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Abstract
XML and XQuery semantics are very sensitive
to the order of the produced output. Although
pattern-tree based algebraic approaches are be-
coming more and more popular for evaluating
XML, there is no universally accepted technique
which can guarantee both a correct output order
and a choice of efficient alternative plans.

We address the problem using hybrid collections
of trees that can be either sets or sequences or
something in between. Each such collection is
coupled with anOrdering Specificationthat de-
scribes how the trees are sorted (full, partial or no
order). This provides us with a formal basis for
developing a query plan having parts that main-
tain no order and parts with partial or full order.

It turns out that duplicate elimination introduces
some of the same issues as order maintenance: it
is expensive and a single collection type does not
always provide all the flexibility required to op-
timize this properly. To solve this problem we
associate with each hybrid collection aDuplicate
Specificationthat describes the presence or ab-
sence of duplicate elements in it. We show how
to extend an existing bulk tree algebra, TLC [12],
to useOrdering and Duplicate specificationsand
produce correctly ordered results. We also sug-
gest some optimizations enabled by the flexibility
of our approach, and experimentally demonstrate
the performance increase due to them.

1 Introduction

XML means many things to many people, and gets used
in a variety of ways. The formal semantics of XML and
XQuery require ordering, yet many “database-style” ap-
plications could not care less about order. This leaves the
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query processing engine designer in a quandary: should or-
der be maintained, as required by the semantics, irrespec-
tive of the additional cost; or can order be ignored for per-
formance reasons. What we would like is an engine where
we pay the cost to maintain order when we need it, and do
not incur this overhead when it is not necessary.

In fact, we would like even more. Even when ordered fi-
nal results are required, it may not be necessary to maintain
order at each intermediate step. Exploiting this flexibility,
provided the required order can eventually be established
(or recovered), can lead to significant performance bene-
fits.

In algebraic terms, the question we ask is whether we are
manipulating sets, which do not establish order among their
elements, or manipulating sequences, which do. It is not
difficult to show that just manipulating sets is not enough;
we often do need to consider order in intermediate results.
Yet we know that manipulating sequences is considerably
more expensive, so we would prefer not to work with these
if we can avoid it.

The solution we propose in this paper is to define a new
generic collection type, which could be a set or a sequence
or even something else. We associate with each collection
anOrdering Specificationthat indicates precisely what type
of order, if any, is to be maintained in this collection. We
then develop an algebra for manipulating collections with
ordering specifications. Using this algebra we are able to
develop query plans that maintain as little order as possi-
ble during query execution while yet producing the correct
query results.

Duplicates in collections are also a topic of interest, not
just for XML, but for relational data as well. In relational
query processing, duplicate removal is generally consid-
ered expensive, and avoided where possible even though
relational algebra formally manipulates sets that do not ad-
mit duplicates. In fact, there has been considerable work
towards developing multi-set relational algebras. The more
complex structure of XML data raises more questions of
what is equality and what is a duplicate. Therefore there is
room for more options than just sets and multi-sets. It turns
out that our proposal of using a generic collection type ap-
plies to this problem as well, through associating an explicit
Duplicate Specificationwith each collection. We are then
able to develop an algebra for manipulating such collec-
tions, and use this algebra to develop query plans in which
duplicate elimination is optimized.
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FOR $b IN document(‘lib.xml’)/book
FOR $a IN document(‘lib.xml’)/article
WHERE $b/author = $a/author

AND $b/year = 1999 AND $a/conference = ‘VLDB’
RETURN <result> {$b} {$a} </result>

FOR $a IN document(‘lib.xml’)/article
FOR $b IN document(‘lib.xml’)/book
WHERE $b/author = $a/author

AND $b/year = 1999 AND $a/conference = ‘VLDB’
RETURN <result> {$b} {$a} </result>

Figure 1: Queries that would produce results ordered in a
different way. The$b - book, $a - articleswitch dictates a
different binding order.

The rest of the paper is organized in the following way:
our discussion on ordering and duplicates in the paper starts
in Section 2 by identifying the requirements set by XML
and XQuery. Then we introduce our proposed solution to
the problem that uses hybrid collections paired with the
Ordering Specification O-SpecandDuplicate Specification
D-Specin Section 3. We then consider a set of common
operators in a bulk tree-algebra (such as TLC [12]), study
their behavior in relation to duplicates and order of output
in Section 4.2 and show how such an approach can gen-
erate the correct results in Section 4.4. We continue by
showing potential optimizations that take advantage of our
features on both duplicates and output order in Section 5.
In Section 6 we use TIMBER [10], a native XML system, to
experimentally illustrate the benefits of using our solution
and the gained performance increase.

2 Ordering & Duplicates in XML / XQuery

Before we discuss XML and XQuery ordering require-
ments we start with a few observations on XQuery set se-
mantics (presence of duplicates). XQuery associates vari-
ables via theFORandLET clauses. TheLET clause creates
a variable binding with an entire set1 of matching XML el-
ements (nodes) whereas theFORclause creates a binding
with each element (node) of a set of matching XML ele-
ments (nodes). We can see that both binding types require
a duplicate-freesetof matching XML elements to be cal-
culated first. Hence XQueryrequiresall duplicates to be
removed when creating the variable assignments to the cor-
responding XML parts.

XML itself incorporates semantics in the order data is
specified. XML queries have to respect that and produce
results based on the order of the original document (queries
based on XQuery or XPath adhere to that). XQuery takes
this concept even further and adds an extra implicit order-
ing requirement. The order of the generated output is sensi-
tive to the order the variable binding occurred in the query.
To better understand the issues with binding order an exam-
ple is shown in Fig.1. Two very simple queries are shown –
both perform a join betweenbook andarticle elements on
author. The output of the first is sorted on the original doc-
ument order of{book, article} whereas the output of the
second is sorted on the original document order of{article,
book}. Notice howarticle and book switched places to

1XQuery asks for sequences but for the moment we focus on the pres-
ence of duplicates (set) and discuss order further down.

1. ORDER BY clause,
explicit, depends on value.

2. Re-establish original document order,
implicit, required by XML.

3. Binding order of variables,
implicit, depends on variable binding predicates.

Figure 2: Ordering Requirements for XML and XQuery

reflect the difference in the order requirements of the two
queries, although the rest of the query remained the same.
In more complex scenarios with implicit ordering (includ-
ing nested queries) binding order is much harder to follow
correctly and efficiently.

A FLWOR statement in XQuery may include an explicit
ORDERBYclause, specifying the ordering of the output
based on the value of some expression – this is similar
in concept with ordering in the relational world and SQL.
Note that theORDERBYclause, when present, overrides
document and binding order for that single-block FLWOR
statement.

To facilitate our discussion in the rest of the paper, we
present a summary of XQuery ordering requirements in
Fig.2. An XML processing system must be able to un-
derstand and process these requirements properly. Exist-
ing XML algebras tried to produce the correct output order
by using sets or sequences. Sets lose all ordering infor-
mation resulting in redundant sorts throughout the query
plan, whereas sequences maintain the order throughout the
query plan but make it difficult to perform rewrites and
need tightly bound operators that can be expensive to im-
plement and difficult to optimize. Also, whether sets or
sequences are used, semantics require no duplicates are
present and so require several duplicate elimination oper-
ations to be applied through the plan. These problems mo-
tivate our current work.

3 Introducing the Hybrid Collection
In this section we introduce the core of our solution to the
problem, the concept of a generic collection type with or-
dering and duplicate specifications. We believe that the ba-
sic principles of our collections can be incorporated into
any bulk algebra, with the appropriate modifications. For
our presentation we choose to follow the tree-based alge-
braic approach and model our collections to operate with
tree structures. A tree consists of nodes, with each node
mapping to an XML element or attribute. A basic assump-
tion we make is that the nodes used are annotated with iden-
tifiers that guarantee bothuniquenessanddocument order.

Definition 3.1 Given a collection of treesCT , the Dupli-
cate SpecificationD-Specdescribes how trees were deter-
mined as identical and were eliminated from the collection
CT . The value ofD-Speccan be one of the following:
‘empty’ : Any type of duplicate tree can potentially be

present in the collectionCT .
‘full tree’ : Given a treeQi = (V i,Ei) in the collection

CT , there does not exist another treeQj = (V j,Ej)
in the collectionCT such thatV i = V j andEi = Ej.
(∀Qi∄Qj ∈ CT , i 6= j) : [(V i = V j) ∧ (Ei = Ej)]
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Figure 3: Collections with Duplicate Specification D-Spec.

‘List of Nodes u’ : Given a treeQi = (V i,Ei) in the col-
lectionCT , with a set of nodesUi ⊆ V i identified by
the input List of Nodesu, there does not exist another
treeQj = (V j,Ej) in the collectionCT , with a set of
nodesUj ⊆ V j identified by the input List of Nodes
u, such thatUi = Uj.
{∀Qi ∈ CT : [(u → Ui) ∧ (Ui ⊆ V i)]}{∄Qj ∈
CT , i 6= j : [(u → Uj) ∧ (Uj ⊆ V j) ∧ (Ui = Uj)]}

The default value forD-Specis ‘empty’ since most op-
erators behave gracefully with duplicates and neither add
or remove them. A collection coupled with aD-Specof
‘empty’ can potentially have any type of duplicates. Value
‘tree’ is mapped to duplicate elimination using deep-tree
comparison between all trees in a collection. It is aimed to
be used very often for describing that an arbitrary collec-
tion of trees is actually a set (sequence, if ordered).D-Spec
also allows for a list of node references to be passed de-
scribing which nodes to be used in each tree to determine
the duplicates, thus enabling support for a description of a
partial duplicate elimination procedure.D-Specuses a flag
to specify whether the identifier (ID) or the content of a
node should be used for defining duplicates.

Example 3.1 A group of sample collections withD-Spec
describing how duplicates were previously removed from
them can be found in Fig.3. Notice the duplicates that exist
in part (1), how the last tree from (1) is removed in part
(2) and how multiple trees are removed in part (3) – poten-
tially losing some information aboutA (had the trees with
only A1 been retained we would have lost allA2 from the
collection).

As we can see, the partial-tree comparison can remove
more trees than deep-tree. This option is designed to be
used for optimization purposes. We can produce the correct
output without it , but this would lead to a less flexible so-
lution with redundant duplicate elimination operations with
various ‘tree’ inputs.

The goal ofDuplicate Specification D-Specis to carry to
succeeding operators the information of a duplicate elimi-
nation procedure that was applied earlier in a query plan,
no matter whether such procedure was explicit or implicit.
Given theD-Specfor each collection the optimizer can ap-
ply it on the plan either globally or locally. Globally by
rewriting the plan and choosing where to place duplicate
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Figure 4: Collections with Ordering Specification O-Spec.
elimination procedures to achieve the correct result with a
minimum cost. Locally by considering each operator and
choosing during the physical evaluation to : a) ignore the
D-Specfor operators that do not remove or add duplicates,
b) modify theD-Specappropriately for operators that re-
move or produce duplicates, and c) maintain theD-Specfor
operators that require duplicate elimination but useD-Spec
to determine that it was already applied.

Definition 3.2 An Ordering ItemO-Item is the unit used
when sorting a collection of trees. It consist of three param-
eters: i) a reference to identify the node in the tree to sort
the trees by, ii) ascending (‘asc’) or descending (‘desc’) de-
scribes how to use the node information to perform the sort
and iii) empty greatest (’g’) or empty least (‘l’) describes
where to place the trees without a matching node for the
given input reference.

O-Item uses a flag to refer to the identifier or content
of each node. As we assumed the node identifiers used
in conjunction with our collections can indicate document
order for any group of nodes, we can use the node identi-
fiers to indicate ordering based on document order. When
the required order is based on a value comparison the node
content can be accessed instead.

An Ordering Itemis essentially the smallest unit that
can be used to describe a sorting procedure. It matches in
principle the input to aSORT operation. It contains the
means to identify the sorting basis (what to sort on), how
to use the information in the basis to perform the sort (e.g.
ascending) and what to do with null entries (place them in
the beginning or end of the collection). Complex sorting
procedures that require multiple parameters to perform the
sort can easily be described using a list ofOrdering Items.
Example 3.2 For example a simple sorting procedure us-
ing all B nodes (identifiers), sorting them on ascending or-
der and placing all empty entries in the beginning will be
described by anO-Item that looks like (B, asc, l). For sim-
plicity, ascending (‘asc’) and empty least (‘l’) are the de-
fault choices and can be omitted; so (B, asc, l)→(B).

Definition 3.3 Given a collection of treesCT , the Order-
ing SpecificationO-Specspecifies how the trees are sorted
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in the collectionCT . O-Specaccepts as input a list of Or-
dering ItemsO-Itemsdescribing the sorting procedure that
occurred on the collection. Sorting based on eachO-Item
happens in the order they are given in the input list.

Similar in spirit with theDuplicate Specification, the
Ordering Specificationis used in association with a col-
lection to describe a sorting procedure (implicit or explicit)
that took place earlier in the query plan. The optimizer
can use the information globally by rewriting the plan and
choosing where to place sorts to achieve the correct re-
sult while using a ‘quick’ query plan. It can also use
them locally during the physical evaluation and determine
whether: a) an operator can pass it along if it does not
change the order of the collection, b) modify it with a par-
tial new sort, and c) create a completely new one when it
destroys the order of the collection and/or reorders it.
Example 3.3 In Fig.4, we can see a few ordered collec-
tions using the Ordering Specification. In part (1) we see
a “fully-ordered” collection; all the nodes in every tree
were used to perform the sort. A “fully-ordered” collec-
tion has one and only one way that the trees can be or-
dered (absolute order). In parts (2.a) and (2.b) we see the
same “partially-ordered” collection; only nodes in parts
of every tree were used to perform the sort. A “partially-
ordered” collection can potentially have multiple ways it
was ordered. Parts (2.a) and (2.b) show the same collec-
tion ordered by the same key with clearly more than one
representations of the absolute tree order. In part (3) we
see a collection with unspecified order (any order).

Ordering Specificationis orthogonal to the presence of
duplicates andDuplicate Specification. To clarify whether
a collection is an arbitrary one or it is coupled with anOr-
dering or Duplicate Specificationwe accordingly use the
termsD-collection, O-collectionandOD-collection.

An outcome of our technique is that theOrdering Spec-
ification O-Specof a collection (and for that matter the
SORT operation that produced it) is asupersetof the po-
tential order that can be expressed by XQuery. The output
of a single block FLWOR statement in XQuery can be or-
dered by either the binding/document order as specified in
theFOR clauses or the value order as specified in theOR-
DERBY clause. O-Specallows for the result of a query
to be sorted by the combination of binding/document and
value order. In other words, despite the XQuery complex
order requirements, there is no way to write a simple query
that asks to “return allbooks, sorted by the document or-
der of eachauthor and the value order of eachyear”.
Our approach can easily handle this by specifying to access
the node id (provides document order) forauthor and the
node content (provides value order) foryear in their cor-
respondingOrdering Itemsas part of aSORToperation. In
that sense, our approach can provide the means for more
powerful ordering expressions for XML than XQuery.

4 Enhancing an Algebra
Hybrid collections can be used to enhance any algebra. We
focus on the TLC [12] algebra used in the TIMBER [7]
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Figure 5: A sample match for an Annotated Pattern Tree.
system. In this section we describe how TLC algebraic
operators can be extended to handle order. We show some
algebraic identities that can be generated and present the
algorithm to produce the correct output order. But first we
begin with some necessary background on TLC.

4.1 Tree Logical Classes (TLC) for XML

All tree algebras (e.g. [3, 8]) use pattern tree match as a
basic building block. A pattern tree is matched on an XML
document and a collection of witness trees is produced. In
previous tree algebra solutions, the witness trees had to be
similar to the input pattern tree, i.e. have the same size and
structure. This requirement resulted in homogeneous wit-
ness trees in an inherently heterogeneous XML world with
missing and repeated sub-elements, thus requiring extra
work to reconstruct the appropriate structure when needed
in a query plan. TLC usesAnnotated Pattern Trees (APTs)
andLogical Classes (LCs)to overcome that limitation. It is
not within the context of this paper to present in detail how
TLC [12] works. Instead we will try to show the intuition
on APTs and LCs and walk through an example with them.

Annotated Pattern Treesaccept edge matching specifi-
cations that can lift the restriction of the traditional one-
to-one relationship between pattern tree node and witness
tree node. These specifications can be “-” (exactly one),
“?” (zero or one),“+” (one or more) and “*” (zero or more).
Fig.5 shows the example match for an annotated pattern
tree. The figure illustrates how annotated pattern trees ad-
dress heterogeneity on both dimensions (height and width)
using variations of annotated edges. SoA1, A2 andE2, E3

are matched into clustered siblings due to the “+” and “*”
edges in the APT. On the flip sideD1,D2 matchings will
produce two witness trees for the first input tree (the second
tree is let through, although there is no D matching) due to
the “?” edge in the APT.

Once the pattern tree match has occurred we must have a
logical method to access the matched nodes without having
to reapply a pattern tree matching or navigate to them. For
example, if we would like to evaluate a predicate on (some
attribute of) the “A” node in Fig.5, how can we say precisely
which node we mean? The solution to his problem is pro-
vided by our Logical Classes. Basically, each node in an
annotated pattern tree is mapped to a set of matching nodes
in eachresulting witness tree – such set of nodes is called
a Logical Class. For example in Fig.5, the red(gray) cir-
cle indicates how the A nodes form a logical class for each
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witness tree. In TLC, every node in every tree in any inter-
mediate result is marked as member of at least one logical
class2. We also permit predicates on logical class mem-
bership as part of an annotated pattern tree specification,
thus allowing operators late in the plan to reuse pattern tree
matches computed earlier.

4.2 Operators with Duplicates and Ordering

In this section we present a group of operators that cover
some core operations one would expect to be supported in
an XML algebra. Every operator maps one or more hybrid
collections of trees3 to one hybrid collection of trees. The
trees in a collection may be heterogeneous. Since we are
using TLC, Annotated Pattern Trees (APTs) and Logical
Classes (LCs) provide the means to identify nodes of in-
terest in each operator. Some of the operators are carried
over from TLC (e.g. Project), whereas others had to be
modified to include specific ordering and duplicate aware
behavior (e.g.Select, Join).

SelectS[apt, ord](CT ): Given a hybrid collection of
treesCT , an Annotated Pattern Treeapt and an optional
ordering parameterord: perform the matching procedure
for apt in each tree ofCT and output the produced trees
ordered byord. The ordering parameterord can be: a)
‘empty’, the output order is unspecified (O-Spec is empty).
b) ‘maintain’, maintains the order (O-Spec) of the input.
c) ‘list-resort’, output is resorted based on the list of nodes
passed – the input order was destroyed. d) ‘list-add’, output
is partially sorted based on the list of node passed – the in-
put order is maintained and the additional parameters from
ord are added to the O-Spec.

Project P [nl](CT ): Given a hybrid collection of trees
CT and a listnl that identifies sets of nodes: output one tree
for each tree inCT maintaining only the nodes identified
by nl. If the output is not a tree, the input tree root is also
retained.

Filter F [LCf , p,m](CT ): Given an input hybrid col-
lection of treesCT , a filter predicatep, a modem and a
logical classLCf : output only the trees inCT that satisfy
the predicatep for the nodes bound toLCf . The modem
parameter is used to identify how to iterate over the set of
nodes bound toLCf , e.g. every (universal quantification –
default), at least one, exactly one.

Construct C[c](CT ): Given an input hybrid collection
of treesCT and an annotated construct-pattern treec as
input: output one tree for each tree inCT modified as
described inc. An annotated construct-pattern tree is an
annotated pattern tree(APT), except it allows facilities for
tagging, renaming, and arbitrary tree assembly. Any con-
structed node (e.g. a node created for a tag<myresult>
of someRETURN clause) is assigned a new node identifiers
with similar properties for uniqueness and document order
and the identifiers of the ‘regular’ nodes.

Aggregate-FunctionAF [fname,LCa, newLC](CT ):
Given an input hybrid collection of treesCT , an aggregate

2Base data, read directly from the database, has no such association.
3The input can be a single tree database.

function namefname (count, max etc.), an LC reference
LCa to describe which nodes to apply the function on and
an LC referencenewLC for the new node that will be
created to hold the result: output one tree for each input
tree, having applied the functionfname to the specified
nodes byLCa and place the result of the function in a new
node in the tree annotated bynewLC.

Join J [apt, p, ord](Cl, Cr): Given two input hybrid
collections of treesCl andCr, an Annotated Pattern Tree
apt, a predicatep and an ordering parameterord: output
one tree for each tree fromCl that has a matching tree
from Cr as described inp. The structure of the output tree
matches that of theapt. The output is ordered as speci-
fied byord: a) ‘empty’, the output order is unspecified and
output O-Spec is empty. b) ‘maintain’, maintains the order
of the input (left, right), the output O-Spec is the combi-
nation of the left and right input. c) ‘list-resort’, outputis
resorted based on the list of nodes passed – the input order
is destroyed. d) ‘list-add’, output is partially sorted based
on the list of nodes passed – the input order (left, right)
is maintained and the additional parameters fromord are
added to the combination O-Spec of the inputs.

ReorderR[pLC, cLC, f ](CT ): accepts an input collec-
tion CT , two Logical ClassespLC andcLC and a function
f . For each tree inCT , identify the parent nodespLC and
the child nodescLC then reordercLC under eachpLC as
specified by the input functionf .

Duplicate-Elimination DE[dep](CT ): Given an input
hybrid collection of treesCT and a parameterdep: output
a collection fromCT having removed identical trees com-
pared based ondep. dep can be a) the whole tree (input
‘tree’) or b) a list of nodes (inputdl). The output D-Spec
becomesdep.

Sort O[ol](CT ): Given an input hybrid collection of
treesCT a sorting basis vectorol: output collectionCT

reordered as described byol. Each entry forol is an Order-
ing Item O-Item. The output O-Spec becomesol. Sort can
choose to partially order the input collection if the input
O-Spec is a subset ofol.

4.3 Algebraic Identities

The power of bulk algebras is in the rewrites that rely on
algebraic identities. In Table 1 we present several identities
showing how our operators interact withSort andDupli-
cate Elimination. We try to give the intuition on how these
identities are generated.

SelectandJoin accept an optional ordering parameter
that allows us to pushSort into them. Also, they can be set
to maintain order and be swapped withSort. Identities (1),
(2), (3), (4) are generated because of this.

Project removes nodes from a tree and thus can create
duplicates. The removed nodes might affect succeeding or-
dering operations. So both ordering and duplicates must be
aware of the project list, hence identities (5),(6).Construct
is somewhat similar to that because it can also remove some
nodes. So identity (7) is generated.

Filter does not modify the tree structure at all. So it
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1 O[ol](S[any, any](.)) ⇔ S[any, ol](.))
2 O[ol](S[maintain](.)) ⇔ S[maintain](O[ol](.))
3 O[ol](J [any, any](.)) ⇔ J [any, ol](.))
4 O[ol](J [maintain](Sl, Sr)) ⇔

J [maintain](O[oll](Sl), O[olr](Sr)), jroot /∈ ol
5 DE[dl](P [nl](.)) ⇔ P [nl](DE[dl](.)), if dl ⊆ nl
6 O[ol](P [nl](.)) ⇔ P [nl](O[ol](.)), if ol ⊆ nl
7 O[ol](C[c](.)) ⇔ C[c](O[ol](.)), if ol ⊆ (c − cl),

wherecl the newly constructed nodes
8 DE[any](F [any](.)) ⇔ F [any](DE[any](.))
9 O[any](F [any](.)) ⇔ F [any](O[any](.))
10 DE[any](R[any](.)) ⇔ R[any](DE[any](.))
11 O[any](R[any](.)) ⇔ R[any](O[any](.))
12 DE[tree](C[c](.)) ⇔ C[c](.)),

if c contains newly constructed nodes
13 DE[dl](C[c](.)) ⇔ C[c](DE[al](.)),if dl ⊆ c

whereal = dl − cl andcl the constructed nodes
14 O[ol](DE[dep](.))) ⇔ DE[dep](O[ol](.)),

dep ∈ O-Spec of input
15 DE[dep](O[ol](.)) ⇔ DE[dep](.))

Table 1: Algebraic Identities used for rewrites.
does not affect duplicates or ordering, thus (8), (9).Reorder
does not add or remove nodes either, but modifies the tree
structure by reordering it. Yet, all the tree information is
retained and the modification is applied the same way to
each tree; trees that were identical before reorder, become
identical again. So (10) and (11) can be used.

Construct can eliminate duplicates due to the con-
structed nodes. The new id for the constructed node will
make all trees different with each other. Identities, (12),
(13) are added because of this. Similarly,Aggregate-
FunctionandJoin add their own nodes and can eliminate
duplicates – they also produce similar identities to (12),
(13), not shown here due to space limitations.

Duplicate-Eliminationcan destroy order, since it resorts
the input collection by the elimination keydep to remove
duplicates. Yet, if the input is already sorted by the keydep,
then it is maintained.Sort does not create additional dupli-
cates and it does not remove existing ones. So identities
(14) and (15) are produced.

4.4 Producing the correct output order

A bulk algebra can be extended to produce the correct or-
der using our approach. We present the sketch of an algo-
rithm that does that by extending TLC for ordering. We call
the new correct ordered algorithm TLC-C. We believe our
basic principles can be adjusted to fit any XML solution.
Pseudocode for the extension algorithm is shown in Fig.6.
We will try to discuss the intuition behind the algorithm
using an example.

Example 4.1 Consider the query in Fig.7. This query is
simplified on purpose to allow focus on how binding order
is dealt with. The query asks for allbooks sorted by the
combined document order ofauthor, editor, hobby
(of editor) andinterest (of author).

First, we present how an existing tree algebra[3] would
handle such a query, the output corresponds to the left plan

Algorithm TLC-C
Input: a FLWOR expression Output: a TLC-C algebra plan
Globals OPERATORS ORDERLIST

procedure SingleBlock(in FLWOR){
Parse FLWOR, create Reductions for each Grammar Rule
For each Reduction do{
Case ForClause ::= FOR$var IN SP (Simple Path)

*Start processing as in TLC
createLCf point SP.leafnode
addLCf to ORDERLIST

Process LET and WHERE as in TLC
Case OrderClause ::= ORDER BY SP1, . . . , SPn Mode

for each SPi createaptSi = SPtoAPT(SPi, ”-”)
for eachaptSi create a Select S[aptSi], add to OPERATORS
for eachaptSi createLCi point toaptSi.leafnode
Create Sort[value(LC1), . . . , value(LCn)], add to OPERATORS

Case ReturnClause ::= RETURN ReturnExpr
*Start processing as in TLC
if Sort was added by an OrderClause continue
else

ChildOP = Construct.getChild()
for eachLCi found in ORDERLIST

Call Survive(ChildOP , LC1)
Create SortOP = Sort[nodeid(LC1), . . . , nodeid(LCn)]
Construct.SetChild(SortOP ) and SortOP .SetChild(ChildOP )

}}

APT function SPtoAPT(SP, mSpec)
Return an APT (Annotated Pattern Tree) from SP (Simple Path)

use Rel from StepAxis of SP, use mSpec for all edges
function Survive(Operator,LCin)

if Operator removes nodes from each tree (e.g. Project type)
if LCin not in Projection List

addLCin to Projection List
if Operator.hasChild Call Survive(Operator.getChild(),LCin)

procedure NestedQuery(in FLWOR)
Process FLWOR, if (Nested) then Call SingleBlock for ”inner” and ”outer”
Add a join between the outer and inner plan

Use edge ”-” for FOR, edge ”*” for LET and RETURN
Call Survive on join values and inner construct elements
if nesting on FOR and ”outer” does not have OrderClause

CreateLCr for root of ”inner” tree
addLCr to generated Sort of ”outer” plan
Call Survive(SortOuter.getchild(),LCr)

Figure 6: Algorithm TLC-C for correct output order.
in Fig.8. The firstFOR clause is processed – the Simple
Path4 (SP) (doc//book) is converted into an Annotated
Pattern Tree (APT) with “-” edges and a variable is bound
pointing to the leaf (book node). Processing of subsequent
FOR clauses detects the existing variables. So now each SP
is merged with the existing APT. After all theFOR clauses
are processed,Select1is generated. Next theRETURN
clause is processed andProject2is generated to maintain
thebook before it is passed toConstruct3that generates
the final output.

The problem is an assumption that the pattern tree match
will generate the appropriate order. Unfortunately that as-
sumption is not correct. The order of the pattern tree match
is that of an in-order traversal – that would producebooks
ordered byauthor, interest, editor, hobby, in
the example above. Clearly that is not the correct output
order. The TLC-C extension algorithm is designed to en-
hance such algebras and guarantee correctness.
Example 4.2 The TLC-C output corresponds to the right
plan in Fig.8. EachFOR clause is processed as with TLC,
but now a globalORDERLISTis also generated. The list
contains pointers to the Logical Classes for each leaf node
in the Simple Paths of everyFOR clause. For the query
shown in Fig.7ORDERLISTwould be (2), (3), (5), (6), (4).
Since no explicitORDER BY clause is used, TLC-C creates

4XPath expression without branching predicate.
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FOR $b IN document(‘‘lib.xml’’)//book
FOR $a IN $b/author
FOR $e IN $b/editor
FOR $h IN $e/hobby
FOR $i IN $a/interest
RETURN $b

Figure 7: Simple query with not-so-simple binding order.
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Figure 8: The TLC plan (left) vs TLC-C plan (right).
Sort3 using the information inORDERLIST and adds it
as a child toConstruct4. Finally, Project2is modified to
guarantee the necessary nodes reachSort3.

The TLC-C algorithm uses a simple concept to provide
the correct order for single block FLWOR statements. Cre-
ate aSort operation at the end of each query that corre-
sponds to the correct order. To achieve that it uses Logical
Classes to identify which nodes participate in the order and
theOrdering Specificationto guarantee it. Also, it needs to
make sure that all nodes participating in the finalSort are
not removed from preceding operations. By default TLC-
C uses O-Spec set to unordered for all operators below the
final Sort. Only the top levelConstructis set to maintain
order – which it does by definition anyway. This way TLC-
C produces almost no ordering restrictions for the plan.

For nested FLWOR queries, the single block algorithm
is called for the ‘inner’ and ‘outer’ part separately. A join
is used to connect the two parts. Since the ‘inner’ order
is important the join access method is required to maintain
order, essentially forcing a nested loops implementation.

5 Performance Benefits
Given the algebraic framework established above, we can
develop execution plans for given query expressions. In
this section, we discuss some of the optimization opportu-
nities that become possible on account of the new algebra.

5.1 Duplicate Elimination and Efficiency

To solve the issue with no duplicates in XQuery, existing
tree-based algebraic solutions [8, 3] followed the relational
model and chose to operate on duplicate-free sets5 of trees.
It is very common for operations to generate duplicates in
a tree algebra (e.g. a pattern tree match followed by a pro-
jection). If the set semantics were to be maintained at all
times, a duplicate elimination is required after each opera-
tor is applied. For the simple query shown in Fig.9 such a
plan corresponds to the left plan shown in Fig.10.

Existing tree algebra implementations use (unique) node
identifiers to quickly check for duplicates. Unfortunately,

5Sequences are also duplicate-free. We will ignore the orderfor a mo-
ment and focus on duplicates, hence use sets for simplicity of presentation.

FOR $o IN document(‘auction.xml’)//open auction
WHERE count($o/bidder) > 5
RETURN <result> {$o/quantity} {$o/type} </result>

Figure 9: Returnopenauctionswith more than 5bidders

Aggregate  (count, (3),  newLC=4)

Filter : (4) > 5

Project : Keep (2)

*

*

Select

1
LC=3

LC=2

LC=1

bidder

open_auction

doc_root

2

3

4

(2)Select

LC=5

quantity 5

LC=7

(6)(5)

<result>Construct

6

type

* LC=6

Aggregate  (count, (3),  newLC=4)

Filter : (4) > 5

Project : Keep (2)

*

*

Select

1
LC=3

LC=2

LC=1

bidder

open_auction

doc_root

2

3

4

(2)Select

LC=5

quantity 6

LC=7

(6)(5)

<result>Construct

7

type
* LC=6

Duplicate Elimination : ID(tree) 5

Aggregate  (count, (3),  newLC=4)

Filter : (4) > 5

*

*

Select

1
LC=3

LC=2

LC=1

bidder

open_auction

doc_root

2

3

(2)Select

LC=5

quantity 4

LC=7

(6)(5)

<result>Construct

5

type

* LC=6

Duplicate Elimination : ID(tree)

Duplicate Elimination : ID(tree)

Duplicate Elimination : ID(tree)

Duplicate Elimination : ID(tree)

Duplicate Elimination : ID(tree)

Duplicate Elimination : ID(tree)

Figure 10: Minimizing Duplicate Elimination procedures.

even though the comparison operation is so cheap, Dupli-
cate Elimination remains a blocking procedure and its cost
on large sets is significant. Forcing it after every operation
can cause a major performance hit.

The semantics for XQuery require the absence of du-
plicates, so some form of duplicate elimination is unavoid-
able. But, what is the minimum that can produce the same
correct results as if sets were used for each operation? The
complete answer to this problem can be seen in Fig.11.
Here we will describe it intuitively with an example.

Example 5.1 We use the query shown in Fig.9 and we
show how to generate the middle plan in Fig.10. The al-
gorithm iterates over the existing tree algebra plan and
considers each operator.Select1andAggregate2add new
nodes to each tree so their output is set to D-Spec = ‘tree’.
Filter3maintains the ‘tree’ D-Spec. ThenProject4removes
some nodes and sets the D-Spec to ‘empty’. ADuplicate
Elimination5procedure is necessary to remove potentially
redundant trees and set the D-Spec to ‘tree’. The succeed-
ing Select6andConstruct7do not create additional dupli-
cates and set the output D-Spec to ‘tree’.

The produced duplicate-free result is the same as the ex-
isting algebra plan that uses sets, but now only one Dupli-
cate Elimination is needed. The key is to change the opera-
tor input/output semantics from sets to our Hybrid Collec-
tions withDuplicate Specification(D-Spec). It enables the
simple procedure, described in Fig. 11, to detect duplicates
and eliminate them on-demand, instead of proactively.

The basic building block for XQuery is the FLWOR
statement. The absence of duplicates in the final output
of a FLWOR are essentially described by theFOR variable
bindings. In a tree algebra, this means that only part of the
output trees (the one that corresponds to theFOR bindings)
needs to be used to produce the correct duplicate-free out-
put. Existing tree algebras (including TLC) used aProject
operation to convert into the necessary part of the tree be-
fore trying to remove duplicates. That created potential
scenarios where information was projected out, only to be
added later. TheDuplicate SpecificationD-Spec we spec-
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procedure FindMinimumDuplicates(in TLC-C plan)
For each Operator OP in the plan

if OP does not modify each tree structure
use D-Spec of input collection in the output

if OP modifies each tree structure - adds new nodes
use output D-Spec = ’tree’

if OP modifies each tree structure - removes nodes
use output D-Spec = ’empty’
add Duplicate Elimination DE(’tree’)

Figure 11: A procedure that determines the minimum Du-
plicate Elimination necessary for a query.
procedure partialDuplicates(in TLC-C plan)
For each Operator OP in the plan

if OP does not modify each tree structure
use D-Spec of input collection in the output

if OP modifies each tree structure, adds new nodes
if D-Spec of input is ’tree’ or ’empty’
use output D-Spec = ’tree’

if D-Spec of input is a node list (dl)
if new node is a data node and . . .

. . . connects to tree with a ’-’, ’?’ edge
add Logical Class of new node to dl

set output D-Spec = dl
if OP modifies each tree structure, removes nodes

if D-Spec of input is ’tree’ or ’empty’
use output D-Spec = ’empty’
add Duplicate Elimination DE(’tree’)

if D-Spec of input is a node list (dl)
if the removed nodes exist in dl

set output D-Spec = ‘empty’
add Duplicate Elimination DE(’tree’)

else set output D-Spec = dl

Figure 12: Taking advantage of Partial Duplicates.

ified, and in consequence theDuplicate Eliminationoper-
ator, behave gracefully with partial lists of trees. So we
constructed a procedure that further minimizes the usage of
Duplicate Eliminationsand does not require a projection.
We show pseudocode for it in Fig.12. We will describe it
intuitively with an example.
Example 5.2 Consider the query in Fig.9 and the mid-
dle plan in Fig.10. The query asks for the output to be
duplicate-free onopen auction. We iterate over the ex-
isting plan and consider each operator.Select1produces
output in D-Spec = (2).Aggregate2adds a new constructed
node, not data nodes – so the input D-Spec is passed to the
output. Filter3 maintains the D-Spec.Project4removes
some nodes but maintains (2), so it retains D-Spec = (2).
NoDuplicate Eliminationis required, the collection has the
correct D-Spec (2) that corresponds toopen auction.
The succeedingSelectand Constructdo not create dupli-
cates and do not modify the D-Spec, so and the final output
is correct.

Note how theProjectis not required for correctness any
more. The right plan in Fig.10 shows the outcome of this
algorithm for the query in Fig.9.Duplicate Eliminationhas
been removed completely via the careful consideration of
partial duplicates.

5.2 Selections and Ordering

The algorithm we used in Section 4.4 places aSort opera-
tion at the end of a query plan to produce the correct output
order. This placement dictates the physical implementa-
tion, which limits severely the choices for optimization. We
want to overcome this problem and produce flexible plans.

TheSelectoperator we described in Section 4.2 accepts
an optional ordering parameterord that can sort the pro-

procedure PushSortIntoSelect(in TLC-C plan)
Find the Sort at the end of the plan
Set childOP = Sort.getChild()
While childOP 6= Select do

if OP does not modify order
swap with Sort, use proper identity
childOP = childOP .getChild()

else if childOP modifies order
if childOP O-Spec is subset of Sort O-Spec

swap with Sort, use proper identity
childOP = childOP .getChild()

else stop, operator cannot be switched
When Select found, use ordering parameter from Sort
Remove Sort from plan

Figure 13: MergingSort andSelect.
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Figure 14: On the left the TLC-C plan and on the right the
rewritten plan having pushed theSort into theSelect.

duced trees according to it. There are well known tech-
niques that can take advantage of such parameter inSelect
during the physical evaluation phase. They compute tree
expressions via structural joins [2], holistic joins [1] and
optimal join ordering[21, 22]. These techniques provide
more efficient solutions than dictating the placement of the
sorting operation at the end of the query.

To take advantage of them we constructed a rewrite
method that pushes the sorting operation down in a query
plan using algebraic identities. This method can be ap-
plied to all selection type of queries that are based on a
single block FLWOR statement without a value join. Such
selection-type queries are very popular6. We show pseu-
docode for the rewrite algorithm in Fig.13. We explain it
intuitively using an example.

Example 5.3 Consider the query we used in Fig.7. In
Fig.14, we can see the TLC-C plan on the left and the
rewritten plan on the right. The rewrite first swapsSort3
with Project2using identity (6) (from Section 4.3). Then it
mergesSort3into Select1using identity (1). The ordering
parameterord specifies the order for the query now. As a
side effect, the extra nodes fromProject2can be removed.

This rewrite should always be applied on single block
selection queries because it cannot lead to a ‘bad’ plan. The
selectivity of such query is determined by the original se-
lection and the trees produced when matching the pattern
tree of the selection to the database. The worst case sce-
nario would be for the optimizer to not incorporate sorting
into the pattern tree match and apply it afterwards. Since
the selectivity is the same, we will do no worse than the
TLC-C plan.

6For example, as we will see in the experimental section, 15 out of 20
XMark queries fit in this category.
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Figure 15: MergingSort and Join. The TLC-C plan in-
cludes the graySort6 operator instead of theord in Join3.

Very often selection queries can include value joins and
with the proposed rewrite we may miss some optimization
opportunities. For this purpose, we designed theJoin oper-
ator to accept an ordering parameterord similar in concept
with Select. It is applied when the join is performed and the
output is ordered by it. So we can use a similar algorithm
to push theSort operation into aJoin. The pseudocode is
omitted both for presentation simplicity and space limita-
tions. Instead we will show an intuitive example and dis-
cuss issues that arise.

Example 5.4 Consider the top query from Fig.1. Fig.15
shows the plan for this query. The TLC-C plan, before the
rewrite, would include the graySort6operation. TheSort6
is swapped withDE5 using identity (14) and withProject4
using identity (6). Then merged toJoin3using identity (3).
Theord for Join3describes the query order now.

Yet, this is not the only alternative. The rewrite can in-
stead use identity (4) and push theSort further down us-
ing partial ordering. That could produce a plan whereJoin
maintains the order (withJoin3-ord = maintain(left, right))
and theSelectsspecify the document order (withSelect1-
ord = ID(2) andSelect2-ord = ID(4)). Other choices in-
clude using value ordering for a more efficient merge join
algorithm.Joincan establish binding order (withJoin3-ord
= [ID(2), ID(4)]) and theSelectsprovide the input sorted
on join value (withSelect1-ord = value(2) andSelect2-ord
= value(4)). Or a mix of value and document order (with
Join3-ord = [maintain(left), ID(4)],Select1-ord = ID(2)
andSelect2-ord = value(4)). The supported partial order
by theOrdering Specificationprovide many possibilities.

PushingSort to Selectwas a much simpler rewrite than
Sort to Join. The difference is due to the selectivity esti-
mation for the query. Previously, only the selection (essen-
tially the pattern tree match) provided the selectivity forthe
query. Now the optimizer has to carefully consider the cost
for the twoSelectsand theJoin before making a choice.

5.3 Nested queries

Nested FLWOR statements, as we described in Section 4.4,
are treated as two single block queries – one for ‘inner’ and

FOR $b IN document(‘lib.xml’)/book
LET $k := FOR $a IN document(‘lib.xml’)/article

WHERE $b/author = $a/author AND $a/conf = ‘VLDB’
RETURN $a

WHERE $b/year = 1999
RETURN <result> {$b} {$k} </result>

Figure 16: Nested FLWOR statement.
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Figure 17: Reorder used in a nested FLWOR. The TLC-
C plan would include the graySort6 operator and theord
parameter ofJoin3 instead ofReorder8.

one for ‘outer’. ASort is used on both to establish proper
order. AJoin is used to connect the produced plans for ‘in-
ner’ and ‘outer’ part. Since the order of the ‘inner’ plan is
important the connectingJoin is set to maintain order. This
choice dictates the physical implementation for sorting and
essentially forces a nested-loops join to be used.

When the nesting occurs inFOR we can overcome this
problem by pulling the ‘inner’Sort in the ‘outer’ part and
over theJoin, using identity (4) from Section 4.3. Now
we can apply the rewrite we described earlier with pushing
Sort to Join. Yet, this does not apply to the more popu-
lar choices for nested FLWOR statements – nesting in the
LET/RETURN clauses. For eachLET/RETURN clause, the
Join needs to cluster the matching trees of the ‘inner’ plan
together, hence identity (4) cannot be applied. There is no
‘outer’ Sort operation that can describe the ‘inner’ order
properly. So we constructed a rewrite that usesReorder.

The Reorderoperator processes one tree at a time, re-
sorting sub-trees as specified by its input parameters. The
rewrite, that usesReorderto provide alternative plans for
nested FLWOR statements, has a very complex algorithm.
The complexity is due to the variety and complexity of the
nested queries it can handle. The algorithm is, for the most
part, mundane and very specific to our system. Instead of
presenting it in detail, we will show an example that intu-
itively demonstrates its behavior.

Example 5.5 Consider the FLWOR statement nested on
LET shown in Fig.16. The TLC-C plan for this query is

357



shown in Fig.17 when the grayed outSort6operator and
Join3-ord parameter are used instead ofReorder8. To pro-
duce the TLC-C plan, the ‘inner’ and ‘outer’ parts of the
query are processed separately and aSort is generated
for each one. ThenJoin3 is used to connect them. No-
tice how the APT forJoin3uses the ‘*’ annotated edge to
capture theLET semantics and how the ‘inner’ join node
(LC=6) is added to theProject4, Duplicate Elimination5
andConstruct7operators to properly reach the connecting
join. The rewrite examines theSort6operator of the ‘inner’
plan. Then it pulls it into the ‘outer’ plan and converts it
to the appropriateReorder8operator. It also removes the
order maintenance restriction fromJoin3and enables the
order of the ‘inner’ query to be anything.

The basic principle of the ‘Reorder’ rewrite is to pull
the ‘inner’ Sort to the ‘outer’ part of the query. Then use
Reorderto describe it and remove the order maintaining
restriction from the connectingJoin. Once that restriction
is lifted from theJoin we can produce a series of alterna-
tive plans following the techniques presented earlier (push-
Sort-in-Join). TheReorderoperator is non blocking (pro-
cesses one tree at a time), hence it is cheaper than the ‘in-
ner’ Sort. When used in conjunction with a join procedure,
it lifts the order maintaining restrictions. So it is expected
to provide a big performance increase against a blocking
Sort followed by a nested loopsJoin.

6 Experimental Evaluation
The experiments were executed on the TIMBER [10] na-
tive XML database system. For our dataset we used
the XMark [13] generated documents. Factor 1 produces
an XML document that occupies approximately 707MB
(472MB for data plus 241MB for indices) when stored
in the database. Experiments were executed on a Pen-
tium III-M 866MhZ machine with a regular IDE hard disk
and 512MB of RAM. The database was set to use an
128MB buffer pool. All numbers reported are the average
of the query execution time over five executions7. XQuery
queries were translated to TLC-C plans using our algorithm
as specified in Section 4.4. The plans utilize our algebraic
operators, with no structural rewriting or cost-based op-
timization performed. We used an index on element tag
name for all the queries, which returns the node identifiers
given a tag name. On all queries that had a condition on
content we used a value index, which returns the node ids
given a content value. We did not use value join indices.

We executed a series of queries, those described in the
XMark benchmark as well as our own. We summarize our
results in Table 2. We refer to XMark queries as x13, x8
etc. Since XMark does not have single block join queries,
we constructed two such queries (q1, q2) and include their
results. There is nothing special about them, but due to
space limitations we will not describe them here.

The results for our tests are summarized in Table 2. Our
tests focus on the suggested rewrites on duplicates and or-

7The highest and the lowest values were removed and then the average
was computed

dering we presented in Section 5. The TLC-C column uses
the correct plan produced as in Section 4.4. The TLC-D
column uses plans produced by applying only the dupli-
cate related rewrites (no ordering consideration). Similarly
TLC-O column is for only the ordering related rewrites.
Finally, TLC-OD column shows results when using both
ordering and duplicate rewrites. We did not want to test
TLC-C against another algebraic solution because it is not
clear who address ordering properly8.

Efficiency and Duplicates: In column TLC-D, we show
the performance gained with the duplicate related rewrites
described in Section 5.1. The rewrites can be applied to
any type of query and successfully minimize the presence
of Duplicate Eliminationsin the plan. We always expect
some performance increase over TLC-C when using this
rewrite. For single block selections, we expect the perfor-
mance increase to depend on the query selectivity. When
many results are produced removing the blocking opera-
tion can lead to a higher performance increase – e.g. the
speedup of x19 vs. x17. For single block joins and for
nested queries, other factors usually dominate the cost, so
the performance increase can be lower. For example, in
query q2 the cost is dominated by the data materialization
needed for the join and the speedup is relatively low. Simi-
lar behavior is seen in nested queries, like x8.

‘Push Sort in Select’: We tested the efficiency of our
rewrite that pushesSorts into Selects, as described in Sec-
tion 5.2. The rewrite applies only to single block selec-
tion queries. Results for such queries are shown in column
TLC-O for the first group of queries (x1-x20) in Table 2.
Selection queries are popular in XML (the majority of the
XMark queries fit the category). We expect to always see
a performance increase with our rewrite on such queries.
This happens because the selectivity of the query is mostly
given by theSelectoperator. So when we merge sorting
into it, we create a controlled environment for the optimizer
to use well known techniques that efficiently perform the
pattern tree match. The overall speedup depends on the
number of results in each query. A query that produces
many results is hurt more by a blockingSort and benefits
more from a semi/fully pipelined pattern tree match phys-
ical evaluation. So the performance increase is higher for
such queries – e.g. x19 shows a high speedup.

‘Push Sort in Join’: PushingSort into a Join applies
to single block join queries. Results for such queries are
shown in column TLC-O for the second group of queries
(q1-q2). The difference between this rewrite and the ‘push-
in-Select’ is the variety of produced alternative plans. This
causes the selectivity estimation to be a bit trickier, since it
has to use information for the value join and the selection
operations. TLC-C by default enables unordered results
up to the finalSort operation. So the defaultJoin could
have been planned with sort-merge before performing the
rewrite. In that case, the performance increase depends on

8We believe ignoring proper order by other algebras and hencemiss-
ing some sort operations can be an unfair performance advantage against
TLC-C. A comparison of TLC against other algebras is shown in [12].
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TLC-C TLC-D TLC-O TLC-OD
x1 0.177 0.148 0.112 0.092
x2 2.163 1.260 1.142 0.737
x3 7.660 5.003 4.792 2.826
x4 1.064 0.790 0.688 0.493
x5 0.603 0.469 0.420 0.313
x6 0.390 0.259 0.248 0.164
x7 1.738 1.083 1.021 0.641
x13 0.951 0.668 0.621 0.417
x14 8.014 6.384 4.122 2.830
x15 3.440 2.382 2.176 1.503
x16 4.114 3.158 2.503 1.967
x17 2.751 1.833 1.736 0.865
x18 0.390 0.266 0.274 0.177
x19 5.541 3.478 3.308 1.485
x20 2.340 1.584 1.807 1.020

q1 9.074 8.443 5.044 3.992
q2 14.079 12.633 13.763 11.564

x8 123.208 114.648 11.138 9.649
x9 139.945 117.860 12.411 10.453
x10 >1800 >1800 168.231 160.372
x11 155.148 137.014 16.390 13.443
x12 70.167 61.966 7.412 6.141

Table 2: Execution time for XMark queries. The queries
are separated into three groups, a) single block selections
(x1-x20), b) single block value join (q1,q2) and c) nested
FLWOR (x8-x12).
the selectivity of the join operation. If the Join has two ‘big’
input collections and outputs a ‘small’ one, the speedup of
the rewrite will be low – the plan close to the ‘optimal’
was already selected. In the queries shown in Table 2 , q2
is such a query and the speedup is relatively low. On the
flip side, q1 generates a bigger number of results and the
speedup is higher (2x).

‘Nested Queries’: Nested FLWOR statements benefits
from the ‘Reorder’ rewrite we described in Section 5.3. Re-
sults for such queries are shown in column TLC-O for the
third group of queries (x8-x12). The rewrite removes the
blocking ‘inner’ sorting procedure and lifts the order main-
taining requirement for the connecting join. Aside from
enabling a more efficient join algorithm than nested loops,
the rewrite enables the ‘push-in-Join’ and ‘push-in-Select’
to be fired as well. As expected, the rewrite creates a big
performance increase. For the nested queries of XMark,
the speedup is around an order of magnitude – e.g x8.

TLC-OD: Of course both duplicate and ordering
rewrites can be used in tandem to produce even better plans.
We apply the duplicate rewrite first and then the corre-
sponding ordering one, for each query in Table 2 – results
are summarized in column TLC-OD. To better summarize
our observations we show a graph for a few of the queries
in Fig. 18(a). The figure shows the performance fraction
of each rewrite against the original TLC-C plan. In single
block selection type queries (x19) both TLC-D and TLC-O
contribute by removing the blocking factor ofDE andSort.
For queries where other factors dominate the cost, like join
q2, the speedup is relatively small. For nested queries, like
x8, removing duplicates does not make much of a differ-
ence, yet, the ordering rewrite provides a big boost.

Scalability: We also present a small graph in Fig.18(b)
to show how larger datasets affect our techniques. In the
figure we show a simple single block selection type query
(x13) and the execution time of TLC-C, TLC-D, TLC-
O and TLC-OD on various document sizes. BothSort
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Figure 18: Optimizing TLC-C.

andDuplicate Eliminationare blocking operations and can
cause poor performance on big collections with many trees.
Larger documents will generate results that use such col-
lections, so we expect to see higher speedup for them. This
is verified in the figure by the increasing gap between the
TLC-C (top) and the other curves.

7 Related Work

In the relational world, smart sort placement has been con-
sidered an interesting problem for a long time (see [5, 15]).
A paper that shares similar principles with our approach is
Interesting orders [18]. Their technique assumes QGM (a
dataflow graph) is used to query a relational system. They
use ordering properties to annotate each box in QGM and
then use graph algorithms to minimize the sorts used. But
they do not seem to support partial ordering or consider du-
plicates like we do. Also they use sequences, whereas we
use the more flexible arbitrary hybrid collections. Further-
more, it is not clear how their technique can be transferred
to XML. Overall, XML poses some ordering requirements
that are foreign to the relational model.

There has been some work for mapping XML to a re-
lational system [4, 16, 19]. These solutions try to ad-
dress the ordering problem converting it to SQLORDERBY

clauses. This can lead to correct results for ordering on
value, but there is no comprehensive study on how the bind-
ing/document order requirements can be expressed. Also,
there is no discussion on optimization possibilities for or-
dering and duplicates.

Native navigational-based [17] approaches iterate over
data nodes, thus are able to follow the XQuery iteration
model step by step. Using this model one can produce the
correct output order. Following this general approach, the
authors in [6] present a very thorough study for ordering in
XML and use a theoretical analysis to capture the ordering
semantics. They do try to touch on some optimizations for
navigational systems. Yet, the instance at-a-time operation
leaves a lot to be desired with regards to performance and
scalability of such solutions.

Native algebraic-based [10, 11, 14] implementations,
and both the node [9, 20] and tree algebras [3, 8, 12] used
as their basis, have the benefit of a more flexible optimiza-
tion framework. But they have their own share of problems
with XML order. They try to produce the correct output
by using sets or sequences of trees. Sets lose all order-
ing information, so the correct result cannot be guaranteed
at all times. Also, sets can create performance problems
because redundant sorts will be used whenever something
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needs to be ordered. Sequences can maintain the order
throughout the query plan, but they are lacking a careful
consideration of XQuery ordering requirements (especially
binding order). A pattern tree match will not produce the
correct order as we saw in Section 4.4. Performance-wise,
sequences need tightly bound operators that reduce flexibil-
ity and have to consider the entire plan before producing a
rewrite (making local optimization difficult). Finally, both
sets and sequences assume no duplicates are present and
required several duplicate elimination operations to be ap-
plied through the plan. The solution we proposed addresses
all these difficulties and also provides a good optimization
framework.

8 Final Words
Ordering in XML query processing is a complex, yet im-
portant procedure, with a complex specification and sig-
nificant performance ramifications. We presented a solu-
tion that uses hybrid collections annotated with anOrder-
ing Specificationas the means for a correct and flexible so-
lution. Paired with ordering is the presence of duplicates,
which we address in a similar manner adding aDuplicate
Specificationto our collections. We showed how an XML
tree algebra can be extended to incorporate our hybrid col-
lections producing the correct results. We presented several
algebraic optimizations that take advantage of hybrid col-
lections and experimentally demonstrated the performance
increase they engered.

While the presentation in this paper was of necessity fo-
cussed on a specific algebra, the concept of a hybrid collec-
tion is applicable much more generally. It can certainly be
used in conjunction with any other XML algebra. In fact,
hybrid collections may turn out to be useful even beyond
XML. Figuring out where and how, is left to future work.
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