
Query Translation from XPath to SQL in the Presence of
Recursive DTDs

Wenfei Fan† ∗ Jeffrey Xu Yu‡ Hongjun Lu\ Jianhua Lu‡ Rajeev Rastogi§

†University of Edinburgh & Bell Laboratories, wenfei@inf.ed.ac.uk
‡The Chinese University of Hong Kong, Hong Kong, China, {yu,jhlu}@se.cuhk.edu.hk

\The Hong Kong University of Science and Technology, Hong Kong, China, luhj@cs.ust.hk
§Bell Laboratories (India), rastogi@research.bell-labs.com

Abstract

The interaction between recursion in XPATH and
recursion in DTDs makes it challenging to answer
XPATH queries on XML data that is stored in an
RDBMS via schema-based shredding. We present
a new approach to translating XPATH queries into
SQL queries with a simple least fixpoint (LFP) op-
erator, which is already supported by most com-
mercial RDBMS. The approach is based on our
algorithm for rewriting XPATH queries into regu-
lar XPATH expressions, which are capable of cap-
turing both DTD recursion and XPATH queries in
a uniform framework. Furthermore, we provide
an algorithm for translating regular XPATH queries
to SQL queries with LFP, and optimization tech-
niques for minimizing the use of the LFP operator.
The novelty of our approach consists in its capa-
bility to answer a large class of XPATH queries by
means of only low-end RDBMS features already
available in most RDBMS. Our experimental re-
sults verify the effectiveness of our techniques.

1 Introduction

It is increasingly common to find XML data stored in a
relational database system (RDBMS), typically based on
DTD/schema-based shredding into relations [24] as found
in many commercial products (e.g., [11, 19, 21]). With this
comes the need for answering XML queries using RDBMS,
by translating XML queries to SQL.

The query translation problem can be stated as follows.
Consider a mapping τd, defined in terms of DTD-based
shredding, from XML documents conforming to a DTD D to
relations of a schema R. Given an XML query Q, we want

∗ Supported in part by EPSRC GR/S63205/01, EPSRC GR/T27433/01 and
NSFC 60228006.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

to find (a sequence of) equivalent SQL queries Q′ such that
for any XML document T conforming to D, Q on T can be
answered by Q′ on the database τd(T) ofR that represents
T ; that is, the set of nodes (ids) selected by Q on T equals
the set of (unary) tuples (encoding T nodes) selected by
Q′ on τd(T); to simplify the exposition we denote this by
Q(T) = Q′(τd(T)) in the sequel. We allow DTDs D to
be recursive and consider queries Q in XPATH [6], which is
essential for XML query languages XQuery and XSLT.

The query translation problem is, however, nontrivial:
DTDs (or XML Schema) found in practice are often recur-
sive [5] and complex. This is particularly evident in real-
life applications (see, e.g., BIOML [4], which contains a
number of nested and overlapping cycles when represented
as a graph). The interaction between recursion in a DTD

and recursion in an XML query complicates the translation.
When the DTD has a tree or DAG structure, a natural ap-
proach [12] is based on enumerating all matching paths of
the input XPATH query in a DTD, sharing common sub-
paths, rewriting the paths into SQL queries, and taking a
union of these queries. However, this approach no longer
works on recursive DTDs since it may lead to infinitely
many paths in the presence of ‘//’ (descendants-or-self) in
XPATH. Another approach is by means of a rich intermedi-
ate language and middleware as proposed in [23]: first ex-
press input XML queries in the intermediate language, and
then evaluate the translated queries leveraging the comput-
ing power of the middleware and the underlying RDBMS.
However, as pointed out by a recent survey [15], this ap-
proach requires implementation of the middleware on top
of RDBMS, and introduces communication overhead be-
tween the middleware and the RDBMS, among other things.
It is more convenient and possibly more efficient to trans-
late XPATH queries to SQL extended with a recursion op-
erator, and push the work (SQL queries) to the underlying
RDBMS, capitalizing on the RDBMS to evaluate and opti-
mize the queries. However, as observed by [15], although
there has been a host of work on storing and querying XML

using an RDBMS [7, 10, 12, 14, 23], the problem of trans-
lating recursive XML queries into SQL in the presence of
recursive DTDs has not been well studied, and it was sin-
gled out as the most important open problem in [15].

Recently an elegant approach was proposed in [14] to
translating path queries to SQL’99, which is capable of

337

translating queries with // and limited qualifiers to (a se-
quence of) SQL queries with the linear-recursion construct
with...recursive. Unfortunately, this approach has several
limitations. The first weakness is that it relies on the
SQL’99 recursion functionality, which is not currently sup-
ported by many commercial products including Oracle and
Microsoft SQL server. One wants an effective query trans-
lation approach that works with a wide variety of products
supporting low-end recursion functionality, rather than re-
quiring an advanced DBMS feature of only the most sophis-
ticated systems. Second, the SQL queries with the SQL’99
recursion produced by the translation algorithm of [14]
are typically large and complex. As a result, they may
not be effectively optimized by all platforms supporting
SQL’99 recursion for the same reasons that not all RDBMS

platforms can effectively optimize mildly complex non-
recursive queries [9]. A third problem is that path queries
handled by the algorithm of [14] are too restricted to ex-
press XPATH queries commonly found in practice.

In light of this we propose a new approach to translating
a class of XPATH queries to SQL, based on regular XPATH

expressions introduced in [18] and a simple least fixpoint
(LFP) operator. Regular XPATH expressions extend XPATH

by supporting general Kleene closure E∗ instead of //. The
LFP operator Φ(R) takes a single input relation R instead of
multiple relations as does the SQL’99 with...recursion oper-
ator. It is already supported by many commercial systems
such as Oracle (connectby) and IBM DB2 (with...recursion),
and will be supported by Microsoft SQL server 2005 (com-
mon table [20]). We show that regular XPATH queries are
capable of expressing a large class of XPATH queries over
a (recursive) DTD D. That is, regular XPATH expressions
capture both DTD recursion and XPATH recursion in a uni-
form framework. Moreover, we show that each regular
XPATH expression can be rewritten to a sequence of equiv-
alent SQL queries with the LFP operator.

Taken together, our approach works as follows. Given
an XPATH query Q, we first rewrite Q into a regular XPATH

query EQ, and then translate EQ to an equivalent sequence
Q′ of SQL queries. Both EQ and Q′ are bounded by a low
polynomial in the size of the input query Q and the DTD

D. We provide an efficient algorithm for translating an
XPATH query over a (recursive) DTD D to an equivalent
regular XPATH query, and a novel algorithm for rewriting a
regular XPATH query into a sequence of SQL queries with
the LFP operator. Furthermore, we introduce optimization
techniques to minimize the use of the LFP operator and to
push selections into LFP in the rewritten SQL queries.
Contributions. Our main contributions are the following.
• The use of regular XPATH expressions to capture both

DTD recursion and XPATH recursion.
• The use of the simple LFP operator found in most com-

mercial RDBMS to answer XPATH queries.
• An efficient algorithm for translating XPATH queries

into regular XPATH queries (Section 4.1).
• A novel algorithm for rewriting a regular XPATH query

to SQL queries with the LFP operator (Section 5).

• Optimization techniques for minimizing the use of the
LFP operator and pushing selections into LFP in the
SQL translation (Sections 4.2 and 5.2).

• Experimental results verifying the effectiveness of our
techniques, using real-life XML DTDs (Section 6).

Section 3 outlines our query translation approach as op-
posed to [14], and Section 7 discusses related work.

Our approach has several salient features. (1) It re-
quires only low-end RDBMS features instead of the ad-
vanced SQL’99 recursion functionality. As a result it pro-
vides a variety of commercial RDBMS with an immediate
capability to answer XPATH queries over recursive DTDs.
(2) It produces SQL queries that are less complex than
their counterparts generated with the SQL’99 recursion, and
can be optimized by RDBMS platforms by existing tech-
niques for, e.g., multi- and recursive SQL query optimiza-
tion [1, 2, 3, 22]. (3) It is capable of handling a class of
XPATH queries beyond those studied in [14]. (4) This work
is also a concrete step toward answering XPATH queries
over (virtual) recursive XML views of relational data.

2 DTD, XPath, Schema-Based Shredding
In this section, we review DTDs, XPATH queries, and DTD-
based shredding of XML data into relations.

2.1 DTDs

We represent a DTD D as (Ele, Rg, r), where Ele is a set
of element types; r is a root type; and Rg defines the types:
for any A in Ele, Rg(A) is a regular expression:

α ::= ε | B | α, α | (α | α) | α∗,

where ε is the empty word, B is a type in Ele (referred
to as a subelement or child type of A), and ‘|’, ‘,’ and ‘∗’
denote disjunction, concatenation and the Kleene star, re-
spectively. We refer to A → Rg(A) as the production of
A. To simplify the discussion we do not consider attributes,
and we assume that an element v may possibly carry a text
value (PCDATA) denoted by v.val. An XML document that
conforms to a DTD is called an XML tree of the DTD.

As in [24], we represent DTD D as a graph, called the
DTD graph of D and denoted by GD. In GD, each node
represents a distinct element type A in D, called the A
node, and an edge denotes the parent/child relationship.
Specifically, for any production A → α, there is an edge
from the A node to the B node for each subelement type B
in α; the edge is labeled with ‘∗’ if B is enclosed in α∗0 for
some sub-expression α0 of α. This simple graph model for
DTDs suffices since, as will be seen shortly, we do not con-
sider ordering in XPATH. When it is clear from the context,
we shall use DTD and its graph interchangeably.

A DTD is recursive if its DTD graph is cyclic. A DTD

graph GD is called a n-cycle graph if GD contains n simple
cycles in which no node appears more than once.

Example 2.1: A dept DTD is depicted Fig. 1 (a), which is
a 3-cycle graph (Fig. 1 (b) will be described shortly). 2

338

course*

*

student

name

*
project

*

requiredptitlepno

dept
*

titlecno *takenByprereq

sno qualified

(a)

*RcRd * Rs Rp

*

* *

*

(b)

Figure 1: A graph representation of the dept DTD.

2.2 XPath Queries

We consider a fragment of XPATH [6] that supports recur-
sion (descendants) and rich qualifiers, given as follows.

p ::= ε | A | ∗ | p/p | p//p | p ∪ p | p[q]

q ::= p | text() = c | ¬q | q ∧ q | q ∨ q

where ε, A and ∗ denote the self-axis, a label and a wild-
card, respectively; ‘∪’, ‘/’ and ‘//’ are union, child-axis
and descendants-or-self-axis, respectively; and q is called
a qualifier, in which c is a constant, and p is defined above.

An XPATH query p, when evaluated at a context node v
in an XML tree T , returns the set of nodes of T reachable via
p from v, denoted by v[[p]]. We also use ∅ to denote a special
query, which returns the empty set over all XML trees, with
∅∪p equivalent to p and p/∅/p′ equivalent to ∅. To simplify
the discussion we assume that qualifiers [text() = c] and
[¬q] only appear in the form of p[text() = c] and p[¬q]
where p is an XPATH query that is not ε.

This class of XPATH queries properly contains branching
path queries studied in [14] and tree patterns. In the sequel,
we refer to this class of queries simply as XPATH queries.

Example 2.2: Consider two XPATH queries.
Q1 = dept//project
Q2 = dept/course[ε//prereq/course/cno="cs66"∧¬ε//project

∧ ¬takenBy/student/qualified//course/cno = "cs66"]

On an XML tree of the dept DTD of Fig.1, the first query
is to find all projects, and the second one is to find courses
that (1) have a prerequisite cs66, (2) have no project related
to them or to their prerequisites, but (3) also have a student
who registered for the course but did not take cs66. 2

2.3 Mapping DTDs into a Database Schema

We focus on DTD-based shredding of XML data into re-
lations, e.g., the shared-inlining technique of [24] as sup-
ported by most RDBMS [11, 19, 21] (see Section 7 for dis-
cussions about schema-oblivious XML storage methods).
In a nutshell, a DTD-based shredding is a mapping τd :
D → R from XML trees of DTD D to databases of rela-
tional schemaR.

To simplify the discussion we assume that τd maps each
element of type A to a relation RA in R, which has three
columns F (from, i.e., parentId), T (to, i.e., ID) and V
(value of all other attributes). Intuitively, in a database
τd(Tr) representing an XML tree Tr, each RA tuple (f, t, v)
represents an edge in Tr from a node f to an A-element t
which may have a text value v, where t and f are denoted

F T

- d1

(a) Rd

F T

d1 c1
c1 c2
c2 c3
p1 c4
s2 c5

(b) Rc

F T

c1 s1

c1 s2

(c) Rs

F T

c2 p1

c4 p2

(d) Rp

Table 1: A database encoding an XML tree of the dept DTD

by the node IDs in Tr and are thus unique in the database,
and v is ‘ ’ in the absence of text value at t. In particular,
f = ‘ ’ if f is the root of Tr. This assumption does not lose
generality: our query translation techniques can be easily
extended to cope with mappings without this restriction.

Example 2.3: With the shared-inlining technique, the DTD

of Fig. 1 (a) is mapped to a schema with four relation
schemas, Rd, Rc, Rp and Rs, representing dept, course,
project and student, respectively (see Fig. 1 (b) for the sim-
plified representation of Fig. 1 (a)). A sample database is
given in Table 1, which only shows F and T columns. 2

3 Overview: From XPath to SQL
The query translation problem from XPATH to SQL is stated
as follows. For a mapping τd : D → R from XML trees of
DTD D to databases of relational schemaR, it is to find an
algorithm that, given an XPATH query Q, effectively com-
putes an equivalent sequence of relational queries Q′ such
that for any XML tree T of the DTD D, Q(T) = Q′(τd(T)).

In this section we first review the approach proposed
by [14], the only solution published so far for the query
translation problem in the presence of recursive DTDs. To
overcome its limitations, we then outline a new approach.
detailed algorithms are provided in the next two sections.

3.1 Linear Recursion of SQL’99

The algorithm of [14], referred to as SQLGen-R, han-
dles recursive path queries over recursive DTDs based on
SQL’99 recursion. In a nutshell, given an input path query,
SQLGen-R first derives a query graph, GQ, from the DTD

graph to represent all matching paths of the query in the
DTD graph. It then partitions GQ into strongly-connected
components c1, . . . , cn, sorted in the top-down topological
order. It generates an SQL query Qi for each ci, and asso-
ciates Qi with a temporary relation TRi such that TRi can
be directly used in later queries Qj for j > i. The sequence
TR1 ← Q1; . . . ; TRn ← Qn is the output of the algo-
rithm. If a component ci is cyclic, Qi is defined in terms of
the with...recursive operator. More specifically, it generates
an initialization part and a recursive part from ci. The ini-
tialization part captures all “incoming edges” into ci. The
recursion part first creates an SQL query for each edge in ci,
and then encloses the union of all these (edge) queries in a
with...recursive expression. Note that if ci has k edges, Qi

actually calls for a fixpoint operator φ(R, R1, R2, · · ·Rk)
with k + 1 input relations, defined as follows:

R0 ← R (1)

Ri ← Ri−1 ∪ (Ri−1
1C1

R1) ∪ · · · ∪ (Ri−1
1Ck

Rk)

339

1. with
2. R (F,T, Rid) as (
3. (select R.F , Rc.T , Rid(’c’)
4. from R, Rc where R.T = Rc.F and Rid = ’c’)
5. union all /* followed by 5 more similar select queries

and 4 more union all operations */

Figure 2: The SQL statement generated by SQLGen-R

where R0 corresponds to the initialization part, Rj corre-
sponds to an SQL query coding an edge in ci, and Cj is a
Boolean expression on join, for each j ∈ [1, k].

Example 3.1: Recall the mapping from the dept DTD to
the relational schemaR consisting of Rs, Rc, Rp, Rd given
in Example 2.3, and the XPATH query Q1 = dept//project
given in Example 2.2, which, over the DTD graph of
Fig. 1 (b), indicates Rd//Rp. Given Q1 and the DTD

graph of Fig. 1 (b), the algorithm SQLGen-R finds a
strongly-connected component (Rc//Rp) having 3 nodes
and 5 edges, and produces a single SQL query using a
with...recursive expression, as shown in Fig. 2. 2

Observe the following about the query of Fig. 2. First,
it actually requires a fixpoint operator that takes 4 relations
as input. As remarked in Section 1, the functionality of
φ(R, R1, R2, · · ·Rk) is a high-end feature that few RDBMS

support. Second, it is a complex query such that each iter-
ation of the fixpoint needs to compute 5 joins and 5 unions.
Third, all 5 relations join the result relation R in the center,
which forms a star shape and is hard to optimize.

3.2 A New Approach

To this end we propose a new approach to translating
XPATH queries to SQL, based on a notion of extended
XPATH expressions [18] and the simple LFP operator Φ(R).
Regular XPATH expressions. A regular XPATH expression
E over a DTD D is syntactically defined as follows:

E ::= ε | A | E/E | E ∪ E | E∗ | E[q],

q ::= E | text() = c | ¬q | q ∧ q | q ∨ q.

where A is an element type in D. The semantics of evaluat-
ing E over an XML tree is similar to its XPATH counterpart.

Regular XPATH differs from XPATH in that it supports
general Kleene closure E∗ as opposed to restricted recur-
sion ‘//’. The motivation for using E∗ instead of ‘//’ is that
with E∗ one can define a finite representation of (possibly
infinite) matching paths of an XPATH query over a recur-
sive DTD. In a nutshell, E takes a union of all matching
simple cycles of // and then E∗ applies the Kleene closure
to the union; each of these paths can then be mapped to a
sequence of relations connected by joins.

The simple LFP operator. The LFP operator Φ(R) takes a
single input relation R, as shown below.

R0 ← R

Ri ← Ri−1 ∪ (Ri−1
1C R0) (2)

where C is a Boolean expression on the join. This LFP

operator is already supported by most commercial RDBMS

products. For example, Fig. 3 shows an implementation of

LFP Φ(R) in Oracle
select F , T from R connect by F = prior T

LFP Φ(R) in DB2
1. with
2. RΦ(F,T) as (
3. (select F , T from R)
4. union all
5. (select RΦ.F , R.T from RΦ, R where RΦ.T = R.F)

Figure 3: An implementation of LFP in Oracle and DB2

Φ(R) in Oracle and IBM DB2 when C is simply RΦ.T =
R.F , where RΦ is the relation being computed by Φ(R).

To illustrate how the LFP operator handles Kleene clo-
sure, consider a regular XPATH query (A2/ · · · /An/A1)

∗

representing a simple cycle A1 → · · · → An → A1. This
query can be rewritten into Φ(R) (Eq. (2)) by letting

R← ΠR2.F,R1.T (R2 1 R3 1 · · · 1 Rn 1 R1) (3)

Here, the projected attributes are taken from the attributes
F (from) and T (to) in relations R2 and R1, respectively.
The join between Ri/Rj is expressed as Ri 1Ri.T=Rj .F

Rj , i.e., it returns Ri tuples that connect to Rj tuples. In
general, we rewrite E∗ to Φ(R), where R is a temporary
relation associated with a query coding E.

In contrast to Φ(R) which takes a single input relation
R, the linear-recursion operator φ (Eq. (1)) can take an un-
bounded number k of relations. One might be tempted to
think that Eq. (1) can be coded with Eq. (2), as follows:

R0 ← R

Ri ← Ri−1 ∪ (Ri−1
1 R′)

where R′ = ∪k
j=1Rj . But this is incorrect since different

conditions are associated with different joins in Eq. (1).

A new approach for query translation. Based on the
LFP operator Φ(R) and regular XPATH, we propose a new
framework for translating XPATH to SQL. As depicted in
Fig. 4, the framework translates an input XPATH query Q
to SQL in two steps. First, it rewrites Q over a (recursive)
DTD D to an equivalent regular XPATH query EQ over D.
Second, it rewrites EQ into an equivalent sequence Q′ of
SQL queries based on a mapping τ : D → R, and using the
LFP operator to handle Kleene closure. We provide these
translation algorithms in Sections 4 and 5, which produce
EQ and Q′ bounded by a low polynomial in the size |Q| of
the XPATH query Q and the size |D| of the DTD D.

Example 3.2: Consider again evaluating the XPATH query
Q1 = dept//project over the dept DTD of Fig. 1, in the same
setting as in Example 3.1. Our algorithms first translate Q1

to a regular XPATH query EQ1
= Rd/Rc/E∗/Rp, where

E = (Rc ∪ Rs/Rc ∪ Rp/Rc); and then rewrite EQ1
to a

sequence of SQL queries (written in relational algebra):

Rcc ← Rc

Rcsc ← ΠRs.F,Rc.T (Rs 1Rs.T=Rc.F Rc)

Rcpc ← ΠRp.F,Rc.T (Rp 1Rp.T=Rc.F Rc)

R ← Rcc ∪ Rcsc ∪Rcpc

Rγ ← Φ(R) ∪ ΠT,T (Rc)

Rf ← ΠRd.T,Rp.T (Rd 1Rd.T=Rc.F Rc 1Rc.T=Rγ.F Rγ

1Rγ .T=Rp.F Rp)

340

EQ
Q’

DTD D Dmapping from to R

output input XPath
query Q to regular XPath expression

translation from XPath Q
to a sequence of SQL queries
translation from regular XPath

with the simple operatorlfp

Figure 4: Translation from XPath to SQL

The above sequence is the output of our algorithms. 2

Contrast Example 3.2 with the SQL query of Fig. 2.
While our SQL queries use 3 unions and 5 joins in total,
they are evaluated once only, instead of once in each iter-
ation of the LFP computation of Fig. 2. We pull join/union
out from the iteration and thus reduce the evaluation cost.

4 From XPath to Regular XPath

In this section, we first present an algorithm for rewriting an
XPATH query Q over a (recursive) DTD D to an equivalent
regular XPATH query EQ over D such that for any XML tree
T of D, Q(T) = EQ(T). We then introduce an optimiza-
tion technique that can be incorporated into the algorithm
to minimize the number of Kleene closures in EQ.

4.1 Translation Algorithm

The algorithm, XPathToReg, is based on dynamic pro-
gramming: for each sub-query p of the input query Q
and each type A in D, it computes a local translation
Ep = x2r(p, A) from XPATH p to a regular XPATH query
Ep, such that p and Ep are equivalent when being evalu-
ated at any A element. Composing the local translations
one will get the rewriting EQ = x2r(Q, r) from Q to EQ,
where r is the root type of D. For each x2r(p, A) the al-
gorithm “evaluates” p over the sub-graph of the DTD graph
GD rooted at A, substituting regular expressions over ele-
ment types for wildcard ∗ and descendants //, by incorpo-
rating the structure of the DTD into Ep. This also allows us
to “optimize” the XPATH query by capitalizing on the DTD

structure: certain qualifiers in p can be evaluated to their
truth values and thus be eliminated during the translation.

To conduct the dynamic-programming computation, our
algorithm uses the following variables. First, it works over
a list L that is a postorder enumeration of the nodes in the
parse tree of p, such that all sub-queries of p (i.e., its de-
scendants in p’s parse tree) precede p in L. Second, all the
element types of the DTD D are put in a list N . Third,
for each sub-query p in L and each node A in N , we use
x2r(p, A) to denote the local translation of p at A, which
is a regular XPATH expression. We also use reach(p, A)
to denote the types in D that are reachable from A via p.
Abusing this notation, we use reach([q], A) for a qualifier
[q] to denote whether or not [q] can be evaluated to false at
an A element, indicated by whether or not reach([q], A) is
empty. Finally, for each A and its descendant B in the DTD

graph GD of D, we use rec(A, B) to denote the regular
expression representing all the paths from A to B in GD,
such that rec(A, B) is equivalent to the XPATH query ε//B
when being evaluated at an A element.

It is a bit tricky to compute rec(A, B) and reach(ε//, A)
over a recursive DTD. With the general Kleene closure,

Algorithm XPathToReg

Input: an XPATH query Q over a DTD D.
Output: an equivalent regular XPATH query EQ over D.

1. compute the ascending list L of sub-queries in Q;
2. compute the list N of all the types in D;
3. for each p in L do
4. for each A in N do
5. if p 6= ε// /* x2r(ε//, A), reach(ε//, A) are precomputed */
6. then x2r(p,A) := ∅; reach(p,A) := ∅;

7. for each p in the order of L do
8. for each A in N do
9. case p of
10. (1) ε: x2r(p,A) := ε; reach(p,A) := {A};

11. (2) B: if B is a child type of A
12. then x2r(p,A) := B; reach(p,A) := {B};
13. else x2r(p,A) := ∅; reach(p,A) := ∅;

14. (3) ∗: for each child type B of A in D do
15. x2r(p,A) := x2r(p, A) ∪B; /* ∪: XPATH operator */
16. reach(p,A) := reach(p,A) ∪ {B}; /* ∪: set union */

17. (4) p1/p2: if x2r(p1, A) = ∅
18. then x2r(p,A) := ∅; reach(p,A) := ∅;
19. else cons := ∅;
20. for each B in reach(p1, A) do
21. cons := cons ∪ x2r(p2, B);
22. reach(p,A) := reach(p,A) ∪ reach(p2, B);
23. if cons 6= ∅
24. then x2r(p,A) := x2r(p1, A)/cons;
25. else reach(p,A) := ∅; x2r(p,A) := ∅;

26. (5) ε//p1: /* reach, rec are already precomputed */
27. for each child C of A do
28. if p1 = B/p′ and reach(p′, B) 6= ∅
29. then x2r(p,A) := x2r(p,A) ∪ rec(C,B)/x2r(p′, B);

reach(p, A) := reach(p′, B);
30. else for each B in reach(ε//, C) do
31. if x2r(p1, B) 6= ∅
32. then x2r(p, A) := x2r(p,A) ∪ rec(C, B)/x2r(p1, B);
33. reach(p, A) := reach(p, A) ∪ reach(B, p1);

34. (6) p1 ∪ p2: x2r(p,A) := x2r(p1, A) ∪ x2r(p2, A);
35. reach(p, A) := reach(p1, A) ∪ reach(p2, A);

36. (7) p′[q]:
37. for each B in reach(p′, A) do
38. if x2r([q], B) = [ε] /* [q] holds at B */
39. then x2r(p,A) := x2r(p, A) ∪ x2r(p′, A);
40. reach(p,A) := reach(p,A) ∪ {B};
41. else if reach([q], B) 6= ∅ /* [q] is not false at B */
42. then x2r(p,A) := x2r(p, A) ∪ x2r(p′, A)[x2r(q,B)];
43. reach(p,A) := reach(p,A) ∪ {B};

44. (8) [p1]: x2r(p,A) := [x2r(p1, A)];
45. reach(p,A) := reach(p1, A);
46. (9) p′[text() = c]: x2r(p, A) := x2r(p′, A)[text() = c];
47. reach(p,A) := reach(p′, A);
48. (10) [q1 ∧ q2]: if reach(q1, A) 6= ∅ and reach(q2, A) 6= ∅
49. then x2r(p,A) := [x2r([q1],A) ∧ x2r([q2], A)];
50. reach(p, A) := {true};
51. else x2r(p,A) := ∅; reach(p, A) := ∅;
52. (11) [q1 ∨ q2]: if reach(q1, A) 6= ∅ and reach(q2, A) 6= ∅
53. then x2r(p,A) := [x2r([q1],A) ∨ x2r([q2], A)];
54. else if reach(q1, A) 6= ∅ and reach(q2, A) = ∅
55. then x2r(p,A) := [x2r([p1], A)];
56. else if reach(q1, A) = ∅ and reach(q2, A) 6= ∅
57. then x2r(p,A) := [x2r([p2], A)];
58. else x2r(p,A) := ∅;
59. reach(p, A) := reach(q1, A) ∪ reach(q2, A);
60. (12) p′[¬q]: if reach(q, B) = ∅ for all B ∈ reach(p′, A)
61. then x2r(p,A) := x2r(p′, A);
62. reach(p, A) := {true};
63. else x2r(p,A) := x2r(p′, A)[¬x2r([q], A)];
64. reach(p, A) := reach(p′, A);

65. optimize x2r(Q, r) by removing ∅ using ∅ ∪ E = E, E1/∅/E2 = ∅
66. return x2r(Q, r); /* r is the root of D */

Figure 5: Rewriting algorithm from XPath to regular XPath

341

one can compute these by using, e.g., Tarjan’s fast algo-
rithm [25], which finds a regular expression representing
all the paths between two nodes in a (cyclic) graph. Thus
rec(A, B), reach(ε//, A) can be computed by:

1. for each A in N
2. for each descendant B of A do
3. rec(A, B) := the regular expression found by the algorithm of [25];
4. reach(ε//, A) := reach(ε//, A) ∪ {B};

The fast algorithm takes O(|D| log |D|) time, and thus so
is the size of rec(A, B). In Section 4.2 we shall present
another algorithm for computing rec(A, B). Note that
rec(A, B) is determined by the DTD D regardless of the
input query Q; thus it can be precomputed for each A, B,
once and for all, and made available to XPathToReg. A
second issue concerns the special query ∅, which returns
an empty set over any XML tree, as described in Section 2.
In our translation we use ∅ for optimization purposes.

Algorithm XPathToReg is given in Fig. 5. It computes
EQ = x2r(Q, r) as follows. It first enumerates the list
L of sub-queries in Q and the list N of element types in
D, as well as initializes x2r(p, A) to the special query ∅
and reach(p, A) to empty set for each p ∈ Q and A ∈ N
(lines 1–6). Then, for each sub-query p in L in the topolog-
ical order and each element type A in N , it computes the
local translation x2r(p, A) (lines 7–63), bottom-up start-
ing from the inner-most sub-query of Q. To do so, it first
computes x2r(pi, Bj) for each (immediate) sub-query pi

of p at each possible DTD node Bj under A (i.e., Bj in
reach (p, A)); then, it combines these x2r(pi, Bj)’s to get
x2r(p, A). The details of this combination are determined
based on the formation of p from its immediate sub-queries
pi, if any (cases 1-12). In particular, in the case p = ε//p1

(case 5), it ranges over the children C of A to compute
rec(C,) instead of rec(A,) since the context node A is
already in the latter, where ‘ ’ denotes an arbitrary type.
We also single out a special case, namely, when p1 is of the
form B/p′, and handle it by using rec(C, B)/x2r(p′, B).
Note that when p is a qualifier [q] (cases 7–12), it may
evaluate [q] to a truth value (ε for true and ∅ for false) in
certain cases based on the structure of the DTD D, and thus
optimize the query evaluation. At the end of the iteration
EQ = x2r(Q, r) is obtained, optimized by removing ∅, and
returned as the output of the algorithm (lines 64–65).

Example 4.1: Recall the XPATH query Q2 from Exam-
ple 2.2. Observe that the algorithm of [14] cannot han-
dle this query over the dept DTD of Fig. 1 (a). In contrast,
XPathToReg translates Q2 to the regular XPATH query

EQ2
= dept/course[Ecourse course/prereq/course/cno=”cs66” ∧
¬ Ecourse project ∧ ¬ takenBy/student/Equalified course/cno=”cs66”.

where the following is computed by Tarjan’s algorithm:

Ecourse course = rec (course, course) = course/E∗

1
∪ E+

2
/E∗

1
,

Ecourse project = rec (course, project)
= (course/E∗

1
∪ E+

2
/course/E∗

1
)/project,

Equalified course = rec (qualified, course)
= qualified/course/E∗

1 ∪ (qualified/E2)+/course/E∗

1 ,

E1 = prereq/course ∪ takenBy/student/qualified/course
E2 = course/E∗

1 /project/required

The algorithm to be given in the next section can then trans-
late EQ2

to equivalent relational queries. 2

Algorithm XPathToReg takes at most O(|Q| ∗ |D|3)
time, since each step in the iteration takes at most O(|D|)
time except that case 5 may take O(|D|2) time, the size
of the list L is linear in the size of Q, and variables
rec(A, B) are precomputed as soon as the DTD D is avail-
able. Furthermore, taken together with the complexity of
Tarjan’s algorithm [25] the size of the output EQ is at most
O(|Q| ∗ |D|4log|D|). One can verify the following.

Theorem 4.1: Each XPATH query Q over a DTD D can be
rewritten to an equivalent regular XPATH expression EQ

over D of size O(|Q| ∗ |D|4log|D|). 2

Observe the following. First, regular XPATH queries
capture DTD recursion and XPATH recursion in a uniform
framework by means of the general Kleene closure E∗.
Second, during the translation, algorithm XPathToReg
conducts optimization leveraging the structure of the DTD.
Third, Kleene closure is only introduced when computing
rec(A, B); thus there are no qualifiers within a Kleene clo-
sure E∗ in the output regular query. Fourth, both |Q| and
|D| are far smaller than the data (XML tree) size in practice.

4.2 Optimization via Cycle Contraction

A major criterion for computing a regular XPATH query
EQ is that the SQL query Q′ translated from EQ should
be efficient. Among the relational operators in Q′, LFP

is perhaps the most costly. Thus, one wants EQ to con-
tain as few Kleene closures as possible. In other words,
among possibly many regular expressions representing all
the paths from A to B in a graph, we want to choose one
for rec(A, B) with a minimal number of E∗’s. It is clear
from Example 4.1 that the regular expressions rec(A, B)
computed by the algorithm of [25] may contain excessively
many E∗’s. Indeed, the focus of Tarjan’s algorithm is the
efficiency for finding any regular expression representing
paths between two nodes, rather than the one with the least
number of E∗’s. Furthermore, it is not realistic to expect an
efficient algorithm to find rec(A, B) with the least number
of E∗’s: this problem is PSPACE-hard (by reduction from
the equivalence problem for regular expressions).

In response to this, we propose a new algorithm for com-
puting rec(A, B), referred to as Cycle-C, which is a heuris-
tic for minimizing the number of Kleene closures in a re-
sulting regular XPATH query. As will be seen in Section 6,
Cycle-C outperforms the algorithm of [25] in many cases.

Algorithm Cycle-C is based on the idea of graph con-
traction: given a DTD graph GD, it repeatedly contracts
simple cycles of GD into nodes and thus reduces the inter-
action between these cycles in rec(A, B). In a nutshell, it
first enumerates all distinct simple paths (i.e., paths with-
out repeating labels) between A and B in GD , referred
to as key label paths and denoted by AB-paths. Assume
that all the AB-paths are L1, . . . , Ln, where each Li is of
the form A1 → . . . → Ak, with A = A1 and B = Ak.
It encodes Li with a regular expression Ei, which has an

342

c

b

a

f

(a) 3 cycles

c

b

a

f

(b) 4 cycles

e

b

a

(c) 2 cycles

Figure 6: rec(a, c)

initial value A1/ . . . /Ak. Then, for each simple cycle Cj

“connected” to Ai, the algorithm encodes Cj with a simple
regular expression E∗Cj

, where ECj
represents the simple

path of Cj . It contracts Cj to the node Ai and replaces Ai

in Ei with Ai/E∗Cj
; as a result of the contraction, cycles

that were not directly connected to Li may become directly
connected to Li. The algorithm repeats this process until
all the cycles connected to Li, directly or indirectly, have
been incorporated into Ei. One can verify that rec(A, B)
is indeed (E1 ∪ . . . ∪ En). Note that all simple cycles of a
directed graph can be efficiently identified [26].

Below we discuss various cases dealt with by the Cycle-
C algorithm, starting from simple ones.

Case-1: A DTD graph GD has a single AB-path L = A1 →
. . .→ Ak and a single simple cycle C connected to L.

First, assume that Ai ∈ GD is the only node shared by
L and C = Ai → A′1 → . . . → A′m → Ai. Then, the reg-
ular expression E = Ea/Eγ/Eb suffices to capture all the
paths between A and B, where Ea = A1/ . . . /Ai, Eb =
Ai+1/ . . . /Ak, and Eγ is E∗C with EC = A′1/ . . . /A′m/Ai.

Second, suppose that L and C share more than one node,
say, Ai and Aj . It is obvious that we only need to incor-
porate C into E at one of those nodes, either at Ai or Aj ,
because Eγ has already covered the connections between
Ai and Aj . Thus E is the same as the one given above.
This property allows us to find Eγ using an arbitrary node
Ai shared by multiple simple cycles.

Case-2. There exist a single AB-path L and multiple sim-
ple cycles C1, · · · , Cn, while all these cycles share a sin-
gle node Ai on L. Here the regular expression E is a
mild extension of case-1: E is Ea/Eγ/Eb while Eγ =
(EC1

∪ EC2
∪ · · · ∪ ECn

)∗, and ECi
codes Ci as above.

Example 4.2: Such a case was given in Example 3.2. Con-
sider Rd//Rp over the DTD graph Fig. 1 (b). The graph
has 3 simple cycles, Rc → Rc, Rc → Rs → Rc and Rc →
Rp → Rc. The only AB-path is L = Rd → Rc → Rp

(i.e, dept→ course→ project). Here, Rc is the node shared
by all the three cycles and L. The resulting regular XPATH

query is then Rd/Rc/((Rc ∪ Rs/Rc ∪ Rp/Rc)
∗)/Rp. 2

Case-3. There exist a single AB-path L and multiple sim-
ple cycles C1, · · · , Cn, but not all the cycles share a node
on L. For example, Fig. 6 (a) shows a DTD graph with 3
simple cycles C1 = a → b → a, C2 = c → f → c, and
C3 = a→ c→ f → b→ a. Consider rec(a, c), for which
the only AB-path is L = a→ c. While C1 and C3 share a
on L, and C2 and C3 share c, but not all the 3 cycles share
a or c as a common node. Given these Cycle-C first gen-
erates E = a/c. Then, it contracts C1, C3 and replaces a

Algorithm Cycle-C(GD , A, B)

Input: a DTD graph GD and two nodes A, B in GD .
output: rec(A,B) in GD .
1. find all distinctive AB-paths, L1, L2, · · · , Lk, between A and B;
2. for each Li do
3. Gi := the subgraph including all simple cycles that

are connected Li directly and indirectly;
4. for each Li = A1 → . . .→ Ak do
5. Ei := A1/ . . . /Ak ;
6. Ci := a list of all simple cycles in Gi found by the algorithm of [26]

and sorted in topological order based on their distance to Li

from the farthest to those directly connected to Li;
7. for each cycle C in Ci in the order of Ci do
8. if C does not directly connect to Li

9. then find node Ax on C with the shortest distance to Li;
10. Gx := the subgraph consisting of C;
11. EC := Cycle-C(Gx , Ax, Ax); /* contract C to Ax */
12. replace Ax and C with E∗

C in Gi;
13. identify the nodes A′

1
, · · · , A′

m shared by simple cycles with Li;
14. for each A′

i shared by cycles C1, . . . , Cl

15. EAj
:= a regular expression representing C1, . . . , Cl,

computed based on cases 1–3 described earlier;
16. replace Aj in Ei with Aj/E∗

A′

j

;

17. return E = E1 ∪ · · · ∪ En;

Figure 7: Algorithm for computing rec(A, B)

with a regular expression a/Eγ1
, capturing paths from a to

a via C1 and C3. It then contracts C2 and C3 by replacing c
with c/Eγ2

, covering paths from c to c via C2 and C3. The
final result is E = a/Eγ1

/c/Eγ2
. Observe the following.

First, Eγ2
covers all possible paths that traverse Eγ1

since
Eγ2

includes Eγ1
by replacing a with Eγ1

, and E covers
all possible paths between a and c. Second, the processing
order of the cycles is not sensitive. We can also first pro-
cess C2 and C3 and obtain Eγ2

, and then let Eγ1
include

Eγ2
by replacing c with Eγ2

.

Case-4. There are multiple AB-paths. Figure 6 (b) shows
a DTD graph with 4 simple cycles C1 = a → b → a,
C2 = c → f → c, C3 = a → c → f → b → a, and
C4 = b → f → b. Consider rec(a, c), which has two AB-
paths: L1 = a → c and L2 = a → b → f → c. On
L1 there are three simple cycles: C1, C2 and C3, and on
L2 there are C1, C2 and C4. Here the regular XPATH query
is EL1

∪ EL2
, where each ELi

is generated based on the
single AB-path cases above.

Case-5. There are a single AB-path L and multiple simple
cycles, but not all cycles are directly connected to L. For
example, Fig. 6 (c) shows a DTD graph with 2 simple cycles
C1 = a → b → a and C2 = b → e → b. Consider
rec(a, a), for which the AB-path is a. Note that C2 does not
directly connect to a, but it is on C1. It can be processed
as follows. (1) We generate a regular expression E = a.
(2) We contract C2, generate EC2

to capture C2 and replace
b in C1 with b/EC2

. (3) We contract C1 and replace a with
a/EC1

, which includes EC2
.

Putting these cases together, we present the Cycle-C al-
gorithm in Fig. 7. It takes as input a DTD graph GD and
nodes A and B in GD, and returns a regular expression
rec(A, B) as output. More specifically, it first identifies
all the AB-paths L1, . . . , Ln in GD and for each Li, finds

343

the subgraph Gi that consists of Li along with all the sim-
ple cycles that are connected to Li directly or indirectly
(lines 1–2). For each Li, it finds all the simple cycles Ci us-
ing the algorithm of [26]. It then topologically sorts these
cycles based on their shortest instance to any node on Li

(line 6). For each of these cycles starting from the one with
the longest distance to Li, it contracts the cycle based on
case-5 (lines 4–12). It identifies all Aj nodes shared by
some simple cycles (line 13) with Li, and contracts those
simple cycles to a single node based on cases 1–3 (line 14-
16). Finally, it produces and returns the resulting regular
expression based on case 4 (line 17). One can verify that
rec(A, B) returned by Cycle-C captures all and only the
paths between A and B in GD .

Example 4.3: Recall the regular XPATH query EQ2
from

Example 4.1, which is generated from the XPATH query Q2

by algorithm XPathToReg. Using Cycle-C, we get

Ecourse course = course/Ecc,
Ecourse project = course/Ecc/project,
Equalified course = qualified/course/Ecc,

Ecc = (E1∪ project/required/course)∗ ,
E1 is the same as the one given in Example 4.1.

These are notably simpler than their counterparts in Exam-
ple 4.1 computed by Tarjan’s algorithm. 2

5 From Regular XPath Expressions to SQL
In this section we present an algorithm for rewriting regular
XPATH queries into SQL with the simple LFP operator, and
an optimization technique for pushing selections into LFP.

5.1 Translation Algorithm

Consider a mapping τd : D → R from XML trees of a
DTD D to relations of a schemaR. Given a regular XPATH

query EQ over D, we compute a sequence Q′ of equivalent
relational-algebra (RA) queries with the simple LFP oper-
ator Φ such that EQ(T) = Q′(τd(T)) for any XML tree T
of D. The RA query Q′ can be easily coded in SQL.

A subtle issue is that the LFP operator Φ supports (E)+

but not (E)∗. Thus (E)∗ needs to be converted to ε∪(E)+.
To simplify the handling of ε, we assume a relation Rid

consisting of tuples (v, v, v.val) for all nodes (IDs) v in
the input XML tree except the root r. Note that Rid is the
identity relation for join operation: R 1 Rid = Rid 1

R = R for any relation R. With this we translate (E)∗

to Φ(R) ∪ Rid, where R codes E and Rid tuples will be
eliminated at a later stage. We rewrite ε into Rid just to
simplify the presentation of our algorithm; a more efficient
translation is adopted in our implementation.

We now give our translation algorithm, RegToSQL, in
Fig. 8. The algorithm takes a regular XPATH query EQ

over the DTD D as input, and returns an equivalent se-
quence Q′ of RA queries with the LFP operator Φ as output.
The algorithm is based on dynamic programming: for each
sub-expression e of EQ, it computes r2s(e), which is the
RA query translation of e; it then associates r2s(e) with a

Algorithm RegToSQL

Input: a regular XPATH expression EQ over a DTD D.
Output: an equivalent list Q′ of RA queries over R, where τ : D →R.

1. compute the ascending list L of sub-expressions in E;
2. Q′ := empty list [];

3. for each e in the order of L do
4. case e of
5. (1) ε: r2s(e) := Rid;

6. (2) A: r2s(e) := RA;

7. (3) e1/e2: let R1 = r2s(e1), R2 = r2s(e2);
8. r2s(e) := ΠR1.F,R2.T,R2.V (R1 1R1.T=R2.F R2);

9. (4) e1 ∪ e2: let R1 = r2s(e1), R2 = r2s(e2);
10. r2s(e) := R1 ∪R2;

11. (5) E∗: let R = r2s(e);
12. r2s(e) := Φ(R) ∪Rid;

13. (6) e1[q]: let R1 = r2s(e1), Rq = r2s(q);
14. r2s(e) := ΠR1.F,R1.T,R2.V (R1 1R1.T=Rq .F Rq);

/* returns R1 tuples that connect with R2 tuples */

15. (7) [e1]: r2s(e) := r2s(e1);
16. (8) e1[text() = c]: let R1 = r2s(e1);
17. r2s(e) := σR1.V =cR1;

/* select tuples t of R1 with t.V = c */
18. (9) [q1 ∧ q2]: let R1 = r2s(q1); R2 = r2s(q2);
19. r2s(e) := R1 ∪ R2 \ ((R1 \ R2) ∪ (R2 \ R1));

/* r2s(e) = R1 ∩ R2; */
20. (10) [q1 ∨ q2]: let R1 = r2s(q1); R2 = r2s(q2);
21. r2s(e) := R1 ∪ R2;
22. (11) e1[¬q]: let Rq = r2s(q), R1 = r2s(e1);
23. r2s(e) := R1\ ΠR1.F,R1.T,R1.V

(R1 1R1.T=Rq .F Rq);
/* only R1 tuples not connecting to any Rq tuple */

24. Q′ := (Re ← r2s(e)) :: Q′; /* add r2s(e) to Q′ */

25. r2s(EQ) := σF=′ ′ r2s(EQ); /* select nodes reachable from root */
26. Q′ := r2s(EQ) :: Q′;
27. optimize Q′ by extracting common sub-queries;
28. return Q′;

Figure 8: Rewriting algorithm from regular XPath to SQL

temporary table Re (which is used in later queries) and in-
crements the list Q′ with R ← r2s(e). More specifically,
r2s(e) is computed from r2s(ei) where ei’s are its immedi-
ate sub-queries. Thus upon the completion of the process-
ing one will get the list Q′ equivalent to EQ. To do this,
the algorithm first finds the list L of all sub-expressions
of EQ and topologically sorts them in ascending order
(line 1). Then, for each sub-query e in L, it computes r2s(e)
(lines 3–23), bottom-up starting from the inner-most sub-
query of EQ, and based on the structure of e (cases 1-11).
In a nutshell, it encodes different cases of e as follows.

(1) A label A in terms of the relation RA (case 2).

(2) Concatenation ‘/’ with projection Π and join 1 (case 3).

(3) Union and disjunction with union∪ in RA (cases 4, 10).

(4) Kleene closure (E)∗ with the LFP operator Φ (case 5).

(5) e1[q] is converted to a RA query r2s(e) that returns only
those r2s(e1) tuples t1 for which there exists a r2s(q) tuple
t2 with t1.T = t2.F , i.e., when the qualifier q is satisfied at
the node represented by t1.T (case 6).

On the other hand, it rewrites e1[¬q] to a RA query
r2s(e) that returns only those r2s(e1) tuples t1 for which
there exists no r2s(q) tuple t2 such that t1.T = t2.F ,

344

i.e., when the qualifier q is not satisfied at the node t1.T
(and hence [¬q] is satisfied at t1.T ; case 11); this captures
the semantics of negation in XPATH (recall our assumptions
about [¬q] and [text() = c] from Section 2).
(6) [e1] is rewritten into r2s(e1) (case 7).
(7) e1[text() = c] in terms of selection σ that returns all
tuples of r2s(e1) that have the text value c (case 8).
(8) Conjunction q1 ∧ q2 in terms of set intersection imple-
mented with union ∪ and set difference \ in RA (case 9).

In each of the cases above, the list Q′ is incremented by
adding Re ← r2s(e) to Q′ as the head of Q′ (line 24).
Finally, after the iteration it yields πT σF=′ ′ r2s(EQ)
(line 25), which selects only those nodes reachable from the
root of the XML tree, removing unreachable nodes includ-
ing those introduced by Rid. It also optimizes the sequence
Q′ of RA queries by eliminating empty set and extracting
common sub-queries (details omitted from Fig. 8), and re-
turns the cleaned Q′ (lines 27–28).

One can verify that Q′, in its reverse order, is a sequence
of RA queries equivalent to the regular XPATH query EQ.

Example 5.1: Recall the XPATH query Q2 from Exam-
ple 2.2, and its regular XPATH translation EQ2

from Ex-
ample 4.1, which contains Ecourse course, Ecourse project and
Equalified course generated by Cycle-C and given at the end of
Section 4. Given EQ2

, the RegToSQL algorithm generates
the RA translation below:

Ecc : Rγ with LFP, the same as the one in Example 3.2.
Ecourse course : Rcc ← Rc 1 Rγ ,
Ecourse project : Rcp ← Rc 1 Rγ 1 Rp,
Equalified course : Rqc ← Rcc,
Ecourse course/prereq/course/cno = ”cs66”

: R1 ← σcno=”cs66”(Rcc 1 Rc)
takenBy/student/Equalified course/cno = ”cs66”

: R2 ← σcno=”cs66”(Rs 1 Rqc)

Note that Q2 is of the form (with a complex qualifier)
dept/course[q1 ∧ ¬q2 ∧ ¬q3], which is handled by our al-
gorithms by treating it as Q1

2 = dept/course[q1], Q2
2 =

Q1
2[¬q2] and Q2 = Q2

2[¬q3]. Thus Q1
2 ← Rd 1 Rc 1 R1,

Q2
2 ← Q1

2\(Q
1
2 1 Rcp), and EQ2

becomes Q2
2\(Q

2
2 1 R2)

where projections are omitted. In contrast, the algorithm
of [14] cannot translate XPATH queries of this form. 2

Algorithm RegToSQL takes at most O(|EQ|) time.
Combined with the complexity of Algorithm XPathToReg
(Theorem 4.1), one can verify the following:

Theorem 5.1: Each XPATH query Q over a DTD D can be
rewritten to an equivalent sequence of SQL queries (with
the LFP operator) of total size O(|Q| ∗ |D|4log|D|). 2

Observe the following. First, algorithm RegToSQL
shows that the simple LFP operator Φ(R) suffices to ex-
press XPATH queries over recursive DTDs; thus there is no
need for the advanced SQL’99 recursion operator. Second,
the total size of the produced SQL queries is bounded by
a low polynomial of the sizes of the input XPATH query Q
and the DTD D. Finally, the algorithms XPathToReg and
RegToSQL can be easily combined into one; we present
them separately to focus on their different functionality.

*

**
a b c d

*

*

(a) Cross

*gene dna clone locus**

*

*

*

*
(b) BIOML

Figure 9: DTD Graphs

5.2 Pushing Selections into the LFP Operator

Algorithms XPathToReg and RegToSQL show that SQL

with the simple LFP operator is powerful enough to an-
swer XPATH queries over recursive DTDs. While certain
optimizations are already conducted during the translation,
other techniques, e.g., sophiscated methods for pushing se-
lections/projections into the LFP operator [1, 2, 3]. can be
incorporated into our translation algorithms to further opti-
mize generated relational queries.

We next show how to push selections into LFP. Consider
an XPATH query Q3 = Rd[id = a]/Rc//Rp. To simplify
the discussion, assume that our algorithms rewrite Q3 into
R1 ← Qd and R2 ← LFP(R0), where Qd and LFP(R0)
compute Rd[id = a] and Rc//Rp, respectively. While R1 1

R2 yields the right answer, we can improve the perfor-
mance by pushing the selection into the LFP computation
such that it only traverses “paths” starting from the Rc chil-
dren of those Rd nodes with id = a. Recall from Eq. (2) that
one can specify a predicate C on the join between RΦ and
R0 in LFP, where R0 is the input relation and RΦ is the
relation being computed by the LFP (Section 3; supported
by connectby of Oracle and with...recursion of IBM DB2).
Here C can be given as RΦ.F ∈ πT (R1) ∧RΦ.T = R0.F
(‘∈’ denotes in in SQL), i.e., besides the equijoin RΦ.T =
R0.F we want the F (from) attribute of RΦ to match a T
(to) attribute of R1. Then, each iteration of the LFP only
adds tuples (f, t), where f is a child of a node in πT (R1).
Similarly, the selection in Rd//Rc/Rp[id=c] can be pushed
into LFP(R0) for rec(Rd, Rc). Indeed, let R1 be the re-
lation found for Rp[id=c], and the LFP join condition be:
RΦ.F = R0.T ∧ RΦ.T ∈ πF (R1). Then the LFP only
returns tuples of the form (f, t), where t is the parent of a
node in πF (R1). As will be seen in Section 6, this opti-
mization is effective.

6 A Performance Study

To verify the effectiveness of our rewriting and optimiza-
tion algorithms, our performance study evaluated XPATH

queries using an RDBMS with three approaches: (1) the
SQLGen-R algorithm [14] using the with...recursive opera-
tor, (2) our rewriting algorithms by using Tarjan’s method
(referred to as Cycle-E as it is based on cycle expansion)
to find rec(A, B), i.e., paths from node A to B in a DTD

graph, and (3) our rewriting algorithms by using Cycle-C
of Fig. 7 to compute rec(A, B), referred to as Cycle-C.

We experimented with these algorithms using (a) a sim-
ple yet representative DTD depicted in Fig. 9 (a) (2 cross cy-
cles), and (b) a real-life DTD as shown in Fig. 9 (b), which
is a 4-cycle DTD extracted from BIOML [4].

345

While testing several different types of XPATH queries,
our performance study focused on the evaluation of // be-
cause // is the only operator in XPATH queries that, in the
presence of recursive DTDs, leads to LFP in RDBMS, which
is a dominant factor of performance.

Implementation. We have implemented a prototype sys-
tem supporting SQLGen-R, Cycle-E and Cycle-C, using Vi-
sual C++, denoted by R, E and C in the figures, respec-
tively. We executed rewritten SQL queries in a batch. We
only implemented some basic optimizations, e.g., common
sub-expressions were executed only once. We conducted
experiments using IBM DB2 (UDB 7) on a single 2GHz CPU
with 1GB main memory. We did not experiment with Ora-
cle because Oracle does not support the SQL’99 recursion.
The queries output ancestor-descendant pairs.

Testing Data: Testing data was generated using IBM XML

Generator (http://www.alphaworks.ibm.com). The input to
the Generator is a DTD file and a set of parameters. We
mainly controlled two parameters, XL and XR, where XL

is the maximum number of levels in the resulting XML tree,
and XR is the maximum number of children of any node in
the tree. Together XL and XR determine the shape of an
XML tree: the larger the XL value, the deeper the generated
XML tree; and the larger the XR value, the wider the tree.
The default values used in our testing for XL and XR were
4 and 12, respectively. The default number of elements in a
generated XML tree was 120,000. There is a need to control
the sizes of XML trees to be the same in different settings
for comparison purposes, and thus excessively large XML

trees generated were trimmed. For the other parameters of
the Generator, we used their default settings.

Relational Database. The XML data generated was
mapped to a relational database using shared-inlining [24].
Indexes were generated for all possible joined attributes.

Query Evaluation. (1) We tested four XPATH queries us-
ing different databases (fixing the database size while vary-
ing the relations sizes). (2) We evaluated the optimization
technique of Section 5.2 by comparing SQL queries trans-
lated from XPATH queries with and without pushing selec-
tions into the LFP operator. (3) We tested the scalability
of our generated SQL queries w.r.t. different database sizes
using a query containing //. These were conducted with the
simple cross-cycle DTD graph. (4) We tested several XPATH

queries with different DTDs, which are subgraphs of the
real-life BIOML DTD, using the same database. The main
difference between (1) and (4) is that the former tested the
same queries with different databases, and the latter tested
different queries with the same database.

6.1 Exp-1: Evaluation of Selective Queries

In this study, over the simple cross-cycle DTD (Fig. 9 (a)),
we tested the following four XPATH queries:

• Qa = a/b//c/d (with //),
• Qb = a[ε//c]//d (a twig join query),
• Qc = a[¬ε//c] (with ¬ and //), and
• Qd = a[¬ε//c ∨ (b ∧ ε//d)] (with ¬, ∨, ∧ and //).

0

700

1400

2100

2800

8 12 16 20

T
im

e
 (

S
e

c
)

R
E
C

(a) Qa: Vary XL

0

400

800

1200

4 6 8 10

T
im

e
 (

S
e

c
)

R
E
C

(b) Qa: Vary XR

0

800

1600

2400

3200

8 12 16 20

T
im

e
 (

S
e

c
)

R
E
C

(c) Qb: Vary XL

0

400

800

1200

1600

4 6 8 10

T
im

e
 (

S
e

c
)

R
E
C

(d) Qb: Vary XR

0

400

800

1200

1600

2000

8 12 16 20

T
im

e
 (

S
e

c
)

R
E
C

(e) Qc: Vary XL

0

200

400

600

800

4 6 8 10

T
im

e
 (

S
e

c
)

R
E
C

(f) Qc: Vary XR

0

800

1600

2400

3200

4000

8 12 16 20
T

im
e

 (
S

e
c
)

R
E
C

(g) Qd: Vary XL

0

400

800

1200

1600

4 6 8 10

T
im

e
 (

S
e

c
)

R
E
C

(h) Qd: Vary XR

Figure 10: Processing time for cross cycles (Fig. 9 (a)).
The XPathToReg algorithm rewrites these queries into
four XPATH regular queries, namely, Q′a = a/Eb c/d,
Q′b = a[Ea b/c]/Ea c/d, Q′c = a[¬Ea b/c], and Q′d =
a[¬Ea b/c ∨ (b ∧Ea c/d)], while Cycle-E generates:

Eb c = rec(b, c) = (Ebb ∪ (Ebb/c/a/(Ebb/c/a)∗/Ebb))/c
Ea b = rec(a, b) = a/(Ebb/c/a)∗/Ebb

Ea c = rec(a, c) = a/(Ebb/c/a)∗/Ebb/c
Ebb = b/(c/d/b)∗

In contrast, Cycle-C generates the following:
Eb c = rec(b, c) = b/(c/a/b ∪ c/d/b)∗/c,
Ea b = rec(a, b) = a/b/(c/a/b ∪ c/d/b)∗,
Ea c = rec(a, c) = a/b/(c/a/b ∪ c/d/b)∗/c.

For each rec(A, B), Cycle-C uses one LFP, but Cycle-E uses
two LFP’s. Since the last three XPATH queries cannot be
handled by SQLGen-R, we tested SQLGen-R by generating
a with...recursive query for each rec(A, B) in our transla-
tion framework. The DTD has 4 nodes and 5 edges, and
SQLGen-R produced a with...recursive query using 5 joins
and 5 unions, which are computed in each iteration.

We used an XML tree with a fixed size of 120,000 el-
ements. The same queries were evaluated over different
shapes of XML trees controlled by the height of the tree
(XL) and the width of the tree (XR). Since an XML tree
with different heights and/or widths results in relations of
different sizes in a database, even though the database size
is fixed, the same SQL query generated may end up having
different query-processing costs. We report elapsed time
(seconds) for each query in Fig. 10: one figure shows the
elapsed time while varying XL from 8 to 20 with XR = 4,
and the other shows the time while varying XR from 4 to

346

0

100

200

300

aL aM aS dL dM dS

T
im

e

(
S

e
c
)

Push-Selection
Seletion

(a)

0

400

800

1200

1600

120k 240k 480k 960k

T
im

e
 (

S
e

c
)

R
E
C

(b)

Figure 11: Pushing Selection (a) and Scalabity (b) (In (a),
XR = 8 and XL = 12, and in (b) XR = 4 and XL = 16)

10 with XL = 12. In all the cases, Cycle-C noticeably
outperforms SQLGen-R and Cycle-E.

6.2 Exp-2: Pushing Selections into LFP

We tested two XPATH queries with selection conditions:
Qe = a[id = Ai]/b//c/d, Qf = a/b//c/d[id = Di].
For each query we generated two SQL queries, one with
selections pushed into LFP and the other without. We eval-
uated these queries using datasets of the DTD of Fig. 9 (a),
fixing the size of the datasets while varying the size of the
set selected by the qualifiers of ai and di. Figure 11 (a)
shows the result, in which (1) aL, aM and aS indicate that
an ai element has large/medium/small number of d descen-
dants; and (2) dL, dM and dS indicate that a di element has
large/medium/small number of a ancestors, respectively.
It shows that performance improvement by pushing selec-
tions into the LFP operator is significant.

6.3 Exp-3: Scalability Test

Figure 11 (b) demonstrates the scalability of our algorithms
by increasing the dataset sizes, for an XPATH query a//d
over the cross-cycle DTD (Fig. 9 (a)). The XML dataset
size increases to 960,000 elements from 120,000. We set
XL = 16 because the default XL = 12 is not large enough
for the XML generator to produce such large datasets. We
find that Cycle-C outperforms both SQLGen-R and Cycle-E
noticeably, and SQLGen-R outperforms Cycle-E. When the
dataset size is 960,000, the costs of Cycle-E and SQLGen-
R are 2.1 times and 1.58 times of the cost of Cycle-C, re-
spectively. This shows that when dataset is large, our op-
timization technique (Cycle-C) outperforms SQLGen-R by
reducing the use of LFP operators and unnecessary joins
and unions. Moreover, Cycle-C is linearly scalable.

6.4 Exp-4: Complex Cycles from Real-Life DTD

We next evaluate XPATH queries on the extracted 4-cycle
BIOML DTD. We considered four subgraphs, as shown in
Fig. 12, of the BIOML DTD of Fig. 9 (b) in order to demon-
strate the impact of different DTDs on the translated SQL

queries. Similar XPATH queries were tested on top of these
extracted DTDs, and are summarized in Table 2.

All these XPATH queries were run on the same dataset
which was generated using the largest 4-cycle DTD graph
extracted from BIOML (Fig. 9 (b)) with XR = 6 and XL =
16. Unlike Exp-1, we did not trim the XML trees generated
by the IBM XML Generator. The generated dataset consists
of 1,990,858 elements, which is 16 times larger than the

gene dna clone locus

(a)

gene dna clone locus

(b)

gene dna clone locus

(c)

gene dna clone locus

(d)

Figure 12: Different DTD graphs extracted from BIOML

Case Query n-Cycles DTD Graph
2a gene//locus 2 Fig. 12 (a)
2b gene//locus 2 Fig. 12 (b)
2c gene//dna 2 Fig. 12 (b)
3a gene//locus 3 Fig. 12 (c)
3b gene//locus 3 Fig. 12 (d)
4a gene//locus 4 Fig. 9 (b)
4b gene//dna 4 Fig. 9 (b)

Table 2: XPATH queries over different DTDs from BIOML

dataset (120,000 elements) used in Exp-1. The sizes of re-
lations for gene, dna, clone and locus are 354,289, 703,249,
697,060 and 236,260, respectively.

As shown in Fig. 13, Cycle-C significantly outperforms
SQLGen-R and Cycle-E in all the cases, and except case 2a,
Cycle-E outperforms SQLGen-R. In case 4a, for example,
SQLGen-R needs 7 joins and 7 unions in each iteration;
Cycle-E needs to process 6 join, 2 LFP and 3 union opera-
tors; and Cycle-C uses 5 join, 1 LFP and 4 union operators.
Note that because the Cycle-E execution sequence is deter-
mined by Tarjan’s algorithm [25], it is inflexible to change
the order of execution. Cycle-C outperforms SQLGen-R
and Cycle-E because it uses less join and LFP.

7 Related Work

There has been a host of work on querying XML using an
RDBMS, over XML data stored in an RDBMS or XML views
published from relations (e.g., [7, 9, 12, 13, 14, 17, 23];
see [15] for an excellent recent survey). However, with the
exception of the recent work of [14], as observed by [15],
no algorithm has been published for translating recursive
XML queries over recursive DTDs for schema-based XML

storage or XML views of relations. Closest to our work
is [14], which proposed the first technique to rewrite (re-
cursive) path queries over recursive DTDs to SQL with the
SQL’99 recursion. We have remarked the differences be-
tween their approach and ours in Sections 1 and 3.

At least two approaches have been proposed to query-
ing XML data stored in relations via DTD-based shredding.
One approach is based on middleware and XML views,
e.g., XPERANTO [23] and SilkRoute [9]. In a nutshell, it
provides clients with an XML view of the relations repre-
senting the XML data; upon receiving an XML query against
the view, it composes the query with the view, rewrites the
composed query to a query in a (rich) intermediate lan-
guage, and answers the query by using both the middleware
and the underlying RDBMS. However, this approach is tem-
pered by the following observations. First, it is nontrivial to
define a (recursive) XML view of the relational data without
loss of the original information. Second, it requires mid-
dleware support and incurs communication overhead be-
tween the middleware and the RDBMS. Third, as observed

347

0

2000

4000

6000

8000

10000

2a 2b 2c 3a 3b 4a 4b
T

im
e

 (
S

e
c
)

R
E
C

Figure 13: XPATH queries on the extracted BIOML DTDs

by [14], no algorithms have been developed for handling
recursive queries over XML views with a recursive DTD.

Another approach is by rewriting XML queries into SQL

(with recursion). Translations of XSLT [12], XQuery [7, 16]
and (recursive) path queries [14] have been studied. While
the algorithms of [12, 16] cannot handle query transla-
tion in the presence of recursive DTDs, their optimization
techniques by leveraging, e.g., integrity constraints [16]
and aggregation handling [12], are complementary to our
work. These and techniques for query pruning [8], multi-
query [22] and recursive-query optimization [1, 2, 3] can
be used in our translation. Another interesting idea is to
leverage XML region information: each node is stored with
its position/offset [7, 17] (or path prefix [13]) in the docu-
ment order such that the ancestor-descendant relation can
be tested via range (or prefix) test. While recursion can
be handled efficiently, this approach complicates update
management due to the maintenance of regions, and may
not apply to (virtual) XML views of relational data for the
lack of region information in the source. Even for XML

data stored in relations with usual compression for sharing
common subtrees, the technique may not work well since
the region of a node is unclear in a graph. In contrast, our
rewriting technique does not have these limitations.

8 Conclusion

We have proposed a new approach to translating a practi-
cal class of XPATH queries over (recursive) DTDs to SQL

queries with a simple LFP operator found in many com-
mercial RDBMS. The novelty of the approach consists in
efficient algorithms for rewriting an XPATH query over a
recursive DTD into an equivalent regular XPATH query that
captures both DTD recursion and XPATH recursion, and
for translating a regular XPATH query to an equivalent se-
quence of SQL queries, as well as in new optimization tech-
niques for minimizing the use of the LFP operator and for
pushing selections into LFP. These provide the capability
of answering important XPATH queries within the immedi-
ate reach of most commercial RDBMS.

We recognize that the LFP operator in produced SQL

queries is not the only factor for efficiency, and we are
developing a cost model to provide a better guidance for
XML query rewriting. We are also exploring techniques
for multi- and recursive-query optimization [1, 2, 3, 22].
Another topic for future work is to extend our algorithms
to handle more complex XML queries, over (ordered) XML

data stored in an RDBMS or XML views of relational data.

References
[1] R. Agrawal and P. Devanbu. Moving selections into linear

least fixpoint queries. In ICDE, 1988.
[2] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets

and other strange ways to implement logic programs. In
PODS, 1986.

[3] C. Beeri and R. Ramakrishnan. On the power of magic. J.
Log. Program, 10, 1991.

[4] BIOML. BIOpolymer Markup Language.
http://xml.coverpages.org/BIOML-XML-DTD.txt.

[5] B. Choi. What are real DTDs like. In WebDB, 2002.
[6] J. Clark and S. DeRose. XML path language (XPath). W3C

Working Draft, Nov. 1999.
[7] D. DeHaan, D. Toman, M. Consens, and T. Ozsu. Compre-

hensive XQuery to SQL translation using dynamic interval
encoding. In SIGMOD, 2003.

[8] M. Fernandez and D. Suciu. Optimizing regular path ex-
pression using graph schemas. In ICDE, 1998.

[9] M. F. Fernandez, A. Morishima, and D. Suciu. Efficient
evaluation of XML middleware queries. In SIGMOD, 2001.

[10] D. Florescu and D. Kossmann. Storing and querying XML
data using an RDMBS. IEEE Data Eng. Bull, 22(3), 1999.

[11] IBM. DB2 XML Extender. http://www-3.ibm.com/software
/data/db2/extended/xmlext/index.html.

[12] S. Jain, R. Mahajan, and D. Suciu. Translating XSLT pro-
grams to efficient SQL querie. In WWW, 2002.

[13] H. Kaplan, T. Milo, and R. Shabo. A comparison of labeling
schemes for ancestor queries. In SODA, 2002.

[14] R. Krishnamurthy, V. Chakaravarthy, R. Kaushik, and
J. Naughton. Recursive XML schemas, recursive XML
queries, and relational storage: XML-to-SQL query trans-
lation. In ICDE, 2004.

[15] R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-SQL
query translation literature: The state of the art and open
problems. In Xsym, 2003.

[16] R. Krishnamurthy, R. Kaushik, and J. Naughton. Efficient
XML-to-SQL query translation: Where to add the intelli-
gence. In VLDB, 2004.

[17] Q. Li and B. Moon. Indexing and querying xml data for
regular path expressions. In VLDB, 2001.

[18] M. Marx. XPath with conditional axis relations. In EDBT,
2004.

[19] Microsoft. SQLXML and XML mapping technologies.
http://msdn.microsoft.com/sqlxml/default.asp.

[20] M. Nunn. An overview of SQL server 2005 for the database
developer, 2004. http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/dnsql90/html/sql ovyukondev.asp.

[21] Oracle. Oracle9i XML Database Developer’s Guide – Or-
acle XML DB Release 2. http://otn.oracle.com/tech/xmldb
/content.html.

[22] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient
algorithms for multi query optimization. In SIGMOD, 2000.

[23] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and
J. Funderburk. Querying XML views of relational data. In
VLDB, 2001.

[24] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. De-
Witt, and J. Naughton. Relational databases for querying
XML documents: Limitations and opportunities. In VLDB,
1999.

[25] R. E. Tarjan. Fast algorithms for solving path problems.
JACM, 28(3):594–614, 1981.

[26] H. Weinblatt. A new search algorithm for finding the simple
cycles of a finite directed graph. JACM, 19(1):43–56, 1972.

348

