable in
our case, since edit distance does not form a Euclidean
space.

We need to consider two factors when generating
clusters of strings. The first one is the quality of each
cluster. We want to group similar strings into one clus-
ter. The pivot we choose for a cluster is a representa-
tive of the strings in the cluster. The more similar
the strings are to this pivot, when we use a pair of edit
vectors to look up the global PPD table during an esti-
mation, the more accurate the distribution information
we can get from the PPD table. We can measure the
quality of a cluster as the average edit distance from
the strings in the cluster to its pivot. The smaller the
average edit distance is, the better the cluster is.

The second factor is the number of clusters. As
the number of clusters increases, we will have a better
chance to improve the quality of each cluster. On the
other hand, increasing this number can also increase
other costs: (1) The number of frequency tables will
increase, causing their total size to increase. (2) When
estimating the frequency of a fuzzy predicate, the es-
timation time can also increase since we need to scan
through the pivots. In particular, we need to compute
an edit vector from the query string to each pivot. Our
experiments showed that the total estimation time is
mainly dominated by this computation. Thus, in order
to reduce the estimation time and histogram space, we
need to restrict the number of clusters in our histogram
structures. We present two algorithms for clustering
strings, which are experimentally evaluated.

Clustering Based on Lexicographic Order:
One naive clustering method is to group strings based
on their lexicographic order. We could adopt the idea
in equi-height histograms [29] by partitioning the range
into k segments (clusters) with the same number of
strings in each segment. Within each cluster, we can
choose a string in the “middle” as the pivot. This ap-
proach is based on the assumption that strings close
in their lexicographic order tend to have a small edit
distance, such as university and universal.

Clustering Using k-Medoids Methods: We
can cluster strings using the k-Medoids algorithm [21]
based on the idea of “Partitioning Around Medoids,” or
“PAM.” The medoid concept used in these algorithms
is the same as our pivot concept. Using the k-medoids
algorithm, we proceed in two steps. In the first step
(called “BUILD”), we select an arbitrary collection of
k strings from the dataset as initial pivots, and assign



each remaining object to the closest pivot according to
their edit distances. We define an objective function as
the total distance between each string in a cluster and
its pivot. In the second step (called “SWAP”), we try
to reduce the value of the objective function by swap-
ping a selected pivot with an unselected string. We
pick the pair that can best improve the objective func-
tion, swaps the pair, and re-distributes the remaining
strings to the new pivots. We repeat this step till the
value of the objective function can no longer be de-
creased. We can further improve the efficiency of the
basic algorithm by adopting the idea in [21]. We sam-
ple the database several times (e.g., 5 times). For each
sample, we do the BUILD step described above, and
calculate the value of the objective function. The piv-
ots of the sample with the minimum objective function
value are chosen as the final pivots of the entire data
set. Each remaining object is assigned to the closest
pivot to form clusters.

4.2 Constructing Histogram Structures

Frequency Tables: For each cluster, we calculate the
edit vector from the pivot string to every string in-
side the cluster. We construct the frequency table by
counting how many strings exist in the cluster for each
unique edit vector.

PPD Tuable: To populate the PPD table, we need to
gather enough samples of string triplets (g, p, ), where
q is a string in a fuzzy predicate, p is the pivot in a
cluster, and s is a string in the cluster. Once we have
enough such string triplets, we calculate an edit vector
vy (from ¢ to p) and an edit vector vy from p to s. We
also compute the edit distance e = ed(q, s). After gen-
erating enough such triplets T, for each unique triplet
(v1,v2,€) in T, we insert a record (vy,vs, ¢, ¢, ¢/A) into
the PPD table, where c is the total number of occur-
rences of triplets (vy,ve,¢e’) in T, where ¢’ < e, and A
is the total number of occurrences of the pair (vq,v2)
inT.

There are different ways to generate samples of
string triplets (g,p,s). Recall in Figure 4, when we
look up the PPD table during an estimation, if a pair
(v1,v2) does not appear in the table, we assume no
string with an edit vector vo from the pivot string can
satisfy the fuzzy predicate. Thus we want to generate
sample triplets to cover as many (vq,vs) pairs as pos-
sible to avoid possible miss hits during an estimation.
On the other hand, we also need to consider the run-
ning time when generating sample string triplets, due
to the cost of computing edit vectors. We present the
following methods for generating sample string triplets,
which are experimentally evaluated (Section 6).

e ALL RAND: The method randomly samples a small
number of strings in the data set as query strings
in fuzzy predicates. It generates a collection of
string triplets (g, p, s) by considering each of the
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query strings, the pivot of each cluster, and each
string in the cluster.

e CLOSE RAND: The method is similar to ALL_RAND
except that, for each query string, it only consid-
ers, say, 10 closest pivots to the query string based
on edit distances.

e CLOSE LEX: This method is different from
CLOSE_RAND in the way they generate query
strings. CLOSE_LEX sorts the strings in the data
lexicographically, and uniformly selects sample
strings in the order.

e CLOSE_UNIQUE: This method is different from
CLOSE_RAND in the way they generate query
strings. In the process of generating random query
strings, CLOSE_UNIQUE keeps a sample string only
if the string can generate at least a certain num-
ber, say 10, of new vy edit vectors. The objective
of CLOSE_UNIQUE is to generate as many unique
edit-vector pairs as possible.

4.3 Dynamic Maintenance

The frequency tables for the clusters can be easily
maintained in the presence of data updates. If a new
String Speqy is inserted into the data set, we add it to
its closest cluster C'. We compute an edit vector vg
from the pivot of C' to spew, and increment the count
of this vector vy in the frequency table of C. We can
modify the radius of this cluster if needed. The case of
deleting a string can be dealt with in a similar manner.

In order to incrementally maintain the global PPD
table when the database is updated, we need to con-
sider the effect of insertions and deletions on the table.
In Section 4.2 we discussed how to populate the PPD
table by generating samples of string triplets (g, p, s),
in which ¢ is from a small number of strings in a work-
load of fuzzy predicates. Let S denote the set of these
query strings. To support incremental maintenance of
the PPD table, we keep these query strings in S. For
each pivot string p;, we also store the precomputed edit
vectors from these strings to the pivot p;.

Consider a new string s, inserted into the data-
base. Let C be the cluster whose pivot p is closest
t0 Spew among all the pivots, and we modify the fre-
quency table of this cluster (as described above). We
compute an edit vector ve from p to the new string.
For each string ¢ in S, we compute the edit distance
ed(q, Snew)- We use the (precomputed) edit vector vy
from ¢ to p to form a new proximity pair (vq,v2). We
use this pair to look up the PPD table and locate en-
tries with this pair. For each entry (vi,vq,e,¢, f), we
increase the count ¢ by one if e > ed(q, Spew). Ac-
cordingly we modify the f percentage values for these
entries. Since the number of strings in S is small, the
cost of this incremental maintenance is small, as shown
in our experiments. The PPD table can be maintained



in a similar manner when existing strings are deleted.
Notice that the pivots are not part of the data set. As
many other histogram structures proposed in the lit-
erature, if there are enough insertions/deletions in the
database, we may need to reconstruct the histogram
structures in order to support accurate estimations.

5 Improving Estimation Accuracy and
Extensions to Other Functions

In this section we discuss how to further improve the
accuracy of estimations using SEPIA, and how to ex-
tend the technique to other similarity functions.

5.1 Improving Estimation Accuracy

Estimated frequencies using the histograms in SEPIA
could be different from the real frequencies mainly due
to two reasons. The first one is miss hits of the PPD
table, i.e., a proximity pair during an estimation does
not exist in the PPD table. The second one is that
the percentage entries in the PPD table may not be
accurate.

We propose the following approach to further im-
prove the accuracy of the initial estimation using the
PPD table. The main idea is to use a small number
of query strings, and use their estimated frequencies
and real selectivities to build a model. Given the ini-
tial estimation for a query string, we apply this model
to the initial estimation to get a new, more accurate
estimation. (A similar idea is used in [26].)

We select a small number of strings to generate a
workload of fuzzy string predicates. The threshold of
a predicate is chosen randomly within an edit distance
range. We estimate the frequencies of these predicates
using the PPD table. We also compute their real fre-
quencies by computing how many strings satisfy each
query predicate. We analyze the relative error for each
estimation, defined as (fest — freai)/ freal, Where fest
is the estimated frequency, and freq is the real fre-
quency. Figure 5 shows a simple example of such er-
rors for the frequency estimations of four predicates
Py, ..., Py. For instance, the estimated frequency for
predicate P; is 750, while the real frequency is 500.
The relative error for this estimation is +50%, which
is an overestimation.

Probability

Relative 50%
Error
+50%

Predicates Real | Estimate

P1(tommy,2) 500 750

25% 25%

P2(james,3) 400 | 600 | +50% i
P3(jordan, 2) | 600 | 600 0% H Relative
P4(david, 2) 500 | 300 -40% | Error

-40% 0% +50%
Figure 5: Relative errors of predicates.

Based on the relative errors of the four queries, we
obtain an error distribution model, in which probabilis-
tically 25% of the predicates have an estimation with
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a relative error —40%; 50% of the predicates have an
estimation with a relative error +50%; and 25% of the
predicates will produce an accurate estimation. The
average relative error is +15%. Given an initial esti-
mation for a query predicate, we can use this average
error to adjust the initial estimation, so that proba-
bilistically we can bring it closer to the real frequency.

The relative error for each estimation is related to
factors such as the initial estimation, the length of the
query string, and the threshold in the predicate. Our
experiments show the following. The initial estimation
tends to be an overestimation for longer query strings,
and large initial estimations are usually an underesti-
mation. One reason is the following. With the same
edit distance threshold, the longer the query string is,
the more likely it has a small frequency. The percent-
age values in the PPD table are average values. There-
fore, longer strings tend to suffer from overestimations,
and shorter strings can suffer from underestimations.
These observations suggest that we cannot build a uni-
versal error distribution model for all predicates.

We use a decision tree to compute the expected rel-
ative error for the initial estimation of a fuzzy predi-
cate based on its string length, threshold, and initial
estimation. We use a workload of fuzzy predicates to
produce this decision tree. Figure 6 shows such a deci-
sion tree. In each intermediate node, we use the three
factors as the conditions on the branches. Fach leaf
node has an average relative error for those predicates
that satisfy the conditions on the path from the root
to this leaf node. Take the leftmost leaf node as an
example. It means that for all fuzzy predicates with a
threshold § = 1, a query string with length between 1
and 5, whose initial estimated frequency is within 40,
the average relative error is —15%.

&6: threshold;
L: query string length;
IE: Initial estimate

0<=IE<=40 0<=IE<=40

0<=IE<=40,
|E>=41

O

-15% 20%  +12% +17%  -23% 8% +25% 1%

Figure 6: Decision tree to compute average relative
error of initial estimation.

Given a fuzzy string predicate P(q,d), we traverse
the tree and identify a leaf node based on its ¢ value,
the length L of ¢, and the initial estimate IFE using
the PPD table. We use the average relative error r at
the leaf node to compute a new estimated frequency.
That is, we return TIJF—El as the final estimated frequency
based on the definition (fest — freat)/ frear Of relative
error. In our experiments we will show that this step
can effectively improve the accuracy of estimations.



5.2 Extensions to Other Similarity Functions

Our SEPIA approach provides a general framework for
frequency estimation of fuzzy string predicates. It can
be extended to other similarity functions. Let F be
such a function. When we group strings to clusters,
we should use F as a distance function to measure the
similarity between two strings. One important issue
in the extension is how to measure the proximity be-
tween two strings. In the edit distance case, we use
the concept of edit vector to represent such a proxim-
ity. For a new function F, we need to develop such a
measure as a good representation for the string prox-
imity. We need to consider the tradeoff between the
specificity and generality of such a measure. On one
hand, this measure should be specific enough so that
it can differentiate strings within a cluster, based on
their proximity from the pivot of the cluster (See, for
example, Figure 2). On the other hand, the measure
cannot be too specific either, since otherwise we can-
not have enough samples in each proximity pair in the
PPD table to obtain a meaningful probability distrib-
ution. The reason is that it becomes more likely that
different strings in a cluster have different proximities
from the pivot string.

We use the Jaccard coefficient distance function as
an example to show how to extend SEPIA to a new
similarity function. Let us first revisit its definition.
Let n be an integer. Given a string s, the set of n-
grams of s, denoted G(s,n), is obtained by sliding a
window of length n over the characters of string s. For
instance, if n = 3:

G(“Michael Jordon” )={"Mic’, ’ich’, ’cha’, "hae’, ’ael’,
el 1), 7 Jo?, PJor’, Jord’, 'rdo’, 'don’}.
G(“Michal Jordan”)={"Mic’, ’ich’, ’cha’, "hal’, ’al ’, ’1
J, 7 Jo’, "Jor’, Jord’, 'rda’, ’dan’}.

The Jaccard Coefficient Distance [7] between
two strings s; and so for an integer n, denoted
jed(sy,s2,m), is defined as:

3 |G(s1,n) N G(s2,n)]

jcd(sy,82,n) =1 .
ged(sr, s2:m) = 1= 1 ) UG (sa )]

For example, jed(“Michael Jordon”, “Michal Jordan”,
3)=1- % ~ 0.56. The smaller the Jaccard coefficient
distance between two strings is, the more similar they
are.

To adopt SEPIA to estimate frequencies of fuzzy
predicates using Jaccard coeflicient distance, instead of
using edit vector, we need a new measure that is dis-
criminative enough, and retains the semantics of prox-
imity between strings as well. Following this principle,
we use the following vector between two strings, s; and
So, as a proximity representation:

(|G(s1,n) N G(s2,n)|,|G(s1,n) UG(s2,n)|,ed(s1,2)).

Instead of using edit vector, we use this new proxim-
ity vector to construct the frequency tables of different

clusters, and the global PPD table. Our experiments
show that this proximity measure works comparably
well for Jaccard coefficient distance.

6 Experiments

This section presents our extensive experimental re-
sults to evaluate the proposed SEPIA approach. We
used two main data sources. (1) Data set 1 consisted of
71,000 author names collected from the Citeseer Dig-
ital Library.2 The length of each name varied from 2
to 20, and the average length was around 12. (2) Data
set 2 was a set of movie records available at the UCI
KDD repository.?> We extracted 11,423 unique movie
titles, whose lengths varied between 3 and 80, with a
mean length about 35. These two datasets had few
duplicates originally. In order to evaluate SEPIA for
predicates with various selectivities, we introduced du-
plicates into each dataset. We randomly selected 10%
of the records from each dataset. For each of them,
we introduced a number of duplicates that followed
a uniform distribution between 1 and 20. Therefore,
on the average each record in the 10% of the records
was duplicated 10 times. After this step, Data set 1
contained 142,000 author names and Data set 2 had
22,846 movie titles.

We evaluated the accuracy of SEPIA using a work-
load of query predicates. It had two types of predi-
cates: one was a predicate whose string was from the
dataset, the other was a predicate whose string was
not in the dataset. SEPIA gave similar estimation ac-
curacies for both types of predicates. The edit distance
threshold of each predicate was a random integer be-
tween 1 and 4 for Data set 1, and between 6 and 10
for Data set 2. To evaluate the accuracy of an esti-
mation for a fuzzy predicate, we used its relative er-
ror, defined as (fest — freat)/ freal, Where feq is the
estimated frequency, freq is the real frequency of this
predicate. Correspondingly, we define its absolute rel-
ative error as |fest — freatl/ frear- Compared to related
studies [5, 6, 25] that use measures that favor large
selectivities, the results using this measure show that
SEPIA can provide accurate estimates for both small
and large selectivities.

We implemented SEPIA using Visual C++. All
the experiments were run on a PC, with a 2.4GHz
Pentium-4 CPU and 1024MB memory. The operat-
ing system was Windows XP. The experimental results
were very consistent between the two data sets, even
though they have different sizes and query-length dis-
tributions, and we were using different thresholds. Due
to space limitation, we mainly report the results on
Data set 1 with the edit distance metric. Section 6.6
will report some results of Jaccard coefficient distance.
The size of the SEPIA histogram structures was small.
For instance, when we had 1,000 clusters for Data set

2http://citeseer.ist.psu.edu/
Shttp://kdd.ics.uci.edu/databases/movies/movies.html



1, the size of the PPD table was about 5 MB, and the
total size of the frequency tables was about 200 kB.

6.1 Clustering Algorithms

We used the lexicographic-based clustering algorithm
and the k-Medoids clustering algorithm, as discussed
in Section 4.1, to cluster strings. We used Data set 1
with 142,000 strings, and fixed the number of clusters
to 1,000. After running each clustering algorithm, we
applied the CLOSE_RAND heuristic to populate the PPD
table. Then we ran our estimation algorithm using the
testing query load to calculate the average absolute
relative error. In these experiments we did not apply
the error-correction step discussed in Section 5.1.

@ k-Medoids @ Lexicographic

217

120

45 4 37

. ==

Estimation Time  Average Absolute
Relative Error (%)

Clustering Time
(sec) (ms)

Figure 7: Comparison of two clustering algorithms.

Figure 7 shows the results of the two clustering al-
gorithms. The k-Medoids algorithm took more time
(217 seconds) to finish the clustering step than the
lexicographic-based algorithm (120 seconds). Their es-
timation times were similar: 45ms for k-Medoids and
47ms for the other. For the average absolute relative
error, k-Medoids (18%) was better than the other algo-
rithm (37%). Thus we chose the k-Medoids algorithm
to cluster strings in all other experiments.

6.2 Populating PPD Table

Heuristics: We experimentally evaluated the four
different heuristics for constructing the PPD ta-
ble, namely, ALL_RAND, CLOSE_RAND, CLOSE_LEX, and
CLOSE_UNIQUE, as discussed in Section 4.2. We first
generated 1,000 clusters for Data set 1 using k-
Medoids. For each heuristic, we sampled 5% of the
strings as strings in a workload of fuzzy predicates. We
collected the average absolute relative error for each
heuristic. Figure 8 shows the details of the sampling
time and error comparisons.

The running time for ALL_RAND was the most (54
minutes), since it constructed string triplets for all
the clusters for each query string. CLOSE_RAND ran
much faster (20 minutes) since it only constructed sam-
ples for the 10 closest clusters for each query string.
CLOSE_LEX was slightly slower than CLOSE_RAND be-
cause CLOSE_LEX had an additional sorting step. On
the other hand, CLOSE_LEX had a slightly smaller es-
timation error (17% versus 18%). CLOSE_UNIQUE took

405

[2ALL_RAND B CLOSE_RAND O CLOSE_LEX 0 CLOSE_UNIQUE |
54

45

Sampling Time (min) Average Absolute Relative

Error (%)

Figure 8: Different heuristics for populating the PPD
table.

45 minutes, mainly because it needed to do additional
condition checking. There was no big difference in the
estimation errors for the heuristics. In the remaining
experiments we chose CLOSE_RAND due to its low run-
ning time.

Number of Workload Predicates: When popu-
lating the PPD table, we generated a workload of pred-
icates, the strings of which were sampled from the data
set. This number affects the quality of the PPD table.
The more samples we get, the more accurate the PPD
table becomes. However, the cost of sampling more
string triplets also becomes larger. We used Data set
1, and generated 1,000 clusters using k-Medoids algo-
rithm. We picked the CLOSE_RAND heuristic to perform
the sampling, and sampled 1% to 10% of the strings as
the strings in a workload of predicates. The results are
in Figure 9.

120

100
80
60 -
40

Sampling Time (min)

20

Average absolute relative error (%)
5
o

o 2 4 & 8 10
Sample ratio (%)

(b) Average absolute rela-

tive error

. . . .
0 2 4 6 8 10
Samp!e Ratio (%)

(a) Sampling Time

Figure 9: Effect of number of predicates in populating
PPD table.

Figure 9(a) shows the sampling time for different
sampling ratios. For instance, it took 20 minutes to
sample 5% of the dataset as query strings to generate
triplets to populate the PPD table. For a 10% sample,
the time was about 100 minutes. The average absolute
relative error enjoyed a big reduction when the sam-
pling ratio increased from 1% to 4%, then decreased
slowly as we sampled more strings. Considering the
sampling time and the relative error, we chose a sam-
ple ratio around 4% — 5% in other experiments.



6.3 Effectiveness of Error Correction Step

After an initial estimation using the PPD table, we ap-
plied the error-correction step to further improve the
estimation accuracy. We used both Data set 1 and
Data set 2. We used the k-Medoids algorithm to gen-
erate 1,000 and 200 clusters for Data set 1 and Data
set 2, respectively. We use the CLOSE_RAND heuristic to
sample 5% of each dataset to populate its PPD table.
We learned the decision tree as described in Section 5.1.
We ran the estimation for the testing query load with
and without the error correction. The difference of
their running times was negligible. For instance, with-
out error correction, the average estimation time for
a query predicate for Data set 1 was around 45 ms.
With error correction, it became 49 ms. Therefore, we
mainly evaluated the effect of the error-correction step
on the relative estimation error.

‘ @ Without Error Correction B With Error Correction‘

25

]

N
o

Average Absolute Relative
Error for Data set 1 (%)

Average Absolute Relative
Error for Data set 2 (%)

Figure 10: Effectiveness of error correction models.

Figure 10 shows a big reduction on the error after
the error-reduction step. For example, the average ab-
solute relative error for Data set 1 was 18% without the
error correction, and it reduced to 10% after the error-
correction step. The step achieved a 15% reduction for
Data set 2 as well (from 25% to 12%). These results
show that the error-correction step is very effective in
improving the quality of our selectivity estimation.
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Figure 11: Quartile distribution of relative errors.

To see the details of estimation errors, we also
calculated the quartile distribution of the rela-
tive errors for both datasets. The quartile dis-
tribution bucketizes the relative errors into the
following buckets: [-100%, —75%), [—75%,—50%),
[-50%, —25%), [—25%,0%), [0%,25%), [25%,50%),

406

[50%, 75%), [75%,100%), [100%, c0). Estimates that
are negative indicate underestimation, and positives
mean overestimation. Figure 11 shows the quartile dis-
tributions of the relative errors for both datasets. The
results show that estimation using our SEPIA technique
was very accurate.

6.4 Effect of Number of Clusters

We evaluated the effect of the number of clusters. The
more clusters we have, the closer the strings inside a
cluster are to its pivot. As a result, the pivots can bet-
ter represent the strings and the histograms are more
accurate. On the other hand, more clusters require
more time for online estimation, because the cost of
the estimation is mainly due to scanning all the pivots
and calculating the edit vectors.

We did experiments on Data set 1. We used
the k-Medoids algorithm to generate clusters, and
CLOSE_RAND to populate the corresponding PPD table.
We applied the error-correction step. We let the num-
ber of clusters vary from 500 to 2,000. Figure 12 shows
the clustering time, the estimation time, and the av-
erage absolute relative error for different numbers of
clusters. The clustering time and the estimation time
increased linearly with the number of clusters. The av-
erage absolute relative error decreased as the number
of clusters increased, and the reduction became smaller
after more than 1,000 clusters were used. When we
used 1, 000 clusters, the estimation time was only about
42 ms.
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Figure 12: Effect of Number of Clusters.

We then chose subsets of the records in Data set 1
with different numbers of records. We used the same
number of clusters, 1,000, for these subsets. Figure 13
shows the average absolute relative errors for different
data sizes. As the data set became larger, the error

2500



increased from 4% for 20,000 records (§ = 4) to 14%
for 142,000 records, which is still very low.
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Figure 13: Relative error with 1,000 clusters.

If we want to keep the average estimation error as
the data size increases, we need to use more clusters.
In the next set of experiments, for different subsets
of the records, the number of clusters was 1% of the
number of strings in each subset. Figure 14 shows the
results for different subsets. The relative error stayed
stable for those subsets with different sizes. For in-
stance, when the threshold of 2, the average absolute
relative error of a subset with 2,000 records was 9.2%,
while it was 9.9% a subset with 120,000 records.
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Figure 14: Relative error versus database size (Data
set 1).

6.5 Dynamic Maintenance

We performed dynamic maintenance on Data set 1. We
randomly generated a sequence of updates. For each
update, we randomly selected a string in the dataset,
and introduced a random number (between 1 and 5) of
edit changes to the string. Figures 15(a) and (b) show
the maintenance time and the average relative errors
after different numbers of updates. On the average,
an update took about 18 ms to finish, and the aver-
age absolute relative error after many updates did not
deteriorate much. For instance, before any updates,
the relative error was 17%. After 2,000 updates, it
remained close to 21%. These results show that the
histograms in SEPIA can be maintained efficiently, and
the estimation accuracy does not change much after
many updates.
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Figure 15: Dynamic maintenance.

6.6 Jaccard Coefficient Distance

We also evaluated the applicability of our approach
to other distance metrics by using Jaccard coefficient
distance as an example. First, we repeated the same
set of experiments for Data set 1, and replaced the edit
distance function with the Jaccard coefficient function.
Figure 16 shows that estimation accuracy using SEPIA
was also very high for this new similarity function.
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Figure 16: Relative error for Data set 1 using Jaccard
coefficient distance.

We also repeated the experiments in Section 6.4 us-
ing the new function to see how the average absolute
relative error changes with different numbers of clus-
ters. Figure 17 shows a similar trend as Figure 12(c).
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Figure 17: Relative error versus the number of clusters
using Jaccard coeflicient distance.



7 Conclusions

We proposed a novel technique, called SEPIA, to sup-
port accurate selectivity estimation of fuzzy string
predicates. It groups strings into clusters, and builds
a histogram for the strings in each cluster. It also
constructs a global histogram to keep distributions of
similarity values based on string proximities. The his-
tograms can be efficiently constructed and maintained.
Our extensive experiments showed our SEPIA technique
can support accurate estimation efficiently.
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