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Abstract 

Cost-based query optimizers need to estimate the 
selectivity of conjunctive predicates when com-
paring alternative query execution plans. To this 
end, advanced optimizers use multivariate statis-
tics (MVS) to improve information about the 
joint distribution of attribute values in a table. 
The joint distribution for all columns is almost 
always too large to store completely, and the re-
sulting use of partial distribution information 
raises the possibility that multiple, non-equiva-
lent selectivity estimates may be available for a 
given predicate. Current optimizers use ad hoc 
methods to ensure that selectivities are estimated 
in a consistent manner. These methods ignore 
valuable information and tend to bias the opti-
mizer toward query plans for which the least in-
formation is available, often yielding poor re-
sults. In this paper we present a novel method for 
consistent selectivity estimation based on the 
principle of maximum entropy (ME). Our 
method efficiently exploits all available infor-
mation and avoids the bias problem. In the ab-
sence of detailed knowledge, the ME approach 
reduces to standard uniformity and independence 
assumptions. Our implementation using a proto-
type version of DB2 UDB shows that ME im-
proves the optimizer’s cardinality estimates by 
orders of magnitude, resulting in better plan 
quality and significantly reduced query execution 
times.  

1.   Introduction 
Estimating the selectivity of predicates has always been a 
challenging task for a query optimizer in a relational data-
base management system. A classic problem has been the 
lack of detailed information about the joint frequency 
distribution of attribute values in the table of interest. Per-
haps ironically, the additional information now available 
to modern optimizers has in a certain sense made the se-
lectivity-estimation problem even harder. 

Specifically, consider the problem of estimating the 
selectivity s1,2,…,n of a conjunctive predicate of the form  
p1 ∧ p2 ∧ … ∧ pn, where each pi is a simple predicate 
(also called a Boolean Factor, or BF) of the form “column 
op literal”. Here column is a column name, op is a 
relational comparison operator such as “=”, “>”, or 
“LIKE”, and literal is a literal in the domain of the col-
umn; some examples of simple predicates are ‘make = 
“Honda”’ and ‘year > 1984’. By the selectivity of a predi-
cate p, we mean, as usual, the fraction of rows in the table 
that satisfy p.1 In older optimizers, statistics are 
maintained on each individual column, so that the 
individual selectivities s1, s2, …, sn of p1, p2, …, pn are 
available. Such a query optimizer would then impose an 
independence assumption and estimate the desired 
selectivity as s1,2,…,n = s1 * s2 * … * sn. Such estimates 
ignore correlations between attribute values, and 
consequently can be wildly inaccurate, often 
underestimating the true selectivity by orders of 
magnitude and leading to a poor choice of query 
execution plan (QEP).  

Ideally, to overcome the problems caused by the inde-
pendence assumption, the optimizer should store the 
multidimensional joint frequency distribution for all of the 
columns in the database. In practice, the amount of 

                                                           
1 Note that without loss of generality each pi can also be a 
disjunction of simple predicates or any other kind of predicate 
(e.g., subquery, IN-list). For this work we only require that the 
optimizer has some way to estimate the selectivity si of pi. 
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storage required for the full distribution is exponentially 
large, making this approach infeasible. Researchers 
therefore have proposed storage of selected multivariate 
statistics (MVS) that summarize important partial 
information about the joint distribution. Proposals have 
ranged from multidimensional histograms [PI97] on 
selected columns to other, simpler forms of column-group 
statistics [IMH+04]. Thus, for predicates p1, p2, …, pn, the 
optimizer typically has access to the individual 
selectivities s1, s2, …, sn as well as a limited collection of  
joint selectivities, such as  s1,2, s3,5, and s2,3,4. The 
independence assumption is then used to “fill in the gaps” 
in the incomplete information, e.g., we can estimate the 
unknown selectivity s1,2,3 by s1,2 * s3. 

A new and serious problem now arises, however. 
There may be multiple, non-equivalent ways of estimating 
the selectivity for a given predicate.  Figure 1, for exam-
ple, shows possible QEPs for a query consisting of the 
conjunctive predicate p1 ∧ p2 ∧ p3. The QEP in Figure 
1(a) uses an index-ANDing operation (∧) to apply p1 ∧ p2 
and afterwards applies predicate p3 by a FETCH operator, 
which retrieves rows from a base table according to the 
row identifiers returned from the index-ANDing operator.  
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Figure 1: QEPs and Selectivity Estimation 

Suppose that the optimizer knows the selectivities s1, 
s2, s3 of the BFs p1, p2, p3. Also suppose that it knows 
about a correlation between p1 and p2 via knowledge of 
the selectivity s1,2 of p1 ∧ p2. Using independence, the 
optimizer might then estimate the selectivity of p1 ∧ p2 ∧ 
p3 as sa

1,2,3 = s1,2 * s3.  
Figure 1(b) shows an alternative QEP that first applies 

p1 ∧ p3 and then applies p2. If the optimizer also knows 
the selectivity s1,3 of p1 ∧ p3, use of the independence 
assumption might yield a selectivity estimate sb

1,2,3 = s1,3 * 
s2. However, this would result in an inconsistency if, as is 
likely, sa

1,2,3 ≠ sb
1,2,3. There are potentially other choices, 

such as s1 * s2 * s3 or, if s2,3 is known, s1,2*s2,3/s2; the latter 
estimate amounts to a conditional independence assump-
tion. Any choice of estimate will be arbitrary, since there 
is no supporting knowledge to justify ignoring a 
correlation or assuming conditional independence; such a 
choice will then arbitrarily bias the optimizer toward 
choosing one plan over the other. Even worse, if the 
optimizer does not use the same choice of estimate every 
time that it is required, then different plans will be costed 
inconsistently, leading to “apples and oranges” 
comparisons and unreliable plan choices  

Assuming that the QEP in Figure 1(a) is the first to be 
evaluated, a modern optimizer would avoid the foregoing 
consistency problem by recording the fact that s1,2 was 
applied and then avoiding future application of any other 
MVS that contain either p1 or p2, but not both. In our 
example, the selectivities for the QEP in Figure 1(c) 
would be used and the ones in Figure 1(b) would not. The 
optimizer would therefore compute the selectivity of p1 ∧ 
p3 to be s1 * s3 using independence, instead of using the 
MVS s1,3. Thus the selectivity s1,2,3 would be estimated in 
a manner consistent with Figure 1(a).  Note that, when 
evaluating the QEP in Figure 1(a), the optimizer used the 
estimate sa

1,2,3 = s1,2 * s3 rather than s1 * s2 * s3, since, in-
tuitively, the former estimate better exploits the available 
correlation information. In general, there may be many 
possible choices; the complicated (ad hoc) decision 
algorithm used by DB2 UDB is described in more detail 
in the Appendix.  

Although the ad hoc method described above ensures 
consistency, it ignores valuable knowledge, e.g., of the 
correlation between p1 and p3. Moreover, this method 
complicates the logic of the optimizer, because 
cumbersome bookkeeping is required to keep track of 
how an estimate was derived initially and to ensure that it 
will always be computed in the same way when costing 
other plans. Even worse, ignoring the known correlation 
between p1 and p3 also introduces bias towards certain 
QEPs: if, as is often the case with correlation, s1,3 >> s1 * 
s3, and s1,2 >> s1 * s2, and if s1,2 and s1,3 have comparable 
values, then the optimizer will be biased towards the plan 
in Figure 1(c), even though the plan in Figure 1(a) might 
be cheaper, i.e., the optimizer thinks that the plan in 
Figure 1(c) will produce fewer rows during index-
ANDing, but this might not actually be the case. In 
general, an optimizer will often be drawn towards those 
QEPs about which it knows the least, because use of the 
independence assumption makes these plans seem 
cheaper due to underestimation. We call this problem 
“fleeing from knowledge to ignorance”. 

In this paper, we provide a novel method for estimat-
ing the selectivity of a conjunctive predicate; the method 
exploits and combines all of the available MVS in a prin-
cipled, consistent, and unbiased manner. Our technique 
rests on the principle of maximum entropy (ME) [GS85], 
which is a mathematical embodiment of Occam’s Razor 
and provides the “simplest” possible selectivity estimate 
that is consistent with all of the available information. (In 
the absence of detailed knowledge, the ME approach re-
duces to standard uniformity and independence assump-
tions.) Our new approach avoids the problems of incon-
sistent QEP comparisons and the flight from knowledge 
to ignorance. 

We emphasize that, unlike DB2’s ad hoc method or 
the method proposed in [BC02] (which tries to choose the 
“best” of the available MVS for estimating a selectivity) 
the ME method is the first to exploit all of the available 
MVS and actually refine the optimizer’s cardinality model 
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beyond the information explicitly given by the statistics. 
Also, as discussed in Section 6, our results differ from 
virtually all current and previous work in this area, which 
deals only with constructing [BC04, IMH+04, BC03, 
SHM+05], storing [PIH+96], and maintaining [SLM+01, 
BCG01, AC99] multivariate statistics. Indeed our method 
can be used in conjunction with any of the foregoing 
techniques.  

Thus the contributions of our paper are: (1) 
enunciating and formalizing the problem of consistency 
and bias during QEP evaluation in the presence of partial 
knowledge about the joint frequency distribution (as 
embodied in the available MVS), (2) proposing a new 
method for cardinality estimation in this setting that 
exploits all available distributional information, (3) 
applying the iterative scaling algorithm to compute 
consistent and unbiased selectivity estimates based on our 
problem formulation using the ME principle, (4) 
providing a detailed experimental evaluation of our 
approach with respect to quality and computation time, as 
well as a comparison to the DB2 UDB optimizer. Our 
work appears to be the first to apply information-theoretic 
ideas to the problem of producing consistent selectivity 
estimates. 

The paper is organized as follows. Section 2 gives 
some background and formalizes the selectivity-estima-
tion problem. In Section 3, we describe the ME approach 
to unbiased, efficient, and consistent selectivity 
estimation. We show how the iterative scaling algorithm 
can be applied in our setting; this well-known algorithm 
uses a Lagrange-multiplier approach to numerically 
compute an approximate ME solution. Section 4 provides 
an experimental evaluation, and in Section 5 we discuss 
some practical considerations. After surveying related 
work in Section 6, we conclude in Section 7. The 
Appendix describes the current state of the art in using 
MVS for cardinality estimation in a commercial DBMS.  

2.   Background 
Commercial query optimizers [ATL+03, IBM02, IBM04, 
Mic04] use statistical information on the number of rows 
in a table and the number of distinct values in a column to 
compute the selectivity of a simple predicate p. Assuming 
ten distinct values in the MAKE column and using the 
uniformity assumption, the selectivity of the predicate p1: 
‘MAKE = “Honda”’ is estimated as s1 = 1/10. Similarly, 
with 100 distinct values in the MODEL column and 10 
distinct values in the COLOR column, we obtain s2 = 
1/100 for p2: MODEL = “Accord” and s3 =1/10 for p3: 
COLOR = “red”.  Advanced commercial optimizers can 
improve upon these basic estimates by maintaining 
frequency histograms on the values in individual columns. 

As indicated previously, in the absence of other in-
formation, current optimizers compute the selectivity of a 
conjunctive predicate using the independence assumption. 
For instance, p1,2,3 = p1 ∧ p2 ∧ p3 is the predicate restrict-

ing a query to retrieve all red Honda Accords, and the se-
lectivity of  p1,2,3 is computed as s1,2,3 = s1 * s2 * s3. In our 
example, the optimizer would estimate the selectivity of 
red Honda Accords to be 1/10000. As only Honda makes 
Accords, there is a strong correlation between these two 
columns, actually a functional dependency in this case. 
The actual selectivity of p1,2 must be 1/100. Thus a more 
appropriate estimate of the selectivity of p1,2,3 is 1/1000, 
one order of magnitude greater than the estimate using the 
independence assumption. 

2.1   Formalizing the Selectivity Estimation Problem 

We now formalize the problem of selectivity estimation 
for conjunctive predicates, given partial MVS, and define 
some useful terminology. Let P = {p1, …, pn} be a set of 
BFs. For any X ⊆ N = {1, …, n}, denote by pX the con-
junctive predicate ∧i∈X pi . Let s be a probability measure 
over 2N, the powerset of N, with the interpretation that sX 
is the selectivity of the predicate pX. Usually, for |X| = 1, 
the histograms and column statistics from the system 
catalog determine sX and are all known. For |X| > 1, the 
MVS may be stored in the database system catalog either 
as multidimensional histograms, index statistics, or some 
other form of column-group statistics or statistics on in-
termediate tables. In practice, sX is not known for all pos-
sible predicate combinations due to the exponential num-
ber of combinations of columns that can be used to define 
MVS.  Suppose that sX is known for every X in some col-
lection2 T ⊂ 2N. Then the selectivity estimation problem is 
to compute sX for X ∈2N \ T.  

It is intuitively clear that the query optimizer should 
avoid any extraneous assumptions about the unknown 
selectivities while simultaneously exploiting all existing 
knowledge in order to avoid unjustified bias towards any 
particular solution. In the Appendix, we survey the 
method that DB2 uses to compute missing selectivities 
and illustrate why this approach cannot use all existing 
knowledge without producing an inconsistent model. In 
the following section, we present the ME principle, which 
formalizes the notion of avoiding bias. 

2.2 The Maximum-Entropy Principle 

The maximum-entropy principle [GS85] models all that is 
known and assumes nothing about the unknown. It is a 
method for analyzing the available information in order to 
determine a unique epistemic probability distribution. 
Information theory [Sha48] defines for a probability dis-
tribution q = (q1, q2, …) a measure of uncertainty called 
entropy: ∑−=

i ii qqqH log)( . The ME principle pre-

scribes selection of the unique probability distribution that 
maximizes the entropy function H(q) and is consistent 
with respect to the known information. 

                                                           
2 Note that the empty set ∅ is part of T, as s∅ = 1 when applying 
no predicates. 
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Entropy maximization without any additional infor-
mation uses the single constraint that the sum of all prob-
abilities is equal to one. The ME probability distribution 
then is the uniform distribution. When constraints only 
involve marginals of a multivariate distribution, the ME 
solution coincides with the independence assumption. 

Query optimizers that do not use MVS actually esti-
mate their selectivities for conjunctive queries according 
to the ME principle: they assume uniformity when no 
information about column distributions is available, and 
they assume independence because they do not know 
about any correlations. By integrating the more general 
concept of maximum entropy into the optimizer’s selec-
tivity model, we thereby generalize the concepts of uni-
formity and independence. This enables the optimizer to 
take advantage of all available information in a consistent 
way, avoiding inappropriate bias towards any given set of 
selectivity estimates. 

3.   Consistent Selectivity Estimation Using 
Maximum-Entropy 
The ME principle applied to selectivity estimation means 
that, given several selectivities of simple predicates and 
conjuncts, we choose the most uniform/independent 
selectivity model consistent with all of this knowledge.  

3.1 The Constrained Optimization Problem 

For each predicate p, write p1 = p and p0 = ¬p. An atom is 
a term in disjunctive normal form (DNF) over the space 
of n predicates, i.e., a term of the form ∧i∈N

ib
ip for bi 

∈{0,1}. We use b = (b1,…,bn) ∈ {0,1}n  to denote the 
atom ∧i∈N

ib
ip . As a further abbreviation, we sometimes 

omit the parentheses and commas when denoting a 
specific atom. For example, using P = {p1, p2, p3} with |P| 
= 3, we denote by 100 the vector (1,0,0) and thus the atom 
p1 ∧ ¬p2 ∧ ¬p3 .  

For each predicate pX, X∈2N, denote by C(X) the set of 
components of X, i.e, the set of all atoms contributing to  
pX . Formally,  

C(X) = {b ∈ {0,1}n | ∀ i∈X : bi = 1} and 
C(∅) = {0,1}n 

For the predicates p1 and p1,2 we obtain: 
C({1}) = {100, 110, 101, 111}  
C({1,2}) = {110, 111}. 

Additionally, for every T  ⊆ 2N , we denote by P(b,T)  the 
set of all known X ∈ T  ⊆ 2N  such that pX has b as an 
atom in its DNF representation, i.e., P(b,T) = {X ∈ T | ∀ 
i∈X : bi = 1} ∪ {∅}. For the atom 011 and T = 2{1,2,3} we 
obtain the set P(b,T) = {{2}, {3}, {2,3}, ∅}.  

Let xb denote the selectivity of an atom, with xb ≥  0. 
Given sX for X ∈ T, we compute sX  for X ∉T according to 
the ME principle. To this end, we must solve the 
following constrained optimization problem: 

 
minimize∑ ∈ nb bb xx

}1,0{
log    (1) 

given the |T| constraints  
 

∑ ∈
=

)( XCb Xb sx  for all X ∈ T   (2) 

 
The constraints are the known selectivities. The solution 
is a probability distribution with the maximum value of 
uncertainty (entropy), subject to the constraints. One of 
the included constraints is s∅ = ∑ ∈

=nb bx
}1,0{

1 , which 

asserts that the combined selectivity of all atoms is 1. We 
can solve the above problem analytically only in simple 
cases with a small number of unknowns. In general, a 
numerical method is required. 

3.2  Example 

Figure 2 shows the probability space created for the 
predicate space created by N = {1,2,3} and the knowledge 
set  T = {{1}, {2}, {3}, {1,2}, {1,3}, ∅} with the selec-
tivities s1= 0.1, s2 = 0.2, s3 = 0.25, s12 = 0.05, s13 = 0.03, 
and s∅ = 1.  

321 ppp ¬∧¬∧ 321 ppp ¬∧∧¬
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Figure 2: Probability space for |T |= 6 and N = {1,2,3} 

This example results in the following six constraints: 
s1  = 111101110100 xxxx +++  = 0.1  (I) 
s2  = 111110011010 xxxx +++  = 0.2  (II) 
s3  = 111101011001 xxxx +++   = 0.25  (III) 
s1,2 = 111110 xx +    = 0.05  (IV) 
s1,3 = 111101 xx +    = 0.03  (V) 
s∅ = 3{0,1}∈∑ bb

x    = 1   (VI) 

The task of selectivity estimation is to now compute a 
solution for all atoms xb, b  ∈ {0,1}3 that maximizes the 
entropy function - 3{0,1}

log
∈∑ b bb

x x and satisfies the above 
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six constraints. All si, i ∈ 2{1,2,3}, can then be computed 
from the xb using the formula (2). 

p3

p2p1

000
0.56667

100
0.035
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0.035
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0.015
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0.11333
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001
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p2p1
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0.015
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0.11333

011
0.03667

001
0.18333

 
Figure 3: Maximum-Entropy Solution 

Figure 3 gives the results obtained when solving this 
constrained optimization problem. For instance, in this 
ME solution, we obtain the selectivity estimate s1,2,3 = x111 
= 0.015 and s2,3 = x111 + x011 = 0.05167. 

In the next section, we describe an algorithm to 
compute this result efficiently for an arbitrary number n of 
simple predicates P and an arbitrary set T of conjunctions 
over simple predicates. 

3.3 The Iterative Scaling Algorithm 

To solve the constrained optimization problem in its 
general form, we first use the method of Lagrange 
multipliers to obtain a system of optimality equations. 
Since the entropy function is concave, a solution of this 
system yields the unique solution of the optimization 
problem [DR72]. We associate a Lagrange multiplier λX 

with each known sX. This includes λ∅, a multiplier 
associated with the constraint s∅ = 1. The Lagrangian for 

( : {0,1} )n
bx b= ∈x  and ( : )X X Tλ= ∈λ  is given by

 

( ){0,1} ( )
( , ) logn b b X b Xb X T b C X

L x x x sλ
∈ ∈ ∈

= − −∑ ∑ ∑x λ  

 
Taking derivatives with respect to the bx  and setting 

them equal to zero yields the optimality equations:  
 

( ),
log 1b XX P b T

x λ
∈

+ = ∑ .   (3) 

 
By making the substitution λ= X

Xz e , we obtain an 
equivalent exponential form: 

 

( ),

1
∈

= ∏b XX P b T
x z

e
 .   (4) 

 
Using equation (4) to eliminate xb in equation (2), we 

find that 

( )( ) , X Yb C Y X P b T
z s e

∈ ∈
= ∗∑ ∏ .   (5) 

It is usually not possible to analytically compute the 
Lagrange multipliers Z = (z1,…, z|T|) satisfying equation 
(5). We use a variant of the iterative scaling algorithm 
[DR72] to efficiently obtain an approximate ME solution. 
The algorithm’s main objective is to produce a new set Z 
of multipliers by iteratively refining the old Z0. Each 
iteration consists of |T | steps, during each of which the 
algorithm selects one Y ∈ T  and changes only the 
multiplier zY  associated with the constraint induced by sY, 
while keeping the other multipliers constant. Therefore, 
temporarily the current equation (5) is satisfied for Z.  

From equation (5) we can factor out the common La-
grange multiplier zY. Because this multiplier occurs in all 
summands on the left side, we can solve for zY to obtain 
the iterative scaling equation: 

( )( ) , \{ }

Y
Y

Xb C Y X P b T Y

s e
z

z
∈ ∈

∗
=

∑ ∏
   (6) 

During each iteration step, the algorithm visits all 
members of Z, updating the value according to (6) for 
each zY , including Y = ∅. The sequence of iterated solu-
tions converges to some limit Z [DR72]. The algorithm 
terminates when ∆z, the change of all multipliers, be-
comes negligible between successive iterations. We then 
use Z to compute the values for the unknown xb using 
equation (4), which, in turn, determines sX for X ∉ T. 
Figure 4 below shows the overall scaling algorithm. 
Input:  
  partial knowledge of a probability distribution, 
  with known sY for every Y ∈ T ⊂ 2N  (∅ ∈ T) 

Output: 
  An approximate ME solution xb  for all atoms  b 
  ∈ {0, 1}n  
1 FOR X ∈ T: zX  := 1;  // ENDFOR X 
2. ε := 10-6; 
3. ∆z := ε; ∆z0 := 10 * ε; 
4. WHILE abs(∆z0 - ∆z) > ε  
5    ∆z0 := ∆z; ∆z := 0; 
6.    FOR Y ∈ T: 
7.       sum := 0 
8.       FOR b ∈ C(Y) 
9.          product := 1 
10          FOR X ∈ P(b,T)\Y 
11.             product *= zX ; // ENDFOR X 
12.          sum += product;  // ENDFOR b 
13a       zY

0 := zY ; 

13b       zY := Ys e
sum

∗
; 

14.   ∆z += abs
0 

 
 

Y

Y

z
z

; // ENDFOR Y 

Figure 4: Iterative Scaling Algorithm 
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3.4 Integrating the Model into the DB2 Optimizer 

The existing DB2 UDB optimizer precomputes selectivi-
ties from single-column statistics and MVS prior to plan 
enumeration, costing, and selection. When costing a plan 
that involves a conjunctive predicate p, the optimizer esti-
mates p’s selectivity by using a precomputed selectivity if 
available, or else combining several precomputed selec-
tivities using the ad hoc method outlined in the Appendix. 
The optimizer takes precautions to avoid inconsistencies 
by keeping track of how a missing estimate for a predicate 
p was computed when it is first requested by a subplan 
during join enumeration. Subsequent requests for p’s se-
lectivity estimate will use this recorded information to 
ensure that the estimate is always derived in the same 
way. While this approach avoids inconsistencies, it does 
not utilize all available information as outlined previously 
and also causes an arbitrary bias towards particular plans, 
depending on how the selectivity was derived initially; 
this initial derivation depends in turn on the order in 
which selectivity estimates are requested during optimi-
zation.  

The ME model can be seamlessly integrated into the 
DB2 UDB optimizer. For our prototype implementation, 
we extended the precomputation phase to not only com-
pute selectivities based on statistical information, but also 
to precompute all missing selectivities using the iterative 
scaling algorithm. This precomputation eliminates the 
need to use the heuristics given in the Appendix for cost-
ing. It also eliminates the need to keep track of how se-
lectivities were combined in order to avoid inconsisten-
cies during estimation, because the ME estimates are in-
herently consistent with the statistics and generally appli-
cable without causing any bias. The DB2 optimizer uses 
these precomputed selectivity estimates during dynamic 
programming to compute the cardinalities of each partial 
QEP it considers. 

Our extensions to the cardinality model enable the 
optimizer to use all available statistics in a consistent way, 
for all plans in the plan space. This improved knowledge 
results in better query plans and improved query execu-
tion times, as shown experimentally in the next section. 
Our modifications also simplify the query optimizer’s 
logic, as consistency checks and record-keeping are no 
longer necessary during cardinality estimation. 

4. Experimental Evaluation 
We applied the ME approach to estimate cardinalities for 
queries having conjunctive predicates on a single table. 
All available information about (joint) column frequen-
cies was used and any unknown selectivities were esti-
mated using ME. 
To validate the quality of the ME estimates, we computed 
for each query the absolute error of the estimated cardi-
nality relative to the true cardinality. We compared the -
ME estimates to the state-of-the-art estimation method in 

DB2 UDB v8.2. Our test database is based on a 1GB real-
world database and 200 queries from an actual Depart-
ment of Motor Vehicles (DMV) workload. The workload 
involves the four tables OWNER, CAR, DEMOGRAPH-
ICS, and ACCIDENTS. For all of our experiments (ex-
cept the ones in Section 4.4), we focus on the portion of 
each query that references the CAR table. The schema of 
the CAR table is given in Figure 5.  
 
id  Integer (Primary Key) 
ownerid  Integer (Foreign Key) 
year  Integer 
make  Char (20) 
model  Char (20) 
color  Char (20) 

Figure 5: Schema of the CAR table (DMV database) 

 
The CAR table has a base cardinality of 143,309 rows. 
The table also contains strong correlations between 
MAKE, MODEL, COLOR, and YEAR; multivariate 
statistics are required on at least a subset of these columns 
in order to obtain reasonable cardinality estimates. We 
focused on the 3-way correlation between MAKE, 
MODEL, and COLOR, as this is the correlation most fre-
quently encountered in actual queries. 

4.1 Quality of the estimates 

In order to assess the estimation quality of our ME ap-
proach, we ran experiments to estimate the selectivity of a 
query containing a conjunctive predicate formed by the 
three simple predicates: 
 
p1: CAR.MAKE = :literal1 
p2: CAR.MODEL = :literal2 
p3: CAR.COLOR = :literal3 
 
“Select * from car c where p1 AND p2 AND p3” 
 
We used a workload of 200 queries having different val-
ues for each of the three literals in each query instance. 
From the base statistics, we always knew the selectivities 
s1, s2, and s3, of the simple predicates, i.e., {{1}, {2}, 
{3}} ⊆ T. Additionally, we created MVS to make the 
optimizer aware of several of the correlations between the 
three columns referenced by the predicates. We examined 
five major cases, each representing different available 
knowledge about joint column distributions. We label 
each case as “f.c,” where f is the number of BFs in each 
known conjunct, and c is the number of known conjuncts: 
 
Case 1.3: Only the selectivities of the single predicates 
(marginals) s1, s2, s3 are known. In this special case, the 
ME solution can be computed analytically and is identical 
to Case I in the Appendix. 
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Case 2.1: Besides the marginals, the selectivity of one 
conjunctive predicate consisting of two BFs is known. 
Since our query comprises three BFs, we distinguish three 
possible subcases. In Case 2.1a, the selectivity s1,2 for the 
conjunct on MAKE and MODEL is known. In Case 2.1b, 
the selectivity s1,3 for the conjunct on MAKE and COLOR 
is known. In Case 2.1c, the selectivity s2,3 for the conjunct 
on MODEL and COLOR is known. The ME estimate for 
s1,2,3 is just the product  s1,2 * s3 for Case 2.1a, and analo-
gously for the other cases.  The structure of Case 2.1 co-
incides with that of Case III in the Appendix; the resulting 
ME solution can be computed analytically for this special 
case and is identical to the solution presented in the Ap-
pendix.  
 
Case 2.2: Besides the marginals, the selectivity of two 
conjunctive predicates consisting of two BFs is known. In 
this case, we again distinguish three subcases, depending 
on which conjunctive predicates are known: 
2.2a: s1,2, s1,3 for (MAKE, MODEL), (MAKE, COLOR)  
2.2b: s1,2, s2,3 for (MAKE, MODEL), (MODEL, COLOR)  
2.2c: s1,3, s2,3 for (MAKE, COLOR), (MODEL, COLOR)  
 
In this special case, the ME solution can again be com-
puted analytically. For Case 2.2a, s1,2,3 = s1,2 * s1,3 / s1, and 
analogously for Case 2.2b and Case 2.2c. Note that this 
solution does not correspond to the computation described 
in Case IV in the Appendix. 
 
Case 2.3: Statistics on all three conjunctive predicates 
consisting of two BFs are known. In this case, the ME 
problem can no longer be solved analytically, and the 
iterative scaling algorithm must be applied. Note that the 
ME result in this case again does not correspond to the 
computation described in Case IV in the Appendix. 
 
Case 3.1: Given perfect knowledge of the conjunctive 
predicate we seek to estimate, we know the selectivity 
s1,2.3 of the overall conjunctive predicate consisting of 
three BFs. The ME solution in this case returns s1,2,3 as the 
answer, which corresponds to Case II in the Appendix. 

Using All Information 

For a workload of two-hundred queries, the box plot in 
Figure 6 shows the absolute estimation error for all of the 
cases discussed above when estimating the selectivity of a 
conjunctive predicate on MAKE, MODEL, and COLOR. 
The bottom of the box shows the first quartile of the ab-
solute estimation error experienced for the workload. The 
line inside the box and the number to the right of the line 
show the value of the median. The top of the box gives 
the third quartile, and the line above the box gives the 
maximum value. Because there are strong correlations, 
Case 1.3, which uses the independence assumption, ex-
hibits considerable estimation errors, with a median of 
788 and a maximum error of almost 10,000. Using 

knowledge about correlation between one pair of columns 
reduces both the maximum and median error by one order 
of magnitude. Observe that the correlation between 
MAKE and MODEL is apparently stronger than the cor-
relation between the other pairs, since knowing about this 
correlation results in a smaller error (median of 42 and 
maximum of 692) relative to knowing any other single 
pair.  

0
100
200
300
400
500
600
700
800
900

1000

1.3 2.1b 2.1.c 2.1a 2.2c 2.2a 2.2b 2.3a 3.1

A
bs

ol
ut

e 
Es

tim
at

io
n 

Er
ro

r

75%: 2138

788

79 79
42 65 11 9 6 0

100%: 9583

 
Figure 6: Box Plot comparing the Absolute Estimation 

Error for various |T | (200 queries) 

If two pairs of correlations are known, then the error is 
reduced even further: if one of the pairs is the strong cor-
relation between MAKE and MODEL, the median error is 
reduced by two orders of magnitude over Case 1.3 (pure 
independence). The maximum error in this case also gets 
reduced by almost two orders of magnitude. Note that 
when we only know the not-so-strong (MAKE, COLOR) 
and (MODEL, COLOR) correlations in Case 2.2c, the 
overall error is still reduced over only knowing one of the 
pairs, but the reduction (for instance, from 79 to 65 for the 
median) is not as pronounced as when the correlation on 
(MAKE, MODEL) was known, in which case the median 
is reduced from 79 down to 11 and 9.  

Both the median and 75th percentile of the absolute er-
ror are reduced even further in Case 2.3, where three 
conjuncts are known (e.g., the median being reduced 
down to 6 in this case). In Case 3.1, perfect knowledge 
results in zero error.  

Overall, the experiment shows that our ME estimation 
method has the desired property of reducing the absolute 
estimation error as more knowledge becomes available. 
We conducted further experiments for queries involving 
more than three predicates, with similar results; we omit 
these experiments due to space limitations.  

Improvement over the State of the Art 

Figure 7 contrasts the absolute estimation error of our ME 
approach with the state-of-the-art (SOTA) method in car-
dinality estimation, as outlined in the Appendix. Note that 
the estimation errors of SOTA and ME are identical for 
the Cases 1.3, 2.1, and 3.1, because the ME principle re-
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duces to the assumptions of uniformity and independence 
that SOTA uses in these cases. However, as soon as sev-
eral pieces of statistical information about one column are 
available, SOTA and ME return different results. In these 
cases, SOTA cannot use the additional information to 
improve estimates, and thus is forced to use only infor-
mation about one conjunct.  
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Figure 7: Comparison of ME to SOTA (200 queries) 

In contrast, ME does not apply erroneous independence 
assumptions, but uses all available information to reduce 
the estimation error substantially. If one of the two known 
pieces of information is the strong correlation between 
MAKE and MODEL (Cases 2.2a and 2.2b), then ME re-
duces the median error by a factor of 4 and the worst-case 
error by more than one order of magnitude. Comparing 
Cases 2.1b and 2.1c in Figure 6 with Case 2.2c in Figure 7 
shows that combining the two weaker correlations 
(MAKE, COLOR) and (MODEL, COLOR), is a better 
strategy than picking any single piece of correlation in-
formation: the median error is reduced from 79 to 65. If 
all three correlations are known (Case 2.3), then ME im-
proves over SOTA by almost one order of magnitude in 
median, and by more than two orders of magnitude in the 
worst case. 

Figures 6 and 7 together show that ME generalizes the 
optimizer’s principles of uniformity and independence: 
ME yields the same estimates as SOTA if information is 
available only about single columns or only about a single 
conjunct. As soon as statistical information about more 
than one conjunct is available, ME exhibits superior per-
formance by combining all of the information. The im-
provement in estimation quality over SOTA increases as 
the number |T| of pieces of available information in-
creases.  

We have conducted further experiments for more than 
three BFs. These experiments confirm what we illustrate 
above for the case |P| = 3: the more the available infor-
mation, the greater the improvement of the ME estimates 
over the SOTA estimates. For larger |P| and larger |T|, the 
improvement of ME over SOTA quickly becomes several 
orders of magnitude, in both median and worst-case ab-
solute error. 

4.2 Computational Cost 

Iterative scaling, as described in Section 3.3, is exponen-
tial in the number of predicates and linear in the number 
of constraints. Therefore, it is important to analyze the 
maximum number of predicates for which this algorithm 
is feasible in practice. 

0

25

50

75

100

5 6 7 8 9 10 11 12 13 14 15 16 17 18
number of predicates |P|

tim
e 

un
til

 c
on

ve
rg

en
ce

 o
f i

te
ra

tiv
e 

sc
al

in
g

0
1
2
3
4
5
6
7
8
9
10

0
1

2

3

4

5

6

7

8

9

10

|∆T|

b

 
Figure 8: Time needed to solve the constrained optimi-

zation problem for various |P| and |∆T| 

Figure 8 shows the elapsed time in seconds until itera-
tive scaling converged, depending on the number of sim-
ple predicates |P| and the amount | |∆T  of available 
knowledge about conjuncts over P, i.e., \∆ =T T N . The 
time for |P| < 5 was less than one second for all configu-
rations of |T|, and thus is omitted from the figure. We ob-
serve that iterative scaling exhibits sub-second conver-
gence time on a laptop using an Intel Pentium(R) III Mo-
bile CPU 1133MHz with 512MB RAM, as long as |P| is 
below 8. The performance impact of |T| is negligible.  

For larger numbers of predicates, the exponential na-
ture of the iterative scaling algorithm drastically increases 
the response time, making this algorithm impractical for 
more than ten predicates, as the response time then ex-
ceeds one second, thus having a clearly noticeable impact 
on the overall query optimization time. Moreover, when 
|P| is large the amount of available knowledge |T| has a 
noticeable impact on the overall performance. Fortu-
nately, the algorithm’s performance was generally accept-
able when iterative scaling was performed over the local 
predicates on each single table separately (i.e., P being the 
set of local predicates on a table). We rarely encountered 
more than ten local predicates on a single table, even for 
very complex real-world queries: All but five queries in 
the customer workloads available to the authors had less 
than 6 local predicates on a single table, while the total 
number of predicates in many queries exceeded 50. Only 
three queries had more than eight predicates on a single 
table, 11 being the maximum. As discussed in Section 5, 
when the number of predicates exceeds 8 we can often 
use preprocessing steps to bring down the number of 
predicates used for scaling to a reasonable number. 
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4.3  Backward Computation 

We can also use the iterative scaling algorithm for back-
ward computation, i.e., using knowledge of sX to compute 
sY, where Y ⊂ X. This means that if we have the three-col-
umn correlation between MAKE, MODEL, and COLOR, 
the ME approach allows us to exploit that information 
correctly rather than assuming independence for any of 
the two-column correlations between MAKE and 
MODEL, MAKE and COLOR, or MODEL and COLOR. 
Figure 9 displays box plots of the absolute estimation 
error for the SOTA method versus the ME approach when 
computing the cardinalities for this example. 
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Figure 9: Comparison of ME and SOTA when 
estimating s1,2, s2,3, or s1,3 from s1,2.3 (200 queries) 

   As can be seen, use of the ME method can reduce the 
estimation error in some situations by an order of magni-
tude. Use of ME reduces the median estimation error by 
more than a factor of 2 when estimating MAKE and 
MODEL, by a factor of 6 when estimating MODEL and 
COLOR, and by factor of 4 when estimating MAKE and 
COLOR. Note that the reduction is smaller for MAKE 
and MODEL than for the other cases, as ME – when 
knowing nothing about the two-way correlations – dis-
tributes the correlation “uniformly” among all three two-
way correlations. Because the true correlation between 
MAKE and MODEL is the strongest of the various cor-
relations, the correction achieved by ME in this case is 
smaller than in the other two cases. 

4.4 Query Execution Time 

Although improving the cardinality estimates yields a 
better model for the query optimizer, the bottom line of 
optimization is the improvement in query execution time. 
We measured the impact that the ME method has on the 
query execution time for our example workload of 200 
queries against the DMV database. Recall that, in the 
previous experiments, we used only the part of each query 
that selects a particular MAKE, MODEL, and COLOR 
from the CAR table, ignoring all other tables referenced 
by the query. In this experiment we used each query in its 

entirety. Besides applying selection predicates to the CAR 
table, each full query also joins the CAR table with up to 
three additional tables and applies additional local predi-
cates on the other tables. For all queries, the execution 
time of iterative scaling was less than one second and also 
below 1% of the total query execution time.  
Figure 10 shows the performance benefit observed when 
running the queries with MVS created for all three two-
way correlations on CAR, improving the estimates for the 
CAR table as in Case 2.3 in Section 4.1. Of the 200 que-
ries, 92 showed only marginal performance gains or no 
gains at all. On the other hand, many queries executed 
between two and five times faster when using the ME 
estimates as opposed to the SOTA estimates. Nine queries 
had a performance gain of more than one order of mag-
nitude, due to improvements in join order and/or join 
methods; these improvements resulted from the better 
cardinality estimates on just the CAR table alone. 
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Figure 10: Performance benefit using two-way MVS 

5. Some practical considerations 
Even though the iterative scaling algorithm has a com-
plexity of O(|T|⋅2|P|), we often do not have to execute 
scaling for the entire predicate set P. In many situations, 
we can compute the maximum entropy solution by parti-
tioning P into several independent subsets and by exe-
cuting the scaling algorithm on each subset. This ap-
proach reduces the complexity substantially. In the fol-
lowing, we discuss several partitioning strategies that 
make the iterative scaling algorithm feasible for even ex-
tremely complex queries. 

Complexity Reduction by Creating Relevant Partitions 

P can be partitioned into non-overlapping subsets and 
simplified, depending on the available knowledge T, re-
ducing the dimensionality of the problem space and thus 
the complexity of the scaling algorithm. Suppose that (a) 
for U ⊆ N, sU is known or can be computed (possibly with 
closed formulas) in a way consistent with the ME princi-
ple using only a subset of the information in T, and (b) the 
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selectivities sX  with X ⊆ U are not important3. Then it is 
possible to replace the predicates denoted by U in P with 
a single predicate, reducing |P|, |T|, and the overall com-
plexity of the problem. Below we provide several exam-
ples of when this is possible. 

If T does not contain any information about a subset U 
of N, except for the single selectivities (i.e., |X| = 1 for all 
X ∈ U), then the selectivity sU can be computed as sU = 
Πi∈U si. All simple predicates pi, i ∈ U, can then be re-
moved from P, and all pieces of knowledge in T that in-
tersect U can be removed, creating a new set of knowl-
edge T*. Adding a new single predicate U with known 
selectivity thus reduces the complexity of iterative scaling 
to O(|T*|⋅2|P|-|U|+1). Similarly, for U ∈ T and |U| > 1, all 
simple predicates pi, i ∈ U, can be removed from P and 
replaced by a new single predicate pU with known selec-
tivity, again reducing the complexity of iterative scaling 
to O(|T*|⋅2|P|-|U|+1). Also, for the special case in which S 
contains  knowledge as described in Section 4.1, Case 2.2, 
the selectivity of U can be computed as described there, 
and the complexity can be reduced to O(|T*|⋅2|P|-2).  

The general approach to reducing complexity uses a  
preprocessing step in which the predicate space P is parti-
tioned into independent components of nonintersecting 
knowledge based on both T and additional information 
about the relevance of the selectivities within each com-
ponent. The selectivity of each component is computed 
either by using closed formulas or running iterative scal-
ing; the latter process is fast because each component has 
relatively low complexity. 

Complexity Reduction by Discovery of Implications 

It is sometimes possible to identify a priori certain atoms 
b for which the input knowledge T implies that the selec-
tivity xb is zero.  Iterative scaling can then exclude these 
atoms from the iteration step (8) in the algorithm. There 
are two ways to deduce from T  that xb = 0 for some b ∈ 
{0,1}n. 

(a) If sx = 0 for some X ∈ T, then xb = 0 for all atoms b 
∈ C(X). None of these atoms need to be considered by the 
iterative scaling algorithm. 

(b) If two sets of atoms A and B with B ⊂ A have the 
same selectivity, i.e.,  Σb∈B  xb = Σb∈A  xb, , then xb = 0 for b 
∈ A\B,  and these atoms can be ignored as well.  

We conducted several experiments after implementing 
our techniques for reducing the complexity of the scaling 
algorithm, the details of which we omit due to length re-
strictions. In summary, the experiments showed that these 
simple pre-processing steps significantly reduce the num-
ber of iterations needed for convergence. For several real-
world queries and real-world data, the running time was 
                                                           
3 sX with X ⊆ U usually is only important when a query plan 
exists that needs sX. For an optimizer considering plans with 
multiple predicates on a single table, this typically is only the 
case if an index on the columns in X exists. 

improved by orders of magnitude, producing ME distri-
butions for more than twenty predicates on a single table 
with sub-second execution times. 

6. Related Work 
Cost-based query optimization was introduced in 
[SAC+79]. Many researchers have investigated the use of 
statistics for query optimization, especially for estimating 
the selectivity of single-column predicates using histo-
grams [PC84, PIH+96, HS95] and for estimating join 
sizes [Gel93, IC91, SS94] using parametric methods 
[Chr83, Lyn88]. Some MVS proposed for cardinality es-
timation include multidimensional histograms [PI97], 
statistics on views [GJW+03, BC03], and Bayesian 
[GTK01] or other forms [DGR01] of probabilistic mod-
els. 

Recent research in selectivity estimation has mostly 
focused on determining which statistics to collect and 
how to collect them efficiently. The methods in [BC02, 
CN00] analyze the query workload to select a set of sta-
tistics to maintain, such as MVS on base data or query 
expressions. The paper [SLM+01] employs a feedback 
loop in which query executions are monitored, the moni-
tored information is analyzed to determine estimation 
errors, and the feedback information is used to adjust 
various stored statistics. The approach of [AC99, BC01] 
maintains MVS based on query feedback by incremen-
tally building a multidimensional histogram that can be 
used to estimate the selectivity of conjunctive predicates. 
The paper [AHL+04] uses runtime feedback and other 
techniques to determine when and how to collect statis-
tics. [IMH+04] use a sampling based chi-squared test to 
determine the most relevant MVS to collect for query 
optimization.  

Although a large body of work, as surveyed above, fo-
cuses on various aspects of recommending, storing, and 
maintaining statistics for query optimization, no previous 
research has addressed the problem of combining selec-
tivities derived from multiple available MVS to improve 
selectivity estimation of conjunctive predicates. Past work 
either has derived selectivities for each conjunct from 
single-column statistics and combined them using the 
assumption of statistical independence, or has used ad hoc 
techniques to determine the “best” of many competing 
MVS for estimating the selectivity of conjunctive predi-
cates [BC02, GJW+03, BC04]. 

Information theory and the broad mathematical princi-
ple of maximum entropy have been applied to other do-
mains such as machine translation [GON+01] and infor-
mation retrieval [CWC91]. 

7. Conclusions 
We have presented a novel ME method for estimating the 
selectivity of conjunctive predicates, The method is based 
on an information-theoretically sound approach that takes 
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into account available statistics on both single columns 
and groups of columns. The model avoids arbitrary bi-
ases, inconsistencies, and the flight from knowledge to 
ignorance by deriving missing knowledge using the ME 
principle. This principle consistently extends the princi-
ples of uniformity and independence used in state-of-the-
art selectivity models to exploit any available  multi-at-
tribute information. We have described, and analyzed a 
specific embodiment of our approach that solves the con-
strained ME optimization using Lagrange multipliers and 
an iterative scaling algorithm. We have implemented this 
method in a prototype version of DB2 UDB, improving 
the quality of the query optimizer while also simplifying 
its logic.  

The ME approach improved selectivity estimates sig-
nificantly over the state-of-the-art model used in the 
commercial DBMS, often by orders of magnitude. This in 
turn resulted in a considerable improvement of query exe-
cution times for an example workload on a DMV dataset 
derived from a real-world database and workload. Several 
queries ran orders of magnitude faster. Iterative scaling 
produced selectivity estimates for all practical queries 
with sub-second response times, adding less than a second 
to optimization time in all but the most complex queries. 

Future work includes the investigation of efficient al-
ternatives to the iterative scaling algorithm to further re-
duce the time required to compute the ME solution; we 
are currently investigating an algorithm based on New-
ton’s method. Furthermore, we are working on extending 
the scope of our ME method to permit cardinality estima-
tion for join predicates and distinct projections; the latter 
functionality is needed for optimizing queries with DIS-
TINCT or GROUP BY clauses. 
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Appendix: Cardinality Estimation for 
Conjunctive Predicates with MVS in DB2 
We describe the state of the art in exploiting MVS during 
query optimization. To our knowledge, prior research has 
neither formalized nor described solutions to this problem 
that go beyond classical independence and using MVS 
when they exactly match the columns referenced in a 
conjunctive predicate. We therefore describe the approach 
currently taken by DB2 UDB. In the absence of a 
complete set of statistical information, and due to the 
complexity and the cost of collecting such information, 
the DB2 UDB optimizer tries to exploit as much statistical 
data as is available. We describe four different scenarios. 
In the following we assume that the selectivities of simple 
predicates are always known. 
 
Case I:  No statistics on conjunctive predicates are 
known. 
For this trivial case, the selectivity of the conjunctive 
predicate is the product of  the selectivities of the 
individual predicates. 

 
Example:  Estimate  s1,2,3  given  s1 , s2 , and  s3. 

 
s1,2,3 =  s1 *  s2 * s3. 
 

Case II:  Statistics on the conjunctive predicates are 
known and there exists a conjunctive predicate whose 
BFs match the set of predicates whose combined 
selectivity is to be determined. 
For this simple case, the selectivity of the full conjunctive 
predicate is the selectivity of the conjunctive predicate 
whose BFs match the set of predicates in question. 

 
Example: 

(a) Estimate  s1,2,3  given  s1,2,3 . 
s1,2,3 =  s1,2,3 . 

(b) Estimate s1,2,3  given s1,2 , s2,3 , and s1,2,3 . 
s1,2,3 =  s1,2,3 . 

 
Case III:  Statistics on the conjunctive predicates are 
known and there exist some conjunctive predicates 
whose intersection is an empty set. 
In this case, the selectivity of the conjunctive predicate is 
the product of the selectivities of all conjunctive 
predicates and the selectivities of the individual predicates 
not participating in any conjunctive predicate. 

 
Example: 

(a) Estimate s1,2,3,4,5  given s1,2  and  s3,4 
s1,2,3,4,5 =  s1,2 * s3,4 * s5 . 

(b) Estimate  s1,2,3,4,5  given  s1,2,5  and  s3,4 
s1,2,3,4,5 =  s1,2,5 * s3,4 . 
 

Case IV:  Statistics on the conjunctive predicates are 
known and there exists some conjunctive predicates 
whose intersection is not an empty set. 
 
In this case, the selectivity of the conjunctive predicate is 
the product of the selectivities of all conjunctive 
predicates with the highest degree of correlation and the 
selectivities of the individual predicates not participating 
in any conjunctive predicate. 
 
A conjunctive predicate pX has a higher degree of correla-
tion than a conjunctive predicate  pY  if 
 

a) the number of BFs in  pX  is greater than in  pY , 
or 

b) the number of BFs in pX is equal to that in  pY  
and  sX / ∏ i∈X si   ≥   sY  / ∏ i∈Y si  , or 

c) if still a tie, the optimizer will just arbitrarily 
pick one of the conjunctive predicates.  

 
Example: 

(a) Estimate s1,2,3,4,5  given s1,2  and  s2,3,4 
s1,2,3,4,5 =  s2,3,4 * s1 * s5  
 

(b) Estimate s1,2,3,4,5  given s1,2  and  s2,3 
and  s1,2 /(s1 * s2) ≥  s2,3 /(s2 * s3) 
 
s1,2,3,4,5 =  s1,2 *  s3  * s4 * s5 

(c) Estimate s1,2,3,4,5  given s12 , s2,3 ,  s3,4  and s4,5 , and  
 s1,2 /(s1 * s2) ≥  s2,3 /(s2 * s3), 
 s1,2 /(s1 * s2) ≥  s3,4 /(s3 * s4) and 
 s1,2 /(s1 * s2) ≥  s4,5 /(s4 * s5) 

 
s1,2,3,4,5 =  s1,2 * s3 * s4 * s5 

 
Scenarios as in Case IV are especially likely to produce 
large errors in practice.  Indeed, as we can see in 
Examples IV.a, IV.b, and IV.c, the ad hoc method has 
some serious deficiencies: 
 
(i) In Case IV(a), the final estimate ignores the 

correlation between s1 and s2. Likewise, in Case IV.c, 
the estimation method erroneously assumes that s3, s4, 
and s5 are completely independent of each other. 

 
(ii) Although the optimizer is provided with more 

information in Case IV(c) than in Case IV(b), the 
estimate in Case IV(c) does not improve over that in 
Case IV(b). In order to avoid bias when comparing 
multiple plans during dynamic programming, the 
optimizer is thus forced to ignore valuable additional 
information  

 
Both of these problems motivate our new solution based 
on the ME model. 
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