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Abstract

XML and XQuery semantics are very sensitive
to the order of the produced output. Although
pattern-tree based algebraic approaches are be-
coming more and more popular for evaluating
XML, there is no universally accepted technique
which can guarantee both a correct output order
and a choice of efficient alternative plans.

We address the problem using hybrid collections
of trees that can be either sets or sequences or
something in between. Each such collection is
coupled with anOrdering Specificatiorthat de-
scribes how the trees are sorted (full, partial or no
order). This provides us with a formal basis for
developing a query plan having parts that main-
tain no order and parts with partial or full order.

It turns out that duplicate elimination introduces
some of the same issues as order maintenance: it
is expensive and a single collection type does not
always provide all the flexibility required to op-
timize this properly. To solve this problem we
associate with each hybrid collectiorDaplicate
Specificationthat describes the presence or ab-
sence of duplicate elements in it. We show how
to extend an existing bulk tree algebra, TLC][12],
to useOrdering and Duplicate specificatiorand
produce correctly ordered results. We also sug-
gest some optimizations enabled by the flexibility
of our approach, and experimentally demonstrate
the performance increase due to them.

1

XML means many things to many people, and gets u
in a variety of ways. The formal semantics of XML an
XQuery require ordering, yet many “database-style” ap
plications could not care less about order. This leaves th
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guery processing engine designer in a quandary: should or-
der be maintained, as required by the semantics, irrespec-
tive of the additional cost; or can order be ignored for per-
formance reasons. What we would like is an engine where
we pay the cost to maintain order when we need it, and do
not incur this overhead when it is not necessary.

In fact, we would like even more. Even when ordered fi-
nal results are required, it may not be necessary to maintain
order at each intermediate step. Exploiting this flexipilit
provided the required order can eventually be established
(or recovered), can lead to significant performance bene-
fits.

In algebraic terms, the question we ask is whether we are
manipulating sets, which do not establish order among their
elements, or manipulating sequences, which do. It is not
difficult to show that just manipulating sets is not enough;
we often do need to consider order in intermediate results.
Yet we know that manipulating sequences is considerably
more expensive, so we would prefer not to work with these
if we can avoid it.

The solution we propose in this paper is to define a new
generic collection type, which could be a set or a sequence
or even something else. We associate with each collection
anOrdering Specificatiothat indicates precisely what type
of order, if any, is to be maintained in this collection. We
then develop an algebra for manipulating collections with
ordering specifications. Using this algebra we are able to
develop query plans that maintain as little order as possi-
ble during query execution while yet producing the correct
query results.

Duplicates in collections are also a topic of interest, not
just for XML, but for relational data as well. In relational
guery processing, duplicate removal is generally consid-
ered expensive, and avoided where possible even though

Se(Jjelational algebra formally manipulates sets that do net ad
d mit duplicates. In fact, there has been considerable work

towards developing multi-set relational algebras. Theamor
gomplex structure of XML data raises more questions of
what is equality and what is a duplicate. Therefore there is
room for more options than just sets and multi-sets. It turns
out that our proposal of using a generic collection type ap-
plies to this problem as well, through associating an eitplic
Duplicate Specificatiomvith each collection. We are then
able to develop an algebra for manipulating such collec-
tions, and use this algebra to develop query plans in which
duplicate elimination is optimized.

*Supported in part by NSF under grants 11S-0208852 and |153823.



FOR $b IN docunent(‘1ib.xm ")/ book

FOR $a | N docunent (‘1ib.xm’)/article 1. ORDER BY clause,
WHERE $b/ aut hor = $a/ aut hor explicit, depends on value
AND $b/year = 1999 AND $a/conference = ‘' VLDB . ..
RETURN <result> {$b} {$a} </result> 2. Re-establish original document order,

FOR $a I N docunent(‘lib.xm")/article Imphqt’ reqUIred by .XML
FOR $b I N document (*1ib.xm )/ book 3. Binding order of variables,

WHERE $b/ aut hor = $a/ aut hor i ici i indi i
AND Sby yodr = 1099 AND $uf conference = * VLD implicit, depends on variable binding predicates

RETURN <result> {$b} {$a} </result>

Figure 2: Ordering Requirements for XML and XQuery

Figure 1: Queries that would produce results ordered in aeflect the difference in the order requirements of the two
different way. The$b - book $a - articleswitch dictates a queries, although the rest of the query remained the same.
different binding order. In more complex scenarios with implicit ordering (includ-
The rest of the paper is organized in the following way: ing nested queries) binding order is much harder to follow
our discussion on ordering and duplicates in the papesstargorrectly and efficiently.
in Section[p by identifying the requirements set by XML A FLWOR statement in XQuery may include an explicit
and XQuery. Then we introduce our proposed solution tdORDERBYclause, specifying the ordering of the output
the problem that uses hybrid collections paired with thebased on the value of some expression — this is similar
Ordering Specification O-SpemdDuplicate Specification in concept with ordering in the relational world and SQL.
D-Specin Sec’[ionl]S_ We then consider a set of commonNote that theORDERBYclause, when present, overrides
operators in a bulk tree-algebra (such as T@ [12]), studydocument and binding order for that single-block FLWOR
their behavior in relation to duplicates and order of outputstatement.
in Section[4p and show how such an approach can gen- To facilitate our discussion in the rest of the paper, we
erate the correct results in Sectipn]4.4. We continue byresent a summary of XQuery ordering requirements in
showing potential optimizations that take advantage of ouFigf. An XML processing system must be able to un-
features on both duplicates and output order in Seflion 5derstand and process these requirements properly. Exist-
In Sectior[b we useliMBER [@], a native XML system, to  ing XML algebras tried to produce the correct output order
experimentally illustrate the benefits of using our soltio by using sets or sequences. Sets lose all ordering infor-
and the gained performance increase. mation resulting in redundant sorts throughout the query
plan, whereas sequences maintain the order throughout the
; ; ; query plan but make it difficult to perform rewrites and
2 Ordering & Duplicates in XML / XQuery need tightly bound operators that can be expensive to im-
Before we discuss XML and XQuery ordering require- plement and difficult to optimize. Also, whether sets or
ments we start with a few observations on XQuery set sesequences are used, semantics require no duplicates are
mantics (presence of duplicates). XQuery associates varpresent and so require several duplicate elimination oper-
ables via thé&ORandLET clauses. TheET clause creates ations to be applied through the plan. These problems mo-
a variable binding with an entire ﬂejf matching XML el-  tivate our current work.
ements (nodes) whereas thOR clause creates a binding
with each element (node) of a set of matching XML ele-3  Introducing the Hybrid Collection
ments (nodes). We can see that both binding types requirl% this section we introduce the core of our solution to the
a duplicate-freesetof matching XML elements to be cal- ; ! ,
culated first. Hence XQuemequiresall duplicates to be problem, the concept of a generic collection type with or-

removed when creating the variable assignments to the COp_ering and duplicate specifications. We believe that the ba-
responding XML parts sic principles of our collections can be incorporated into

XML itself incorporates semantics in the order data isam/ brlé”s(e?]l?;it:) rr?’Wvgtshtggszpt%r?gigﬁetg 03 ggﬁg& ;0;_
specified. XML queries have to respect that and produc% P 9

o -~ Braic approach and model our collections to operate with
results based on the order of the original document (querie . .
ree structures. A tree consists of nodes, with each node

based on XQuery or XPath adhere to that). XQuery take mapping to an XML element or attribute. A basic assump-

this concept even further and adds an extra implicit order. . S
. : . tion we make is that the nodes used are annotated with iden-
ing requirement. The order of the generated output is sens

tive to the order the variable binding occurred in the query.llflers that guarantee botmiquenesanddocument order

To better understand the issues with binding order an exantefinition 3.1 Given a collection of tree€'r, the Dupli-

ple is shown in Fig]1. Two very simple queries are shown -cate Specificatiol-Specdescribes how trees were deter-
both perform a join betweehook andarticle elements on  mined as identical and were eliminated from the collection
author The output of the first is sorted on the original doc- Cr. The value ofD-Speccan be one of the following:
ument order of{book article} whereas the output of the ‘€mpty’ : Any type of duplicate tree can potentially be
second is sorted on the original document ordefaticle present in the collectiodr.

book}. Notice howarticle and book switched places to ‘full tree’ : Given a treeQi = (Vi, Ei) in the collection
Cr, there does not exist another trég = (V 4, Ej)

IXQuery asks for sequences but for the moment we focus on the pres in the collectionCr suchthal/i = VjandFEi = Ej.
ence of duplicates (set) and discuss order further down. (VQZEQ] €Cr,i # J) : [(VZ = Vj) A (EZ = EJ)]
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B, B, B, B, B,
B, B, B, B, B, 2 S g 'é 2 S
E, A, E, A, E, A\ E, A, E, A,
(1) 0-Speci(B, asc, I), (E, asc, I), (A, asc, )}
B B, B, B, B,
E, A, E; A, E, A, E, A, E, A, !
(1) D-Spec(empty
A, Ef A E, A, E, A E, A
AB)Qg 'g
E2 A1 A2
(

( )
EZ 2 2
B1 B1 (2.a) O-Spec{(B, asc, I), (A, asc, I)}
d‘ gd‘ 59862 'g GZK;
E E, A, E, A, E, A, E, A, E, A, E A
)

B, B,
B1
1 E2 A1 E 1 A2 E, A, 1 2 2 1 2 By 2
2) D-Spec(tree (3) D-Spec({B, E})

(2.b) O-Spec|(B, asc, I), (A, asc, I)}
B B, B, B, B,
Figure 3: Collections with Duplicate Specification D-Spec. ‘ 8 8 8 8
‘List of Nodes v’ : Given atreeQi = (V7i, Ei) in the col- ¥ R E RGEKE KE R
lectionC'r, with a set of node&: C Vi identified by (3) O-Specf)

the input List of Nodes, there does not exist another
tree@j = (Vj, Ey) in the collectionCr, with a set of
nodesUj C Vj identified by the input List of Nodes
u, such that/i = Uj.

Figure 4: Collections with Ordering Specification O-Spec.
elimination procedures to achieve the correct result with a
minimum cost. Locally by considering each operator and
. . . , . . choosing during the physical evaluation to : a) ignore the
éVQ; ; CT[(U EuUj EZQJA éU‘Z/ )g /\V(g]i}fg‘?)ﬁ D-Spedor operators that do not remove or add duplicates,
B J¢ J J=YJ J b) modify the D-Specappropriately for operators that re-
The default value fob-Speds ‘empty’ since most op- move or produce duplicates, and c) maintainBh8pedor
erators behave gracefully with duplicates and neither ad@perators that require duplicate elimination but Ds8pec
or remove them. A collection coupled withzSpecof  to determine that it was already applied.
‘empty’ can potentially have any type of duplicates. Value pefinition 3.2 An Ordering ItemO-Itemis the unit used
tree’ is mapped to duplicate elimination using deep-ré&,hen sorting a collection of trees. It consist of three param
comparison between all trees in a collection. Itis aimed tQ,t(g: i) a reference to identify the node in the tree to sort
k_)e used very often for describing that an arbitrary collecype trees by, i) ascending (‘asc’) or descending (‘dese?) d
tion of trees is actually a set (sequence, if orderBeBpec  gcrihes how to use the node information to perform the sort
also allows for a list of node references to be passed deyq iii) empty greatest ('g’) or empty least (') describes

scribing which nodes to be used in each tree to determinghere 1o place the trees without a matching node for the
the duplicates, thus enabling support for a description of iven input reference.

partial duplicate elimination procedur®-Specauses a flag
to specify whether the identifier (ID) or the content of a
node should be used for defining duplicates.

O-ltemuses a flag to refer to the identifier or content
of each node. As we assumed the node identifiers used
in conjunction with our collections can indicate document
Example 3.1 A group of sample collections with-Spec  order for any group of nodes, we can use the node identi-
describing how duplicates were previously removed fronfiers to indicate ordering based on document order. When
them can be found in FE.S. Notice the duplicates that existhe required order is based on a value comparison the node
in part (1), how the last tree from (1) is removed in part content can be accessed instead.

(2) and how multiple trees are removed in part (3) — poten- An Ordering Itemis essentially the smallest unit that
tially losing some information about (had the trees with can be used to describe a sorting procedure. It matches in
only A; been retained we would have lost &l from the  principle the input to a&SORT operation. It contains the
collection). means to identify the sorting basis (what to sort on), how
As we can see, the partial-tree comparison can removto use t_he information in the t_Jasis to per_form the sort (e._g.

’ ; U X Sscendmg) and what to do with null entries (place them in
more trees _than (_jeep—tree. This option is designed to b e beginning or end of the collection). Complex sorting
used for optimization purposes. We can produce th_e COMe&rocedures that require multiple parameters to perform the
ouyput vy|thout it, but this .WOUId I.ea.d to_ aless er_X|bIe SO sort can easily be described using a lisQstlering Items
lution with redundant duplicate elimination operationghwi . .

Example 3.2 For example a simple sorting procedure us-

various ‘tree’ inputs. . : o ! .
The goal oDuplicate Specification D-Spésto carry to ing all B nodes (identifiers), sorting them on ascending or-
) . . ; . _.der and placing all empty entries in the beginning will be
succeeding operators the information of a duplicate elimi-

: . A described by a®-ltemthat looks like (B, asc, I). For sim-
nation procedure that was applied earlier in a query plan, ;. ) N "
no matter whether such procedure was explicit or implicit.gﬁ%h%?gs::':g éa?]sgg 2nm(?ttiz rg.p?(/) Igaasés(el?(g)re the de-
Given theD-Spedor each collection the optimizer can ap- ' ' TV
ply it on the plan either globally or locally. Globally by Definition 3.3 Given a collection of tree€'r, the Order-
rewriting the plan and choosing where to place duplicateéng SpecificatiorD-Specspecifies how the trees are sorted
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in the collectionCr. O-Specaccepts as input a list of Or-
dering ltem2O-ltemsdescribing the sorting procedure that
occurred on the collection. Sorting based on e&xtitem
happens in the order they are given in the input list.

Similar in spirit with theDuplicate Specificationthe
Ordering Specifications used in association with a col-
lection to describe a sorting procedure (implicit or exiplic
that took place earlier in the query plan. The optimizer
can use the information globally by rewriting the plan and
choosing where to place sorts to achieve the correct re-
sult while using a ‘quick’ query plan. It can also use Figure 5: A sample match for an Annotated Pattern Tree.
them locally during the physical evaluation and determinesystem. In this section we describe how TLC algebraic
whether: a) an operator can pass it along if it does nobperators can be extended to handle order. We show some
change the order of the collection, b) modify it with a par- algebraic identities that can be generated and present the
tial new sort, and c) create a completely new one when ikigorithm to produce the correct output order. But first we
destroys the order of the collection and/or reorders it. begin with some necessary background on TLC.

Example 3.3 In Fig.E, we can see a few ordered collec-
tions using the Ordering Specification. In part (1) we see4.1 Tree Logical Classes (TLC) for XML

a “fully-ordered” collection; all the nodes in every tree
y y All tree algebras (e.g.[[d] 8]) use pattern tree match as a

were used to perform the sort. A “fully-ordered” collec- ) - )
tion has one and only one way that the trees can be orPasic building block. A pattern tree is matched on an XML

dered (absolute order). In parts (2.a) and (2.b) we see théjocu_ment and a collection _Of witness trees is produced. In
same “partially-ordered” collection; only nodes in parts previous tree algebra solutions, the witness trees had to be

of every tree were used to perform the sort. A “partially- similar to the _input pattern tree, .e. ha}ve the same size apd
ordered” collection can potentially have multiple ways it structure. Th's requirement resulted in homogeneous wit-
was ordered. Parts (2.a) and (2.b) show the same collechess trees in an inherently heterogeneous XML world with

tion ordered by the same key with clearly more than Onemissing and repeated sub-eler_nents, thus requiring extra
work to reconstruct the appropriate structure when needed

representations of the absolute tree order. In part (3) we.
sepe a collection with unspecified order (any ordrér). © In a query plan. TLC usednnotated Pa“e”? T(ee_s (AP.TS)
Ordering Specificatiotis orthogonal to the presence of anqugt_caI Classes (LCQp overcome that Ilml'gatlon. !t IS

duplicates anduplicate SpecificationTo clarify whether not within the context of this paper to present in Qeta_n_how

a collection is an arbitrary one or it is coupled with@n M [E] works. Instead we will try to show the Intuition

dering or Duplicate Specificationve accordingly use the on APTs and LCs and walk through an examp!e with th_e_m.

termsD-collection O-collectionandOD-collection Annotated P attern n eaxccept edge matchl_n_g specifi-
cations that can lift the restriction of the traditional ene

An outcome of our technique is that t@edering Spec- ¢ lationshin bet ttern d d wit
ification O-Specof a collection (and for that matter the 0-one reiationship between patiern tree no € and witness
tree node. These specifications can be “-” (exactly one),

RT operation that pr it) i rsetof th -
SORT operation that produced it) issupersetof the po- Eero or one),*+" (one or more) and “*" (zero or more).

tential order that can be expressed by XQuery. The outpuII_;. h th | wch f wated patt
of a single block FLWOR statement in XQuery can be or- 9.9 shows the example malch for an annotated patiern
lree. The figure illustrates how annotated pattern trees ad-

dered by either the binding/document order as specified i . ) . . ;
the FOR clauses or the value order as specified inGHe- drgss hetgrpgeneﬂy on both dimensions (height and width)
using variations of annotated edges. 50 As andEs, E3

DERBY clause. O-Specallows for the result of a query fre matched into clustered siblings due to the “+” and “*”
to be sorted by the combination of binding/document anxedges in the APT. On the flip sidé,, D, matchings will

value order. In other words, despite the XQuery comple . b=
b Query P ){)roduce two witness trees for the first input tree (the second
'

order requirements, there is no way to write a simple quer . . 3
that asks to “return albooks, sorted by the document or- eeis let thrc_)ugh, although there is no D matching) due to
' the “?” edge in the APT.

der of eachaut hor and the value order of eagtear .

- ; e Once the pattern tree match has occurred we must have a
t?]zrnet)pdper ?da ((:Srgs::jggscilgctarﬁgrlﬁ (t)?:jse%/ ;l?teﬁ g{'g%éotﬁ gce %gical method to access the matched nodes without having

node content (provides value order) jazar in their cor- to reapply a pattern tree matching or navigate to them. For

- ; ; example, if we would like to evaluate a predicate on (some
respondingOrdering Itemsas part of &SORToperation. In . e N ;
that sense, our approach can provide the means for mo'aétnbute of) the "A" node in FKﬂS’ how can we say precisely

: : hich node we mean? The solution to his problem is pro-
werful ordering expressions for XML than X ry. w . . :
powerful ordering expressions fo than XQuery vided by our Logical Classes. Basically, each node in an

. annotated pattern tree is mapped to a set of matching nodes
4 Enhancing an Algebra in eachresulting witness tree — such set of nodes is called
Hybrid collections can be used to enhance any algebra. We Logical Class For example in Figﬂs, the red(gray) cir-
focus on the TLC [1]2] algebra used in theMBER [ﬂ] cle indicates how the A nodes form a logical class for each

(b) Annotated
Pattern Tree

A, A A
(c) Matching Witness Trees & Logical Class ‘A’ for each tree

1 2
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witness tree. In TLC, every node in every tree in any inter-function namefname (count, max etc.), an LC reference
mediate result is marked as member of at least one logicalC,, to describe which nodes to apply the function on and
clasﬂ. We also permit predicates on logical class mem-an LC referencenew LC for the new node that will be
bership as part of an annotated pattern tree specificatiomreated to hold the result: output one tree for each input
thus allowing operators late in the plan to reuse pattem tretree, having applied the functiofiname to the specified

matches computed earlier. nodes byLC, and place the result of the function in a new
node in the tree annotated hyw LC'.
4.2 Operators with Duplicates and Ordering Join Jlapt, p,ord](Cy,C,.): Given two input hybrid

In this section we present a group of operators that cove?ollegt'ornesdg;reeiéEg'ndg’ae?ir:] Ang?;ﬁi?;;ttgm 'Il'thee
some core operations one would expect to be supported ﬁﬁe tr(fe for egfzh tree from. thgtphas a matéh'n ptree
an XML algebra. Every operator maps one or more hyloriOI:‘)rom C, as described i Thel structure of the outI St tree
collections of treeﬁsto one hybrid collection of trees. The atchés that of the tm.The outout is ordered ag Speci-
trees in a collection may be heterogeneous. Since we a L L. P : S SP
using TLC, Annotated Pattern Trees (APTs) and Logicall'€d BYord: @) ‘empty’, the output order is unspecified and
Classes (LCs) provide the means to identify nodes of in-OUtpUt .O-Spec IS empty. b) ‘maintain’, maintains the ordgr
terest in each operator. Some of the operators are carriegi;:igi Igfptuhte(llg;tt, r:r? dht)i;;;??n%ﬂttpuc;[)‘Oli_sst-r:z(s:olft’thsuf;i;tnbl_
over from TLC (€.g. Projec), whereas others had to be resorted based on the list of nodes passed — the input order

Lneohd;]:;?odr Eg ;ggggig%mc ordering and duplicate awarels destroyed. d) ‘list-add’, output is partially sorted éds

Select S[apt, ord](Cy): Given a hybrid collection of on the list of nodes passed — the input order (left, right)

treesCy, an Annotated Pattern Trest and an optional is maintained and the additional parameters froni are

; . : dded to the combination O-Spec of the inputs.
ordering parametesrd: perform the matching procedure a ) X
for apt in each tree ofC7 and output the produced trees i Rcevor?erlﬂpL_C, |Cé|o’ f ](CEC)‘. acgegtg anénp]yt cotl_lec—
ordered byord. The ordering parameterd can be: a) lon O, two Logical LlassepLt andcL( and a function

‘ , ; o : . For each tree W'y, identify the parent nodes.C' and
empty’, the output order is unspecified (O-Spec is empty).f .
b) ‘maintain’, maintains the order (O-Spec) of the input. the child nodegLC then reorderLC under eachhLC' as

c) ‘list-resort’, output is resorted based on the list of @®d specifi?d by th? input_functioﬁ. . .
passed — the input order was destroyed. d) ‘list-add’, dutpu bDudp 'Cﬁte'E |m||;1at|on DE[%GP](CT)' Given _an Input
is partially sorted based on the list of node passed — the i rIII co e(;tlon 0 tLeegﬁT and a pgr_zé\jme'gefelp - output
put order is maintained and the additional parameters fronft collection fromCr having removed identical trees com-
ord are added to the O-Spec. pared based otiep. dep can be a) the whole tree (input
Project P[ni](Cr): Given a hybrid collection of trees gree) O;lb) a list of nodes (inpugl). The output D-Spec
Cr and a lista! that identifies sets of nodes: output one tree?€cOMesep. s , _ _
for each tree inCr maintaining only the nodes identified Sort O[Ol](C_T)' G|v_en an mput hybrid coIIe_ctlon of
by nl. If the output is not a tree, the input tree root is alsof€eSCr @ sorting basis vectasi: output collectionC'r
retained. reordered as described by Each entry fowl is an Order-
Filter F[LC;,p,m](Cr): Given an input hybrid col- ing Item O"te”_‘- The output Q-Spec becor_‘r@és_Sort can
lection of treesC, a filter predicatey, a modem and a choose to partially order the input collection if the input

logical classLC: output only the trees iy that satisfy ~O-SPeC s a subset of.
the predicate for the nodes bound thC';. The moden ] N
parameter is used to identify how to iterate over the set oft-3  Algebraic Identities

nodes bound td.C’y, e.g. every (universal quantification — the power of bulk algebras is in the rewrites that rely on

default), at least one, (?xa_ctly one. . _ algebraic identities. In Tab[¢ 1 we present several idestit
Construct C[c](Cr): Given an input hybrid collection  gnoing how our operators interact wigort and Dupli-

of treesCr and an annotated construct-patiern we8s ..t Elimination We try to give the intuition on how these

input: output one tree for each tree @y modified as identities are generated.

descrlbe(:i inc. An ann(?;e;[;a_d construpt-gl)latterr; tr_el,\'e. IS fan Selectand Join accept an optional ordering parameter
annotated pattern tree(APT), except it allows facilities f . »¢ aj10ws us to pusBortinto them. Also, they can be set

tagging, renaming, and arbitrary tree assembly. Any CoNg, maintain order and be swapped w8ort Identities (1),
structed node (e.g. a node created for atagr esul t > (2), (3), (4) are generated because of this.
of someRETURN clause) is assigned a new node identifiers Projectremoves nodes from a tree and thus can create

with similar properties for uniqueness and document Ordeﬂuplicates. The removed nodes might affect succeeding or-

and the identifiers of the ‘regular’ nodes. dering operations. So both ordering and duplicates must be

Gi Aggregate—::rl:ngtygnAll;* [ftmmef’ tLC‘“ ”ewLC](CT):t aware of the project list, hence identities (5),(6pnstruct
iven an input hybrid collection of tre€sy, an aggregate is somewhat similar to that because it can also remove some

2Base data, read directly from the database, has no suchatssoc nOdes- So identity (7) iS_ generated. _
3The input can be a single tree database. Filter does not modify the tree structure at all. So it
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1 | Oldl](Slany,anyl(.)) < Slany,ol](.)) IAlgorithn;l:l'v\l_lg-F({: o Lo altebran
nput: a expression tput: a -C algebra plan
2 | Olol ES mamtaz}(]()))) < [[maznz]f?z)T)z}(O[ol](.)) GI%Ltl)aIs OPERATSES O:?DERLLIJSp'IL'J gevrap
3 | Oldl](J|any, any & Jlany, ol _ )
4 Olol](J[maintain|(S;, S;)) < gggid#ﬁv%g?lgggt(;l(ge';t\::vtgﬁg?oreach Grammar Rule
maintain)Olo(59. Ol (S oot of_| | Eossmmsionds, (0 e
5[ DEMPI]()] & PRIDEWI). FALCal | | “Sanacesimgasniic. - "
6 | Oll](Plni](.) & Plnl(Oll]()), it ol € nl SG4LCy o ORDERLIST
7 Olol (C ]( )) [ ]( [ ]( )), if ol C (C - Cl), Process IfETandWHEREas inTLC
Case OrderClause ::= ORDER BY §P.., SR, Mode
wherec! the newly constructed nodes for eath Sp creatonpt.S, = SPIAPT(SE, ™)
8 | DElany](Flany|(.)) & Flany](DE[any|(.)) for eachapt S; create a Select 8ptS;], add to OPERATORS
for eachaptS; createL C; pointtoaptS;.leafnode
9 O[any]( [any]( )) [any] (O[any]( )) Create élé)rt[valueiccl), .. .F,)valuegg‘n)], add to OPERATORS
10 | DE[any|(Rlany](.)) & R[any](DE[any](.)) Case ReturnClause ::= RETURN ReturnExpr
i1 O[a?y]( K{m;y}](()))) = R[[c%,;(omny}(.» i Sortwas added by an OrderClause continue
12 | DEltree](C < Cld(.)), else )
if ¢ contains newly constructed nodes o DR IST
13 | DE[EN(CTI() © Cld(DE]())fdl C ¢ cGalsnmeChiGy LCY L
reate S0! = Sortjnoaela.Cy), ..., noaeil n
whereal = dl — cl andcl the constructed nodes Construct. SetChild(Sastz) and Sort, . SetChild(Child, )
14 | Olol|(DE][dep](.))) < DE|dep|(O[ol](.)), i3
dep € O-Spec of input APT function SPtoAPT(SP, mSpec)
Return an APT (Annotated Pattern Tree) from SP (Simple Path)
15 DE[dep] (O[Ol] ()) < D_L?[dep] ()) - use Rel from StepAxis of SP, use mSpec for all edges
Table 1: Algebraic Identities used for rewrites. fuy;%ion Survive(Operato‘;LCfm) . oro
: - t t .g. th
does not affect duplicates or ordering, thus (8), @3order ' if ‘)Leéaornﬁr?,? E’?&Zé’ﬁiﬁ J;T cachtree (e.g. Project type)
i ifi n addLC;,, to Projection List
does not add or rem_ove_ nodes either, but mOdIerS t.he t_ree. if Operator.hasChild Call Survive(Operator.getChild{X;,)
structure by reordering it. Yet, all the tree information iS | procedure NestedQueryin FLWOR)
retained and the modification is app”ed the same way to Proces_s'FLWOR, if (Nested) then.CaII SingleBlock for "inner” and "outer”
. K Add a join between the outer and inner plan
each tree; trees that were identical before reorder, become  Use edge ™" for FOR, edge "*" for LET and RETURN
i i i Call Survive on join values and inner construct elements
identical agan. So (.10.) and (11) .Can be used. if nesting on FOR and "outer” does not have OrderClause
Construct can eliminate duplicates due to the con- CreateL C,. for root of "inner” tree
structed nodes. The new id for the constructed node will|  2ddZ G, to generated Sort of ‘outer’ plan
. . . all Survive(SortOuter.getchild(J,C'.)
make all trees different with each other. Identities, (12),

(13) are added because of this. Similar§ggregate- Figure 6: Algorithm TLC-C for correct output order.
Functionand Join add their own nodes and can eliminate in Fig[§. The firstFOR clause is processed — the Simple
duplicates — they also produce similar identities to (12), Patfﬂ (SP) doc/ / book) is converted into an Annotated
(13), not shown here due to space limitations. Pattern Tree (APT) with “-” edges and a variable is bound
Duplicate-Eliminatiorcan destroy order, since it resorts pointing to the leafljook node). Processing of subsequent
the input collection by the elimination kejep to remove  FORclauses detects the existing variables. So now each SP
duplicates. Yet, if the inputis already sorted by the Hey, is merged with the existing APT. After all tR€R clauses
then it is maintainedSortdoes not create additional dupli- are processedSelectlis generated. Next thRETURN
cates and it does not remove existing ones. So identitieslause is processed arfrojectZis generated to maintain

(14) and (15) are produced. thebook before it is passed t€onstruct3hat generates
the final output.
4.4 Producing the correct output order The problem is an assumption that the pattern tree match

A bulk algebra can be extended to produce the correct orW'" generate the appropriate order. Unfortunately that as
der using our approach. We present the sketch of an alg&umptlon is not correct. The order of the pattern tree match
rithm that does that by extending TLC for ordering. We call Is that of an in-order traversal — that would prodbosks

the new correct ordered algorithm TLC-C. We believe our?hrdered bylautbhor ICT erl e;’: t?d' tto':h hobbyt tout
basic principles can be adjusted to fit any XML solution. € example above. Liearly that IS not thé correct outpu

We will try to discuss the intuition behind the algorlthm

using an example. Example 4.2 The TLC-C output corresponds to t'he right
Example 4.1 Consider the query in Fif.7. This query is plan in Fig[8. EachFOR clause is processed as with TLC,
pie 4. query v QUEIY IS |yt now a globalORDERLISTis also generated. The list

simplified on purpose to allow focus on how binding Ordercontains ointers to the Logical Classes for each leaf node
is dee}lt with. The query asks for a‘dbokg sorted by the in the Sir%ple Paths of evgﬁd? clause. For the query
combined document order alut hor, edi t or, hobby shown in Figﬂ70RDERLISTwouId be (2), (3), (5), (6), (4).

(of e_d|tor) and nt er est (of al_Jthor). Since no expliciORDER BY clause is used, TLC-C creates
First, we present how an existing tree algelﬂa[3] would

handle such a query, the output corresponds to the left plan “xPath expression without branching predicate.
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FOR $b I'N docunment (‘ ‘lib.xm " ")//book FOR $0 I N docunent (‘auction.xm ’')//open_auction

FOR $a | N $b/ aut hor WHERE count ($o/ bi dder) > 5

FOR $e I N $b/ editor RETURN <result> {$o/quantity} {$o/type} </result>
FOR $h IN $e/ hobby - - - -
ng_ug\l [35 $a/interest Figure 9: Returropenauctionswith more than Sidders

Duplicate Elimination : ID(tree;

)
Figure 7: Simple query with not-so-simple binding order. |comsiuet = Crosu-> Lo-r

Construct @ @ _. - Coo @
Duplicate Elimination : ID(tree)
Construct @ g Sort: ID(2), ID(3), ID(5), ID(6), ID(4) % Select * Construct (ot 107
Project : Keep (2) 2 )| Project : Keep (2), (3), (4), (5), (6) 2 LC=5 LC=6
R Mo RO
Select Select - — c0"57
o~ Duplicate Elimination : ID(tree) Select @
Project : Keep (2) (&) s X X 1c-s @ @ )
Duplicate Elimination : ID(tree) Cauanty D Cve > (6) seleat @ >
LC=3 LC=5 LC=3 LC=5 Filter : (4)>5 (5| puplicate Etimination :Dtree) (5) o5 % L 1c6
Duplicate Elimination : ID(tree) Project : Keep (2) (4 Cauaniy @, ®
LG4 LC6 LG4 LC6 Aggregate (count, (3), newL.C=4) (2) Filter :(4)>5 (3) Fitter - (4)>5 ()
@ @ Duplicate Elimination : ID(tree) Aggregate _(count, (3), new.C=4) (2)] Aggregate (count, (3), newL.C=4) (2)
i X Select doc_root Loot Select Select
Figure 8: The TLC plan (left) vs TLC-C plan (right). ..,
N " N N N pen_auction > HC=
Sort3using the information iNDRDERLISTand adds it o
as a child toConstruct4 Finally, Project2is modified to @

guarantee the necessary nodes re&eint3 Figure 10: Minimizing Duplicate Elimination procedures.

The TLC-C algorithm uses a simple concept to provideeyen though the comparison operation is so cheap, Dupli-
the correct order for single block FLWOR statements. Crecate Elimination remains a blocking procedure and its cost
ate aSort operation at the end of each query that corre-on large sets is significant. Forcing it after every operatio
sponds to the correct order. To achieve that it uses Logicatan cause a major performance hit.
Classes to identify which nodes participate in the order and  The semantics for XQuery require the absence of du-
the Ordering Specificatioto guarantee it. Also, itneedsto pjicates, so some form of duplicate elimination is unavoid-
make sure that all nodes participating in the fiSaltare  aple. But, what is the minimum that can produce the same
not removed from preceding operations. By default TLC-correct results as if sets were used for each operation? The
C uses O-Spec set to unordered for all operators below theomplete answer to this problem can be seen irmig.ll.
final Sort Only the top levelConstructis set to maintain - Here we will describe it intuitively with an example.
order —which it does by definition anyway. This way TLC- Example 5.1 We use the query shown in.9 and we
C produces almost no ordering restrictions for the plan. ; .

For nested FLWOR queries, the single block aIgoritthhOW how to generate the middle plan in [i9.10. The al-

X gorithm iterates over the existing tree algebra plan and

e e, e o7, ponidrs e opertoBelctand Aggregaleacd e
parts. - nodes to each tree so their output is set to D-Spec = ‘tree’.

is important the join access method is required to mainta'r):ilter:;’maintains the ‘tree’ D-Spec. Therojectdemoves
order, essentially forcing a nested loops implementation. some nodes and sets the D-Spec to ‘emptyDublicate

. Elimination5procedure is necessary to remove potentially
5 Performance Benefits redundant trees and set the D-Spec to ‘tree’. The succeed-

Given the algebraic framework established above, we calf'd Selectéand Constructo not create additional dupli-
develop execution plans for given query expressions. Irfates and set the output D-Spec to ‘tree’.
this section, we discuss some of the optimization opportu- The produced duplicate-free result is the same as the ex-
nities that become possible on account of the new algebraisting algebra plan that uses sets, but now only one Dupli-
cate Elimination is needed. The key is to change the opera-

5.1 Duplicate Elimination and Efficiency tor input/output semantics from sets to our Hybrid Collec-
tions with Duplicate SpecificatiofD-Spec). It enables the
simple procedure, described in 11, to detect duplécate
and eliminate them on-demand, instead of proactively.

The basic building block for XQuery is the FLWOR
atement. The absence of duplicates in the final output
f a FLWOR are essentially described by #eR variable

To solve the issue with no duplicates in XQuery, existing
tree-based algebraic solutiof}[[8, 3] followed the retelo
model and chose to operate on duplicate—freeﬁsﬂtsees.

It is very common for operations to generate duplicates irgt
a tree algebra (e.g. a pattern tree match followed by a pro-

jection). If the set semantics were to be maintained at alEindings. In a tree algebra, this means that only part of the
times, a dgpllcate ellmlnatlon Is required af'ger gach Oioeraoutput trees (the one that corresponds toRBR bindings)
tor is applied. For the simple query shown in fig.9 such %heeds to be used to produce the correct duplicate-free out-

plan corresponds to the left plan shown in @'10' ut. Existing tree algebras (including TLC) use®mject

: E)gl_st|ng tree f”"gebfa |mplementa_t|ons use (unique) nOd%peration to convert into the necessary part of the tree be-
identifiers to quickly check for duplicates. Unfortunately fore trying to remove duplicates. That created potential

5Sequences are also duplicate-free. We will ignore the dalermo- ~ SCenarios where information was projected out, only to be
ment and focus on duplicates, hence use sets for simpliciteseptation.  added later. Th®uplicate Specificatiod-Spec we spec-
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procedure FindM ni nunDuplicates(in TLC-C pl an) procedure PushSortlntoSel ect(in TLC C pl an)
For each Operator OP in the plan Find the Sort at the end of the plan
if OP does not nodify each tree structure Set childop = Sort.getChild()
use D Spec of input collection in the output Wiile childop # Sel ect do
if OP nodifies each tree structure - adds new nodes if OP does not nodify order
use output D-Spec = 'tree’ swap wWith Sort, use proper identity
if OP nodifies each tree structure - renoves nodes childop = childop.getChild()
use output D Spec = 'enpty’ else if childop nodifies order
add Duplicate Elimnation DE('tree’) if childop O Spec is subset of Sort O Spec
- - — swap wWith Sort, use proper identity
Figure 11: A procedure that determines the minimum Du- childop = childop. get Child()
P fni ; el se stop, operator cannot be switched
pllcate Elimination necessary fora query. Wien Sel ect found, use ordering paraneter from Sort
procedure partial Duplicates(in TLC C pl an) Renove Sort from plan
For each Operator OP in the plan : 3
if OP does not nodify each tree structure Figure 13: MergmgSortandSeleCI
use D Spec of input collection in the output
if OP nodifies each tree structure, adds new nodes
if D-Spec of input is 'tree’ or ’'enpty’ Construct @ ®
_ use output D-Spec = 'tree’ Sort: ID(2), ID@3), ID(5), ID(6), D) (3)| Sonstruet @ ®
! fi ?’ ﬁz\?vcngijel i”g“; Liztéal 2332 Ialnfjt ' (dl ) Project : Keep (2), (3). (4). (), 6)  (2)| Project : Keep (2) )
... connects to tree witha’'-", '? edge ord=empty ord=1D(2), ID(3), ID(5), ID(6), ID(4)
add Logi cal O ass of new node to dl Select Lot Select oot

doc_root

doc_root

set output D Spec = dl
if OP nodifies each tree structure, renopves nodes
if D-Spec of input is '"tree’ or 'enpty’
use output D-Spec = 'enpty’ _ ~ _ _
add Duplicate Elinination DE('tree’) e -0 L= o=
if D-Spec of input is a node list (dl)
if the rempved nodes exist in dl
set output D Spec = ‘enpty’

ol o s ot ot B Spen o gn PEC treen) Figure 14: On the left the TLC-C plan and on the right the
rewritten plan having pushed tt8ortinto the Select

Figure 12: Taking advantage of Partial Duplicates. duced trees according to it. There are well known tech-
ified, and in consequence tifiuplicate Eliminationoper-  niques that can take advantage of such parametSelect
ator, behave gracefully with partial lists of trees. So weduring the physical evaluation phase. They compute tree
constructed a procedure that further minimizes the usage @fxpressions via structural joinﬂ [2], holistic joirﬁ; [1]can
Duplicate Eliminationsand does hot require a projection. optimal join orderind[41] 32]. These techniques provide
We show pseudocode for it in Fal12. We will describe it more efficient solutions than dictating the placement of the
intuitively with an example. sorting operation at the end of the query.

Example 5.2 Consider the query in FifJ.9 and the mid-  To take advantage of them we constructed a rewrite
dle plan in Fig[1p. The query asks for the output to bemethod that pushes the sorting operation down in a query
duplicate-free oropen_auct i on. We iterate over the ex- plan using algebraic identities. This method can be ap-
isting plan and consider each operataBelectIproduces plied to all selection type of queries that are based on a
outputin D-Spec = (2)Aggregateadds a new constructed single block FLWOR statement without a value join. Such
node, not data nodes — so the input D-Spec is passed to thlection-type queries are very popfllaive show pseu-
output. Filter3 maintains the D-SpecProject4removes docode for the rewrite algorithm in Fjgl13. We explain it
some nodes but maintains (2), so it retains D-Spec = (2)intuitively using an example.

No Duplicate Eliminations required, the collection has the
correct D-Spec (2) that corresponds ¢pen_auct i on.
The succeedin@electand Constructdo not create dupli-
cates and do not modify the D-Spec, so and the final outp
is correct.

Note how theProjectis not required for correctness any
more. The right plan in Fig.10 shows the outcome of this
algorithm for the query in Fig.9uplicate Eliminatiorhas
been removed completely via the careful consideration of This rewrite should always be applied on single block

LC=4 LC=6 LC=4 LC=6

Example 5.3 Consider the query we used in FEIg.?. In
Fig..4, we can see the TLC-C plan on the left and the
LHawritten plan on the right. The rewrite first swagort3
with Project2using identity (6) (from Sectidﬂl.S). Then it
mergesSort3into Selectlusing identity (1). The ordering
parameterord specifies the order for the query now. As a
side effect, the extra nodes frdProject2can be removed.

partial duplicates. selection queries because it cannot lead to a ‘bad’ plan. The
selectivity of such query is determined by the original se-
5.2 Selections and Ordering lection and the trees produced when matching the pattern

tree of the selection to the database. The worst case sce-
nario would be for the optimizer to not incorporate sorting
fhto the pattern tree match and apply it afterwards. Since

The algorithm we used in Secti¢n]4.4 placeSat opera-
tion at the end of a query plan to produce the correct outpu
order. This placement dictates the physical implementafhe selectivity is the same, we will do no worse than the
tion, which limits severely the choices for optimizationeW TLC-C plan '

want to overcome this problem and produce flexible plans. '

The Selectoperator we described in Sectipn|4.2 accepts  oror example, as we will see in the experimental section, 15<@00
an optional ordering parameterd that can sort the pro- XMark queries fit in this category.
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Construct <result> LC10 FOR $b IN docunent (*1ib.xm")/book )
LET $k := FOR $a IN document (‘lib.xml")/article
WHERE $b/ aut hor = $a/author AND $a/conf = ‘VLDB
> Cw > RETURN $a

WHERE $b/year = 1999
RETURN <result> {$b} {$k} </result>

Figure 16: Nested FLWOR statement.

Project : Keep (9), (2), (4)

Duplicate Elimination : ID(2), ID(4) @
O]

Construct <result> LC=10
(5312"(16 é‘ﬂ. >b¢ ®

Sort : ID(2) @

Duplicate Elimination : ID(2), ID(4) @

Project : Keep (9), (2), (4) @

Reorder : (9), (4), ID(4) (s)

ord = maintain(left, right)
i LC=9

(5?2"(‘6)
Figure 15: MergingSort and Join The TLC-C plan in- T D m G)
cludes the graysort6 operator instead of therd in Join3 peEp— m

Very often selection queries can include value joins and Construct

with the proposed rewrite we may miss some optimization o > @)
opportunities. For this purpose, we designeddbiz oper- Sort : ID(4) ()
ator to accept an ordering parameted! similar in concept DE : ID(4), ID(6) ()
with Select Itis applied when the join is performed and the Project : Keep (4), (6) ()
output is ordered by it. So we can use a similar algorithm
to push theSort operation into aJoin The pseudocode is
omitted both for presentation simplicity and space limita-
tions. Instead we will show an intuitive example and dis- o
cuss issues that arise.

) Figure 17: Reorder used in a nested FLWOR. The TLC-
Example 5.4 Consider the top query from F[§.1. Fg|15 C plan would include the gra8ort6 operator and therd
shows the plan for this query. The TLC-C plan, before thegarameter ofloin3instead ofReorder8
rewrite, would include the gragort6operation. TheSort6 one for ‘outer’. ASortis used on both to establish proper
is swapped wittDES using identity (14) and witiProject order AJoinis. used to connect the produced Ianspforp‘in-
using identity (6). Then merged in3using identity (3). ner’ énd ‘outer’ part. Since the ord(gr of the ‘ir?ner' plan is

Theord f(?r \']om3descr|bes the qugry order now.' _important the connectindoinis set to maintain order. This
Yet, this is not the only alternative. The rewrite can in- chojce dictates the physical implementation for sorting an
stead use identity (4) and push tBert further down us-  essentially forces a nested-loops join to be used.
maintains the order (witdoin3-ord = maintain(left, right))  proplem by pulling the ‘innerSortin the ‘outer part and
and theSelectsspecify the document order (witBelectt  over the Join using identity (4) from Sectioff 4.3. Now
ord = ID(2) andSelect2ord = ID(4)). Other choices in- \ye can apply the rewrite we described earlier with pushing
clude using value ordering for a more efficient merge joingortto Join Yet, this does not apply to the more popu-
algorithm. Joincan establish binding order (withoin3ord |3y choices for nested FLWOR statements — nesting in the
= [ID(2), ID(4)]) and theSelectsprovide the input sorted | ET/RETURN clauses. For eadhET/RETURN clause, the
on join value (withSelectZord = value(2) andselect2ord  jpjnneeds to cluster the matching trees of the ‘inner’ plan
= value(4)). Or a mix of value and document order (with together, hence identity (4) cannot be applied. There is no
JoinZord = [maintain(left), ID(4)], Selecttord = ID(2)  ‘outer Sort operation that can describe the ‘inner’ order
and Select2ord = value(4)). The supported partial order properly. So we constructed a rewrite that uBesrder
by the Ordering Specificatioprovide many possibilities. The Reorderoperator processes one tree at a time, re-
PushingSortto Selectwas a much simpler rewrite than sorting sub-trees as specified by its input parameters. The
Sortto Join The difference is due to the selectivity esti- yewrite, that usesReorderto provide alternative plans for
mation for the query. Previously, only the selection (essenpested FLWOR statements, has a very complex algorithm.
tially the pattern tree match) provided the selectivitytfe  The complexity is due to the variety and complexity of the
query. Now the optimizer has to carefully consider the costested queries it can handle. The algorithm is, for the most
for the two Selectsand theJoinbefore making a choice.  part, mundane and very specific to our system. Instead of
) presenting it in detail, we will show an example that intu-
5.3 Nested queries itively demonstrates its behavior.

Nested FLWOR statements, as we described in Sefctibn 4.&£xample 5.5 Consider the FLWOR statement nested on
are treated as two single block queries — one for ‘inner and_ET shown in Fig@G. The TLC-C plan for this query is
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shown in Fig@? when the grayed ofbrt6operator and dering we presented in Sectiﬂn 5. The TLC-C column uses
Join3ord parameter are used instead Reorder8To pro-  the correct plan produced as in Sect@ 4.4. The TLC-D
duce the TLC-C plan, the ‘inner’ and ‘outer’ parts of the column uses plans produced by applying only the dupli-
guery are processed separately andSartis generated cate related rewrites (no ordering consideration). Sityila
for each one. Thewoin3is used to connect them. No- TLC-O column is for only the ordering related rewrites.
tice how the APT fodoin3uses the *" annotated edge to Finally, TLC-OD column shows results when using both
capture theLET semantics and how the ‘inner’ join node ordering and duplicate rewrites. We did not want to test
(LC=6) is added to theProject4 Duplicate Elimination5 TLC-C against another algebraic solution because it is not
and Construct®dperators to properly reach the connecting clear who address ordering prop@ly
join. The rewrite examines ttgort6operator of the ‘inner’ Efficiency and Duplicatedn column TLC-D, we show
plan. Then it pulls it into the ‘outer’ plan and converts it the performance gained with the duplicate related rewrites
to the appropriateReorder&perator. It also removes the described in Sectiof §.1. The rewrites can be applied to
order maintenance restriction fromloin3and enables the any type of query and successfully minimize the presence
order of the ‘inner’ query to be anything. of Duplicate Eliminationsn the plan. We always expect
The basic principle of the ‘Reorder’ rewrite is to pull some performance increase over TLC-C when using this
the ‘inner’ Sortto the ‘outer’ part of the query. Then use rewrite. For single block selections, we expect the perfor-
Reorderto describe it and remove the order maintainingmance increase to depend on the query selectivity. When
restriction from the connectindoin Once that restriction many results are produced removing the blocking opera-
is lifted from theJoin we can produce a series of alterna- tion can lead to a higher performance increase — e.g. the
tive plans following the techniques presented earlierlfpus speedup of x19 vs. x17. For single block joins and for
Sort-in-Join). TheReorderoperator is non blocking (pro- nested queries, other factors usually dominate the cost, so
cesses one tree at a time), hence it is cheaper than the ‘ithe performance increase can be lower. For example, in
ner’ Sort When used in conjunction with a join procedure, query g2 the cost is dominated by the data materialization
it lifts the order maintaining restrictions. So it is expet needed for the join and the speedup is relatively low. Simi-
to provide a big performance increase against a blockingar behavior is seen in nested queries, like x8.

Sortfollowed by a nested loopioin ‘Push Sort in Select’ We tested the efficiency of our
_ _ rewrite that pusheSortsinto Selectsas described in Sec-
6 Experimental Evaluation tion 5.2. The rewrite applies only to single block selec-

tion queries. Results for such queries are shown in column
LC-O for the first group of queries (x1-x20) in Tatﬂ|e 2.
election queries are popular in XML (the majority of the
Mark queries fit the category). We expect to always see

The experiments were executed on thedeR [[L]] na-
tive XML database system. For our dataset we use
the XMark ] generated documents. Factor 1 produce
an XML document that occupies approximately 707MB

(472MB for data plus 241MB for indices) when stored a performance increase with our rewrite on such queries.
in the database. Experiments were executed on a per Nis happens because the selectivity of the query is mostly

tium 111-M 866MhZ machine with a regular IDE hard disk given by theSelectoperator. So when we merge sorting

and 512MB of RAM. The database was set to use a'nto it, we create a controlled environment for the optimize
128MB buffer pool. All numbers reported are the averageo use well known techniques that efficiently perform the
of the query execution time over five executifin¥Query pattern tree match. The overall speedup depends on the

queries were translated to TLC-C plans using our algorith Tnany results is hurt more by a blockiriprt and benefits
as specified in Sectidn 4.4. The plans utilize our algebrai more from a semi/fully pipelined pattern tree match phys-

operators, with no structural rewriting or cost-based Op"cal evaluation. So the performance increase is hiaher fo
timization performed. We used an index on element ta valuation. perror Ce | S€ IS higher for
uch queries — e.g. x19 shows a high speedup.

name for all the queries, which returns the node identifiers’™, . o . . ) :
given a tag name. On all queries that had a condition on Push Sort in Join’ PushingSort into a Join applies
content we used a value index, which returns the node id® Single block join queries. Results for such queries are
given a content value. We did not use value join indices. SNOWn in column TLC-O for the second group of queries
We executed a series of queries, those described in tH&1-02). The difference between this rewrite and the ‘push-
XMark benchmark as well as our own. We summarize ourn-Select’ is the variety of produced alternative plansisTh
results in Table[|2. We refer to XMark queries as x13, xgCauses the selectivity estimation to be a bit trickier, siihc
etc. Since XMark does not have single block join que}ies has to use information for the value join and the selection
we constructed two such queries (g1, q2) and include theipperations. TLC-C by default enables unordered results

results. There is nothing special about them, but due t&'P to the finalSort operation. So the defaulioin could
space limitations we will not describe them here. have been planned with sort-merge before performing the

The results for our tests are summarized in Tﬂ)le 2 oyfewrite. In that case, the performance increase depends on
tests focus on the suggested rewrites on duplicates and or-

8We believe ignoring proper order by other algebras and hetise-
"The highest and the lowest values were removed and then tregave  ing some sort operations can be an unfair performance ad jnst
was computed TLC-C. A comparison of TLC against other algebras is showLHj.[
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TLC-C TLC-D TLC- O TLC- OD

x1 0.177 . 148 0.112 0.092

X2 2.163 1. 260 1. 142 0.737

X3 7.660 5.003 4.792 2.826

x4 1. 064 0.790 0. 688 0. 493

x5 0. 603 0. 469 0.420 0. 313

X6 0.390 0. 259 0.248 0.164

X7 1.738 1.083 1. 021 0. 641 T

X13 0. 951 0. 668 0. 621 0.417

x14 8.014 6. 384 4.122 2.830 = i

= =770 =55 76 503 (a) TLC-OD .breakdowr.l . .(b.) Scalability, query x13

X16 4. 114 3.158 2.503 1.967 Flgure 18: Optlmlzmg TLC-C.

X17 2. 751 1.833 1. 736 0. 865

s o901 o2 | ol o andDuplicate Eliminatiorare blocking operations and can

X20 > 340 1,584 1807 1020 cause poor performance on big collections with many trees.

ql 9.074 8. 443 5. 044 3.902 i -

Larger documents will generate results that use such col

| qz | 13;- %Z | ﬁi- Zig | ii Zgz | 1;- gi;‘ | lections, so we expect to see higher speedup for them. This

5 135575 T 117880 12411 10453 is verified in the figure by the increasing gap between the

X10 >1800 >1800 | 168.231 | 160.372 TLC-C (top) and the other curves.

x11 155. 148 137.014 16. 390 13. 443

x12 70. 167 61. 966 7.412 6. 141

Table 2: Execution time for XMark queries. The queries7 Related Work

are separated into three groups, a) single block selectiong the relational world, smart sort placement has been con-
(x1-x20), b) single block value join (q1,02) and c) nestedsjdered an interesting problem for a long time (3¢ [b, 15]).

FLWOR (x8-x12). A paper that shares similar principles with our approach is

the selectivity of the join operation. If the Join has twaybi  Interesting ordersmrS]. Their technigue assumes QGM (a
input collections and outputs a ‘small’ one, the speedup oflataflow graph) is used to query a relational system. They
the rewrite will be low — the plan close to the ‘optimal’ use ordering properties to annotate each box in QGM and
was already selected. In the queries shown in TEbIe 2, gthen use graph algorithms to minimize the sorts used. But
is such a query and the speedup is relatively low. On thehey do not seem to support partial ordering or consider du-
flip side, g1 generates a bigger number of results and thplicates like we do. Also they use sequences, whereas we
speedup is higher (2x). use the more flexible arbitrary hybrid collections. Further

‘Nested Queries’ Nested FLWOR statements benefits more, it is not clear how their technique can be transferred
from the ‘Reorder’ rewrite we described in Sect|or] 5.3. Re-to XML. Overall, XML poses some ordering requirements
sults for such queries are shown in column TLC-O for thethat are foreign to the relational model.
third group of queries (x8-x12). The rewrite removes the There has been some work for mapping XML to a re-
blocking ‘inner’ sorting procedure and lifts the order main lational system [[4] 6] 19]. These solutions try to ad-
taining requirement for the connecting join. Aside from dress the ordering problem converting it to SQRDERBY
enabling a more efficient join algorithm than nested loopsgclauses. This can lead to correct results for ordering on
the rewrite enables the ‘push-in-Join’ and ‘push-in-Selec value, but there is no comprehensive study on how the bind-
to be fired as well. As expected, the rewrite creates a bigng/document order requirements can be expressed. Also,
performance increase. For the nested queries of XMarkthere is no discussion on optimization possibilities for or
the speedup is around an order of magnitude —e.g x8.  dering and duplicates.

TLC-OD. Of course both duplicate and ordering  Native navigational—baseﬂl?] approaches iterate over
rewrites can be used in tandem to produce even better plandata nodes, thus are able to follow the XQuery iteration
We apply the duplicate rewrite first and then the corre-model step by step. Using this model one can produce the
sponding ordering one, for each query in Taﬂle 2 — resultgorrect output order. Following this general approach, the
are summarized in column TLC-OD. To better summarizeauthors in ] present a very thorough study for ordering in
our observations we show a graph for a few of the querieXML and use a theoretical analysis to capture the ordering
in Fig. ). The figure shows the performance fractionsemantics. They do try to touch on some optimizations for
of each rewrite against the original TLC-C plan. In single navigational systems. Yet, the instance at-a-time operati
block selection type queries (x19) both TLC-D and TLC-O leaves a lot to be desired with regards to performance and
contribute by removing the blocking factor BE andSort ~ scalability of such solutions.

For queries where other factors dominate the cost, like join Native algebraic-based 1, ]1[L,] 14] implementations,
02, the speedup is relatively small. For nested queries, likand both the nodd][§, R0] and tree algebfa$][$, B, 12] used
x8, removing duplicates does not make much of a differ-as their basis, have the benefit of a more flexible optimiza-
ence, yet, the ordering rewrite provides a big boost. tion framework. But they have their own share of problems

Scalability We also present a small graph in (b) with XML order. They try to produce the correct output
to show how larger datasets affect our techniques. In théy using sets or sequences of trees. Sets lose all order-
figure we show a simple single block selection type querying information, so the correct result cannot be guaranteed
(x13) and the execution time of TLC-C, TLC-D, TLC- at all times. Also, sets can create performance problems
O and TLC-OD on various document sizes. Ba@brt because redundant sorts will be used whenever something
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needs to be ordered. Sequences can maintain the ordef7] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S.
throughout the query plan, but they are lacking a careful Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
consideration of XQuery ordering requirements (espsciall D. Srivastava, N. Wiwatwattana, Y. Wu, and C.Yu.
binding order). A pattern tree match will not produce the TIMBER: A native XML database.VLDB Journal
correct order as we saw in Sectjpn]4.4. Performance-wise, ~ 11(4), 2002.

sequences need tightly bound operators that reduce flexibil [8] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava,
ity and have to consider the entire plan before producinga  and K. Thompson. TAX: A tree algebra for XML. In
rewrite (making local optimization difficult). Finally, o Proc. DBPL Conf.Sep. 2001.

sets and sequences assume no duplicates are present aM B. Ludascher, Y. Papakonstantinou, and P. Ve-
required several duplicate elimination operations to be ap likhov. Navigz:\tion-driven evaluation c;f virtual me-

plied through the plan. The solution we proposed addresses diated views. IrProc. EDBT Conf.Mar. 2000
all these difficulties and also provides a good optimization ' ' o '

[10] U. of Michigan. The TMBER project.
framework. http://ww. eecs. um ch. edu/ db/ ti nmber
8 Final Words [11] U. of Wisconsin. The Niagara internet query system.

http://ww. cs. wi sc. edu/ ni agar a/ .
Ordering in XML query processing is a complex, yet im- 112] . paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V.
portant procedure, with a complex specification and sig- "~ jagadish. Tree logical classes for efficient evaluation
nificant performance ramifications. We presented a solu- of XQuery. InProc. SIGMOD Conf.Jun. 2004.
itlnonsthat uses hybrid collections annotated Wlth@nqier— [13] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
g Specificatioras the means for a correct and flexible so | Manolescu. and R. Busse. XMark: A benchmark
lution. Paired with ordering is the presence of duplicates, f'or XML data{ managiement ' IRroc VLDB Cont
which we address in a similar manner addinBaplicate 2002 ' ' i
Specificatiorto our collections. We showed how an XML o ) )
tree algebra can be extended to incorporate our hybrid coll4] H. Schoning. Tamino - A DBMS designed for XML.
lections producing the correct results. We presented abver In Proc. ICDE Cont, 2001.
algebraic optimizations that take advantage of hybrid col{15] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
lections and experimentally demonstrated the performance  R. A. Lorie, and T. G. Price. Access path selection
increase they engered. in a relational database management systerfraoo.
While the presentation in this paper was of necessity fo- ~ SIGMOD Conf, 1979.
cussed on a specific algebra, the concept of a hybrid colleg16] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
tion is applicable much more generally. It can certainly be D. J. DeWitt, and J. F. Naughton. Relational databases

used in conjunction with any other XML algebra. In fact, for querying XML documents: Limitations and op-
hybrid collections may turn out to be useful even beyond portunities. InProc. VLDB Conf.1999.
XML. Figuring out where and how, is left to future work. [17] J. Simeon and M. F. Fernandez. Galax,
an open implementation of XQuery.
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