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Amélie Marian
Columbia University

amelie@cs.columbia.edu
Divesh Srivastava

AT&T Labs–Research
divesh@research.att.com

David Toman
University of Waterloo
david@uwaterloo.ca

Abstract

XML repositories are usually queried both on
structure and content. Due to structural hetero-
geneity of XML, queries are often interpreted ap-
proximately and their answers are returned ranked
by scores. Computing answer scores in XML is
an active area of research that oscillates between
pure content scoring such as the well-known tf*idf
and taking structure into account. However, none
of the existing proposals fully accounts for struc-
ture and combines it with content to score query
answers. We propose novel XML scoring meth-
ods that are inspired by tf*idf and that account
for both structure and content while considering
query relaxations. Twig scoring, accounts for the
most structure and content and is thus used as our
reference method. Path scoring is an approxima-
tion that loosens correlations between query nodes
hence reducing the amount of time required to ma-
nipulate scores during top-

�
query processing. We

propose efficient data structures in order to speed
up ranked query processing. We run extensive ex-
periments that validate our scoring methods and
that show that path scoring provides very high pre-
cision while improving score computation time.

1 Introduction
XML data is now available in different forms ranging from
persistent repositories such as the INEX and the US Li-
brary of Congress collections to streaming data such as
stock quotes and news [16]. Such data is often queried
on both structure and content [3, 6, 14, 18, 19]. Due to
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the structural heterogeneity of XML data, queries are usu-
ally interpreted approximately [1, 4, 5, 11, 15] and top-�

answers are returned ranked by their relevance to the
query. The term frequency (tf) and inverse document fre-
quency (idf) measures, proposed in Information Retrieval
(IR) [13], are widely used to score keyword queries, i.e.,
queries on content. However, although some recent propos-
als [3, 6, 11, 15] attempted to propose scoring methods that
account for structure for ranking answers to XML queries,
none of them fully captures both structure and content and
uses query relaxation in computing answer scores.

In this paper, we propose scoring methods inspired by
tf*idf to capture scoring and ranking queries both on struc-
ture and content. These methods rely on query relaxation
techniques applied to structural predicates, i.e., XPath axes,
such as in [1]. We define twig scoring as our method of
reference as it accounts for all structural and content cor-
relations in the query. However, it is time and space con-
suming because it requires computation of the scores of all
relaxed versions of a query. Therefore, we propose path
scoring as an approximation of twig scoring that loosens
correlations between query nodes when computing scores,
thereby reducing the amount of time required to compute
and access scores during top-

�
query processing. The key

idea in path scoring is to decompose the twig query into
paths, compute the score of each path assuming indepen-
dence between paths, and combine these scores into an an-
swer score. This is in the same spirit as the vector space
model of IR [13] where independence is assumed between
query keywords and answer scores are computed as a com-
bination of individual query keywords’ scores.

In [10], we proposed binary scoring that also accounts
for structural predicates and that computes answer scores
by combining scores of individual child and descendants
predicates in the query thereby assuming independence be-
tween all predicates. This scoring method is in fact an ap-
proximation of twig and path scoring that needs less time
and space in exchange for a degradation in score quality.

Efficient top-
�

processing requires the ability to prune
partial query matches, i.e., those that will never make the
top-

�
answer list, as early as possible during query evalua-
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tion. Given a query and a scoring method, different answers
might have different scores depending on which relaxed
form of the query they satisfy. In addition, the same an-
swer might have a different score from one scoring method
to another. However, all our scoring methods guarantee that
more precise answers to the user query are assigned higher
scores. This property can be used by any top-

�
algorithm

since pruning is based on determining the most accurate
score of a partial match using the query that the match sat-
isfies best at a certain point in query evaluation and, identi-
fying the best score growth of a partial match. Developing
the right data structure and access method to store scores
is a key factor in the efficient evaluation of ranked query
answers [13]. We show how organizing query relaxations
with their scores in a DAG structure, and using a matrix
to quickly determine the score of a partial match, leads to
efficient query evaluation and top-

�
processing.

To summarize, we make the following contributions:� We propose twig scoring, a reference method for
XML that is inspired by tf*idf in order to capture scor-
ing query answers on both structure and content while
accounting for query relaxation. We also propose path
scoring, an approximation of twig scoring that reduces
processing time. In addition, we discuss another ap-
proximation, binary scoring, that we previously pro-
posed in [10]. All these scoring methods rely on the
ability to evaluate structural predicates approximately.� We propose a DAG to maintain precomputed idf
scores for all possible relaxed queries that a partial
match may satisfy. We use a matrix representation
for queries, their relaxations, and partial matches to
quickly determine the relaxed query that is best satis-
fied by a partial match during top-

�
query processing

and prune irrelevant partial query matches.� We implemented all our scoring methods in conjunc-
tion with a top-

�
processing algorithm. We ran ex-

tensive experiments on real and synthetic datasets and
queries and showed that, compared to twig scoring,
path scoring achieves very high precision for top-

�
queries while requiring moderate time; and that binary
scoring results in high savings in time and space, but
exhibits significant degradation in answer quality.

Related work is given in Section 2. Section 3 contains
examples to motivate relaxation, scoring and top-

�
process-

ing. Section 4 gives definitions and the implementation of
our scoring. Experiments are detailed in Section 5. We
conclude outlining several open issues in Section 6.

2 Related Work
Scoring for XML is an active area of research [1, 2, 4, 6, 7,
9, 10, 11, 14, 15, 17, 18, 19]. However, with the exception
of [10], none of the existing proposals accounts for struc-
tural query relaxations while scoring on both structure and
content. However, we show in this paper that the binary

scoring method that we proposed in [10], while efficient,
does not provide high quality answers compared to the ref-
erence twig scoring method.

The INitiative for the Evaluation of XML retrieval
(INEX) 1 promotes new scoring methods for XML. INEX
now provides a collection of documents as a testbed for
various scoring methods in the same spirit as TREC was
designed for keyword queries. Unfortunately, none of the
proposed methods used in INEX as yet is based on struc-
tural relaxations to compute scores. As a result, the INEX
datasets and queries would need to be extended to account
for structural heterogeneity. Therefore, they could not be
used to validate our scoring methods. As part of this ef-
fort, XIRQL [6] is based on a probabilistic approach [12]
to compute scores at document edges and combines them
to compute answer scores. The score of each keyword uses
a path expression associated to the keyword in a query in-
stead of document-based scores as in traditional IR [13].
However, no relaxations are applied to path expressions.
Similarly, JuruXML [3] allows users to specify path ex-
pressions along with query keywords and modifies vector
space scoring by incorporating a similarity measure based
on the difference in length, referred to as length normal-
ization, between the path expression provided in the query
and the closest path in the data. We believe that relying on
a principled way of applying relaxations to XPath queries
carries more semantics than length normalization.

In [18], the authors study the relationship between scor-
ing methods and XML indices for efficient ranking. They
classify existing methods according to keyword and path
axes. Based on that classification, they show that ranking
on both structure and content are poorly supported by exist-
ing XML indices and propose IR-CADG, an extension to
dataguides to account for keywords, that better integrates
ranking on both structure and content. They show exper-
imentally that this index outperforms existing indices that
separate structure and content. This work is complemen-
tary to ours. It considers simple path queries and does not
account for relaxations. It would be interesting to see how
our DAG structure could be combined with the IR-CADG
index to explore both structural relaxations and a tighter
integration of indices on structure and on keywords.

Several query relaxation strategies for graph [8] and
tree [4, 5, 6, 15] queries have been proposed before. In this
paper, we adopt the relaxation framework defined in [1]
since it captures most previously proposed relaxations and
is general enough to incorporate new relaxations. While
in [1], the focus was on defining a relaxation framework
and query evaluation strategies assuming a given scoring
function, in this paper, we focus on scoring methods and
data structures to evaluate top-

�
XML queries.

3 Motivation
We represent XML data as forests of node labeled trees.
Figure 1 shows a database instance containing fragments

1http://inex.is.informatik.uni-duisburg.de:2004/
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Figure 1: Heterogeneous XML Database Example�������	��
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Figure 2: Query Tree Patterns and Relaxations

of heterogeneous news documents [16]. Figure 2 gives ex-
amples of several queries drawn as trees: the root nodes
represent the returned answers, single and double edges
the descendant and child axes, respectively, and node la-
bels names of elements or keywords to be matched.

3.1 Query Relaxation

Different queries match different news documents in Fig-
ure 1. For example, query (a) in Figure 2 matches doc-
ument (a) exactly, but would neither match document (b)
(since .0/2143 is not a child of /654768 ) nor document (c)
(since /650768 is entirely missing). Query (b) matches docu-
ment (a) too since the only difference between this query
and query (a) is the descendant axis between /654768 and59/650.:7 . Query (c) matches both documents (a) and (b) since.;/21<3 is not required to be a child of /654768 while query (d)
matches all documents in Figure 1.

Intuitively, it makes sense to return all three news docu-
ments as candidate matches, suitably ranked based on their
similarity to query (a) in Figure 2. Queries (b), (c) and (d)
in Figure 2, correspond to structural relaxations of the ini-
tial query (a) as defined in [1].

In the same manner, none of the three documents
in Figure 1 matches query (e) because none of their59/650.:7 s contains =?>2@BA�>C=EDGF HJI6K . Query (f), on the other
hand, is matched by all documents because the scope of=?>2@LA�>2=EDGF HJI6K is broader than in query (e). It is thus de-
sirable to return these documents suitably ranked on their
similarity to query (e).

In order to achieve the above goals, we use three re-
laxations: edge generalization (replacing a child axis with
a descendant axis), leaf deletion (making a leaf node op-

tional) and subtree promotion (moving a subtree from its
parent node to its grand-parent). These relaxations cap-
ture all the structural and content approximations described
in the examples. However, approximate keyword queries
based on techniques such as stemming and ontologies [17],
are orthogonal to and beyond the scope of this work.

Our relaxations capture approximate answers but still
guarantee that exact matches to the original query continue
to be matches to the relaxed query. For example, query (b)
can be obtained from query (a) by applying edge relax-
ation to the axis between /650728 and 59/25;.:7 and still guar-
antees that documents where 59/65;.G7 is a child of /650768 are
matched. Query (c) is obtained from query (a) by com-
posing edge generalization between /650768 and 59/25;.:7 and
subtree promotion (applied to the subtree rooted at .;/21<3 ).
Finally, query (d) is obtained from query (c) by applying
leaf deletion to the nodes MN>2@BA�>2=?D2OP>2QRD , 5B/65;.:7 and /650768 .
Query (d) is a relaxation of query (c) which is a relaxation
of query (b) which is a relaxation of query (a). Similarly,
query (f) in Figure 2 can be obtained from query (e) by a
combination of subtree promotion and leaf deletion.

3.2 Answer Scoring

In order to distinguish between answers to different relax-
ations of the same query, we need a scoring method to com-
pute the relevance of each query answer to the initial user
query. The traditional tf*idf measure is defined in IR for
keyword queries against a document collection. The idf,
or inverse document frequency, quantifies the relative im-
portance of an individual keyword in the collection of doc-
uments. The tf, or term frequency, quantifies the relative
importance of a keyword in an individual document. In the
vector space model [13], query keywords are assumed to
be independent of each other, and the tf*idf contribution
of each keyword is added to compute the final score of a
document.

In our context, the most accurate scoring method would
compute the score of an answer taking occurrences of
all structural and content (i.e., keyword) predicates in the
query. For example, a match to query (c) would be as-
signed an idf score based on the fraction of the number
of S6T;UV1<1074. nodes that have a child /650728 with a descen-
dant 5B/65;.:7 containing the keyword MW>2@LA�>2=ED2OP>2QRD and a
descendant .;/2143 that contains the keyword =?>C@BA�>2=EDVF HJI6K .
Such a match would be assigned a tf score based on the
number of query matches for the specific S6T0UV1<1;74. answer.
We refer to this method as twig scoring.

While twig scoring captures all correlations between
nodes in the query, it is time and memory consuming be-
cause it requires to compute the scores of each relaxed
query. Therefore, we define path scoring that loosens the
correlations between query nodes by assuming indepen-
dence between root-to-leaf paths in the query, computing
their scores and combining those scores to compute an an-
swer score. For example, for query (a) in Figure 2, twig
scoring is based on the number of S6T;UV1:1;74. nodes that have
an /650768 with a 5B/65;.:7 containing MW>2@BA�>C=ED2OP>2QRD and a
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.;/21<3 containing =6>2@BA�>2=?DGF HJI6K while path scoring relies on
decomposing the query into its two paths, computing their
scores separately and combining them to computer an an-
swer score. Hence, it might not always distinguish between
answers to different relaxed queries as well as twig scoring.

The scoring method proposed in [10] is another approx-
imation of twig scoring. We refer to it as binary scor-
ing because it scores binary predicates with respect to the
query root, and assumes independence between those pred-
icates. In query (a) in Figure 2, that would amount to com-
puting the scores of the child predicate between S2T;UV1<1;7<.
and /650768 and the scores of descendant predicates betweenS6T;UE1<1;74. and each one of the remaining nodes in the query
including keyword nodes.

3.3 Top-
�

Processing

Scores need to be organized in such a way that helps to de-
termine the highest score of a partial match during top-

�
processing in order to speed up pruning of irrelevant an-
swers. To avoid computing scores on-demand, query eval-
uation could take advantage of the fact that idfs are shared
across all partial matches that satisfy the same (relaxed)
query. For example, all answers that match query (b) in
Figure 2 and not query (a) would have the same idf. There-
fore, we propose to precompute and store idfs for all possi-
ble relaxations of the user query. This allows for fast access
to score values during query processing. We use two data
structures: a Query Relaxations DAG, and a Query Matrix,
discussed in the next section.

4 Scoring
In this section, we formally define approximate answers to
twig queries based on the notion of query relaxation and
the corresponding scoring methods.

4.1 Twig Queries and Relaxations

We use previously defined twig queries, an important sub-
set of XPath. A twig query X (on

�
nodes) is a rooted tree

with string-labeled nodes and two types of edges, Y (a child
edge) and YGY (a descendant edge).2 We call the root nodeZ�[:[G\	] of X the distinguished answer node.

We use the term match to denote the assignments of
query nodes to document nodes that satisfy the constraints
imposed by the query and the term answer to denote docu-
ment nodes for which there is a match that maps the root of
the query to such a node. Note that for a particular answer
there can be multiple matches in a document. For example,
in the document “ ^`_bac^`dCYeac^fdgYhac^fYE_ba ” there
are two matches but only one answer to the query _0YEd . We
denote Xji�k�l the set of all answers to X in a document k .

2Our scoring methods can be defined for twig queries with
any XPath axis edges. Edge generalization and composition (sub-
tree promotion) of edges can be defined for all XPath axes,
e.g., a/parent::b can be generalized to a/ancestor::b,
a/child::b/following-sibling::c can have the subtree pro-
motion a[./child::b]/child::c. For simplicity of exposition, we
do not investigate this issue further in this paper.

Definition 1 Let X and Xnm be twig queries. We say that Xnm
subsumes X if Xji�kolqprX m i�k�l for all documents k .

To capture approximate answers to a given twig query
we generate relaxed twig queries on a subset of the query
nodes based on the following notion of query relaxation:

Definition 2 (Relaxation) Let X be a twig query. We say
that X m is a simple relaxation of X (and write XtsuvX m ) ifX m has been obtained from X in one of the following ways:

- an edge generalization relaxation: a Y edge in X is re-
placed by a YGY edge to obtain X m ;

- a subtree promotion relaxation: a pattern _xw dVw Xjygz&YGYEXn{?z
is replaced by _xw dVw Xjygz%_:|~}LF�YGYEXn{?z ; or

- a leaf node deletion relaxation: a pattern _xw Xjy2_:|~};F�YVYVd
z
where _ is the root of the query and d is a leaf node is
replaced by _xw X�yJz .

We say that X m is a relaxation of X (and write X�sur��X m )
if it is obtained from X by a composition of

�
simple relax-

ations (
�����

).

Note that, given a query X with the root labeled by _ , the
most general relaxation is the query _ . We denote this
query by X�� . Every exact answer to a relaxation of X is
an approximate answer to X , and the set of all approximate
answers to X in a document k is equal to X���i�kol .

The relaxations defined above do not capture approxi-
mating content such as using stemming or ontologies on
keywords [17]. While a detailed discussion of this direc-
tion is beyond the scope of the paper, the actual way of re-
laxing matches to keywords is orthogonal to the remaining
development in the paper.

We organize the set of all relaxations of a query into a
directed acyclic graph (DAG) in which edges relate relax-
ations in a subsumption relation. We need two preliminary
lemmas:

Lemma 3 Let X and X m be twig queries such that X`su��X m . Then Xji�k�l�p�X m i�k�l for all documents D.

Proof: Each simple relaxation satisfies the statement of
the lemma (by inspection); the rest follows from transitivity
of the inclusion relation. �
Lemma 4 Let X and X m be two twig queries such thatX�su���X m and X m su���X . Then X���X m .
Proof: From Lemma 3 we know that Xji�kol�p�X m i�k�l
and Xcm�i�k�lWp�Xji�k�l for all documents k . Thus X���Xnm .
However, this is only possible if X���X m (syntactically)
as each simple relaxation produces a strictly less restrictive
query. �
Equipped with these two lemmas we can organize the re-
laxations in a DAG as follows:

Definition 5 (Relaxation DAG) Let X be a twig query.
We define���C� � � ¡ ] ��i£¢6X m�¤ X¥su � X m'¦G§¢Gi�X m § X m m l ¤ X�su���X mG¨ X m su�X m m ¦ l
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Figure 3: A Query Relaxations DAG

Figure 3, disregarding the numerical scores attached to
nodes, shows the DAG created for a simplified query (a)
in Figure 2. Given a query X , Algorithm 1 is used to build
the DAG in a top-down fashion, starting with a node con-
taining the query X , applying the simple relaxation steps,
and merging identical DAG nodes on the fly. This leads to
the following result:

Algorithm 1 buildDAG Function
Require: currentDAGNode

1: Q=getQuery(currentDAGNode);
2: for each node n in Q do
3: if (canBeRelaxed(n,parent(n))) then
4: newDAGNode = getDAGNode(edgeGeneralize(n,Q));©

getDAGNode checks if a DAG node containing query Q with
the edge generalized exists, returns it if it does or creates it if it
does not. ª

5: else if (not isQueryRoot(parent(n))) then
6: newDAGNode = getDagNode(promoteSubtree(n,Q));
7: else if noDescendants(n) then
8: newDAGNode = getDAGNode(leafDelete(n,Q));
9: end if

10: addChild(currentDAGNode,newDAGNode);
©
addChild adds

newDAGNode as a child of currentDAGNode in the DAG. ª
11: buildDAG(newDAGNode);

©
recursive call on newDAGNode. ª

12: end for

Theorem 6 Let X be a twig query. Then Algorithm 1 pro-
duces

���g��� � ¡ ] .

Proof: For a query relaxation node in the DAG and for
every node in that relaxation the algorithm applies all al-

lowed simple relaxations (cf. Definition 2: only one simple
relaxation applies per node in a query). Nodes representing
these relaxations become the children of this node in the
DAG; new nodes are only created when they don’t already
exist. The reminder of the proof is a simple induction on
the distance of a node from the root of the DAG. Termina-
tion of the algorithm is guaranteed as there are only finitely
many relaxations of a given query. �
4.2 Scoring Twig Answers

As the approximate answers to a query X are simply an-
swers to the relaxation X�� , our goal in this section is to
rank elements of X � i�k�l by assigning numerical values us-
ing a scoring function. The basic idea is that scores are
based on considering best matches for a given answer—
matches to the least relaxed query in the DAG.

We base our scoring function on the tf*idf measure pro-
posed in IR [13]. However, we have to modify this mea-
sure to distinguish among matches to different relaxations
of the original query. We first define the modification of the
inverse document frequency (idf ):

Definition 7 (idf of a Relaxation) Let X and X m be twig
queries such that X«su��NX m and k an XML document. We
define ¬ �N­ ]® i�X m l¯� ¤ X � i�k�l ¤ Y ¤ X m i�k�l ¤�°
We extend this measure to all approximate answers >�±�X �
by defining¬ �N­ ]® i�>Gl¯��²j³E´L¢ ¬ �R­ ]® i�X m l ¤ >�±�X m i�k�l § X¥su � X m ¦ F
We say that a relaxation X m that maximizes

¬ �N­ ]® i�>Gl is a
most specific relaxation of X for > and denote the set of
these relaxations by µj¶x· ]® i�>Gl .
Our idf scoring guarantees that answers to less approxi-
mate queries obtain idf scores at least as high as scores to
more approximate ones; this is also the basis for assuring
that the score-monotonicity requirement is met by the over-
all score of an answer. In particular:

Lemma 8 Let X m and X m m be two relaxations of X such
that X m su���X m m . Then

¬ �N­ ]® i�X m l � ¬ �R­ ]® i�X m m l for any
document k .

Proof: By definition, any answer to X m m is an answer toX m , as X m m is a relaxed version of X m . Therefore, the de-
nominator value in the idf function for the computation ofXcm m is greater than or equal to the denominator value in
the idf function for the computation of X . It results that¬ �N­ ]® i�X m l � ¬ �N­ ]® i�X m m l . �
Thus, since the idf score for an answer > is defined as
the maximal idf value of all relaxations of X having > as
an answer, the above lemma also shows that

¬ �R­ ]® i�>Gl �¬ �N­ ]® i�> m l whenever the best match for > matches a less
relaxed query than the best match for >Em .
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Intuitively, the idf measure of a query X quantifies the
extent to which answers to X�� in k additionally satisfyX . Thus, more selective queries are assigned higher idf
scores. This is akin to the IR case: keywords that appear in
a document collection less frequently are assigned higher
idf scores.

Note, however, that the idf measure defined above as-
signs the same idf score to all exact matches to a queryX . In general, all answers having their best match with
respect to the same relaxed query are given the same idf
score. On the other hand, the idf measure becomes useful
once we allow for relaxed matches to the query X , as de-
scribed in Section 3. The idf scores are then used to rank
relaxed matches based on how closely they match the re-
laxed query. To distinguish between matches of the same
relaxed query we use the analogue of the term frequency
(tf ) measure:

Definition 9 (tf of an Answer) Let X be a twig query andk an XML document. Then, for an answer >�±¸X�i�k�l , we
define¹ ­ ]® i�> § X m l¯� ¤ ¢?º ¤ ºj³R²j³ \�»½¼n[E¾ X mG¿%À k § º¯i Z�[<[V\	]ÂÁ l¯�Ã> ¦<¤
for X m a most specific relaxation of X for > , and¹ ­ ]® i�>Gl¯�b²j³E´B¢ ¹ ­ ]® i�> § X m l ¤ X m ±Äµj¶x· ]® i�>Gl ¦ F
Intuitively, the tf score of an answer quantifies the number
of distinct ways in which an answer matches a query. This
is again akin to the IR case where the term frequency in-
creases with the number of occurrences of a keyword in a
document. The final scoring function for twig queries is
based on combining the idf and tf scores. We use a lexico-
graphical i idf § tf l ordering to satisfy the score monotonicity
requirement.

Definition 10 (Lexicographical Score) Let k be an XML
document, X a query, and > and > m approximate answers toX in k . We define>nÅ�> m ¿ ¾ i ¬ �N­ ]® i�>Glq^ ¬ �N­ ]® i�> m l	l [GZi ¬ �N­ ]® i�>Gl¯� ¬ �N­ ]® i�> m l9³ À0Æ ¹ ­ ]® i�>VlqÅ ¹ ­ ]® i�> m l	l
Using this definition and Lemma 8 we have:

Theorem 11 Let > § > m ±rX���i�k�l , X m and X m m be the most
specific relaxations of X for > and > m in k , respectively,
such that XnmLsu � Xcm m . Then >?mxÅ�> .

Note that the more common combinations of the tf and idf
scores, e.g., the

¹ ­ ]® i�>Gl2Ç ¬ �N­ ]® i�>Gl function, do not adhere
to our requirement of matches to less relaxed queries to be
ranked higher. Consider, for example, the query _0YEd posed
over the concatenation of two documents “ ^�_Èac^bdgY�ac^Y?_Pa ” and “ ^É_oac^ÊH�ac^ÊdgY�a«F F�F~^¥YEH�ac^É_Pa ” withË a�{ nested “ d ” elements. Then the idf scores for _0YEd
and the relaxation _0YGYEd are { and y , respectively. How-
ever, the tf measures are y and

Ë
. Thus the more common

tf*idf ranking would prefer the second (less precise) an-
swer. Note also, that dampening the tf factor, e.g., using a� [VÌ function, cannot solve this inversion problem as we can
choose

Ë
to be arbitrarily large.

4.3 Scoring for Path/Binary Approximations

We use twig scoring as the reference measure of correct-
ness since it accounts for the most structure and content.
However, to compute the scores of answers we need to
have access to the idf scores associated to all relaxations of
the original query. As we pointed out in the previous sec-
tion, computing (or even precomputing whenever possible)
these scores can be very expensive. Thus in order to im-
prove efficiency of the overall query processing, we define
approaches based on decomposing an original twig query
to simpler queries and this way we reduce the number of
different idf scores needed. Also, in many cases the scores
for such simpler queries are easier to compute. In particu-
lar, we consider two decompositions ÍVÎ2ÏJÐ;ÑnÒGi�X�l for a twig
query X :

Path Decomposition the set of all paths in X leading from
the root of X to any other node in X ; and

Binary Decomposition the set of all queries X�ÓÔ�Z�[<[V\ ] Y6K or XcÓÕ� Z	[<[G\ ] YGY6K for K a node in X such
that X«prXnÓ .

The decompositions for our example query are as fol-
lows:

Example 12 The sets of queries¢ »½¼ ³ À0À �C� Y ¿ \ � ²ÈY \ ¿ \ ��� § »½¼ ³ À;À �g� Y ¿ \ � ²ÈY � ¿%À0Ö ¦G§¢ »½¼ ³ À0À �C� Y ¿ \ � ² § »½¼ ³ À0À �g� YVY \ ¿ \ ��� § »½¼ ³ À0À �C� YGY � ¿�À0Ö ¦
are the Path and Binary Decompositions, respectively, of a
twig query “ »½¼ ³ À0À �C� Y ¿ \ � ²ow�F�Y \ ¿ \ � � z&Y � ¿%À0Ö ”.

For each decomposition, we also need to define how the
scores for the individual fragments are combined into a fi-
nal answer score. The idf measure depends on whether we
consider joint (correlated) matches only or assume inde-
pendence between matches to the individual components
of a twig query. Hence, we have two definitions of idf : one
for the correlated case and one for the independent case.

Definition 13 (Path/Binary idf Score) Let X be a twig
query, X m a relaxation of X , and k an XML document. We
define¬ �N­ ]® i�X m l¯� ¤ Xn��i�k�l ¤ Y ¤ ×]ÕØ�ÙEÚ	Û'Ü�Ý
Þxß
à�] Á(á X Ó i�kol ¤
for correlated scoring, and¬ �R­ ]® i�X m l¯� â] Ø ÙEÚ	Û'Ü�Ý
Þxß
à�]ÕÁ á ¤ Xn�ãi�k�l ¤ Y ¤ X Ó i�k�l ¤
for independent scoring.

The idf score of an answer under the above assumptions
is again the maximal idf of a relaxation containing the an-
swer.

The tf measure is the same in both cases as it is defined
on a per-answer basis:
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Definition 14 (tf for Path/Binary) Let X be a twig query,X m a relaxation of X and k an XML document. Then, for>n±oXji�k�l , we define¹ ­ ]® i�> § X m lä� å] Ø ÙEÚ	Û�Ü'Ý
Þxß�à ]ÕÁ á ææææ ç º ¤ ºj³R²j³ \�»½¼�[E¾ XcÓ ¿%À k §º¯i Z	[<[G\	] Ø lä��> è ææææ
where X m is a most specific relaxation for > , and¹ ­ ]® i�>Gl¯�b²j³E´B¢ ¹ ­ ]® i�> § X m l ¤ X m ±Äµj¶x· ]® i�>Gl ¦ F
Similarly to the twig scoring, we can show that the lexico-
graphical i idf § tf l ordering of query answers based on the
scores obeys the score monotonicity requirement.

Note that the distinction between independent and cor-
related scoring only applies for binary and path scoring.
Altogether we have defined five scoring methods, listed
in the order of increasing precision: binary-independent
that considers all predicates to be independent, binary-
correlated that takes into account correlations between in-
dividual binary predicates, path-independent that assumes
independence between query paths, path-correlated, that
takes into account the correlation both within paths and
across paths in the query, and twig, the reference scoring
method, that takes all of the query twig correlations into
account.

4.4 Top-
�

Query Processing

In this section, we discuss data structures that can be used
by any top-

�
processing algorithm to compute top-

�
an-

swers to XML queries efficiently.

4.4.1 Using the DAG

As mentioned earlier, our DAG provides a convenient,
constant-time access to the idf value of any partial match
during query processing (see Figure 3 for an example).
This value can be computed using selectivity estimation
techniques for twig queries [11].

Note that every (even partial) match is an exact match
to a relaxation of the original query. Also, for matches we
have:

Lemma 15 Let X be a query, k an XML document, andº a match for an answer >Ã±éX � i�k�l . Then there is a
unique query Xnm�± ���g��� � ¡ ] such that º is a match for>ê±ÃX m i�k�l and º is not a match for > in X m m i�k�l for any
ancestor X m m of X m in

���C� �R� ¡ ] .

Thus it is sufficient to associate a single score with every
match. At each DAG node, we keep the maximum the-
oretical upper bound for a partial match that satisfies the
twig query associated with that node: if the query at that
node includes all nodes of the original query, then a par-
tial match that satisfies this twig query cannot be further
extended, and its score upper bound value is equal to its
idf value; however, if the twig query does not include all

the nodes from the original query, e.g., if it is a relax-
ation of the original query where some leaf deletion op-
erations were applied, we store a pointer in the DAG to the
DAG node containing the best relaxation such an incom-
plete partial match could satisfy. In the same manner, we
can keep pointers in the DAG to access information such as
the score upper bound values of all possible configurations
of partial matches (some nodes missing, some nodes un-
known), or the maximum score increase (in idf value) that
would be gained from checking one of possible unknown
nodes in the partial match. During query evaluation, idf s
are accessed in constant time using a hash table to check
the query partial matches against the twig queries stored in
the DAG.

From Lemma 8, it follows that the deeper a query is
in the DAG, the lower its idf is. An example of a query
relaxation DAG for the (simplified) query from Figure 2(a)
is given in Figure 3. Note that a, the lowest (most relaxed)
query in the DAG, has an idf of 1 as it consists of returning
every single distinguished node.

4.4.2 Using the Matrix

We propose a query matrix used to apply relaxations to
queries during the DAG building step and, more impor-
tantly, to map a partial match to its corresponding query us-
ing matrix subsumption during query evaluation. By repre-
senting both partial matches and queries in the same frame-
work, we can compare them efficiently, by only requiring a
matrix comparison.

The matrix is defined for twig queries on K nodes; we
assume that the nodes are named ¢C|äë § FCFgF�|~ì ¦ .

Definition 16 (Matrix Representation) Let X be a twig
query on at most K nodes. We define a KîíeK matrixï ] as follows:� ï w ð § ð�zB��_ if the node | Ó ±�X has label _ ;ï w ð § ð�zB�bñ if the node |ÕÓ�ò±PX ;ï w ð § ð�zB�có otherwise;� ï w ð §�ô zB�ÊY if | Ó Y6|BõW±�X ;ï w ð §�ô zÂ��YVY if there is a path from | Ó to |Bõ in X but|~Ó�Y6| õ ò±�X ;ï w ð §�ô zä��ñ if |~Ó § | õ ±eX and there is no path from|~Ó to | õ ;ï w ð §�ô zB�có otherwise.

A subsumption order between the symbols stored in the ma-
trix cells is defined as follows: _�^öó , YÄ^öYVY¸^�ó , andñÔ^÷ó . The reflexive subsumption order Å is the above
order extended with the diagonal relation on the symbols.
A partial match matrix can be defined similarly.

It is easy to see that a lower matrix is sufficient to capture
all the information represented in X as queries are trees.

Figure 4 shows the query matrix 4(a) for the (simpli-
fied) query from Figure 2(a), and several possible partial
matches to this query that can be computed during query
evaluation: 4(b) is a partial match that has not yet been

367



1 2 3 4
1 channel
2 / item
3 // / title
4 // / X link

1 2 3 4
1 channel
2 // item
3 ? ? ?
4 // / X link

(a) Original Query (b) Partial Match
not evaluated for “title”

1 2 3 4
1 channel
2 // item
3 X X X
4 // / X link

1 2 3 4
1 channel
2 // item
3 // / title
4 // / X link

(c) Final Match (d) Final Match
“title” does not produce match “title” is child of “item”

Figure 4: Query Matrices

checked against title, hence the corresponding entries
are set to “?”; the relationship between channel and
item for that partial match has been relaxed to “//”. 4(c)
is the same partial match as 4(b), with no title nodes
found, the corresponding matrix entries are then equal to
“X”. Finally, 4(d) is a extension of 4(b) for which an exact
match for node title has been found.

Matrices are created for partial matches by checking
their binary node relationships. Operations on matrices are
performed in three situations: to create a relaxed version of
a query in the DAG building process (e.g., by replacing all
entries involved in an edge generalization with their relax-
ation), to check whether a query is a relaxation of another
query (matrix subsumption), or to check whether a partial
match maps to a query pattern (matrix subsumption).

Matrix creation and subsumption operations needi'K�ø2YV{<l comparison where K is the number of query nodes.
Since queries are expected to be fairly small, most often no
larger than 10 nodes, this produces efficient computation
times. Each matrix entry has a maximum of 4 possible
entries therefore there are at most ù ìãú�û ø relaxations of a
given query; the actual number tends to be much lower as
most matrix combinations are not possible. This loose up-
per bound also gives us an upper bound on the size of the
DAG, as there is only one DAG node per query relaxation.

4.4.3 Top-
�

Algorithm

In this paper, we do not claim the top-
�

processing algo-
rithm as a contribution since we use the adaptive processing
algorithm developed in [10]. However, our DAG and ma-
trix data structures could be used by any top-

�
algorithm

to determine (i) the highest score of a partial match during
query evaluation and (ii) if a partial match should be pruned
or not depending on its score upper bound.

Algorithm 2 is a sketch of the top-
�

algorithm that we
use. It starts by evaluating the query root node. Then, it
determines the partial matches with the highest score po-
tential using getHighestPotential which relies on
score upper bounds extracted from the DAG to prioritize
partial matches. The algorithm then expands those matches
by computing the next best query node for each one of

them. Note that the algorithm treats each partial match in-
dividually (as opposed to a batch processing). When a par-
tial match is generated, it is checked against the top-

�
list

(updateTopK). The partial match may be used to update
the top-

�
list or it may be carried to the next step or it may

be pruned. The algorithm stops when all query nodes have
been evaluated for all matches in the top-

�
list and there is

no other match that is waiting to be processed.

Algorithm 2 A Generic top-
�

Algorithm
Require: Query Q, Document D

1: PartialMatches=getRootNodes(D,Q);©
PartialMatches is the set of partially evaluated answers. ª

2: topK=empty;©
the while condition checks if all K answers in topK are complete,

and if no partial match has potential final scores higher than current
topK matches. ª

3: while !checkTopK(topK) do
4: currentMatch=getHighestPotential(PartialMatches);©

partial match with the highest potential final score. ª
5: newMatches=expandMatch(currentMatch,Q,D);©

chooses the next best query node to evaluate for currentMatch
and may generate many new matches. ª

6: PartialMatches+=newMatches;©
adds expanded partial matches to PartialMatches. ª

7: topK=updateTopK(newMatches);©
updateTopK keeps the best K answers in topK ª

8: end while

5 Experimental Evaluation
In this section we briefly discuss our implementation of
top-

�
query processing techniques and then present ex-

tensive quality and efficiency evaluations of the proposed
XML scoring methods.

5.1 Summary of Results

Our experimental evaluation compares the five scoring
methods: binary-independent, binary-correlated, path-
independent, path-correlated, and twig. Twig results in the
perfect top-

�
answer. Our results show that the binary scor-

ing methods allow for fast DAG preprocessing and query
execution times, in exchange for degraded answer quality.
When score quality is important, both path methods of-
fer good quality answers, but path-correlated requires high
preprocessing times. In contrast, path-independent offers
good answer quality (often perfect), while saving in terms
of preprocessing times.

We implemented our top-
�

strategies such that all idf s
and score upper bounds are accessed through the DAG. Our
(idf,tf) scoring measure (see Section 4.2) assigns the same
idf s to matches that share the same (relaxed) query pattern.
Ties on such matches are broken based on the answers tf s.
Since, unlike idf, each match has an individual tf score,
it is more efficient to estimate the tf of a match during
query evaluation based on selectivity estimates (which can
be stored in the DAG). However, in order to avoid skewing
results in our experimental evaluation of idf scoring, we do
not take tf s into account.
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5.2 Experimental Setup

We implemented the DAG and query matrix structures, as
well as the top-

�
query processing strategies from [10]

in C++. We ran our experiments on a Red Hat 7.1 Linux
1.4GHz dual-processor machine with 2Gb of RAM.

5.2.1 Data and Queries

To offer a comprehensive evaluation of our scoring meth-
ods, in terms of time and space, as well as their effect on
query processing, we performed experiments on synthetic
XML data. Results on real data are given in Section 5.3.5.

We generated heterogeneous collections of documents
using the Toxgene document generating tool3. In order to
enable query relaxation, documents of various sizes were
generated using heterogeneous DTDs. For our synthetic
experiments, the created documents contain simple node
labels (e.g., <a> and <b>), and U.S. state names as text
content. We then ran our experiments on different datasets
by assembling documents based on size (in terms of num-
ber of nodes). We also performed experiments on col-
lections where we varied the parameters of the datasets
such as correlation or number of exact answers. We mea-
sured the correlation of a dataset as the type of matches
to query predicates that are present in the dataset: simple
binary predicates (no correlation), binary predicates only,
binary predicates and simple path predicates, binary and
path predicates, and mixed (all three types of predicates
are present in the dataset). The number of exact answers
is a percentage of the top-

�
answers that are exact answers

to the query. We report our values for correlation and the
number of exact answers with respect to our default queryü?ý .

We evaluated our scoring methods on 18 different
queries exhibiting different sizes, query structures (twig
shapes), and content predicates. We chose these 18 queries
to illustrate the different possible query relaxation struc-
tures that may happen in a real-world scenario.þ
ÿ : a[./b/c]þ�� : a[./b][./c]þ�� : a[./b/c/d]þ�� : a[./b[./c/]/d]þ�� : a[./b][./c][./d]þ�� : a[./b/c/d/e]þ�� : a[./b[./c]/d/e]þ
	 : a[./b/c/d/e/f]þ�� : a[./b[./c/d]/e/f]þ�� : a[./b[./c[./e]/f]/d][./g]þ��	ÿ : a[contains(./b,"AZ")]þ��
� : a[contains(.,"WI") and contains(.,"CA")]þ���� : a[contains(./b/c,"AL")]þ���� : a[contains(./b,"AL") and contains(./b,"AZ")]þ���� : a[contains(.,"WA") and contains(.,"NV") and

contains(.,"AR")]þ���� : a[contains(./b,"NY") and
contains(./b/d,"NJ")]þ���� : a[contains(./b/c/d/e,"TX")]þ���	 : a[contains(./b/c,"TX") and
contains(./b/e,"VT")]

3http://www.cs.toronto.edu/tox/toxgene/

We performed our synthetic data experiments varying
different parameters: query size, query shape, document
size (in terms of number of nodes that satisfy each query
node), document correlation, number of exact answers,

�
.

The default parameters we used for our experiments are
summarized in Table 1.

Finally, we also ran several experiments on a real
dataset: the XML version of the Wall Street Journal Tree-
bank4 corpora. Treebank provides text annotations of
English sentences, the dataset we use consists of anno-
tated Wall Street Journal text. Sentences are broken using
tags representing various grammatical (phrases) and speech
structures. For instance, <NP> represents a noun phrase
within a sentence (<S>), the noun phrase can include dif-
ferent part-of-speech such as a singular noun (<NN>). Tags
used in the queries we tested include: prepositional phrase
(<PP>), verb phrase (<VP>), determiner (<DT>), interjec-
tion, (<UH>), comparative adverb (<RBR>), and possessive
ending (<POS>). We ran experiments on 6 queries of dif-
ferent sizes and shapes:

TB0: S[./UH and contains(./VP,"There")]
TB1: S[./NN[./NP]/DT]
TB2: NP[./S/PP/NN]
TB3: VP[./S/[./NP]/PP/NN]
TB4: VP[./S/NP/PP/NN]
TB5: S[./VP[./RBR][./POS] and

contains(./VP,"should")]

5.2.2 Evaluation Measures

To compare the performance of the idf scoring mecha-
nisms, we used the following measures:

DAG Size: Memory size needed to store the DAG struc-
ture. This shows the memory size needed for each method.
DAG Preprocessing Time: Time needed to build the
DAG, compute the idf scores and all optional information
stored in the DAG. In order to isolate the effect on scores
approximation due to binary and path scoring methods, we
computed the exact idf scores by exploring all matches.
This preprocessing step can be improved using selectivity
estimation methods such as in [11].
Precision: Percentage of top-

�
answers (and their ties) that

are correct top-
�

answers (or ties to the correct top-
�

an-
swer), according to the exact twig scoring method. Answer
ties are answers to the query that share the same idf as the�����

returned answer. Our Precision measure takes possi-
ble ties into account in order to penalize scoring methods
that produce too many possible top-

�
results (i.e., scoring

methods that produce many answers with the same score)
compared to the twig method. The precision measure gives
some information about the quality of the answers returned.
Query Processing Time: Time needed to compute the top-�

answer to the query, in addition to the DAG preprocessing
time. This measure shows how score distribution impacts
query processing time.

4 http://www.cis.upenn.edu/ treebank/home.html
http://www.cs.washington.edu/research/xmldatasets/

www/repository.html
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Query Size Query Shape Document Size Document Correlation # of Exact Answers
�ü?ý (4 nodes) ü?ý (twig) w � § y �V�G� z Mixed (with respect to ü?ý ) 12% (with respect to ü?ý ) 25

Table 1: Experimental Default Settings
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Figure 5: A Query Relaxations DAG for binary Scoring

5.3 Experimental Results

We now present our experimental results for the evaluation
of our different scoring strategies.

5.3.1 DAG Size

The path and twig scoring potentially result in different idf
score values for each node in the relaxation DAG described
in Section 4. Binary scoring does not assign different idf s
to all DAG nodes, but only to those that result in different
binary query structures. In order to save memory space,
and DAG preprocessing time, it is therefore possible to
only build a subset of the relaxation DAG when considering
binary scores. A simple way to implement this optimiza-
tion is to convert the original query into a binary predicate
query, and build the relaxation DAG from this transformed
query. Figure 5 shows the DAG that results from binary
scoring (assuming independent predicate scoring for the idf
scores) of the query in Figure 3. Since the binary version of
the query is much simpler than the query itself and results
in fewer possible relaxations, its DAG is smaller than, or
the same size as the original relaxation DAG; 12 nodes vs.
36 nodes in our example. Experimental evaluation shows
that for queries that do not only consist of binary predi-
cates but also offer some complex structural patterns, the
DAGs for the twig and path scoring methods are an order
of magnitude larger than the DAGs for the binary scoring
methods. However, these more complex DAGs are still of
a reasonable size (1MB for our larger query ü�� ), and can
therefore be easily kept in main memory during top-

�
query

processing.
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Figure 6: DAG Preprocessing Time

5.3.2 Comparing Scoring Methods

The preprocessing times needed to build the DAGs and
compute the idf scores for each of our scoring methods
are shown, for all 18 queries over a small dataset, in Fig-
ure 6 (logarithmic scale). The path-correlated method is
the most expensive and its cost grows rapidly with the
query size, with times greater than 100,000 secs for ü�� , ü�� ,ü�� , ü y�� and ü y � ; its high cost is mostly due to very expen-
sive score computation and propagation. Path-independent
and twig are faster, with path-independent faster than twig
for all non-chain queries. For chain queries: ü �

, ü { , ü�� ,ü�� , ü y �
, ü y2{ and ü y�� , the preprocessing times of twig and

path-independent are similar. For these two methods, ex-
ploring all matches dominates preprocessing time. In the
case of chain queries, the matches considered are the same
for twig and path-independent, path-independent is slightly
slower due to some score propagation (sum computation
overhead). Note that this overhead will become negligi-
ble as the document collection size increases. The two
binary methods are faster than their path counterparts, as
they work on a smaller DAG, but they offer smaller score
ranges. Binary-correlated can be expensive as the query
size increases, and is often more expensive than twig. Since
both correlated methods are outperformed by twig, we will
not report further results for these methods in this paper.

Figure 7 shows the precision of top-
�

query evaluation
strategies when using the three remaining methods. The
twig method has the perfect precision. Path-independent
has very good precision, often equal to 1, or close. binary-
independent has the worst precision, as it does not of-
fer a fine granularity of scores. If time is the main con-
straint, then binary-independent allows for fast preprocess-
ing time in exchange for some degradation in score qual-
ity. If score quality is important, for chain queries, the
twig approach is the best as it provides perfect precision,
and is as fast as path-independent; for queries having more

370



1

10

100

1000

10000

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17

D
A

G
 S

iz
e 

(in
 K

B
)

Twig Binary

0.001

0.01

0.1

1

10

100

1000

10000

100000

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q1
0

q1
1

q1
2

q1
3

q1
4

q1
5

q1
6

q1
7

D
A

G
 P

re
pr

oc
es

si
ng

 T
im

e 
(in

 s
ec

)

Twig Path-Correlated Path-Independent
Binary-Correlated Binary-Independent

0.001

0.01

0.1

1

10

100

1000

10000

100000

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q1
0

q1
1

q1
2

q1
3

q1
4

q1
5

q1
6

q1
7

D
A

G
 P

re
pr

oc
es

si
ng

 T
im

e 
(in

 s
ec

)

Twig Path-Correlated Path-Independent
Binary-Correlated Binary-Independent

0

0.2

0.4

0.6

0.8

1

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17

P
re

ci
si

on

Twig Path-Independent Binary-Independent

0

0.2

0.4

0.6

0.8

1

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q1
0

q1
1

q1
2

q1
3

q1
4

q1
5

q1
6

q1
7

P
at

h-
In

de
pe

nd
en

t P
re

ci
si

on

O(100) O(1000) O(10000)

0

1

2

3

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q1
0

q1
1

q1
2

q1
3

q1
4

q1
5

q1
6

q1
7

P
at

h-
In

de
pe

nd
en

t P
re

pr
oc

es
si

ng
 T

im
e 

as
 a

 
ra

tio
 o

f T
w

ig
 P

re
pr

oc
es

si
ng

 T
im

e

O(100) O(1000) O(10000)

0.001

0.01

0.1

1

10

100

1000

10000

100000

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17

D
A

G
 P

re
pr

oc
es

si
ng

 T
im

e 
(in

 s
ec

)

Twig Path-Correlated Path-Independent
Binary-Correlated Binary-Independent

0

0.2

0.4

0.6

0.8

1

q0 q2 q4 q6 q8 q10 q12 q14 q16

P
re

ci
si

on

Twig Path-Independent Binary-Independent

0

0.2

0.4

0.6

0.8

1

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17

P
re

ci
si

on

Twig Path-Independent Binary-Independent

Figure 7: Top-
�

Precision
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Figure 8: Top-
�

Precision for path-Independent Scoring

complex shapes, path-independent provides the best qual-
ity/preprocessing time tradeoff.

We also compared the processing time needed to eval-
uate a top-

�
query with the different scoring methods us-

ing the top-
�

query evaluation strategies from [10]. The
twig and path techniques results in similar query execution
times. However, we observed that the binary approaches
may result in slightly faster query processing times, as
more partial matches end up with the highest scores, al-
lowing to identify a top-

�
set earlier in the execution and

discard low-quality matches faster. This makes binary-
independent the method of choice when time is an issue.
An in-depth comparison of the performance of top-

�
query

processing strategies is beyond the scope of this paper. We
refer the reader to [10] for more details on this subject.

In the rest of this section, we study the different param-
eters that affect quality and speed of our proposed scoring
methods.

5.3.3 Varying the Document Collection Size

Figures 8 shows the effect of document size, in terms of the
number of document nodes that match each query node, on
the precision of path-independent on a subset of the syn-
thetic data queries. While precision is mostly affected by
data distribution, larger documents may end up producing
more ties to the top-

�
answers, which in turn leads to lower

precision values. Precision results for path-independent
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Figure 9: Precision for Datasets with various degrees of
Correlation

(Figure 8) are good overall. The queries that suffer the most
from the simplified path scoring compared to the complex
twig scoring are those queries that have twig patterns that
have branching nodes below the root node, as the correla-
tion in these patterns is lost by the path-independent scor-
ing. Note that the chain queries ü { , ü�� and ü�� have low
precision for one dataset: this is partly due to the fact that
most of the answers to these queries are relaxed answers,
and exhibit a twig pattern (due to subtree promotion), and
to the presence of multiple ties in the answer set. Since
our precision measure penalizes scoring approaches that
produce many ties to the top-

�
answers, some queries ex-

hibit low values of precision for path-independent. In these
cases, many answers tend to be assigned high scores, re-
sulting in low precision values, although the exact answers
are part of the high scoring answers. Note that this behav-
ior is data- and query-dependent, which is the reason whyü { has low precision for the medium dataset, while ü�� andü�� have low precision for the large dataset. In addition, we
compared path-independent and twig preprocessing times.
The results are consistent with those in Figure 6, and show
that path-independent allows for faster DAG preprocessing
times than twig when the query does not consist of a single
chain. When queries have multiple paths (or binary) predi-
cates, the savings in preprocessing time can be significant:
up to 83% for the binary query ü ù , and 72% for the twig
query ü � .

5.3.4 Effect of Correlation

We now look at the effect of data correlation on the qual-
ity of top-

�
answers. Figure 9 shows the precision for

our scoring methods for ü?ý on datasets exhibiting differ-
ent answer types; for example, the binary dataset only pro-
duces answers that consist of binary predicates, while the
mixed dataset produces answers that exhibit all three pred-
icate patterns: binary, path and twig. As expected, as soon
as some of the answers have complex predicates (twig or
binary), the precision of the binary-independent scoring
method drops. Interestingly, path-independent precision
stays equal to one for all datasets, with the notable excep-
tion of the binary non-correlated path dataset. Note that
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Figure 10: Precision for the Treebank Datasets

for that particular dataset, path-independent top-
�

answers
have an accuracy of 64% (64% of the returned answers are
part of the

�
top answers as returned by twig), however, the

precision is much lower, as path-independent returns a high
number of ties.

Path-independent has a perfect precision for datasets
that produce correlated paths and twig answers. While
path-independent does not take this correlation into ac-
count, the score ordering of the answers is not impacted,
as the underlying predicate distribution is uniform. When
individual path predicates have very different idf values,
path-independent answers may be of low quality because
the score ordering of answers may be different from that of
twig. In effect, this means that sibling DAG nodes (DAG
nodes that do not have an ancestor/descendant relationship,
and therefore have no ordering constraint on their scores)
may have their score ordering reversed between the twig
and path-independent DAGs. We believe that this situation
does not happen very often in practice.

5.3.5 Real Document Collections

Figure 10 shows the precision values for our 6 queries
over the Treebank dataset. We considered two fragments
of the dataset, with different sizes. Results are consistent
with what we observed for synthetic data, with binary-
independent offering low precision, and path-independent
offering high precision, often perfect. For our real data ex-
periments, path-independent lowest precision was 0.4, but
in two thirds of the query tested path-independent exhibited
perfect precision.

As future work, we plan to extend the INEX datasets
and queries in order to validate our scoring methods.

6 Conclusion
We presented a family of scoring methods, inspired by the
tf*idf approach, that account both for the structure and the
content in XML documents. Our methods score relaxed
answers to XML queries in a way that guarantees that the
closer an answer is to the exact query, the higher is its
score. We also proposed efficient implementation struc-
tures to speed up XML top-

�
query evaluation in this set-

ting. We are planning to investigate streaming scenarios,

where new data is constantly added to the dataset. By keep-
ing the DAG structures for queries that users are interested
in and updating the score information in a dynamic fashion
we believe that we can provide an efficient and high quality
top-

�
query answering approach for a throughput-oriented

streaming framework .

References
[1] S. Amer-Yahia, L. Lakshmanan, S. Pandit. FleXPath: Flexible

Structure and Full-Text Querying for XML. SIGMOD 2004.

[2] J. M. Bremer, M. Gertz. XQuery/IR: Integrating XML Document
and Data Retrieval. WebDB 2002.

[3] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, A. Soffer.
Searching XML Documents via XML Fragments. SIGIR 2003.

[4] T. T. Chinenyanga, N. Kushmerick. Expressive and Efficient Ranked
Querying of XML Data. WebDB 2001.

[5] C. Delobel, M.C. Rousset. A Uniform Approach for Querying Large
Tree-structured Data through a Mediated Schema. International
Workshop on Foundations of Models for Information Integration
FMII-2001.

[6] N. Fuhr, K. Grossjohann. XIRQL: An Extension of XQL for Infor-
mation Retrieval. ACM SIGIR Workshop on XML and Information
Retrieval 2000.

[7] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram. XRANK: Ranked
Keyword Search over XML Documents. SIGMOD 2003.

[8] Y. Kanza and Y. Sagiv. Flexible Queries over Semistructured Data.
PODS 2001.

[9] R. Kaushik, R. Krishnamurthy, J. Naughton and R. Ramakrishnan.
On the Integration of Structure Indices and Inverted Lists. SIGMOD
2004.

[10] A. Marian, S. Amer-Yahia, N. Koudas, D. Srivastava. Adaptive Pro-
cessing of Top- � Queries in XML. ICDE 2005.

[11] N. Polyzotis, M. Garofalakis, Y. Ioannidis. Approximate XML
Query Answers. SIGMOD 2004.

[12] S. Robertson. The Probability Ranking Principle in IR. Journal of
Documentation 33, 1977.

[13] G. Salton, M. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill, 1983.

[14] D. Shin, H. Jang, H. Jin. BUS: An Effective Indexing and Retrieval
Scheme in Structured Documents. Proc. 3rd Int. Conf. on Dig. Lib.,
1998.

[15] T. Schlieder. Schema-Driven Evaluation of Approximate Tree-
Pattern Queries. EDBT 2002.

[16] Streaming News in XML. http://www.internetnews.com/
icom includes/feeds/inews/xml front-10.xml,
http://news.bbc.co.uk/rss/newsonline world edition/
technology/rss091.xml

[17] A. Theobald, G. Weikum. The Index-Based XXL Search Engine for
Querying XML Data with Relevance Ranking. EDBT 2002.

[18] F. Weigel, H. Meuss, K. U. Schulz, F. Bry. Content and Structure in
Indexing and Ranking XML. WebDB 2004.

[19] J. E. Wolff, H. Flörke, A. B. Cremers. Searching and Browsing Col-
lections of Structural Information. Proc. IEEE Forum on Research
and Technology Advances in Dig. Lib., 2000.

372


