
Adaptive Stream Filters for Entity-based Queries with

Non-Value Tolerance

Reynold Cheng† Ben Kao§ Sunil Prabhakar‡ Alan Kwan§ Yicheng Tu‡

† Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
Email: csckcheng@comp.polyu.edu.hk

§ Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong.
Email: {kao,klkwan}@cs.hku.hk

‡ Department of Computer Science, Purdue University, West Lafayette, IN 47907-1398, USA.
Email: {sunil,tuyc}@cs.purdue.edu

Abstract

We study the problem of applying adaptive
filters for approximate query processing in a
distributed stream environment. We propose
filter bound assignment protocols with the ob-
jective of reducing communication cost. Most
previous works focus on value-based queries
(e.g., average) with numerical error tolerance.
In this paper, we cover entity-based queries
(e.g., nearest neighbor) with non-value-based
error tolerance. We investigate different non-
value-based error tolerance definitions and
discuss how they are applied to two classes
of entity-based queries: non-rank-based and
rank-based queries. Extensive experiments
show that our protocols achieve significant
savings in both communication overhead and
server computation.

1 Introduction

Due to the rapid development of low-cost sensors and
networking technologies, stream applications have at-
tracted tremendous research interests lately. In par-
ticular, long-standing continuous queries are common
in a stream environment for monitoring various net-
work activities. Some examples include intrusion de-
tection over security-sensitive regions; identification of
Denial-of-Service (DOS) attacks on the Internet [2];

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

road traffic monitoring; network fault-detection; email
spams detection; and web statistics collection.

In such systems, streams are installed that collect
and report the states of various entities. For example,
in DoS detection, routes through which traffic is abnor-
mally high are identified. Addresses from and to which
packet frequencies rank among the top few might sig-
nal alerts. The number of streams could be large and
they are continuously reporting updates. A stream
server could thus be crippled by the large volume of
data, slowing its response to standing queries that re-
quire real-time processing [1]. One possible solution is
to trade query answer accuracy for speed. For exam-
ple, a sensor that is reporting a temperature reading
can be instructed not to transmit updates to the server
if the current value does not deviate from the last re-
ported value by a certain bound. This method could
result in a significant reduction in message volume and
thus the server’s load. The drawback is that the server
is processing queries based on inaccurate data. For
many standing queries, however, a user may accept an
answer with a carefully controlled error tolerance in
exchange for timeliness in query processing. Exam-
ples for which controlled query errors are acceptable
include wide-area resource accounting and load bal-
ancing in replicated servers. Several efforts (e.g., see
[18, 9]) have been attempted to produce approximate
answers to achieving better overall performance. In
particular, intelligent protocols are proposed in [17, 12]
to wisely control when streams should report updates.
The goal of the protocols is to reduce communication
overhead while at the same time user-specified error
tolerances are met. These protocols make use of filter

bounds — a system-specified range of values. A stream
only reports an update if its value crosses the bound.

Most filter-bound-based approximation techniques
assume that a maximum tolerable error is specified
by a numerical value. Consider a network of sensors

37

������������	
������
���	������

�������������������
���	������

��	������
�
�����

���������
���	������

���

���

Figure 1: Value-based and rank-based tolerances.

that report temperature readings. How would a user
express an error tolerance if he is interested in the
identity of the sensor with the highest temperature?
One possibility is to let the user choose a numerical
error tolerance, say ε, and the system guarantees that
the answer returned to the user, say, Sensor S1, has
a value no more than ε smaller than that of the true
highest sensor, say Smax.

However, the problem of the above strategy is that
choosing a numerical error tolerance is unintuitive. As
an example, in a typical location-based application a
user can inquire about his closest neighbor. Specify-
ing a numerical error tolerance requires some knowl-
edge about the relative distances or spread of the ob-
jects. (Should the tolerance be one meter or 100 me-
ters?) In a sensor network, for instance, various kinds
of data like humidity, temperature, UV-index can be
collected [7]. The user may then be required to know
a reasonable range of error for each data type. More-
over, if a data stream contains multi-dimensional data
(e.g., location) or multimedia data (e.g., images), a
numerical, or value-based error, could be difficult to
specify.

Moreover, a bad choice of the numerical error toler-
ance may significantly weaken the value of a query. If
ε is set too large, the returned stream could rank far
from the true maximum (see Figure 1 for ε = εl). To
solve this problem, a user then has to be careful not
to set ε too large. Unfortunately, unless the user has
some ideas about the data values, setting a “good” ε
value is not easy. If ε is too small, then the system
cannot fully benefit from the tolerance protocol. For
example, in Figure 1, if the user can accept an object
that ranks second or above, then a small filter bound
(e.g., εs) is too small to capture the tolerance.

An alternative approach would be to express the er-
ror tolerance in terms of a rank rather than an absolute
value. Using our previous example again, a user could
specify the error tolerance as the number of positions
the returned sensor could rank below the highest one.
For example, if the rank-based error tolerance is set to
1, then only the highest and the second highest sensors
could be returned as an answer to the query. Figure 1
illustrates this example. We remark that translating

a rank-based tolerance to a filter bound could also be
easier. For example, we can set a filter bound some-
where between the second highest value and the third
highest value (see Figure 1). No sensors need to report
updates as long as their values do not cross the bound.

The above example illustrates how a rank-based tol-

erance can be used instead of value-based tolerance
in a ranking query. A rank-based tolerance is just
an example of non-value-based tolerance. This kind
of tolerance is particularly suitable for entity-based

queries – those that return sets of entities, rather than
numerical values as answers [3]. Typical examples
of entity-based queries include range queries and k-
nearest neighbor queries, which are common in appli-
cations such as location monitoring [21], sensor net-
works [7] and computer-aided manufacturing (CAM)
systems [14]. Observe that the user of an entity-based
query is not concerned about the numerical value of
the answer. Thus a non-value-based tolerance is more
intuitive for entity-based queries.

While most previous works in filter bound appli-
cations assume value-based queries (e.g., aggregate
queries), in this paper we study extensively two dif-
ferent classes of entity-based queries, namely, rank-
based queries and non-rank-based queries. Rank-
based queries are those that concern a partial order of
the stream values. Examples include top-k queries and
k-nearest neighbors queries. Non-rank-based queries
only concern the values of individual streams. An ex-
ample is a range query.

Another dimension of our study deals with how an
error tolerance is specified. Again, we are interested
in error tolerance measures that are non-value-based.
We have already discussed an example in which rank

is used as a measure. Another possibility is to ex-
press the degree of inaccuracy through false positive

and false negative [16]. Recall that the answer of an
entity-based query Q is a set. Let XQ be the correct
answer set and YQ be the answer set returned by the
system. A false positive a is an element in YQ − XQ,
i.e., a is not a correct answer but is returned as one.
A false negative b is an element in XQ −YQ, i.e., b is a
correct answer not returned. (The concepts are simi-
lar to precision and recall in the IR literature [10].) A
user of an entity-based query can specify the error tol-
erance by the maximum fraction of returned answers
that are false positives, and the maximum fraction of
correct answers that are false negatives. We call this
kind of tolerance specification fraction-based tolerance.

In this paper we study how rank-based and fraction-
based tolerance constraints can be exploited in a
stream management system. We develop filter-bound
protocols that reduce communication costs between
the server and stream sources, and consequently, re-
duce server load. As we will also see later, our fraction-
based tolerance protocols would instruct some stream
sources to be shut down. This can be potentially

38

beneficial for sensors with limited battery power.We
will also discuss the issue of constraint resolution, i.e.,
how the adaptive filters are updated as stream values
change so that the query correctness is maintained.

Although the protocols and examples presented in
this paper are one-dimensional, our techniques can be
generalized to higher dimension cases. To summarize,
our contributions are:

• Motivate the need for non-value-based tolerance;

• Propose the definitions of rank-based and
fraction-based tolerance for entity-based queries;

• Present protocols to exploit non-value tolerances
for rank-based and non-rank-based queries; and

• Examine the effectiveness of our protocols on both
real and synthetic data sets.

The rest of this paper is organized as follows. We
discuss related work in Section 2. In Section 3, we
present the assumptions of our model, and formally de-
fine the semantics of non-value-based error constraints.
Section 4 presents protocols for maintaining filter con-
straints for rank-based tolerance, while Section 5 dis-
cusses how to do so for fraction-based tolerance. Sec-
tion 6 presents our experimental results. Section 7
concludes the paper.

2 Related Work

Due to the high-volume and continuous nature of data
streams, the goal of a stream management system is to
conserve system resources such as memory [1], compu-
tation [14, 18, 9] and communication costs [8, 17, 12].
Most of these works reduce resource consumption by
relaxing correctness requirements. Typically, a user
specifies a maximum error tolerance, and the toler-
ance is exploited by various techniques such as ap-
proximate data structures, load shedding, filters etc.
The error tolerance is often assumed to be in the form
of a numerical value. Also, they are mostly applicable
to value-based queries only. Our work investigates the
possibility of exploiting non-value-based tolerance for
continuous entity-based queries. Figure 2 illustrates
our contributions in more details.

The idea of using adaptive filters in which filter
bounds are installed to reduce communication costs
was first proposed in [17]. However, that paper only
considers value-based tolerance over aggregate queries
such as average and minimum. Babcock et al. [2]
applied a similar idea to answer top-k queries for
distributed stream sources, but again the tolerance
is value-based. More recently, Jain et al. [12] used
Kalman Filters to exploit value-based tolerance. The
Kalman Filter is installed at every stream, and with
its prediction techniques it is shown to be more effec-
tive in conserving communication costs. The exten-
sion of adaptive filters in a sensor network is studied

���������	

���	��
�
��

�

��
�

���

����
��

	��
����

���������

���
���

��

��������
��

�

��

�������

����
��

	��
����

����	�������
��

	��
����

���������

���
���

���

��������
��

�

��

��������
��

	��
����

��������
��

�

���

Figure 2: Our contributions (shaded).

in [6]. Our work distinguishes from theirs in that we
use adaptive filters to exploit non-value-based toler-
ance. In addition, we study continuous k-NN queries
that are used in applications such as computer aided
manufacturing and traffic monitoring [14]. Notice that
k-NN queries are more general than top-k queries stud-
ied in [12].

The classification of queries into value-based and
entity-based has been proposed in [3]. To the best of
our knowledge, the use of non-value-based tolerance
for entity-based queries has only been addressed by a
few researchers. Vrbsky et al. [20] studied approximate
answers for set-valued queries, where a query answer
contains a set of objects. They propose that an exact
answer E can be approximated by two sets: a certain

set C which is a subset of E, and a possible set P
such that C ∪P is a superset of E. Khanna et al. [13]
proposed a rank precision model: an answer a is called
α-precise if the true rank of a lies in the interval [r −
α, r+α], where r is the rank of a informed to the user.
Cui et al. [5] proposed precision and recall as a quality
metric for approximating k-NN queries. We generalize
the definitions of non-value-based tolerance to include
rank-based and fraction-based tolerance, and we study
how to exploit them in stream systems, which has not
been addressed before.

The idea of viewing a k-NN query as a range query
was proposed by Iwerks et al. [11]. They propose the
use of a closed bound which encloses at least k objects
so that continuous k-NN queries can be answered more
efficiently. We use a similar idea to convert a continu-
ous k-NN query to a range query, but our focus is on
how to use this technique to design filter bounds in a
distributed stream environment.

3 Problem Description

In this section we describe the system model and query
types. We also formally define the concept of non-
value-based tolerances.

39

����������	

������
��

����

��
��	

����
�����	

����

	����
����

��
�

�����	��
��	�	

���
����

�
�����

���
����

���

����

	��������
�

	��������
�

	��������
�

	��������
�

Figure 3: Stream Management System Model.

3.1 System Model

We assume a distributed stream management model
similar to those described in [2, 17, 12]. The sys-
tem consists of a set S = {S1, S2, . . . , Si, . . . , Sn} of n
data streams with Stream Si reporting a value Vi ∈ <.
We assume that stream values are updated at discrete
time instants. Each stream may be associated with
an adaptive filter that specifies a constraint. With
the filter mechanism, not all updates are reported
to the server. A filter constraint is a closed interval
[li, ui], where li, ui ∈ <. Let V ′

i be the last reported
value from Stream Si. When the stream’s value (Vi)
changes, the filter constraint is violated if either (1)
V ′

i ∈ [li, ui]∧Vi 6∈ [li, ui] or (2) V ′
i 6∈ [li, ui]∧Vi ∈ [li, ui].

Only when the constraint is violated will the updated
value be sent to the server. If no filter is installed at a
stream, all updates from the stream are reported.

Figure 3 shows a general architecture of such sys-
tems. Each stream source is equipped with a filter that
is adaptive whose parameters can be changed at any
time by the processor. A user submits her queries and
tolerance requirements to the central processor. The
constraint assignment unit then determines the rele-
vant filter constraints to be installed in each stream.
The query processing unit processes user queries and
updates their results if necessary. It also receives up-
dates from the stream sources. It communicates with
the constraint assignment unit, which decides if con-
straints need to be revised for relevant filters.

3.2 Query Model

We are interested in entity-based queries, a broad class
of queries that return names or identifiers of objects
as answers [3]. We further classify entity-based queries
into rank-based queries and non-rank-based queries:

(1) Rank-based query. Given a number k ∈ ℵ
(k is called the rank requirement), a rank-based query
returns identifiers of objects that rank kth or above.
Thus the relative ranking of data items is important
to the query answer. Examples include k-nearest-
neighbor (or k-NN) query where the objects with
the k shortest distances to a query point q are re-
ported [11, 14]; and top-k queries, where answers with
the k-highest ranking scores are returned [2]. In this
paper we use k-NN queries as an example of how fil-

ter bound protocols are applied, since it is common
in streaming systems like computer-aided product-line
monitoring systems, mobile environments, and net-
work traffic monitoring [11, 14, 5]. Note that a k-NN
query can be easily transformed to a k-minimum or
k-maximum query, by setting q to −∞ or +∞, re-
spectively.

(2) A non-rank-based query is any query that is
not rank-based. In this paper we study range queries

as an example, which are useful in stream management
systems like moving-object databases [21] and sensor
networks [7]. A range query is specified by an interval
[l, u]. Streams whose values fall within [l, u] should
be returned to the user. It is apparent that a range
query is non-rank-based since the decision of whether
a stream is part of the answer is independent of others.

For notational convenience, we use Q to denote an
entity-based standing query and A(t) to denote the
answer set returned at time t. We use |A(t)| to denote
the cardinality of A(t).

A standing query Q is associated with a tolerance

constraint. We study two kinds of non-value-based tol-
erance constraints, namely, rank-based tolerance and
fraction-based tolerance. The rest of this section ex-
amines the tolerance constraints in more detail.

3.3 Rank-based Tolerance

For a rank-based query, a user is interested in whether
the rank of an answer returned by the system matches
the true rank, and if not, how close it is to the correct
answer. For example, for a maximum query, the user
may be satisfied with an answer which is the third
maximum, but not anything further than that. A
rank-based tolerance is important when a large error
in ranking of answers is not desirable. For example, in
a distributed system, requests from different users pos-
sess various priorities, and the system should process
jobs with the highest priority values.

Let rank(Si, t) be the true rank of Stream Si w.r.t.
a rank-based query Q at time t. For example, if Q is
a maximum query, and the system returns S8 as the
answer at time t1 whose value actually is the third
largest among all the streams, then rank(S8, t1) = 3.
We note that the function rank depends on the query.
For example, if the query is a k-NN query, then rank is
defined based on the differences from the query point.

Definition 1 Rank-based Tolerance. Given a

rank-based query Q with rank requirement k, an an-

swer set A(t) returned at time t, and a maximum rank

tolerance εr
k = k+r where r ∈ Z+, the answer set A(t)

is said to be correct w.r.t. εr
k if and only if |A(t)| = k,

and ∀Si ∈ A(t), rank(Si, t) ≤ εr
k.

As an example of the above definition, consider a
k-NN query with k = 3 and r = 2. Then an answer
set A(t) is correct w.r.t. ε23 = 5 if it contains exactly
three streams all of which rank fifth or above.

40

�

�����

����

�����������������

	
��
�����
�

��

�

Figure 4: A(t), E
+(t) and E

−(t).

3.4 Fraction-based Tolerance

Another way to express an error tolerance is to use
the concept of false positives and false negatives. The
advantage of this tolerance definition is that it applies
to all entity-based queries, i.e., both rank-based and
non-rank-based queries. An example of fraction-based
tolerance for non-rank-based queries is the sending of
warning messages to soldiers who enter a danger zone,
and it may be acceptable that messages are sent to a
fraction of soldiers who are not in the region (or false

positive). For rank-based queries, k-NN queries are
often used to mine multimedia data streams (e.g., im-
ages) for unknown patterns in computer-aided man-
ufacturing [14], and fraction-based tolerance can be
used to measure the quality of results [5].

Definition 2 False Positive and False Negative.
Given a query Q and an answer set A(t), let E+(t)
denote the number of streams in A(t) that do not sat-

isfy Q, and E−(t) denote the number of streams that

satisfy Q but are not in A(t). The fraction of false
positives and the fraction of false negatives of Q
at time t, denoted by F+(t) and F−(t), respectively,

are defined as

F+(t) =
E+(t)

|A(t)|
(1)

F−(t) =
E−(t)

|A(t)| − E+(t) + E−(t)
(2)

Note that the total number of streams that satisfy Q is
given by |A(t)|−E+(t)+E−(t). Hence F+(t) gives the
fraction of the returned answers that are not correct,
while F−(t) gives the fraction of the correct answers
that are not returned. Figure 4 illustrates the relation-
ship between these quantities. With those notations,
we now define fraction-based error tolerance.

Definition 3 Fraction-based Tolerance. Given a

query Q, an answer set A(t), a maximum false positive

tolerance ε+, and a maximum false negative tolerance

ε−, the answer set A(t) is correct w.r.t. ε+ and ε− if

and only if F+(t) ≤ ε+ and F−(t) ≤ ε−.

The parameters ε+ and ε− are user-specified. The
system has to guarantee that the fraction-based toler-
ances are met. In this paper we assume that ε+ and ε−

are both smaller than 0.5. We make this assumption

because in most scenarios, users are not interested in
results with more incorrect answers than correct ones.
Also, this assumption is required for guaranteeing the
correctness of our protocols.

For notational convenience, we use Emax+(t) to de-
note the maximum number of streams that can be in-
correct in A(t) and Emax−(t) to denote the maximum
number of streams that satisfy the query but are ex-
cluded from A(t). From Equations 1 and 2, we have

F+(t) ≤
Emax+(t)

|A(t)|
= ε+, (3)

F−(t) ≤
Emax−(t)

|A(t)| − Emax+(t)
= ε−. (4)

3.4.1 Fraction-based Tolerant k-NN queries

In this section we discuss an interesting property when
fraction-based tolerance is applied to k-NN queries.
For a k-NN query, the number of correct answers is k.
Therefore, Equation 2 becomes

F−(t) =
E−(t)

k
, (5)

which means that at any time t, the number of false
negatives (E−(t)) cannot exceed k. Moreover, the
number of correct answers returned in the answer set,
i.e., |A(t)| − E+(t), must not exceed k. Hence,

1 − ε+ ≤ 1 −
E+(t)

|A(t)|
≤

k

|A(t)|
. (6)

This implies

|A(t)| ≤
k

1 − ε+
, (7)

|A(t)| ≤ 2k. (8)

Equation 8 is obtained by the assumption that ε+ <
0.5. In other words, with fraction-based tolerance, the
size of the answer set returned to the user does not
necessarily have to be k. For example, if the 10 nearest
neighbors are queried with a fraction-based tolerance
ε+ = 0.1, the system could return 11 streams with
a guarantee that at most one of them is not correct.
(That is, all correct ones are returned.) In fact, the
answer set size can be controlled by ε+, and is upper-
bounded by 2k. Finally, since the true answer size is
always k, the following must hold:

|A(t)| ≥ k(1 − ε−) (9)

|A(t)| ≥
k

2
(10)

when ε− is less than 0.5. As we can see, fraction-based
tolerance limits the answer of a k-NN query to within
k
2 and 2k. This property affects the design of filter
bound maintenance protocols.

41

3.5 Maintaining Query Correctness

We are now ready to describe our protocols that guar-
antee query correctness with specific tolerance con-
straints. These protocols translate tolerance con-
straints into filter constraints installed in the data
streams. As long as the data value of a stream does not
violate the filter constraint, no update is sent from the
stream source to the server. When it is necessary that
an update be sent to the server, the server may need to
reconfigure the filter constraints. We call such recon-
figuration constraint resolution. Similar to [2], there
are two correctness requirements for our protocols:

Correctness Requirement 1: At every point in
time, if no resolution is required, then the results of all
running continuous queries remain valid within their
tolerance constraints.

Correctness Requirement 2: Immediately after
a filter resolution process is completed, the tolerance
constraint of a query is satisfied assuming that stream
values do not change during resolution.

Section 4 describes how to exploit rank-based-
tolerance for rank-based queries. In Section 5 we ex-
ploit fraction-based-tolerance for both rank-based and
non-rank-based queries.

4 Rank-based Tolerance

Assume that q is the query point for a k-NN query.
The goal of the query can then be formulated as finding
the k objects whose distances from q, i.e., |Vi − q|, are
the shortest. We use |Vi − q| to decide the value of
rank(Si, t). According to Definition 1, a query answer
A(t) is correct at time t if its size is k and it consists
of stream identifiers Si such that rank(Si, t) ≤ εr

k.
The rank-based tolerance protocol (RTP) de-

scribed here maintains the correctness mentioned
above, and at the same time exploits tolerance to re-
duce communication cost. Its main idea is to maintain
a closed interval R that encloses at least the (k + r)th
objects closest to q. The position of R is halfway be-
tween the (k + r)th and the (k + r + 1)st object. We
use R as the basis for assigning filter constraints. As
long as no object crosses the boundary of R, the toler-
ance requirements are fulfilled. An example is shown
in Figure 6(a), where R lies in between the positions
of the fourth-nearest object, S4 and the fifth-nearest
object, S5.

RTP consists of two phases: Initialization and
Maintenance, which are responsible for assigning
and maintaining filter constraints, respectively. The
server maintains a set of objects, X, where each ob-
ject in X lies within R. Let X(t) represent the set X
at any given time t. The answer set returned to the
user, A(t), is extracted from X(t), i.e., A(t) ⊆ X(t).
Figure 5 illustrates these two phases.

The task of the Initialization Phase is to dis-
tribute the constraint R to filters. At time t0, it col-

Initialization (at time t0)
1. request all streams to send their values
2. A(t0)← {Si|rank(Si, t0) ≤ k}
3. X(t0)← {Si|rank(Si, t0) ≤ εr

k
}

4. execute Deploy bound(t0)

Maintenance
Upon receiving a new update Vi from stream Si at time t ,
Case 1: Si ∈ X(t)−A(t) /* Vi “leaves” R */
1. remove Si from X(t)

Case 2: Si ∈ A(t) /* Vi “leaves”R */
2. remove Si from both A(t) and X(t)
3. if A(t) ⊂ X(t) then

(I)insert into A(t) an object in X(t)−A(t) with highest rank
4. else /* R only contains |A(t)| = k − 1 objects */

(I)for j = k + r + 1 to n do
(i) Let d′ be |Vj − q| s.t. rank(Sj , t0) = j
(ii) R′ ← [q − d′, q + d′]
(iii)U(t)←

⋃
{Sl|Vl ∈ R′ ∧ Sl 6∈ A(t)}

(iv) if |U(t)| ≥ 2 then
a.A(t)← A(t) ∪ {Sl|Sl ∈ U(t) ∧ |Vl − q| = minSl∈U(t) |Vl − q|}
b.X(t)← A(t) ∪ {Sl|Sl ∈ U(t) ∧ |Vl − q| ∈ minr+1,Sl∈U(t) |Vl − q|}
c.execute Deploy bound(t)
d.quit

5. execute Initialization
Case 3: Si ∈ S −X(t) /* Vi “enters” R */
6. if |X(t)| < εr

k
then

(I) insert Si into X(t)
7. else /* Evaluate new R */

(I) ∀Si ∈ X(t), request for current values Si

(II) A(t)← {Si|rank(Si, t) ≤ k}
(III)X(t)← {Si|rank(Si, t) ≤ εr

k
}

(IV) execute Deploy bound(t)

Deploy bound(t)
1. Sx ← Si where rank(Si, t) = εr

k
2. Sy ← Si where rank(Si, t) = εr

k
+ 1

3. d←
|Vx−q|+|Vy−q|

2
4. ∀Si ∈ S, deploy constraint [q − d, q + d]

Figure 5: The RTP algorithm (at the server side).

lects information from all sensors and assigns appro-
priate values to A(t0) and X(t0). Then it executes
Deploy bound(t0), which calculates the constraint R
and sends it to all streams. It can be shown easily
that Correctness 1 is enforced [4]. As an illustration,
Figure 6(a) shows the position of query point q, the
initial state of the objects, and the constraint R after
the Initialization phase.

After initialization, an update from Si indicates its
value has either left or entered R. Answer correct-
ness can be violated, and the Maintenance Phase
corrects errors by considering three cases:

Case 1. When an update from Si ∈ X(t) − A(t)
is received, Vi is no longer within R. Thus Si is re-
moved from X(t) (Step 1). Correctness 2 is ensured,
since any Sj ∈ A(t) still satisfies rank(Sj , t) ≤ εr

k, and
|A(t)| = k. Figure 6(b) illustrates this scenario when
S3 ∈ X(t) − A(t) sends its update to the server.

Case 2. An update from A(t) indicates that Si should
not be in the answer anymore, since Vi is outside R and
there is no longer any guarantee that rank(Sj , t) ≤ εr

k.
To ensure correctness, we replace Si with an item Sj

42

�������

����

���
��

�����	
���	
	
���	���

�

�

������
�

���
�� ����� ����

�

�� ��

���
�������

�

�� ��

���
��� ������

�

��

��

��	
� ���� ��	
� ����
���� ��	
� ��
����

Figure 6: RTP for k-NN with k = 2 and r = 2.

from X(t)−A(t) (Steps 2 and 3) where rank(Sj , t) ≤
εr
k. Figure 6(c) gives an example of this case. As S1

moves out of R, it is replaced by S4 in A(t).

It is possible that the set X(t)−A(t) is empty due
to removals caused by repeated application of Step
1 above. We can choose to re-execute Initialization
phase, but this is expensive as all streams need to be
probed. Note that R now only contains the objects in
A(t). Step 4 looks for candidates to judiciously replace
Si: it expands its search region based on the old rank-
ing scores kept by the server. The search region, R′, is
formed based on the jth-ranked object from q, where
j ranges from k + r + 1 to n (Step 4(I)(i)-(ii)). The
server then queries the clients if their values are within
the expanded region R′ (Step 4(I)(iii)). If the number
of responses, |U(t)|, is not less than 2, then A(t) and
X(t) will be fixed and the new bound is deployed (Step
4(I)(iv)) (the notation minr+1,Sl∈U(t) |Vl−q| in (iv)(b)
means any object in U(t) ranking (r + 1)st or higher
in terms of distance from q). The search region ex-
pands until we reach Vn, and if still nothing is found,
Initialization phase will be re-executed.

Case 3. Si signals that its value is now within R. If
the size of X(t) is less than εr

k, we add Si to X(t) and
the correctness is maintained, since |X(t)| is not larger
than εr

k (Step 6(I)), which is illustrated in Figure 6(d).
When |X(t)| > εr

k, we have to evaluate R so that it
contains εr

k or less objects. To do this, we only need
to probe the objects in X(t) (Step 7).

Communication Costs. Initialization needs O(n)
messages. The running cost for the maintenance phase
is O(nr). In practice this number can be fewer. As il-
lustrated in Figure 6, objects can leave R (a) or enter
R (d), without incurring any maintenance costs. De-
tails of this analysis are described in [4].

5 Fraction-based Tolerance

As discussed earlier, fraction-based tolerance can
be applied to both non-rank-based and rank-based
queries. In Section 5.1, we study a protocol for non-
rank-based queries. We further extend that protocol
to support rank-based queries in Section 5.2.

5.1 Non-rank-based Queries

We now present a protocol for exploiting fraction-
based tolerance for range queries, which are one type of
the non-rank-based queries. Recall that a range query
is characterized by a close interval [l, u], where streams
with values within this interval are to be reported.

First, consider a simple filter protocol where no tol-
erance is allowed: each stream filter is assigned the
constraint [l, u] at the beginning. Any violation in a
filter has to be reported to the server, so that query
answers can be updated correspondingly. Correctness
is guaranteed, since essentially each filter evaluates
the range query on the stream it is responsible for.
We call this algorithm zero-tolerance protocol for non-

rank-based query (ZT-NRP).
Although ZT-NRP can reduce the amount of com-

munication, it does not exploit any tolerance at all.
Thus updates may be generated unnecessarily. The
protocol described next utilizes fraction-based toler-
ance to achieve a better performance.

5.1.1 Exploiting Fraction-based Tolerance

Initialization Phase In the fraction-based tolerance

protocol for non-rank-based queries, or FT-NRP in
short (Figure 7), no more than a fraction ε+ of the an-
swer (i.e., A(t)) can be wrong at any time t. The server
first captures the states of the streams at time t0 (Steps
1-3). Out of the |A(t0)| answers that satisfy the range
query, we assign the constraint [−∞,∞] to Emax+(t0)
filters, and [l, u] to the remaining |A(t0)| −Emax+(t0)
filters (Step 4), where Emax+(t0) is given by |A(t0)|·ε

+

(Equation 3). Filters assigned with [−∞,∞] (called
false positive filters), do not report their values. If
no stream in A(t) replies, the false positive require-
ment is met i.e., F+(t) ≤ ε+. Since Emax+(t0) streams
are “shut down”, the amount of communication is re-
duced. This approach also potentially saves battery
power in a sensor network, since the sensors can be
“shut down” and consume less energy than active sen-
sors. We use n+, initially equal to Emax+(t0), to de-
note the current number of false positive filters.

False negative tolerance can be exploited in a simi-
lar way. Observe that |Y (t0)| = |S−A(t0)| streams do
not satisfy Q. We assign [∞,∞] (called false negative

filters) to Emax−(t0) of them, and [l, u] to the remain-
ing ones. In essence, Emax−(t0) streams are “turned
off”. When no data are received from Y (t0), we guar-
antee at any time t, F−(t) ≤ ε−. From Equations 2,3

and 4, Emax−(t0) equals |A(t0)|
ε−(1−ε+)

1−ε−
. We use n−,

43

Initialization (at time t0)

Let count = 0, n+ = |A(t0)|ε+, n− = |A(t0)|
ε−(1−ε+)

1−ε−

1. request all streams to send their values
2. A(t0)← {Si|Vi ∈ [l, u] at time t0}
3. Y (t0)← S −A(t0)
4. For streams in A(t0),

(I) install [−∞,∞] to n+ filters
(II) install [l, u] to remaining |A(t0)| − n+ filters

5. For streams in Y (t0)
(I) install [∞,∞] to n− filters
(II) install [l, u] to remaining |Y (t0)| − n− filters

Maintenance
Upon receiving a new update, Vi from stream Si,
1. if Vi ∈ [l, u] then

(I) insert Si into A(t)
(II)count ← count + 1

2. else
(I) remove Si from A(t)
(II) if count > 0 then count ← count− 1
(III)else execute Fix Error

Fix Error

1. if n+ > 0 then
(I) request value from Sy with [−∞,∞] constraint
(II) if Vy ∈ [l, u] then

(i) install [l, u] for the filter of Sy

(ii)n+ ← n+ − 1
(iii)quit

(III)remove Sy from A(t)
2. if n− > 0 then

(I) request value from Sz with [∞,∞] constraint
(II) if Vz ∈ [l, u] then insert Sz into A(t)
(III)install [l, u] for the filter of Sz

(IV) n− ← n− − 1

Figure 7: The FT-NRP algorithm (at the server side).

initially set to Emax−(t0), to denote the current num-
ber of false negative filters.

After Initialization Phase, correctness requirement
1 is satisfied. That is, if no update is received at time
t, F+(t) ≤ ε+ and F−(t) ≤ ε−.

Maintenance Phase Updates can affect the cor-
rectness of FT-NRP. Assume the server receives an
updated value Vi from Si at time tu. Immediately
prior to receiving Vi, according to correctness 1, the
following must hold (from Equations 3, 4):

F+(t) ≤
Emax+(tu)

|A(tu)|
≤ ε+ (11)

F−(t) ≤
Emax−(tu)

|A(tu)| − Emax+(tu)
≤ ε− (12)

Let t be the current time instant with t ≥ tu. There
are two different cases of updates to consider:
Case 1: Vi ∈ [l, u]. This means Si, previously not
in the result, is now an answer. We handle this by
inserting Si into A(tu) (Step 1(I)). As Emax+(t) is
unchanged, and |A(t)| becomes |A(tu)| + 1, F+(t) is

at most Emax+(tu)
|A(tu)|+1 (Equation 3), and is thus less than

ε+ (Equation 11). Since Emax−(t) is also unchanged,
we can prove similarly that Equation 12 holds. Thus
correctness 2 is guaranteed.

Observe that both F+(t) and F−(t) drop. This is
because the answer quality is improved when more
streams satisfying the query. We exploit this by us-
ing a variable, count, to record the number of new
items inserted into the answer under this scenario
(Step 1(II)). Let tc denote the time when count is
zero. Then, |A(t)| = |A(tc)| + count for count≥ 0.
Intuitively, tc is the time when F+ and F− attain
their maximum values without violating correctness.
At any time t, if count≥ 0, F +(t) ≤ F+(tc) and
F−(t) ≤ F−(tc), a result that we will use next.

Case 2: Vi 6∈ [l, u]. This means Si satisfied Q imme-
diately after [l, u] was installed to its filter, but it is no
longer the answer to Q at time tu. Step 2(I) removes
this “bad answer” from A(tu). We also decrement
count by one (Step 2(II)). As explained in case 1, as
long as count is greater than zero, F +(t) ≤ F+(tc) and
F−(t) ≤ F−(tc). Since F+(tc) ≤ ε+ and F−(tc) ≤ ε−,
the correctness requirements are met.

When count becomes 0, correctness is no longer
guaranteed: |A(tu)|, becomes |A(tc)| − 1, and thus
F+(tu) and F−(tu) can be respectively larger than
F+(tc) and F−(tc). Intuitively, there are more items
removed from the answer due to Case 2 than the num-
ber of items inserted into the answer due to Case 1.
To ensure that F+(tu) and F−(tu) are restored to a
“normal level”, Fix Error is executed in Step 2(III).

Fix Error improves the degree of answer correct-
ness by consulting streams associated with false pos-
itive and false negative filters to update the answer,
so as to “compensate” the loss of correctness due to
the removal of an answer in Step 2(I). We now discuss
how Fix Error works, assuming that both false posi-
tive and false negative filters are available (i.e., n+ and
n− are greater than zero).

When n+ > 0, a stream Sy with a false positive
filter is requested to send its value (Step 1(I)). There
are two cases, depending on whether Vy is inside [l, u].

Case 1: Vy ∈ [l, u]. Sy is now a true positive. Since
Sy was assigned a false positive filter, Vy has already
been in A(tu), so |A(tu)| is unchanged (i.e., |A(tc)|−1).
We then install [l, u] for Sy to ensure Vy ∈ [l, u] when
no update is received from it (Step (II)(i)). Since
Sy is no longer a false positive, Emax+(tu) is decre-

mented. Thus F (tu) is now less than Emax+(tc)−1
|A(tc)|−1 ,

which is less than F+(tc), meeting the false positive
constraint. The false negative constraint is also sat-

isfied: by Equation 4, F−(tu) ≤ Emax−(tu)
|A(tu)|−Emax+(tu) , or

Emax−(tc)
(|A(tc)|−1)−(Emax+(tc)−1) , which is less than ε−.

Case 2: Vy 6∈ [l, u]. Sy is now a true negative. Since
Sy no longer satisfies Q, we remove Sy from A(tu)
(Step 1(III)), and |A(tu)| becomes |A(tc)| − 2. Since
E+(tu) is also decremented, F+(tu) is now less than
Emax+(tc)−1

|A(tc)|−2 . Since ε+ ≤ 0.5, Emax+(tc)−1
|A(tc)|−2 cannot be

larger than Emax+(tc)
|A(tc)|

, and is thus less than ε+.

44

However, F max−(tu) is now at most
Emax−(tc)

(|A(tc)|−2)−(Emax+(tc)−1) , which can be more than

ε−. To remedy this, we pick one stream associated
with a false negative filter (Step 2(I)). If Vz ∈ [l, u],
we include Sz into the answer (Step 2(II)). We also
install [l, u] to the filter of Sz (Step 2 (III)). Now
|A(tu)| is increased to |A(tc)| − 1, and F−(tu) is at

most Emax−(tc)−1
(|A(tc)|−1)−(Emax+(tc)−1) , which is smaller than

ε−. Further, F+(tu) is at most Emax+(tc)−1
|A(tc)|−1 , which is

still less than ε+. Thus correctness 2 is met.
On the other hand, if Vz 6∈ [l, u], |A(tu)| and

Emax+(tu) remain unchanged and thus the false posi-
tive constraint is still satisfied. Since E−(tu) is at most

Emax−(tc)−1, F−(tu) is at most Emax−(tc)−1
(|A(tc)|−2)−Emax+(tc)

,

which is smaller than ε− because ε− ≤ 0.5. Hence cor-
rectness 2 is also met.

The details of the correctness proofs for the special
cases: (1) n+ = 0 ∧ n− > 0 and (2) n+ > 0 ∧ n− = 0
can be found in our technical report [4]. We remark
that when both n+ and n− become zero, all false posi-
tive and negative filters are essentially replaced by the
[l, u] constraint. Hence the fraction-based tolerance
constraints are trivially met, and the protocol reduces
to ZT-NRP. To exploit tolerance, the Initialization
Phase of FT-NRP may be run again.

Communication Costs. Initialization requires
O(n) messages, while maintenance generates at most
five messages. However, since no messages are required
unless count is zero, the actual cost can be lower.

5.2 Rank-based queries

We now present the fraction-based tolerance protocol
for k-NN query. Our solution is to transform a k-NN
query to a range query, and then adopt the fraction-
based protocol we described in Section 5.1.

5.2.1 Transforming k-NN to Range Query

A k-NN query can be viewed as a range query: if we
know the bound R that encloses the k-th nearest neigh-
bor of the query point q, then any objects with values
located within R will be an answer to the k-NN query.

We can use this idea to design a filter scheme for k-
NN query (with zero-tolerance). We call this protocol
ZT-RP. Its Initialization Phase computes R and then
distributes R to all the stream filters. If no responses
are received from the streams, the server is assured
that all k objects are within R, and they are still the k
nearest neighbors of q. Since no error is allowed, if any
object enters or leaves R, we have to recompute R so
that R still encloses the k nearest objects. In addition,
the new R has to be announced to every stream.

The main drawback of this simple protocol is that
it is very sensitive to the situation when an object’s
value crosses R. When this happens, R has to be re-

�

�

����� ������� ��

Figure 8: False positives and false negatives for k-NN.

computed and announced to every stream! Now let us
investigate how this problem can be alleviated.

5.2.2 Using FT-NRP for k-NN Query

We just discussed how to view a k-NN query as a range
query for the purpose of constraint deployment. Recall
that the definition of fraction-based tolerance is the
same for k-NN query and range query. To develop
a fraction-based tolerance protocol for a k-NN query,
apparently we can transform a k-NN query to a range
query, and then directly apply FT-NRP. However,
this is incorrect. In particular, we may not use the
values of ε+ and ε− specified by the k-NN query to
parametize FT-NRP directly.

To understand why, let ρ+ and ρ− be the maxi-
mum false positive tolerance and maximum false neg-
ative tolerance used by FT-NRP to answer a k-NN
query (with tolerance ε+ and ε−). Let R be the small-
est region that initially bounds the kth-ranked object
and thus contains k objects. Similar to the initializa-
tion phase of FT-NRP, for objects with values in R
we assign false positive filters to kρ+ streams; and for
streams with values outside R, we apply false negative
filters to kρ− streams. All other streams are assigned
R as their filter bounds. The rest of this section ex-
amines how ρ+ and ρ− should be set.

Meeting false positive requirement. Suppose
R encloses the k nearest objects of q. Let S1 be part
of the answer set, and V ′

1 ∈ R is the value of S1 last
reported to the server. Hence S1 is one of the k near-
est neighbors. If S1 is associated with a false positive
filter, the new value of S1, i.e., V1, may not be located
within R. Consider the situation in Figure 8. Suppose
there exists a stream S2 such that V1 < V2. Then S1 is
no longer a correct answer, since S2 now ranks higher
and pushes the rank of S1 to k + 1. Therefore S1 be-
comes a false positive. Since at most |A(t)|ρ+ streams
are assigned with false positive filters, at most |A(t)|ρ+

false positives are produced in this way.
Another kind of false positive is caused by false neg-

ative filters. Suppose S4, being ranked the k-th and
lies within R, is part of the answer. Also assume S3

is associated with a false negative filter, whose last re-
ported value, V ′

3 , does not lie within R. As illustrated
in Figure 8, when the new value of S3, i.e., V3, is within
R, the rank of S3 becomes k or higher. The rank of
S4 is demoted to k + 1 and thus S4 becomes a false
positive. Since false negative filters can be assigned to
at most kρ− streams (Equation 5), at most kρ− false

45

positives are created in this way.
The sum of the false positives generated by these

two scenarios is |A(t)|ρ+ + kρ−, where |A(t)| is less
than k

1−ε+
(Equation 7). Also, the user cannot tolerate

more than |A(t)|ε+ false positives, with a minimum
value of k(1 − ε−)ε+ (Equation 9). Therefore,

ρ− ≤
ρ+

ε+ − 1
+ (1 − ε−)ε+ (13)

Meeting false negative requirement. Again
there are two types of false negatives for a kNN query.
As shown in Figure 8, the first type of false negatives
is caused by streams like S3, whose last reported value
V ′

3 is not within R, and is assigned with false negative
filters. Later its new value V3 is within R and its rank
is raised to k or higher. The server does not know
this, and so S3 is a false negative. The number of false
negatives is at most kρ−, the maximum number of false
negative filters. The second type is caused by streams
with false positive filters like S1. Again S1 was among
the top-k objects since its last reported value V ′

1 is
within R. However its new value V1 is less than V2,
so S2 ranks k or higher (without notifying the server).
The maximum number of this kind of false negatives is
thus |A(t)|ρ+, the maximum number of false positive
filters. Since the maximum number of false negatives
for k-NN query is given by kε−, the sum of the two
kinds of false negatives, kρ− and |A(t)|ρ+, must be
less than ≤ kε−. Equation 7 simplifies this to:

ρ− ≤
ρ+

ε+ − 1
+ ε− (14)

Guaranteeing correctness. To make sure both
false positives and false negatives are met, we combine
Equations 13 and 14 so that the following is achieved:

ρ− ≤
ρ+

ε+ − 1
+ min((1 − ε−)ε+, ε−) (15)

Essentially, when the user-defined constraints for rank-
based query (i.e., ε+ and ε−) are implemented using
FT-NRP, the values of ρ+ and ρ− so set must satisfy
Equation 15. To maximize the degree of tolerance ex-
ploited, the values of ρ+ and ρ− should be maximized
according to the following equation:

ρ− =
ρ+

ε+ − 1
+ min((1 − ε−)ε+, ε−) (16)

5.2.3 Fraction-based Tolerant k-NN Query

Once the values of ρ+ and ρ− are correctly set, we can
extend FT-NRP to exploit the fraction-based toler-
ance of k-NN queries. The corresponding protocol,
called FT-RP, differs from FT-NRP in two aspects:
(1) Unlike a range query with a fixed bound [l, u], the
“range” of k-NN query is defined by R – the tightest
bound that contains the k-th nearest neighbor. Thus,

FT-RP first finds R before running the initialization
phase of FT-NRP. Notice that the filter constraint R
so calculated will not be changed even when R con-
tains more or less than k objects – except when the
conditions described next are met. Essentially, we use
R only as an estimate of the k nearest neighbors.
(2) A requirement for the answer A(t) of a rank-based
query is that k(1− ε−) ≤ |A(t)| ≤ k

1−ε+
(Equations 7,

9). Initially |A(t)| is equal to k, but as time goes
by, the number of items in A(t) will be increased (de-
creased) when an object enters (exits) R. Intuitively,
when |A(t)| exceeds k

1−ε+
, there are too many objects

in R i.e., R is “too loose”. Similarly, when |A(t)| drops
below k(1− ε−), there are too few objects in R, i.e., R
is “too tight”. In either case, R is no longer an appro-
priate filter bound, and a new bound has to be found
to enclose the new k-nearest neighbors.

The advantage of FT-RP over ZT-RP is easily
seen – it does not have to recompute and broadcast R
each time an object enters or leaves R, but only when
A(t) drops below k(1 − ε−) or exceeds k

1−ε+
.

6 Experimental Results

We now present an experimental evaluation over our
protocols. We use CSIM 19 [19] to simulate the envi-
ronment in Figure 3. We study the performance of the
tolerance-based protocols over various degrees of tol-
erance, and compare with (1) the case when no filter
is used at all, and (2) filter protocols with no toler-
ance allowed (i.e.,ZT-NRP and ZT-RP). The per-
formance metric for measuring communication costs
is the number of maintenance messages required dur-
ing the lifetime of the query1. We now present two
sets of results, based on real and synthetic data.

6.1 TCP Data

In the first set of experiments, we test the efficiency of
our protocols based on TCP traces [15]. The experi-
ment models a remote network monitoring application,
where a central console is used to monitor a network
composed of 800 subnets. We assume an agent soft-
ware that implements our filters is installed at each
subnet router. The dataset contains 30 days of wide-
area traces of TCP connections, capturing 606,497
connections. We model the connections whose IP ad-
dresses share the same 16-bit prefix as data from the
same subnet. Each of the 800 subnets represents a
stream source. The “number of bytes sent” field in
each packet trace is used as a data value. Here a
range query can be used to classify subnets with dif-
ferent ranges of traffic volume. A top-k query is used
to report continuously the subnets with the k-highest
volume of data transferred [2].

1When no filter is used, a “maintenance message” is essen-
tially an update message from a stream source.

46

0 5 10 15 20
0

5K

10K

15K

20K

25K

30K

35K

40K

45K

r

N
u

m
b

er
 o

f
M

es
sa

g
es

no filter
k=15
k=20
k=25
k=30

Figure 9: RTP: Effect of r

0
0.1

0.2
0.3

0.4
0.5 0

0.1
0.2

0.3
0.4

0.5
0

20K

40K

60K

80K

100K

120K

ε+
ε−

N
um

be
r

of
 M

es
sa

ge
s

7

8

9

10

11

12

x 10
4

Figure 10: FT-NRP: Effect of ε
+/ε

−

200 400 600 800 1000 1200 1400 1600 1800 2000
0

50K

100K

150K

200K

250K

Number of Streams

N
u

m
b

er
 o

f
M

es
sa

g
es

ε+=ε−=0

ε+=ε−=0.2

ε+=ε−=0.3

ε+=ε−=0.4

ε+=ε−=0.5

Figure 11: FT-NRP: Scalability

Figure 9 shows the result of varying the rank-based
tolerance r for some values of k. For each value of k
shown, the performance improves as r increases. Thus
RTP is able to exploit tolerance effectively. Notice
that at k = 30 and r = 0, the performance is worse
than when no filter is used. This is because at r = 0,
the bound R needs to be recomputed frequently, and
many maintenance messages are generated as a result.

Next, we examine how well FT-NRP exploits
fraction-based tolerance for range queries. A range
query with [l, u] = [400, 600] is used. In Figure 10,
the number of messages decreases as ε+ and ε− in-
crease. Thus FT-NRP performs consistently better
than ZT-NRP. We do not show the result when no
filter is used because it has a very high cost. The
scalability of FT-NRP is shown in Figure 11. The
protocol in general scales well, and for a larger num-
ber of streams, the performance gains more by using
higher tolerance values.

6.2 Synthetic Data

Next, we test the protocols with a synthetic data
model. It gives us better control over data behavior.
We assume 5000 data streams, and data values are ini-
tially uniformly distributed in the range [0, 1000]. The
time between each data item is generated follows an
exponential distribution with a mean of 20 time units.
When a new data value is generated, its difference from
the previous value follows a normal distribution with
a mean of 0 and standard deviation (σ) of 20.

We first examine the performance of FT-NRP for
a range query with [l, u] = [400, 600] over different val-
ues of ε+ and ε−. Figure 12 shows that FT-NRP ex-
ploits tolerance effectively. Figure 13 then illustrates
the effect of data fluctuation (i.e., the amount of differ-
ence between two adjacent values in a data stream) on
FT-NRP. As σ increases, FT-NRP generates more
messages. When a data value changes abruptly, it has
a higher chance of violating the filter bound constraint
and generate an update.

We also explore how FT-NRP is affected by the as-
signment of false positive and false negative filters dur-

ing the initialization phase. We compare two heuris-
tics: (1) random – streams are randomly selected to
be assigned with [−∞,∞] and [∞,∞] constraints, and
(2) boundary-nearest – only streams with values clos-
est to the user-defined range [l, u] are assigned with
[−∞,∞] and [∞,∞] constraints. Figure 14 shows
that boundary-nearest outperforms random because
streams with values close to [l, u] are likely to cross
the boundary of [l, u], and so by assigning false posi-
tive/negative filters to them, the number of updates
reported can be reduced. As the amount of toler-
ance increases, the difference is more pronounced, be-
cause more false positive/negative filters are available,
and they are more appropriately placed by boundary-

nearest than by random.
The performance of ZT-RP and FT-RP over dif-

ferent values of k is shown in Figure 15. For k equals
60 or 100, the number of messages drops significantly
with a slight increase in tolerance. This is because
the bound R for enclosing the k nearest objects is not
“tight”, and objects can cross R without requiring R
to be recomputed and assigned as a new constraint to
the streams. With zero tolerance, however, R virtu-
ally changes everytime an object crosses it. We note
that the protocol does not perform well at k = 20 and
ε+ = ε− = 0.1. At small values of k and tolerance,
the number of false positive and negative filters allo-
cated is limited. The little benefit of tolerance cannot
overcome the high maintenance cost. We remark that
FT-RP is not suitable in this situation.

7 Conclusions

The performance of data stream management systems
can often be improved by allowing some tolerance. In
this paper we studied how non-value tolerance can be
exploited for entity-based queries. We presented sim-
ple protocols to incorporate rank-based and fraction-
based tolerance into both rank-based and non-rank-
based queries. Through testing with real and simu-
lation data, we showed that our protocols are effec-
tive in reducing communication costs. The concepts of
our protocols can be extended to multiple dimensions.

47

0
0.1

0.2
0.3

0.4
0.5 0

0.1
0.2

0.3
0.4

0.5
34K

36K

38K

40K

42K

44K

46K

48K

ε+
ε−

N
um

be
r

of
 M

es
sa

ge
s

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6
x 10

4

Figure 12: FT-NRP: Effect of ε+/ε−

0 0.1 0.2 0.3 0.4 0.5
0

10K

20K

30K

40K

50K

60K

70K

80K

ε+/ε−

N
u

m
b

er
 o

f
M

es
sa

g
es

σ=20
σ=40
σ=60
σ=80
σ=100

Figure 13: FT-NRP: Data fluctuation

0 0.1 0.2 0.3 0.4 0.5

36K

38K

40K

42K

44K

46K

ε+/ε−

N
um

be
r

of
 M

es
sa

ge
s

Random Selection
Boundary−nearest

Figure 14: FT-NRP: Selection heuristics

0 0.1 0.2 0.3 0.4 0.5
1K

10K

100K

1000K

ε+/ε−

N
u

m
b

er
 o

f
M

es
sa

g
es

 (
lo

g
)

k=20
k=60
k=100

Figure 15: ZT-RP/FT-RP: Effect of ε
+/ε

−

We plan to extend the protocols to support multiple
queries, and examine how existing data stream algo-
rithms can be modified to support non-value tolerance.

Acknowledgments

This research was partially supported by Hong Kong
Grants Council grants HKU 7040/02E. Reynold Cheng
and Sunil Prabhakar were supported by NSF Grants
IIS 9985019 and CCR-0010044. We thank the anony-
mous reviewers for their insightful comments.

References

[1] A. Arasu, B. Babcock, S. Babu, J. McAlister, and
J. Widom. Characterizing memory requirements for
queries over continuous data streams. ACM Trans.

Database Syst., 29(1), 2004.

[2] B. Babcock and C. Olston. Distributed top-k moni-
toring. In Proc. ACM SIGMOD, 2003.

[3] R. Cheng, D. Kalashnikov, and S. Prabhakar. Eval-
uating probabilistic queries over imprecise data. In
Proc. ACM SIGMOD, 2003.

[4] R. Cheng, B. Kao, S. Prabhakar, A. Kwan, and Y. Tu.
Adaptive stream filters for entity-based queries with
non-value tolerance. Technical Report CSD TR #05-
003, Dept. of CS, Purdue University, 2005.

[5] B. Cui, H. Shen, J. Shen, and K. Tan. Explor-
ing bit-difference for approximate knn search in high-
dimensional databases. In Australasian Database Con-

ference, 2005.

[6] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos.
Hierarchical in-network data aggregation with quality
guarantees. In Proc. EDBT, 2004.

[7] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. In Proc. VLDB, 2004.

[8] D. Abadiand et al. Aurora: A data stream manage-
ment system. In Proc. ACM SIGMOD, 2003.

[9] M. Greenwald and S. Khanna. Power-conserving com-
putation of order-statistics over sensor networks. In
Proc. ACM PODS, 2004.

[10] V. Hristidis, L. Gravano, and Y. Papakonstanti-
nou. Efficient IR-style keyword search over relational
databases. In Proc. VLDB, 2003.

[11] G. Iwerks, H. Samet, and K. Smith. Continuous
k-nearest neighbor queries for continuously moving
points with updates. In Proc. VLDB, 2003.

[12] A. Jain, E. Chang, and Y. Wang. Adaptive stream
resource management using kalman filters. In Proc.

ACM SIGMOD, 2004.

[13] S. Khanna and W. C. Tan. On computing functions
with uncertainty. In ACM PODS, 2001.

[14] N. Koudas, B. Ooi, K. Tan, and R. Zhang. Ap-
proximate NN queries on streams with guaranteed er-
ror/performance bounds. In Proc. VLDB, 2004.

[15] Lawrance Berkeley National Laboratory. The Internet
Traffic Archive, USA. URL http://ita.ee.lbl.gov.

[16] J. Ni and C. V. Ravishankar. Probabilistic spatial
database operations. In Proc. SSTD, 2003.

[17] C. Olston, J. Jiang, and J. Widom. Adaptive filters
for continuous queries over distributed data streams.
In Proc. ACM SIGMOD, 2003.

[18] V. Poosala and V. Ganti. Fast approximate query an-
swering using precomputed statistics. In Proc. ICDE,
1999.

[19] Mesquite Software. CSIM 19. URL http://www.

mesquite.com.

[20] S. Vrbsky and J. Liu. Producing approximate answers
to set- and single-valued queries. Journal of Systems

and Software, 27(3), 1994.

[21] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha.
Updating and querying databases that track mobile
units. Distributed and Parallel Databases, 7(3), 1999.

48

