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Abstract

The n-gram inverted index has two major advan-
tages: language-neutral and error-tolerant. Due to
these advantages, it has been widely used in in-
formation retrieval or in similar sequence match-
ing for DNA and protein databases. Nevertheless,
the n-gram inverted index also has drawbacks: the
size tends to be very large, and the performance
of queries tends to be bad. In this paper, we pro-
pose the two-level n-gram inverted index (simply,
the n-gram/2L index) that significantly reduces the
size and improves the query performance while
preserving the advantages of the n-gram inverted
index. The proposed index eliminates the redun-
dancy of the position information that exists in the
n-gram inverted index. The proposed index is con-
structed in two steps: 1) extracting subsequences
of length m from documents and 2) extracting
n-grams from those subsequences. We formally
prove that this two-step construction is identical to
the relational normalization process that removes
the redundancy caused by a non-trivial multival-
ued dependency. The n-gram/2L index has ex-
cellent properties: 1) it significantly reduces the
size and improves the performance compared with
the n-gram inverted index with these improve-
ments becoming more marked as the database size
gets larger; 2) the query processing time increases
only very slightly as the query length gets longer.
Experimental results using databases of 1 GBytes
show that the size of the n-gram/2L index is re-
duced by up to 1.9 ∼ 2.7 times and, at the same
time, the query performance is improved by up to
13.1 times compared with those of the n-gram in-
verted index.
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1 Introduction
Text searching is regarded as an operation of fundamen-
tal importance and is widely used in many areas such as
information retrieval [18] and similar sequence matching
for DNA and protein databases [7]. DNA and protein se-
quences can be regarded as long texts over specific alpha-
bets (e.g. {A,C,G,T} in DNA) [5]. A number of index
structures have been proposed for efficient text searching,
and the inverted index is the most actively used one [18].

The inverted index is classified into two categories —
the word-based inverted index and the n-gram inverted in-
dex (simply, the n-gram index) — depending on the kind of
terms [8]. The former uses a word as a term, and the latter
an n-gram. A word is a string of variable-length and has a
linguistic meaning, but an n-gram is a string of fixed-length
n and has no linguistic meaning. The n-grams are extracted
as follows: sliding a window of length n by one character in
the text and recording a sequence of characters in the win-
dow at each time. We call it the 1-sliding technique. Due
to the 1-sliding technique, a very large number of n-grams
are extracted in documents compared with the words.

The n-gram index has two major advantages: language-
neutral and error-tolerant [18, 9, 3]. The first advantage
allows us to disregard the characteristics of the language
since the n-grams are extracted using a window of length n.
Thus, the n-gram index is widely used for Asian languages,
where complicated knowledge about the language is re-
quired, or DNA and protein databases, where a clear con-
cept of the word does not exist. The second advantage al-
lows us to retrieve documents with some errors (e.g., typos
or miss-recognition by the OCR software) as the query re-
sult. It becomes possible by the 1-sliding technique. Thus,
the n-gram index is adequate for applications allowing er-
rors such as approximate matching.

Nevertheless, the n-gram index has also drawbacks: the
size tends to be large, and the performance of queries — es-
pecially, long ones — tends to be bad [18, 9]. These draw-
backs stem from the method of extracting terms, that is,
the 1-sliding technique. It drastically increases the number
of terms extracted, rendering the size of the n-gram index
so large. Accordingly, the query performance is also de-
graded since the number of postings accessed during query
processing increases.

There have been a number of efforts to reduce the size
of the n-gram index. The compression of the inverted in-
dex is widely employed [2, 4, 8]. This scheme, while pre-
serving the index structure, compresses posting lists during
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indexing and decompresses them during query processing.
It, however, requires additional compression and decom-
pression costs. On the other hand, a few methods have
been proposed to reduce the number of terms to be in-
dexed. These methods first extract words from documents,
and then, extract n-grams (or a single n-gram) within each
word [9, 11]. These methods, however, are difficult to be
used for data where a clear concept of the word does not
exist.

In this paper, we propose the two-level n-gram inverted
index (simply, the n-gram/2L index) that significantly re-
duces the size and improves the query performance while
preserving the advantages of the n-gram index. We first
identify that the large size of the n-gram index is mainly
due to the redundancy of the position information. Here,
the position information represents the document identifier
and the offsets within the document where an n-gram oc-
curs. The proposed index eliminates the redundancy of the
position information that exists in the n-gram index. The
key idea for eliminating redundancy is to construct the in-
dex in two steps. For two-step construction, we regard con-
secutive n-grams as a subsequence and store (1) the posi-
tions of the subsequence within the documents and (2) the
positions of n-grams within the subsequence. Hereafter, we
call the index for subsequences as the back-end index and
that for n-grams as the front-end index.

The n-gram/2L index has three excellent properties.
First, the size of the n-gram/2L index is scalable with the
database size. The ratio of the size of the n-gram/2L index
to that of the conventional n-gram index decreases as the
database size gets larger. That is, reduction of the index
size becomes more marked in a larger database. Second,
query performance of the n-gram/2L index is also scalable
with the database size. The ratio of query performance of
the n-gram/2L index to that of the conventional n-gram in-
dex increases as the database size gets larger, making the
improvement of the query performance more marked in a
larger database. Third, the query processing time increases
only slightly as the query length gets longer, in contrast to
an n-gram index where it increases rapidly. We investigate
the reasons for these desirable properties in Section 5.

The rest of this paper is organized as follows. Section 2
describes existing work related to the n-gram index. Sec-
tion 3 presents the motivation of this paper. Section 4 pro-
poses the structure and algorithms of the n-gram/2L index.
Section 5 presents the formal model of the n-gram/2L in-
dex and analyzes the size and query performance. Section
6 presents the results of performance evaluation performed
by using the Odysseus ORDBMS [14]. Section 7 summa-
rizes and concludes the paper.

2 Related Work
In this section, we explain the inverted index [18], and then,
the n-gram index and its applications. The inverted index
is a term-oriented mechanism for quickly searching docu-
ments containing a given term. Here, a document is a finite
sequence of characters, and a term a subsequence of a doc-
ument.

The inverted index consists of two major components:
terms and posting lists [8]. A posting list, which is related
to a specific term, is a list of postings that contain informa-
tion about the occurrences of the term. A posting consists
of the identifier of the document that contains the term and
the list of the offsets where the term occurs in the docu-

ment. For each term t, there is a posting list that contains
postings < d, [o1, ..., of ] >, where d is a document identi-
fier, [o1, ..., of ] is a list of offsets o, and f is the frequency
of occurence of the term t in the document d [4]. Postings
in a posting list are usually stored in the increasing order of
d, and offsets within a posting in the increasing order of o.
Besides, an index such as the B+-tree is created on terms
in order to quickly locate a posting list. Figure 1 shows the
structure of the inverted index.

B+-Tree
on terms

posting lists of terms

a posting d, [o1, …, of]

d: document identifier
oi: offset where term t occurs in document d
f:   frequency of occurrence of term t in document d

…

Figure 1: The structure of the inverted index.

The inverted index is classified into two types depend-
ing on the method of extracting terms: (1) the word-based
inverted index using a word as a term and (2) the n-gram
index using an n-gram as a term [8, 11, 3]. We focus on
the n-gram index in this paper. The rest of this section is
organized as follows. Section 2.1 describes the structure
and query processing of the n-gram index. Section 2.2 de-
scribes the applications.

2.1 n-Gram Index

The n-gram index uses n-grams as indexing terms. Let
us consider a document d as a sequence of characters
c0, c1, ..., cN−1. An n-gram is a subsequence of length
n [10]. Extracting n-grams from a document d can be done
by using the 1-sliding technique, that is, sliding a window
of length n from c0 to cN−n and storing the characters lo-
cated in the window. The ith n-gram extracted from d is
the sequence ci, ci+1, ..., ci+n−1.

Example 1 Figure 2 shows an example of posting lists of
the 3-gram index, which is created on the documents con-
taining the strings “string” and “data”. The four 3-grams
“str”, “tri”, “rin”, and “ing” are extracted from “string”, and
the two 3-grams “dat” and “ata” are extracted from “data”.
We note that to the 1-sliding technique, the differences of
the offsets of the 3-grams extracted from the same string
become 1.

3-grams posting lists of 3-grams

str

tri

rin

ing

dat

ata

7, [6, 51]

7, [7, 52]

7, [8, 53]

7, [9, 54]

7, [58]

7, [59]

44, [12]

44, [13]

44, [14]

44, [15]

12, [4, 27]

12, [5, 28]

97, [4, 87]

97, [5, 88]

97, [6, 89]

97, [7, 90]

44, [83]

44, [84]

Figure 2: An example of posting lists of the 3-gram index.

Query processing is done in two steps: (1) spliting a
given query string into multiple n-grams and searching the
posting lists of those n-grams; and (2) performing merge
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join between those posting lists using the document identi-
fier as the join attribute [18].

For example, suppose we execute a query “string” by us-
ing the n-gram index in Figure 2. In the first step, the query
“string” is split into the four 3-grams “str”, “tri”, “rin”, and
“ing”, and four posting lists of these 3-grams are searched.
In the second step, merge join among those four posting
lists is performed in order to find the documents where the
four 3-grams “str”, “tri”, “rin”, and “ing” occur consecu-
tively — constituting “string”. The document identifiers 7,
44, and 97 are returned as the query result since all these
documents contain the four 3-grams consecutively.

2.2 Applications of the n-Gram Index
There are many applications of the n-gram index such as
string searching, approximate string matching, information
retrieval, and similar sequence matching in bioinformat-
ics [10]. We explain information retrieval [18] and similar
sequence matching in bioinformatics [7] in more detail.

Information retrieval is the operation that searches for
the documents containing a given query string from a text
database. The inverted index is widely used to facilitate
information retrieval. In general, to construct the inverted
index, words are used as indexing terms. However, due
to the language-neutral characteristic, the n-grams are of-
ten used for Asian languages such as Korean, Chinese,
and Japanese, where extraction of words is not simple [15].
Compared with the word-based inverted index, the n-gram
index has comparable accuracy in searching, but has a
larger index size and poorer performance [9].

Similar sequence matching in bioinformatics is the oper-
ation that searches sequences similar to a given query string
from a DNA or protein database. Most methods proposed
earlier perform sequential scan and do not use indexes.
These methods have relatively high accuracy, but have poor
performance. In order to improve performance, the index-
based methods have been proposed recently. CAFE [7],
which uses the n-gram index, is a well-known method.
CAFE uses 3-grams for protein sequences and 9-grams for
DNA sequences as indexing terms. Compared with earlier
methods, CAFE shows comparable accuracy in searching,
but shows higher performance by several times to several
tens of times. However, it has been pointed out as a prob-
lem that the size of the index of CAFE is significantly larger
than that of the original database [6].

3 Motivation
In this section, we explain the motivation of our approach:
in particular, why the redundancy of the position infor-
mation exists in an n-gram index, and how we eliminate
that redundancy. Figure 3 illustrates a motivating exam-
ple involving a set of documents, an n-gram index, and a
n-gram/2L index.

Figure 3(a) shows an example of a set of N documents.
Let the sequence of characters “a1a2a3a4” be the subse-
quence A occurring at the offsets o1, o3, and o5 in the
documents 1, 2, and N . Let the sequence of characters
“b1b2b3b4” be the subsequence B occurring at the offsets
o2 and o4 in the documents 1 and N . Then, the three con-
secutive 2-grams “a1a2”, “a2a3”, and “a3a4” occur in the
documents 1, 2, and N , and “b1b2”, “b2b3”, and “b3b4” in
the documents 1 and N .

Figure 3(b) shows the n-gram index created on the doc-
uments in Figure 3(a). In Figure 3(b), the postings shaded

have the redundancy in the position information. In the
posting lists of the 2-grams “a1a2”, “a2a3”, and “a3a4”,
the fact that the difference between the offset of “a1a2”
and that of “a2a3” (or “a3a4”) is 1 (or 2) is repeatedly rep-
resented not only in the document 1 but also in the docu-
ments 2 and N . Such repetition also appears in the post-
ing lists of the 2-grams “b1b2”, “b2b3”, and “b3b4”. That
is, if a subsequence is repeated multiple times in docu-
ments, the relative offsets (within the subsequences) of the
n-grams extracted from that subsequence would also be in-
dexed multiple times.

If the relative offsets of n-grams extracted from a sub-
sequence are indexed only once, the index size would be
reduced since such repetition is eliminated. Figure 3(c)
shows the n-gram/2L index created on the documents in
Figure 3(a). The offsets of the three 2-grams “a1a2”,
“a2a3”, and “a3a4” can be represented in two levels as
follows. The first level becomes the offsets of the subse-
quence A within documents as shown in the right part of
Figure 3(c); the second level becomes the offsets of the 2-
grams “a1a2”, “a2a3”, and “a3a4” within the subsequence
A as shown in the left part of Figure 3(c).

o1 o2

o3

o4 o5

document 1 a1 a2 a3 a4 b1 b2 b3 b4
...... ...

document 2 a1 a2 a3 a4
... ...

document N a1 a2 a3 a4
...... b1 b2 b3 b4

...

A

A

B

A

B

...

2-grams posting lists

1, [o1+0]

1, [o1+2]
1, [o2+0]
1, [o2+1]
1, [o2+2]

1, [o1+1]
a1a2

a2a3

a3a4

b1b2

b2b3

b3b4

2, [o3+0]

2, [o3+2]
N, [o4+0]
N, [o4+1]
N, [o4+2]

2, [o3+1]
N, [o5+0]
N, [o5+1]
N, [o5+2]

2-grams

a1a2

a2a3

a3a4

b1b2

b2b3

b3b4

A, [0]

A, [2]
B, [0]
B, [1]
B, [2]

A, [1]

A
B

1, [o1]
1, [o2]

2, [o3]
N, [o4]

N, [o5]

subsequences

posting lists

posting lists

(a) Document collection.

(b) Redundancy of the position information 
in the n-gram index.

(c) Elimination of the redundancy 
in the n-gram/2L index.

Figure 3: An example of redundancy and its elimination in
an n-gram index.

We note that the construction of the n-gram/2L index
is identical to the relational normalization process that re-
moves the redundancy caused by a non-trivial multivalued
dependency(MVD). We formally prove this proposition in
Theorem 2.

4 n-Gram/2L Index
4.1 Index Structure
Figure 4 shows the structure of the n-gram/2L index, which
consists of the back-end index and the front-end index. The
back-end index stores the absolute offsets of subsequences
within documents, and the front-end index the relative off-
sets of n-grams within subsequences.

4.2 Index Building Algorithm

The n-gram/2L index is built through the following four
steps: (1) extracting subsequences, (2) building the back-
end index, (3) extracting n-grams, and (4) building the
front-end index. When extracting subsequences, the length
of subsequences is fixed to be m, and consecutive subse-
quences overlap with each other by n− 1. The purpose for
this overlap is to prevent missing or duplicating n-grams,
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(a) The front-end index. (b) The back-end index.

…

B+-Tree on
n-grams

…

B+-Tree on 
subsequences

a posting: v, [o1, …, of(v,t)]
a posting: d, [o1, …, of(d,s)]

posting lists 
of n-grams

posting lists of 
subsequences

frequency of occurrence 
of n-gram t in subsequence vf(v,t):

offset where n-gram t
occurs in subsequence voi:

subsequence identifierv:

frequency of occurrence 
of n-gram t in subsequence vf(v,t):

offset where n-gram t
occurs in subsequence voi:

subsequence identifierv:

frequency of occurrence 
of subsequence s in document df(d,s):

offset where subsequence s
occurs in document doi:

document identifierd:

frequency of occurrence 
of subsequence s in document df(d,s):

offset where subsequence s
occurs in document doi:

document identifierd:

Figure 4: The structure of the n-gram/2L index.

i.e., we extract no more or no less n-grams than is neces-
sary. We formally prove the correctness of this method in
Theorem 1. Hereafter, we call the (n−1)-overlapping sub-
sequence of length m as the m-subsequence. We note that
n denotes the length of the n-gram, and m the length of the
m-subsequence.

Theorem 1 If m-subsequences are extracted such that con-
secutive ones overlap with each other by n− 1, no n-gram
is missed or duplicated.
Proof: See Appendix A.

Figure 5 shows the algorithm for building the n-gram/2L
index. We call this algorithm n-Gram/2L Index Build-
ing. In Step 1, the algorithm extracts m-subsequences
from a set of documents such that they overlap with each
other by n − 1. Suppose that a document is the sequence
of characters c0, c1, ..., cN−1. The algorithm extracts m-
subsequences starting from the character c i∗(m−n+1) for
all i where 0 ≤ i < �N−n+1

m−n+1�. If the length of the last
m-subsequence is less than m, the algorithm pads blank
characters to the m-subsequence to guarantee the length of
m. In Step 2, the algorithm builds the back-end index us-
ing the m-subsequences obtained in Step 1. For each m-
subsequence s occurring f times in a document d at offsets
o1, ..., of , a posting < d, [o1, ..., of ] > is appended to the
posting list of s. In Step 3, the algorithm extracts n-grams
from the set of m-subsequences obtained in Step 1 by using
the 1-sliding technique. In Step 4, the algorithm builds the
front-end index using the n-grams obtained in Step 3. For
each n-gram g occurring f times in an m-subsequence v at
offsets o1, ..., of , a posting < v, [o1, ..., of ] > is appended
to the posting list of g.

Example 2 Figure 6 shows an example of building the n-
gram/2L index. Suppose that n = 2 and m = 4. Fig-
ure 6(a) shows the set of documents. Figure 6(b) shows the
set of the 4-subsequences extracted from the documents.
Since 4-subsequences are extracted such that they overlap
by 1 (i.e., n − 1), those extracted from the document 0 are
“ABCD”, “DDAB”, and “BBCD”. Figure 6(c) shows the
back-end index built from these 4-subsequences. Since the
4-subsequence “ABCD” occurs at the offsets 0, 3, and 6
in the documents 0, 3, and 4, respectively, the postings
< 0, [0] >,< 3, [3] >, and < 4, [6] > are appended to
the posting list of the 4-subsequence “ABCD”. Figure 6(d)
shows the set of the 4-subsequences and their identifiers.
Figure 6(e) shows the set of the 2-grams extracted from
the 4-subsequences in Figure 6(d). Since 2-grams are ex-
tracted by the 1-sliding technique, those extracted from the
4-subsequence 0 are “AB”, “BC”, and “CD”. Figure 6(f)

Algorithm n-Gram/2L Index Building:

Input: (1) The document collection  D,  

(2) The length  m of subsequences , 

(3) The length  n of n-grams

Output: The two-level n-gram inverted index

Algorithm:

Step 1.  Extraction of m-subsequences: for each document in D

1.1  Suppose that a document d is a sequence of characters c0,c1,...,cN-1 ;

extract m-subsequences starting from the character 

ci*(m-n+1) (0 ≤ i < ⎣(N-n+1)/(m-n+1)⎦) and

record the offsets of the m-subsequences within d.        

1.2  If the length of the last m-subsequence is less than m,

pad blank characters to the m-subsequence.

Step 2.  Construction of the back-end inverted index: 

for each m-subsequence obtained in Step 1

2.1  Suppose that an m-subsequence s occurs in a document d at offsets o0,o1,...,of ;

append a posting <d, [o0,o1,...,of ]> to the posting list of s.

Step 3.  Extraction of n-grams: for each m-subsequence obtained in Step 1

3.1 Suppose that an m-subsequence s is a sequence of characters c0,c1,...,cL-1 ; 

extract n-grams starting at the character ci (0 ≤ i < L-n+1) and

record the offsets of the n-grams within s.        

Step 4.  Construction of the front-end inverted index: for each n-gram obtained in Step 3

4.1  Suppose that an n-gram g occurs in an m-subsequence v at offsets o0,o1,...,of ; 

append a posting <v, [o0,o1,...,of ]> to the posting list of g.

Figure 5: The algorithm of building the n-gram/2L index.

shows the front-end index built from these 2-grams. Since
the 2-gram “AB” occurs at the offsets 0, 2, 1, and 2 in the
4-subsequences 0, 3, 4, and 5, respectively, the postings
< 0, [0] >,< 3, [2] >,< 4, [1] >, and < 5, [2] > are
appended to the posting list of the 2-gram “AB”.

(c) The back-end index.

4-subsequence window

A B C D D A B B C D

D A B C D A B C D A

C D A B B C D D A B

B C D A B C D A B C

D D A B C D A B C D

B B C D A B C D A B

(a) The document collection.

4-subsequences
posting lists of

4-subsequences

ABCD
BBCD
BCDA
CDAB
DABC
DDAB

0, [0]

1, [6]
1, [3]
1, [0]
0, [3]

0, [6]
3, [3] 4, [6]
2, [3] 5, [0]
3, [0] 4, [3]
2, [0] 5, [6]
3, [6] 5, [3]
2, [6] 4, [0]

A B C D

B B C D

B C D A

C D A B

D A B C

D D A B

(b) The set of 
4-subsequences.

document 0

document 1

document 2

document 3

document 4

document 5

(f) The front-end index.

2-grams posting lists of 2-grams

0, [0] 3, [2] 4, [1] 5, [2]

0, [1] 1, [1] 2, [0] 4, [2]
0, [2] 1, [2] 2, [1] 3, [0]
2, [2] 3, [1] 4, [0] 5, [1]
5, [0]

1, [0]
AB
BB
BC
CD
DA
DD

A B C Dsubsequence 0

subsequence 1

subsequence 2

subsequence 3

subsequence 4

subsequence 5

B B C D

B C D A

C D A B

D A B C

D D A B

(d) The set of 4-subsequences.

A B

B B

B C

C D

D A

D D

(e) The set of 2-grams.

Figure 6: An example of building the n-gram/2L index.

4.3 Query Processing Algorithm

In this section, we present the algorithm for processing
queries using the n-gram/2L index. For easy of exposition,
we deal with only exact-match queries that consist of a sin-
gle string. Our algorithm can be extended to accommodate
approximate-match queries or boolean queries that consist
of multiple strings.

The query processing algorithm consists of the the fol-
lowing two steps: (1) searching the front-end index in order
to retrieve candidate results, (2) searching the back-end in-
dex in order to refine candidate results. In the first step,
we select the m-subsequences that cover a query string by
searching the front-end index with the n-grams extracted
from the query string. The m-subsequences which do not
cover the query string are filtered out in this step. In the
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second step, we select the documents that have a set of m-
subsequences {Si} containing the query string by search-
ing the back-end index with the m-subsequences retrieved
in the first step. The documents including one or more m-
subsequences retrieved in the first step represent a set of
candidate results satisfying the necessary condition of (i.e.,
covering) the query. The final results can be obtained in
the second step by doing refinement that removes the false
positives.

Now, we formally define cover in Definition 1 and con-
tain in Definition 3.

Definition 1 S covers Q if an m-subsequence S and a
query stringQ satisfy one of the following four conditions:
(1) a suffix of S matches a prefix of Q; (2) the whole string
of S matches a substring of Q; (3) a prefix of S matches a
suffix of Q; (4) a substring of S matches the whole string
of Q.

Definition 2 The expand function expands a sequence
of overlapping character sequences into one charac-
ter sequence. (1) For a sequence consisting of
two character sequences: Let Si = ci...cj and
Sp = cp...cq . Suppose that a suffix of Si and
a prefix of Sp overlap by k (i.e., cj−k+1...cj =
cp...cp+k−1, where k ≥ 0.) Then, expand(SiSp) =
ci...cjcp+k...cq. (2) For a sequence consisting of more
than two character sequences: expand(SlSl+1...Sm) =
expand(expand(SlSl+1), Sl+2...Sm).

Definition 3 {Si} contains Q if a set of m-subsequences
{Si} and a query string Q satisfy the following condi-
tion: Let SlSl+1...Sm be a sequence of m-subsequences
overlapping with each other in {Si}. A substring of
expand(SlSl+1...Sm) matches the whole string of Q.

Example 3 Figure 7 shows examples of covering. Here,Q
is the query and S is an m-subsequence. In Figure 7(a), S
covers Q since a suffix of S matches a prefix of Q. In Fig-
ure 7(b), S does not cover Q since “BCD” does not satisfy
any of the four conditions in Definition 1.

(a) S covers Q.

Q B  B  C  D  A

A   B  B  CS

(b) S does not cover Q.

Q B  B  C  D  A

A  B  C  DS

Figure 7: Examples of an m-subsequence S covering the
query Q.

Lemma 1 A document that has a set of m-subsequences
{Si} containing the query string Q includes at least one
m-subsequence coveringQ.

Proof: We first show the cases that a set of m-subsequences
{Si} contains Q in Figure 8. Let Len(Q) be the length of
Q. We classify the cases depending on whether Len(Q) ≥
m (Figure 8(a)) or Len(Q) < m (Figures 8(b) and (c)). In
Figure 8(a), the set {Si, ..., Sj} contains Q. In Figure 8(b),
the set {Sk} contains Q. In Figure 8(c), the set {Sp, Sq}
contains Q. From Figure 8 we see that, if the set {Si}
contains Q, at least one m-subsequence in {Si} satisfies a
condition in Definition 1, coveringQ.

Figure 9 shows the algorithm of processing queries us-
ing the n-gram/2L index. We call this algorithm n-Gram/2L
Index Searching. In Step 1, the algorithm splits the query
string Q into multiple n-grams and searches the posting

Q

...

...

...

...

...

(a) {Si, Si+1, ... Sj} contains Q.

...

... Si
Si+1

Sj

Sk
Sp

Sq

for Len(Q) ≥ m

for Len(Q) < m Q Q

(b) {Sk} contains Q. (c) {Sp, Sq} contains  Q.

Figure 8: The cases that a set of m-subsequences contains
Q.

lists of those n-grams in the front-end index. Then, per-
forming merge outer join among those posting lists using
the m-subsequence identifier as the join attribute, the al-
gorithm adds the m-subsequences that cover Q by Defi-
nition 1 (i.e., m-subsequences satisfying a necessary con-
dition in Lemma 1) into the set Scover. Since an m-
subsequence covering Q typically does not have all the
n-grams extracted from Q, the algorithm performs merge
outer join in Step 1.2. Here, the algorithm uses the offset in-
formation in the postings to be merge outer joined in order
to check whether the m-subsequence covers Q. In Step 2,
the algorithm performs merge outer join among the posting
lists of the m-subsequences in Scover using the document
identifier as the join attribute. It identifies the set {Si} of
the m-subsequences having the same document identifier
di and performs refinement by checking whether {S i} in-
deed contains Q according to Definition 3. Since the set
{Si} may be a subset of Scover, the algorithm performs
merge outer join in Step 2.1. Here, the algorithm uses the
offset information in the postings to be merge outer joined
in order to check whether {Si} contains Q. If {Si} con-
tains Q, di is returned as a query result.

Algorithm n-Gram/2L Index Searching:

Input: (1) The two-level n-gram inverted index

(2) A query string Q

Output: Identifiers of the documents containing Q

Algorithm:

Step 1.  Searching the front-end inverted index: 

1.1  Split Q into multiple n-grams and search the posting lists of those n-grams.

1.2  Perform merge outer join among those posting lists 

using the m-subsequence identifier as the join attribute;

add the m-subsequences that cover Q by Definition 1 into the set Scover.

Step 2.  Searching the back-end inverted index:

2.1  Perform merge outer join among the posting lists of m-subsequences in Scover

using the document identifier as the join attribute.

2.1.1  Identify the set {Si} of m-subsequences having the same

document identifier di and perform refinement by checking 

whether {Si} contains Q or not according to Definition 3.

2.1.2 If {Si} contains Q,  di is returned as the query result.

Figure 9: The algorithm of processing queries using the
n-gram/2L index.

5 Formal Analysis of the n-Gram/2L Index
In this section, we present a formal analysis of the n-
gram/2L index. In Section 5.1, we formally prove that the
n-gram/2L index is derived by eliminating the redundancy
in the position information that exists in the n-gram index.
In Section 5.2, we present the space complexities of these
indexes. In Section 5.3, we present their time complexities
of searching.
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5.1 Formalization

In this section, we observe that the redundancy of the po-
sition information existing in the n-gram index is caused
by a non-trivial multivalued dependency(MVD) [17, 1] and
show that the n-gram/2L index can be derived by elimi-
nating that redundancy through relational decomposition to
the Fourth Normal Form (4NF).

For the sake of theoretical development, we first con-
sider the relation that is converted from the n-gram index
so as to obey the First Normal Form (1NF). We call this re-
lation the NDO relation. This relation has three attributes
N, D, and O. Here, N indicates n-grams, D document iden-
tifiers, and O offsets. Further, we consider the relation ob-
tained by adding the attribute S and by splitting the attribute
O into two attributes O1 and O2. We call this relation the
SNDO1O2 relation. This relation has five attributes S, N,
D, O1, and O2. Here, S indicates m-subsequences, O1 the
offsets of n-grams within m-subsequences, and O2 the off-
sets of m-subsequences within documents.

The values of the attributes S, O1, and O2 appended
to the relation SNDO1O2 are automatically determined by
those of the attributes N, D, and O in the relation NDO. The
reason is that an n-gram appearing at a specific offset o in
the document belongs to only one m-subsequence as shown
in Theorem 1. In the tuple (s, n, d, o1, o2) thus determined
by a tuple (n, d, o) of the relation NDO, s represents the
m-subsequence that the n-gram n occurring at the offset o
in the document d belongs to. o1 is the offset where the
n-gram n occurs in the m-subsequence s, and o2 the offset
where the m-subsequence s occurs in the document d.

Example 4 Figure 10 shows the 2-gram index built on the
documents in Figure 6(a). Figure 11(a) shows the rela-
tion NDO converted from this n-gram index. Figure 11(b)
shows the relation SNDO1O2 (m = 4) derived from the
relation NDO in Figure 11(a). Here, the tuples of the rela-
tion SNDO1O2 are sorted by the values of S. In Figure 11,
the marked tuple of the relation SNDO1O2 is determined
by the marked tuple of the relation NDO. Since the 2-gram
“BC” at the offset 1 in the document 0 belongs to the 4-
subsequence “ABCD” in Figure 6(a), the value of the at-
tribute S of the marked tuple becomes “ABCD”. The value
of the attribute O1 becomes 1 because the 2-gram “BC” oc-
curs in the 4-subsequence “ABCD” at the offset 1, and that
of the attribute O2 becomes 0 because the 4-subsequence
“ABCD” occurs in the document 0 at the offset 0.

2-grams posting lists of 2-grams

AB

BB

BC

CD

DA

DD

0, [0, 5] 1, [1, 5] 2, [2, 8] 3, [3, 7] 4, [2, 6] 5, [4, 8]

0, [1, 7] 1, [2, 6] 2, [4] 3, [0, 4, 8] 4, [3, 7] 5, [1, 5]

0, [2, 8] 1, [3, 7] 2, [0, 5] 3, [1, 5] 4, [4, 8] 5, [2, 6]

0, [4] 1, [0, 4, 8] 2, [1, 7] 3, [2, 6] 4, [1, 5] 5, [3, 7]

0, [3] 2, [6] 4, [0]

0, [6] 2, [3] 5, [0]

Figure 10: An example of the n-gram index.

We now prove that non-trivial MVDs hold in the relation
SNDO1O2 (i.e., the n-gram index) in Lemma 2.
Lemma 2 The non-trivial MVDs S →→ NO1 and S →→
DO2 hold in the relation SNDO1O2. Here, S is not a su-
perkey.

Proof: By the definition of the MVD [12, 17, 1],X →→ Y
holds in R, where X and Y are subsets of R, if whenever
r is a relation for R and µ and ν are two tuples in r, with
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(a) An example of the NDO relation.
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(b) An example of the SNDO1O2 relation.
(sorted by attribute S)
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Figure 11: An example showing the existence of a non-
trivial MVD in the relation SNDO1O2.

µ, ν ∈ r, µ[X ] = ν[X ] (that is, µ and ν agree on the at-
tributes of X), then r also contains tuples φ and ψ, that
satisfy three conditions below. X →→ Y is non-trivial if
Y � X and X ∪ Y 	= R (i.e., R −X − Y 	= ∅)(meaning
Y andR−X−Y are non-empty sets of attributes) [17, 1].
That is, a non-trivial MVD holds if, for any value of the at-
tribute X , the Y -values and the (R−X − Y )-values form
a Cartesian product [16].

1. φ[X] = ψ[X] = µ[X] = ν[X]

2. φ[Y ] = µ[Y ] and φ[R−X − Y ] = ν[R−X − Y ]

3. ψ[Y ] = ν[Y ] and ψ[R−X − Y ] = µ[R−X − Y ]

Let {S1, ..., Sr} be a set of m-subsequences ex-
tracted from the document collection, {N i1, ..., Niq} a
set of n-grams extracted from an m-subsequence S i, and
{Di1, ..., Dip} a set of documents where Si occurs (1 ≤
i ≤ r). Then, the set of n-grams {Ni1, ..., Niq} is
extracted from every document in the set of documents
{Di1, ..., Dip} since Si is in these documents. Hence, in
the set of tuples whose S-value is Si, the NO1-values repre-
senting the n-grams extracted from S i and the DO2-values
representing the documents containing S i always form a
Cartesian product. Suppose that R = SNDO1O2, X = S,
Y = NO1, and R-X-Y = DO2. Then, the three conditions
above are satisfied because the Y-values and the (R-X-Y)-
values form a Cartesian product in the set of tuples having
the same X-values. These conditions above are satisfied
also when Y = DO2. We also note that NO1 � S, DO2 �
S, NO1 ∪ S 	= SNDO1O2, and DO2 ∪ S 	= SNDO1O2.
Thus, the non-trivial MVDs S →→ NO1 and S →→ DO2

hold in the relation SNDO1O2. S is obviously not a su-
perkey as shown in the counter example of Figure 11(b).

Intuitively, non-trivial MVDs hold in the relation
SNDO1O2 because the set of documents, where an m-
subsequence occurs, and the set of n-grams, which are ex-
tracted from that m-subsequence, are independent of each
other. If attributes in a relation are independent of each
other, non-trivial MVDs hold in that relation [12, 16, 17, 1].
In the relation SNDO1O2, due to the independence be-
tween the set of documents and the set of n-grams, there
exist the tuples corresponding to all possible combinations
of documents and n-grams for a given m-subsequence.
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Example 5 Figure 11(b) shows an example showing the
existence of the non-trivial MVDs S →→ NO1 and S →→
DO2 in the relation SNDO1O2. In the shaded tuples of
the relation SNDO1O2 shown in Figure 11(b), there exists
the redundancy that the DO2-values (0, 0), (3, 3), and (4,
6) repeatedly appear for the NO1-values (“AB”, 0), (“BC”,
1), and (“CD”, 2). That is, the NO1-values and the DO2-
values form a Cartesian product in the tuples whose S-value
is “ABCD”. We note that there such repetitions also occur
in the other S-values.

Corollary 1 The relation SNDO1O2 is not in the Fourth
Normal Form (4NF).

Proof: A non-trivial MVD S →→ NO1 exists, where S is
not a superkey.

The front-end and back-end indexes of the n-gram/2L
index are identical to two relations obtained by decompos-
ing the relation SNDO1O2 so as to obey 4NF. We prove
this proposition in Theorem 2. Thus, it can be proved that
the redundancy caused by a non-trivial MVD does not exist
in the n-gram/2L index [12].

Lemma 3 The decomposition (SNO1, SDO2) is in 4NF.

Proof: See Appendix B

Theorem 2 The 4NF decomposition (SNO1, SDO2) of the
relation SNDO1O2 is identical to the front-end and back-
end indexes of the n-gram/2L index.

Proof: The relation SNO1 is represented as the front-
end index by regarding N, S, and O1 as a term, an m-
subsequence identifier, and an offset, respectively. Simi-
larly, the relation SDO2 is represented as the back-end in-
dex by regarding S, D, and O2 as a term, a document iden-
tifier, and an offset, respectively. Therefore, the 4NF de-
composition (SNO1, SDO2) of the relation SNDO1O2 is
identical to the front-end and back-end indexes of the n-
gram/2L index.

Example 6 Figure 12 shows that the relation SNDO1O2 in
Figure 11 is decomposed into the two relations SNO1 and
SDO2. In the attribute S of the relation SDO2, the values
in parentheses indicate m-subsequence identifiers. The tu-
ples of the relation SDO2 are sorted by the m-subsequence
identifier. The shaded tuples of the relation SNDO1O2 in
Figure 11 are decomposed into the shaded ones of the re-
lations SNO1 and SDO2 in Figure 12. We note that the
redundancy, i.e., the Cartesian product between NO1 and
DO2 in Figure 11 has been eliminated in Figure 12. We
also note that the relations SNO1 and SDO2, when repre-
sented in the form of the inverted index, become identical
to the front-end and back-end indexes in Figure 6, respec-
tively.

5.2 Analysis of the Index Size

The parameters affecting the size of the n-gram/2L in-
dex are the length n of n-grams and length m of m-
subsequences. In general, n is the value determined by
applications. On the other hand, m is the value that can
be freely tuned when creating the n-gram/2L index. In this
section, we analyze the size of the n-gram/2L index and
present the model for determining the optimal length of m
that minimizes the index size. We denote the optimal length
of m by mo.

SNO1 relation SDO2 relation
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4-subsequences posting lists

ABCD
BBCD
BCDA
CDAB
DABC
DDAB

0, [0]

1, [6]
1, [3]
1, [0]
0, [3]

0, [6]
3, [3] 4, [6]
2, [3] 5, [0]
3, [0] 4, [3]
2, [0] 5, [6]
3, [6] 5, [3]
2, [6] 4, [0]

2-grams posting lists

0, [0] 3, [2] 4, [1] 5, [2]

0, [1] 1, [1] 2, [0] 4, [2]
0, [2] 1, [2] 2, [1] 3, [0]
2, [2] 3, [1] 4, [0] 5, [1]
5, [0]

1, [0]
AB
BB
BC
CD
DA
DD

The front-end index in Figure 6 The back-end index in Figure 6

Figure 12: The result of decomposing the relation
SNDO1O2 in Figure 11 into two relations.

In Table 1, we summarize some basic notations to be
used for analyzing the size of the n-gram/2L index. Here,
we simply regard the index size as the number of the offsets
stored because the former is approximately proportional to
the latter, the latter representing the occurrences of terms in
documents [8].

Table 1: The notations to be used for analyzing the size of

the n-gram/2L index.

Symbols Definitions

sizengram the size of the n-gram index

sizefront the size of the front-end index

sizeback the size of the back-end index

� the set of unique m-subsequences
extracted from the document collection

kngram(s) the number of the n-grams
extracted from an m-subsequence s

kdoc(s) the frequency of an m-subsequence s
appearing in the document collection

avgngram(�) the average value of kngram(s) where s ∈ �

(= (
�

s ∈�kngram(s)) / |�|)
avgdoc(�) the average value of kdoc(s) where s ∈ �

(= (
�

s ∈�kdoc(s)) / |�|)
Now, in order to determine the value of mo, we define

the decomposition efficiency in Definition 4.

Definition 4 The decomposition efficiency is the ratio of
the size of the n-gram index to that of the n-gram/2L index.
Thus,

decomposition efficiency =
sizengram

sizefront + sizeback
(1)

The decomposition efficiency in Definition 4 is com-
puted through Formulas (1)∼(5). We count the number
of offsets in the index using the number of tuples in the
relation SNDO1O2. The number of tuples in the relation
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SNDO1O2 is equal to that of offsets of the n-gram in-
dex since the relation SNDO1O2 is created by normaliz-
ing the n-gram index into 1NF. As mentioned in Lemma 2,
for any value of the attribute S in the relation SNDO1O2,
the values of attributes NO1 and those of attributes DO2

form a Cartesian product. Thus, in the relation SNDO1O2,
the number of tuples having s as the value of S becomes
kngram(s) × kdoc(s). Accordingly, the size of the n-gram
index can be calculated as in Formula (2), i.e., the summa-
tion of kngram(s)×kdoc(s) for all unique m-subsequences.
We obtain the sizes of the front-end index and the back-
end index similary. In the relation SNO1 corresponding
to the front-end index, the number of tuples having s as
the value of S becomes kngram(s). Hence, the size of the
front-end index is as in Formula (3), i.e., the summation of
kngram(s) for all unique m-subsequences. In the relation
SDO2 corresponding to the back-end index, the number of
tuples having s as the value of S becomes kdoc(s). Hence,
the size of the back-end index is as in Formula (4), i.e.,
the summation of kdoc(s) for all unique m-subsequences.
Consequently, we obtain Formula (5) for the decomposi-
tion efficiency from Formulas (1)∼(4).

sizengram =
∑
s ∈ �

( kngram(s) × kdoc(s) ) (2)

sizefront =
∑
s ∈�

kngram(s) (3)

sizeback =
∑
s ∈�

kdoc(s) (4)

decomposition
efficiency =

∑
s ∈ �( kngram(s) × kdoc(s) )∑
s ∈ �( kngram(s) + kdoc(s) )

≈ |�|(avgngram(�)× avgdoc(�))
|�|(avgngram(�)+ avgdoc(�))

(5)

The decomposition efficiency is computed by using �,
kngram(s), and kdoc(s), which can be obtained by prepro-
cessing the document collection. This can be done by se-
quentially scanning the document collection only once (i.e.,
O(data size)). To determinemo, we first compute decom-
position efficiencies for several candidate values of m, and
then, select the one that provides the maximum decompo-
sition efficiency. Experimental results show that mo is de-
termined approximately in the range (n + 1) ∼ (n + 3),
i.e., longer than n by 1 ∼ 3, in the document collection of
10 MBytes∼1 GBytes.

Formula (5) shows that the space complexity of the n-
gram index isO(|�|(avgngram×avgdoc)), while that of the
n-gram/2L index is O(|�|(avgngram + avgdoc)). As indi-
cated by Formula (5), the decomposition efficiency is max-
imized when avgngram is equal to avgdoc. Here, avgdoc in-
creases as the database size gets larger, and avgngram does
as m gets longer. avgngram also becomes larger in a larger
database since we choose a longer mo to obtain the max-
imum decomposition efficiency. That is, both avgngram

and avgdoc become larger as the database size increases.
Since (avgngram × avgdoc) increases more rapidly than
(avgngram + avgdoc) does, the decomposition efficiency
increases as the database size does. Therefore, the n-
gram/2L index has the characteristic of reducing the index
size more for a larger database.

5.3 Analysis of the Query Performance

The parameters affecting the query performance of the n-
gram/2L index are m, n, and the length Len(Q) of the
query string Q. In this section, we conduct a ballpark anal-
ysis of the query performance to investigate the trend de-
pending on these parameters.

For simplicity of our analysis, we first make the follow-
ing two assumptions: (1) the query processing time is pro-
portional to the number of offsets accessed and the num-
ber of posting lists accessed. The latter has a nontrivial
effect on performance since accessing a posting list incurs
seek time for moving the disk head to locate the posting
list; (2) the size of the document collection is so large
that all possible combinations of n-grams(=|Σ|n) or m-
subsequences(=|Σ|m), where Σ denotes the alphabet, are
indexed in the inverted index (for example, when |Σ| = 26
and m = 5, |Σ|m = 11, 881, 376). Since the perfor-
mance of query processing is important especially in a large
database, the second assumption is indeed reasonable.

The ratio of the query performance of the n-gram in-
dex to that of the n-gram/2L index is computed by us-
ing Formulas (6)∼(9). Let koffset be the average num-
ber of offsets in a posting list, and kplist be the number
of posting lists accessed during query processing. Then,
the number of offsets accessed during query processing
is koffset × kplist. In the n-gram index, since koffset is
sizengram

|Σ|n and kplist is (Len(Q) − n + 1), the query pro-
cessing time is as in Formula (6). In the front-end in-
dex of the n-gram/2L index, since koffset is sizefront

|Σ|n and
kplist is (Len(Q) − n + 1), the query processing time
is as in Formula (7). In the back-end index of the n-
gram/2L index, koffset is sizeback

|Σ|m . Here, kplist is the num-
ber of m-subsequences coveringQ and is calculated differ-
ently depending on whether Len(Q) < m or Len(Q) ≥
m. If Len(Q) ≥ m, the number of m-subsequences
Si+1, ..., Sj−1 in Figure 8(a) is (Len(Q) − m + 1), and
that of m-subsequences Si or Sj is

∑m−n−1
i=0 |Σ|m−n−i. If

Len(Q) < m, the number of a m-subsequence Sk in Fig-
ure 8(b) is

(
(m− Len(Q) + 1) × |Σ|m−Len(Q)

)
, and that

of m-subsequences Sp or Sq is
∑Len(Q)−n−1

i=0 |Σ|m−n−i.
Hence, the query processing time in the back-end index is
as in Formula (8). Finally, Formula (9) shows the ratio of
the query processing times.

timengram =
sizengram

|Σ|n × (Len(Q) − n+ 1) (6)

timefront =
sizefront

|Σ|n × (Len(Q) − n+ 1) (7)

timeback=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sizeback

|Σ|m × (Len(Q) −m+ 1

+2
∑m−n−1

i=0 |Σ|m−n−i),

if Len(Q) ≥ m

sizeback

|Σ|m ×((m−Len(Q)+1)×|Σ|m−Len(Q)

+2
∑Len(Q)−n−1

i=0 |Σ|m−n−i),

if Len(Q) < m

(8)
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timengram

timefront + timeback
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sizengram×(Len(Q)−n+1)

(sizefront×(Len(Q)−n+1))+
�

sizeback×( Len(Q)−m+1
|Σ|m−n +c)

� ,
if Len(Q) ≥ m

sizengram×(Len(Q)−n+1)

(sizefront×(Len(Q)−n+1))+

�
sizeback×( m−Len(Q)+1

|Σ|Len(Q)−n
+d)

� ,

if Len(Q) < m

where c = 2
�m−n−1

i=0 ( 1
|Σ| )

i, d = 2
�Len(Q)−n−1

i=0 ( 1
|Σ| )

i (9)

By substituting sizengram with |�|(avgngram ×
avgdoc), Formula (9) shows that the time complexity of
the n-gram index is O(|�|(avgngram× avgdoc)) while that
of the n-gram/2L index is O(|�|(avgngram + avgdoc)).
That is, the time complexities of those indexes are iden-
tical to their space complexities. The time complexity in-
dicates that the n-gram/2L index has a good characteristic
that the query performance improves compared with the n-
gram index, and further, the improvement gets larger as the
database size gets larger.

From Formulas (6)∼(9), we note that the query process-
ing time of the n-gram index increases proportionally to
Len(Q). In contrast, the query processing time of the n-
gram/2L index increases only slightly. In the front-end
index, the query processing time increases proportionally
to Len(Q), but it contributes a very small proportion of
the total query processing time because the index size is
very small. The size of the front-end index is much smaller
than that of the n-gram index because the total size of m-
subsequences is much smaller than the total size of doc-
uments (for example, when the size of the document col-
lection is 1 GBytes and m=5, the size of the set of m-
subsequences is 13 ∼ 27 MBytes). Furthermore, in the
back-end index, Len(Q) little affects the query process-
ing time since |Σ|m−n is dominant (for example, when
|Σ| = 26,m = 6, and n = 3, |Σ|m−n = 17, 576). This is
also an excellent property since it has been pointed out that
the query performance of the n-gram index for long queries
tends to be bad[6].

To analyze the query processing time more precisely,
we should take the time to locate posting lists into account.
Suppose that α is the seek time required for locating a post-
ing list. Then, the total time for locating posting lists is
kplist × α. Hence, by using kplist computed in Formu-
las (6)∼(8), we derive the time for locating posting lists as
shown in Formulas (10)∼(12).

plist timengram = α× (Len(Q) − n+ 1) (10)

plist timefront = α× (Len(Q) − n+ 1) (11)

plist timeback=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α× (Len(Q) −m+ 1

+2
∑m−n−1

i=0 |Σ|m−n−i),
if Len(Q) ≥ m

α×((m−Len(Q)+1)×|Σ|m−Len(Q)

+2
∑Len(Q)−n−1

i=0 |Σ|m−n−i),
if Len(Q) < m

(12)

Formulas (10) and (12) indicate plist timengram =
plist timefront. Thus, the time for locating posting lists
of the n-gram/2L index is larger than that of the n-gram
index by plist timeback. In Formula (12), the dominant

factor of kplist is
(
2

∑m−n−1
i=0 |Σ|m−n−i

)
if Len(Q) ≥

m and
(
2

∑Len(Q)−n−1
i=0 |Σ|m−n−i

)
if Len(Q) < m,

where these values increase exponentially as m gets larger.
Hence, if we select (mo − 1) instead of mo for the length
of m-subsequences, we can significantly improve the query
performance while sacrificing a small increment of the in-
dex size. Consequently, we use (mo − 1) for performance
evaluation in Section 6.2.

6 Performance Evaluation
6.1 Experimental Data and Environment

The purpose of our experiments is to show that the size
and query performance of the n-gram/2L index are superior
to those of the n-gram index. We use the index size ratio
defined in Formula (13) as the measure for the index size
and the number of page accesses and the wall clock time
for the query performance.

index size
ratio =

the number of pages allocated
for the n-gram index

the number of pages allocated
for the n-gram/2L index

(13)

We have performed experiments using two real data
sets. The first one is the set of English text databases –
WSJ, AP, and FR in the TREC databases – used in in-
formation retrieval. We use three data sets of 10 MBytes,
100 MBytes, and 1 GBytes, where tags, spaces, special
characters, and numbers are removed. We call each data
set TREC-10M, TREC-100M, and TREC-1G, respectively.
The second one is the set of protein sequence databases –
nr, env nr, month.aa, and pataa in the NCBI BLAST web
site1 – used in bioinformatics. We use three data sets of
10 MBytes, 100 MBytes, and 1 GBytes. We call each data
set PROTEIN-10M, PROTEIN-100M, PROTEIN-1G, re-
spectively. We remove tags, spaces, special characters, and
numbers in the TREC databases making the formats of the
TREC data and the PROTEIN data similar to exclude the
influence of the format to the results of the experiments.

To compare the index size, we measure the estimated
and real index size ratios in the PROTEIN and TREC
databases while varying m. We use the decomposition ef-
ficiency (Formula (5)) presented in Section 4.2 to estimate
the index size ratio. Then, we show that the estimation of
mo is correct. When creating the n-gram index and the
front-end index, we set n to be 3, which is the most prac-
tically used one in n-gram applications [13, 7]. Besides,
when creating the back-end index, we vary m from 4, the
minimum of m (i.e., n+ 1), to (mo + 1).

To compare the query performance, we measure the
number of page accesses and the wall clock time while
varying the database size and the query length. To test
the effect of the database size, we build three databases of
10 MBytes, 100 MBytes, and 1 GBytes using the PROTEIN
data and TREC data, respectively. Here, we repeat the test

1http://www.ncbi.nlm.nih.gov/BLAST
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100 times with randomly selected queries whose length is
3∼18 and present the average result. To test the effect of
the query length, we vary the query length as follows: 3, 6,
9, 12, 15, and 18. We note that the minimum query length
is 3, which is the same as n = 3. Using PROTEIN-1G
and TREC-1G, we repeat the test 50 times with randomly
selected queries and present the average result.

We conduct all the experiments on a Pentinum 2.6 MHz
Linux PC with 1 GBytes of main memory and 400 GBytes
Segate E-IDE disks. To avoid the buffering effect of the
LINUX file system and to guarantee actual disk I/Os, we
use raw disks for index files. We use the inverted index im-
plemented in the Odysseus ORDBMS [14] for all the ex-
periments. The page size for data and indexes is set to be
4,096 bytes.

6.2 Results of the Experiments

6.2.1 Index Size

Figure 13 shows the estimated and real index size ratios as
the database size and length of m-subsequences are varied
in the PROTEIN databases. These results indicate that the
size of the n-gram/2L index is significantly reduced com-
pared with that of the n-gram index. Figure 13(b) shows
that the size of the n-gram/2L index, when the length of m-
subsequences is set to be mo, is reduced by up to 1.7 times
in PROTEIN-10M, by up to 2.2 times in PROTEIN-100M,
and by up to 2.7 times in PROTEIN-1G compared with that
of the n-gram index.

0

0.5

1

1.5

2

2.5

3

3.5

4 5 6

subsequence length m

e
s
ti
m

a
te

d

in
d
e
x
 s

iz
e
 r
a
ti
o

PROTEIN-1G PROTEIN-100M PROTEIN-10M

0

0.5

1

1.5

2

2.5

3

4 5 6

subsequence length m

re
a
l 
in

d
e
x
 s

iz
e
 r

a
ti
o

(a) The estimated index size ratio 
as m is varied.
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Figure 13: The estimated and real index size ratio in the
PROTEIN databases.

We note that the estimated mo in Figure 13(a) is iden-
tical to the real mo in Figure 13(b). For PROTEIN-10M,
PROTEIN-100M, and PROTEIN-1G, both estimated mo

and real mo are 4, 5, and 5, respectively. Besides, the real
index size ratio is as close as 86% ∼ 98% of the estimated
one, showing a small amount of errors (2% ∼ 14%) in es-
timation. These results indicate that the analysis in Sec-
tion 5.2 is indeed correct.

Figure 14 shows the estimated and real index size ra-
tio in the TREC databases. We note that again the esti-
mated mo is identical to the real mo. However, the real in-
dex size ratio is shown to be 52% ∼ 70% of the estimated
one, showing a larger amount of errors compared with Fig-
ure 13. It is because the inverted index, in real imple-
mentation, stores document identifiers or m-subsequence
identifiers in addition to offsets while we count only off-
sets in estimation. The identifier of a document (or an m-
subsequence) and offsets at which a term occurs are main-
tained as a unit in a posting (See Figure 4). Here, the space
required for identifiers is relatively larger in the n-gram/2L

index because the average number of offsets in a posting
is smaller than in the n-gram index, thus making the esti-
mation to deviate from the real one. This difference of the
average number of offsets is due to duplication of offsets
in the n-gram index and its elimination in the n-gram/2L
index. This tendency is more marked in Figure 14 than in
Figure 13 because in TREC data, a collection of magazines
or papers, the words or expressions are more frequently re-
peated.
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Figure 14: The estimated and real index size ratio in the
TREC databases.

Table 2 shows that the index size ratio increases as the
database size does. Here, the maximum index size ratio
is obtained by using mo as the length of m-subsequences.
(We also present the cases where we use (mo − 1) to opti-
mize the query performance) This result confirms our anal-
ysis in Section 5.2. In Table 2, as the database size is varied
by ten fold from 10 MBytes to 1 GBytes, the index size ra-
tio increases by 25% in the PROTEIN databases, and by
29% in the TREC databases on the average whenm = mo.
Similarly, it increases by 2% in the PROTEIN databases,
and by 21% in the TREC databases on the average when
m = mo − 1. Here, since m must be longer than n, there
is no result for m = mo − 1 = 3 in PROTEIN-10M.

Table 2: The index size ratio as the database size is varied.

data set 10 MBytes 100 MBytes 1 GBytes

PROTEIN 1.734 (mo=4) 2.153 (mo=5) 2.705 (mo=5)

N/A (mo − 1=3) 1.847 (mo − 1=4) 1.877 (mo − 1=4)

TREC 1.337 (mo=5) 1.678 (mo=6) 2.219 (mo=6)

1.281 (mo − 1=4) 1.677 (mo − 1=5) 1.878 (mo − 1=5)

6.2.2 Query Performance

Figure 15(a) shows the query processing time of the n-
gram index and n-gram/2L index as the database size is
varied for the PROTEIN database. Here, we set the length
of m-subsequences to (mo − 1). As indicated by the
time complexity in Section 5.3, the n-gram/2L index sig-
nificantly improves the query performance compared with
the n-gram index. Further, we obtain a larger improvement
as the database size gets larger. Figure 15(a) shows that
the improvement in the query performance is 1.37 times in
PROTEIN-100MB and 6.65 times in PROTEIN-1GB.

Figures 15(b) and (c) show the number of page accesses
and query processing time as the query length is varied
for PROTEIN-1G. We note that they increase only very
slightly in the n-gram/2L index as Len(Q) gets longer
while increasing rapidly in the n-gram index. In Fig-
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Figure 15: The query performance for the PROTEIN databases.
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Figure 16: The query performance for the TREC databases.

ure 15(b) and Figure 15(c), as Len(Q) is varied from 3
to 18, the number of page accesses for the n-gram/2L index
increases only by 27% and the wall clock time only by 53%
on the average, while those for the n-gram index increase
by 12.0 times and by 32.9 times, respectively. In effect, the
wall clock time — when considering queries shorter than
six times of n— is improved by up to 13.1 times compared
with those of the n-gram index.

Figure 16 shows the query performance in the TREC
databases, showing a tendency similar to that in the PRO-
TEIN databases.

7 Conclusions
In this paper, we have proposed the n-gram/2L index that
significantly reduces the size and improves the query per-
formance compared with the n-gram index. The novelty of
our approach lies in finding the redundancy of the position
information that exists in the n-gram index and eliminating
that redundancy. To eliminate the redundancy, we construct
the inverted index in two steps: 1) extracting n−1 overlap-
ping subsequences of length m from documents and build-
ing the back-end index; and 2) extracting n-grams from
those subsequences and building the front-end index.

We have theoretically analyzed the properties of the n-
gram/2L index. First, we have formally proven in Lemma 2
that the redundancy of the position information that exists
in the n-gram index is due to a non-trivial MVD. Then,
we have proven in Lemma 3 and Theorem 2 that our in-
dex is derived by the relational normalization process that
decomposes the n-gram index into 4NF. Second, we have

analyzed the space complexity and proposed the model for
determining the optimal length of m (i.e., mo) minimizing
the index size. Since the space complexity of our index
is O(|�|(avgngram + avgdoc)) and that of the n-gram in-
dex is O(|�|(avgngram × avgdoc)), the reduction of the
index size becomes more marked as the database size gets
larger. Third, we have analyzed the time complexity. Since
the time complexity is shown to be the same as the space
complexity, the improvement of the query performance be-
comes more marked as the database size gets larger. Be-
sides, we have found out that we can speed up query pro-
cessing by small sacrifice in the index size (i.e., by using
(mo − 1) as the length of m-subsequences.) Fourth, we
have shown that the query processing time increases only
very slightly as the query length gets longer by using For-
mula (9).

We have performed extensive experiments for the size
and query performance of the n-gram/2L index varying
the data set, length of m-subsequences, database size, and
query length. We have used (mo − 1) as the length of m-
subsequences to speed up query processing. Experimental
results using real text and protein databases of 1 GBytes
show that the size of the n-gram/2L index is reduced by
up to 1.9 (PROTEIN-1G, m = 4) ∼ 2.7 (PROTEIN-1G,
m = 5) times and, at the same time, the query performance
— when considering queries shorter than six times of n —
is improved by up to 13.1 (PROTEIN-1G, m = 4) times
compared with those of the n-gram index.

Overall, these results indicate that the n-gram/2L index
is a new structure that can replace the n-gram index. We
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expect that our index is also capable of efficiently han-
dling approximate matching (e.g., for DNA or protein se-
quences), which attracts much attention recently. We in-
vestigate this method in a future paper.
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Appendix A. Proof of Theorem 1
Let us consider a document d as a sequence of characters
c0, c1, ..., cN−1. Then, the number of the n-grams extracted
from d is N −n+ 1, and the first character of each n-gram
is ci,(0 ≤ i < N − n + 1). Besides, let us consider m
as the subsequence length. Then, the number of the subse-
quences extracted from d is �N−n+1

m−n+1�, and the first char-

acter of each subsequence is cj (0 ≤ j < �N−n+1
m−n+1�). For

the convenience of explanation, let N i be the n-gram with
starting character ci, and Sj be the subsequence with start-
ing character cj . If Sp and Sq are any adjacent two subse-
quences extracted from d, the n-grams extracted from S p

are Np, ..., Np+m−n, and the n-grams extracted from Sq

areNq, ..., Nq+m−n. Suppose Sp and Sq overlap with each
other by the length l. Then we have the following three
cases: (1) l = n− 1, (2) l < n− 1, and (3) l > n− 1. We
prove the Theorem by checking for each case whether there
are n-grams missed or duplicated in the n-grams extracted
from Sp and Sq.
Case l = n− 1: Since Sp and Sq overlap with

each other by n − 1, q = p + m − n + 1.
Thus, the n-grams extracted from Sq are
Np+m−n+1, ..., Np+2m−2n+1; those from Sp are
Np, ..., Np+m−n. Thus, from Sp and Sq , the n-grams
Np, ..., Np+m−n, Np+m−n+1, ..., Np+2m−2n+1

are extracted only once without being missed or
duplicated.

Case l < n− 1: Let us assume l = n − 2 without loss of
generality. Since Sp and Sq overlap with each other by
n−2, q = p+m−n+2. Thus, the n-grams extracted
fromSq areNp+m−n+2, ..., Np+2m−2n+2; those from
Sp are Np, ..., Np+m−n. The n-gram Np+m−n+1 is
not extracted from either Sp or Sq , and therefore, is
missed.

Case l > n− 1: Let us assume l = n without loss of gen-
erality. Since Sp and Sq overlap with each other by n,
q = p + m − n. Thus, the n-grams extracted from
Sq are Np+m−n, ..., Np+2m−2n; those from Sp are
Np, ..., Np+m−n. The n-gram Np+m−n is extracted
once from each Sp and Sq , and therefore, is dupli-
cated.

In summary, if m-subsequences are extracted such that
they overlap with each other by n− 1, no n-gram is missed
or duplicated.

Appendix B. Proof of Lemma 3
MVD’s in SNO1 are SO1 →→ N, SNO1 →→ S|N|O1.
Those in SDO2 are DO2 →→ S, SDO2 →→ S|D|O2. All
of these MVD’s are trivial ones and do not violate 4NF.
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