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Abstract

We introduce a benchmark called TEXTURE
(TEXT Under RElations) to measure the rel-
ative strengths and weaknesses of combin-
ing text processing with a relational workload
in an RDBMS. While the well-known TREC
benchmarks focus on quality, we focus on effi-
ciency. TEXTURE is a micro-benchmark for
query workloads, and considers two central
text support issues that previous benchmarks
did not: (1) queries with relevance ranking,
rather than those that just compute all an-
swers, and (2) a richer mix of text and re-
lational processing, reflecting the trend to-
ward seamless integration. In developing this
benchmark, we had to address the problem
of generating large text collections that re-
flected the (performance) characteristics of a
given “seed” collection; this is essential for a
controlled study of specific data characteris-
tics and their effects on performance. In addi-
tion to presenting the benchmark, with perfor-
mance numbers for three commercial DBMSs,
we present and validate a synthetic generator
for populating text fields.

1 Introduction

As applications emerge that require queries over both
text and relations, supporting text as a new data type
(TextType), has become a focal point for relational
database systems. For example, consider an on-line
store where each item in the catalog has an associated
description and discussion forum. A user may search

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

by relational attributes such as price, product cate-
gory, or brand, or by TextTypes such as “description”
and “forum content”. Combining the two classes of
attribute types, a user may request information about
inexpensive systems for graphic design that are viewed
positively by users. The items in the result may be
sorted according to price, or ranked by a TextType
query on descriptions.

The topic of integrating TextType into an RDBMS
has been widely studied ([20, 11, 17, 8]), and most com-
mercial RDBMS’s have integrated TextTypes. How-
ever, an application developer currently has no way
to assess how a system that stores text in a relational
DBMS will perform. In this paper, we propose a new
benchmark, called TEXTURE, that compares perfor-
mance of query workloads running on relational data-
base systems.

TEXTURE differs from other text benchmarks in
three fundamental ways:

1. The definition of performance focuses on system
response time, as is typical of relational bench-
marks. Benchmarks that focus exclusively on
text, such as TREC [2], often focus on the qual-
ity of results as a measure of system performance.
While quality is important, we assume that users
are sufficiently satisfied with the quality of results
(or will use other complementary benchmarks to
evaluate quality), and wish to assess performance.

2. Previous text database benchmarks (notably [9]),
have also used response time as their primary met-
ric. In contrast to these benchmarks, TEXTURE
includes a broader class of queries. In particular,
[9] does not consider workloads that combine text
expressions and relational predicates. It also does
not consider sorting by a score, such as relevance,
computed from the text expression.

3. TEXTURE measures performance of the end-to-
end text processing task, which includes parsing,
evaluating queries (possibly using specialized IR
based subsystems), and integrating results with
relational data. In contrast, benchmarks such as
Set Query [13] and ASP3 [22] mimic text process-
ing tasks using relations.
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TEXTURE is a micro-benchmark modeled after the
Wisconsin Benchmark [10]. The relations and query
workloads are designed to provide a detailed analysis of
how systems differ with respect to performance. Sys-
tems can be compared with respect to response time
obtained when combining queries over text and rela-
tional attributes. For this purpose, the selectivity of
both types of queries as well as how they are com-
bined, is varied. Finally, system performance can be
compared as the data set is scaled up in size.

The TEXTURE framework consists of a database,
workload, and evaluation specification. The database
consists of several relations with TextType and rela-
tional attributes. Queries are constructed from sev-
eral query templates. Given the database and queries,
multiple systems can be compared by the evaluator
according to response time.

The database is specified according to the Data-
Gen module. This module can use either real data,
if available, or it can produce synthetic data. In this
paper, we focus on the latter. In this case, DataGen
is composed of TextGen and RelGen, which are used
to populate the text and relational attribute values
respectively.

Due to the focus on performance, a key step in de-
veloping TEXTURE was the design and validation of
a novel synthetic data generator, TextGen. TextGen
is unique in that it is capable of accurately scaling up
an input “seed” text collection, while preserving im-
portant data characteristics. The benefits of such a
synthetic generator are:

1. Data Availability: The user may not always have
enough data available for scaling experiments.

2. Experimental Control: Using larger, publicly
available data sets may not be appropriate. For
example, a collection with large documents or
multiple languages may skew results.

3. Anonymity: TextGen can be parameterized us-
ing statistical model parameters estimated from
a “seed” corpus. As a result, third parties can
evaluate the TEXTURE benchmark on behalf of
a user, without access to the user’s text data.

The QueryGen module creates a number of queries
from several query templates. The structure of the
query is determined by the template, but the values
used in the text expressions and relational predicates
are drawn from the database. While the goal is to eval-
uate queries that combine TextType expressions and
relational predicates, we first establish a baseline by
investigating each data type independently. Respec-
tively, these baseline query templates are referred to as
Text queries and Relational queries. Queries that com-
bine the two classes are referred to as Mixed queries,
and are composed by combining Text and Relational
predicates. Currently, the relational operators consid-
ered for Mixed queries include selections, projections,
and joins. QueryGen selects values to plug into queries

according to the selectivity that is chosen by the user.
Finally, TEXTURE specifies how systems are

loaded and how the query workload is evaluated.
Three modes of evaluation are distinguished: (1) fetch-
ing all results, (2) fetching the first result, and (3)
fetching the top-k results. We consider the last mode
to be the most significant in practice because it arises
in many web applications and allows systems a great
degree of flexibility for optimization. The first two
modes are included for completeness, and to shed light
on how different systems work.

In summary, the contributions of this paper are as
follows:

1. We propose the first in-depth benchmark for
mixed relational and text query workloads, uti-
lizing the text generator.

2. We present an evaluation of three commercial
database systems using the benchmark

3. We develop and validate a novel synthetic text
generator (by comparing actual query response
times for each synthetically scaled dataset vis-a-
vis a corresponding real dataset).

1.1 Paper Organization

We describe TEXTURE data, queries, and methodol-
ogy in Sections 2, 3, and 4. We use TEXTURE to com-
pare three commercial systems in Section 5. Next, we
describe in greater detail how we generate document
collections and how we validate the generation proce-
dure in Section 6. Finally, we review related work and
present conclusions.

2 TEXTURE Data

A TEXTURE database consists of several relations,
each with the same schema composed of text and rela-
tional attributes, but varying in the number of tuples.
The relations are named 1x, 2.5x, 5x, 7.5x, and 10x. If
1x contains n tuples, then 10x will contain 10n tuples,
and so forth. The variably sized relations are used to
test system performance as the data set is scaled up.

The schema of each TEXTURE relation is based on
the schema used in the Wisconsin Benchmark [10]. It
consists of a number of relational attributes and two
text attributes as shown in Table 1. The relational
attributes are used for controlling the selectivity of a
query. The text attributes are used for ranked retrieval
and projection.

The attribute TXT-SHORT is for short strings such
as a summary suitable for projecting and displaying in
a query result set. The attribute TXT-LONG is used
for searching and ranking tuples by using an Infor-
mation Retrieval-style query. It is not meant to be
projected with search results but can be retrieved on
a per tuple basis. This is similar to current web ap-
plications: a search typically returns a set of results
that are succinctly described. If a user is interested
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Attribute Values Comment

NUM-ID 0...N − 1 primary key,
clustered

NUM-U 0...N − 1
random,
unclustered
index

NUM-05 0...199
NUM-5 0...19
NUM-50 0, 1
TXT-SHORT VARCHAR (255)

use TextGen
TXT-LONG CLOB

Table 1: The schema used for a relation of N tuples.

in the details of a particular result, they can retrieve
the whole tuple, including the TXT-LONG attribute.
The storage of TXT-SHORT is in-lined with the rest
of the tuple whereas TXT-LONG is a CLOB.

2.1 Data Generators

The TEXTURE relations are populated using the
DataGen module. It is composed of RelGen, for popu-
lating the relational attributes, and TextGen for pop-
ulating the TextType attributes. RelGen is imple-
mented using DBGen [14], which efficiently populates
a relation by sampling distributions that are specified
for each relational attribute.

TextGen is used to populate the TXT-SHORT and
TXT-LONG attributes. TXT-SHORT is a randomly
generated string of length 256. In contrast, TXT-
LONG is searched so is populated with documents.
However, a sufficiently large collection of documents
may not be available for populating the larger rela-
tions. For this purpose, TextGen uses a model of doc-
ument collections that is parameterized using a real
document collection. It then uses the model in order
to generate n documents, one per TXT-LONG value of
the n tuples of a given TEXTURE relation. We refer
to this synthetic collection of documents as Synthetic3

whose construction is described in Section 6. Further-
more, we validate in Section 6.4 that similar perfor-
mance is measured when evaluating the same query
workloads using Synthetic3 and using a real collec-
tion.

Using TextGen, we generate a TEXTURE database
referred to as AP-DB. TextGen’s model is parameter-
ized using the Associated Press (AP) newswire data,
volume one, from the TREC data set [2]. The AP
collection contains 84, 678 documents, each of which
contains several text attributes. The largest attribute,
body, is used for parameterizing TextGen’s model. The
collection of body documents consumes 250 MB of
storage and has on average 315 words per document.
Then, RelGen and TextGen populate the 1x relation
with 84, 678 tuples. The same distributions for rela-
tional attributes as well as the same TextGen model
are then used to populate the scaled-up relations. For
example, the 2.5x relation contains 211, 695 tuples,
and so forth, with the 10x relation containing 846, 780
tuples, or roughly 2.5 gigabytes of storage.

This process is repeated for a second TEXTURE
database, referred to as VLC2-DB. The only differ-
ence with AP-DB is that the Very Large Collection
(VLC2) data set [1] is used to parameterize TextGen’s
model. The VLC2 collection contains 18, 571, 671 doc-
uments obtained by a crawl of the .GOV Internet do-
main. It requires about 100 GB of storage. How-
ever, we use it in order to compare system perfor-
mance while varying the values used for TXT-LONG
attributes. As a result, VLC2-DB consists of relations
with the same number of tuples as in AP-DB. Conse-
quently, we use 84, 678 randomly selected documents
from VLC2 in order to parameterize TextGen’s model.

3 TEXTURE Queries

The query workload for TEXTURE is also based on
the Wisconsin Benchmark. The objective is to inves-
tigate the effect of selectivity, join conditions and text
query complexity on the query evaluation plan and
resulting performance. There are three broad query
templates that we consider: (1) text-only queries, (2)
single-relation mixed queries, and (3) multiple-relation
mixed queries.

3.1 Text-Only Workloads

The text-only query workload is included in all query
templates so is the baseline for all other query tem-
plates. One of our goals is to determine how the selec-
tivity and type of text query affect performance. For
this purpose, the text-only query workloads are speci-
fied by three parameters:

1. Number of words
2. Word selectivity
3. Type of query expression (connectives used:

AND, OR, phrase)
In practice, text expressions can be more varied

than the above list suggests. For example, systems
support many types of query expansion and proxim-
ity search that are richer than phrases. In addition, it
may be useful to allow a text expression to be specified
by a tuple variable. However, not all systems support
such syntax. Our focus on fundamental text expres-
sions is driven by the principle of choosing the simplest
workloads that exhibit the greatest difference between
systems. Clearly, as system performance converges for
simpler workloads, TEXTURE’s choice of queries will
have to expand. However, the results in Section 5 in-
dicate that the text expressions used do differentiate
the systems studied.

The text expressions consist of single or multi-word
queries. The multi-word queries are phrases or a form
of fuzzy Boolean query that is used to rank documents.
OR queries give a non-zero score to a document if any
query word is included whereas AND queries require
that all query words are included. The two types of
queries are similar in that for those documents with
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non-zero score, all contained query words contribute
to the score.

The word selectivity parameter determines how
many documents match a given query word. A work-
load is constructed by grouping words into selectivity
ranges and randomly sampling within the given range,
following [9], where three ranges, high, medium, and
low are defined. The ranges are obtained as follows:
the words are ordered by descending frequency; the
high range contains the first k words whose cumula-
tive frequency is 90% of all word occurrences. The
range of words whose cumulative frequency accounts
for the next 5% constitutes the medium range, and all
remaining words fall within the low range. Word dis-
tributions are typically skewed, with few words in the
high range and most words in the low range.

Phrase workloads require that multiple words ap-
pear contiguously in a document. Each phrase has
two parts: a single anchor word and one or more fol-
low words. An anchor word w is selected from a given
selectivity range. Then, documents that contain w are
retrieved and a random sample of these are selected in
order to find follow words for w.

Since the workload depends on the word distrib-
ution, text workloads are created independently, once
per relation. All queries in a text-only workload follow
the query template shown in Figure 1. It is assumed
that SCORE assigns the score of a document with re-
spect to the query’s TXT-QUERY (text expression).
Table 2 lists some concrete text-only queries that are
used in the evaluation.

SELECT SCORE, txt-short, num-id
FROM 1x
WHERE CONTAINS(txt-long, TXT-QUERY, SCORE)
ORDER BY SCORE DESC

Figure 1: Text-only query template for ranking 1x tuples
according to TXT-QUERY.

3.2 Mixed Workload

The Mixed workload consists of queries that combine
Text-only selection conditions with relational predi-
cates over relational attributes. The objective of the
mixed relational and text query workloads is to com-
pare query plans across systems. The relational at-
tribute value is chosen such that a system uses an un-
clustered index or a scan. The text attribute varies in
selectivity as described in the previous section. Note
that even though the queries are over a single relation,
optimizer decisions are similar to that of a two-relation
join where the first relation involves the relational at-
tributes and the second relation is the Text attribute.
The choice of queries allows us to see whether or not
Text selectivity plays a role in query optimization for
the systems evaluated. Furthermore, by varying the
complexity of the Text query, we can see if errors in
estimates can lead to poorer query plans.

For simplicity, we assume that text queries and rela-

tional predicates are combined using the AND logical
connective. Figure 2 shows the template used in TEX-
TURE for Mixed queries over a single relation.

SELECT SCORE, txt-short, num-id
FROM A
WHERE CONTAINS(txt-long, TXT-QUERY, SCORE)

and RELATIONALPREDICATE
ORDER BY SCORE DESC

Figure 2: Mixed text, relational query template used for
medMix, lowMix, and multMix queries.

Since we pick the selectivity of relational attributes
so that either an index or a scan is used, how is such a
selectivity picked when comparing multiple systems?
Different systems have different selectivity thresholds
for deciding when to use an index. As a result, us-
ing a selectivity for which an index is selected with
one system may result in a scan on a different system.
While differences in query plans are of interest, a dif-
ference that is due solely to this selectivity threshold is
of interest if we are studying relational query optimiz-
ers. However, our focus is on how the text expression
is used, so we isolate its effect by requiring that if a
system uses an index, then it will make the same de-
cision as other systems. Since this threshold changes
for differently sized relations, predicates are adjusted
for each TEXTURE relation.

TEXTURE also includes Mixed queries over multi-
ple relations. We consider two basic classes of mixed
workloads that join two relations A and B. Queries in
the first class (see Figure 3) apply a text expression to
A and a relational predicate to B. A natural example
of such a query is searching for catalog items by price
and description. The objective of this class of queries
is to test whether the selectivity of the text query plays
a role in query optimization.

SELECT A.SCORE, A.txt-short, A.num-id
FROM A, B
WHERE CONTAINS(A.txt-long, TXT-QUERY, A.SCORE)

and B.RELATIONALPREDICATE
and JOINPREDICATE ORDER BY SCORE DESC

Figure 3: Mixed text, relational query template used for
lowJoin and medJoin queries.

Queries in the second class (see Figure 4) apply a
text expression to both relations. An example of such a
query is searching for catalog items using their descrip-
tion and the content of associated discussion forums.
In both kinds of join workloads in TEXTURE, rela-
tion B has a foreign key constraint to relation A. The
objective of the second class of queries is to highlight
the worst-case scenario for those systems that do not
reduce their text related work with the highly selective
join predicate.

4 Benchmark Methodology

TEXTURE is a micro-benchmark that varies many
fine-grained experimental settings in order to compare
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SELECT A.SCORE, A.txt-short, A.num-id
FROM A, B
WHERE CONTAINS(A.txt-long,TXT-QUERY1,A.SCORE)

and CONTAINS(B.txt-long,TXT-QUERY2,B.SCORE)
and JOINPREDICATE ORDER BY SCORE DESC

Figure 4: Mixed text, relational query template used for
low2Join queries.

Name Type Description

lowTxt Text low frequency words
medTxt Text medium frequency words
andTxt Text two words combined using AND

(medium frequency)
orTxt Text two words combined using OR (low

frequency)
phrTxt Text phrase of two words

lowMix Mix low frequency word, medium rel.
selectivity using NUM-5 equality

medMix Mix medium frequency word, low rel.
selectivity using NUM-U range

multMix Mix andTxt or orTxt, any rel. selectiv-
ity

lowJoin Mix low frequency word, high join selec-
tivity

medJoin Mix medium frequency word, low join
selectivity

low2Join Mix low frequency word, high rel. selec-
tivity on both join relations

Table 2: Examples of text-only and mixed queries.

systems on specific aspects relevant to queries involv-
ing TextType attributes. An experiment is defined by
a choice of settings for the following experiment para-
meters : (1) relation, (2) query template, and (3) eval-
uation mode. The database and query template are as
described in Sections 2, 6, and 3. For each query tem-
plate, 100 queries are generated for the query work-
load. Multiple queries are used in order to smooth
over the variance in number of results that is inherent
with typically skewed word distributions. The evalu-
ation mode refers to whether each query retrieves all
results, the first result, or specifies a top-k hint in order
to fetch the top-k results.

The response measured for each database system is
the total elapsed response time for executing all 100
queries in the experiment. The database system is
loaded with the dataset, and indexes are generated on
a separate disk from the data. For indexes on rela-
tional attributes, statistics are analyzed for use by the
optimizer. Finally, when running a query, we verify
that all systems produce the same results.

All selected experiments are run 6 times against
each database system being evaluated, thereby ensur-
ing “warm numbers”. The result of the first run for
each experiment is discarded, and the reported result
for a database system for a given experiment is the av-
erage response time over the next 5 runs. All reported
results are within 3% of actual values with 95% confi-
dence.

Relation 1x 2.5x 5x 7.5x 10x

medTxt 2863 4663 6884 9461 13856
lowTxt 25 55 109 148 193
andTxt 513 1255 2466 3682 4887
medMix 1 3 5 8 10
lowMix 1 2 2 4 5

Table 3: Average number of results per relation and query
workload for AP-DB

The evaluation of all experiments is handled by a
client process running on the server machine. The
interface used is JDBC and the version of Java is
1.4.0. The operating system is Microsoft Windows
2003 Server. The hardware consists of a dual proces-
sor 1.8Hz AMD machine with 2 GB of memory, and 8,
123 GB IDE Hitachi Deskstar (7200 rpm) hard drives.
Each database system has access to all of available
memory.

5 Benchmark Evaluation

Given the specification for TEXTURE’s data, query
workloads, and evaluation methodology, a wide range
of experiments are conducted on three commercial re-
lational database systems, A, B, and C 1 that provide
integrated support for TextType attributes. The ob-
jective of the experiments are as follows.

1. How do the systems perform as the data set is
scaled up?

2. We look into issues that relational optimizers face
when supporting a TextType expression.

3. Motivated by our web application example, we
look at sorting on relational attributes and inves-
tigate top-k optimizations.

Results are first reported on the AP-DB TEX-
TURE database, followed by results from the VLC2-
DB database.

5.1 Scaling Experiments

In order to investigate how the systems perform as the
data set is scaled up, the queries listed in Table 2 are
evaluated over the relations whose size is scaled by a
factor of 10. The average number of results per query,
organized by query workload and data set is given in
Table 3.

Results from text-only workloads are first discussed,
followed by mixed query results.

5.1.1 Text Only Workload

The results obtained from the text-only workloads
show that performance of all systems scales linearly
as the relations are scaled up. For example consider
the results for lowTxt queries shown in Figure 5.

The results for andTxt queries shown in Figure 6
also scale linearly. However, in terms of magnitude,
response time is an order of magnitude higher. This

1For legal reasons, we do not name the systems.
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Figure 5: Average total elapsed time
over 100 lowTxt queries.

Figure 6: AndTxt costs more due to
added complexity and more results.

Figure 7: The systems are similarly
differentiated for phrase queries.

is expected since the result set counts are an order
of magnitude higher. The orTxt (OR) queries (not
shown) similarly demonstrate linear scale up, both in
terms of the relation size and in the number of words
in the text expression.

Results for phrase queries are shown in Figure 7.
Each phrase consists of two words. The anchor word
is of low selectivity and its follow word is chosen from
a random subset of documents that contain the an-
chor. For this experiment, the number of tuples (on
average, 7) returned per phrase is held constant over
all relations. The systems scale well for such highly
selective queries and are ordered similarly as in the
other experiments.

We conjecture that the difference in performance
between systems A and C versus system B is due to
an architectural difference. System B manages text
indexing using relations whereas the other two sys-
tems utilize specialized, text indexing that can be more
finely tuned for text-only workloads.

5.1.2 Mixed Query Workloads

The experiments over mixed query workloads combine
the text workload from Section 5.1 with low (range
predicate over NUM-U) and high (equality predicate
over NUM-5) selectivity relational predicates. The
workloads for single relation mixed workloads, med-
Mix, lowMix, and multMix, are presented in Fig-
ure 2. One query workload that includes a join is
lowJoin. The objective of the experiment is to de-
termine whether a system’s optimizer uses informa-
tion about the text index in constructing an evalua-
tion plan. First we consider the case where a single
relation is referenced by the query, and this is followed
by a section on queries that include joins.

The results for lowMix (not shown) are nearly iden-
tical to that of lowTxt results in Figure 5 with respect
to both scaling and magnitude. Since the text expres-
sion is the same for both workloads, all systems first
process the results from the text expression, retrieve
the records, and filter those that do not match the
relational predicate.

The medMix workload reverses the situation with a
low selectivity relational predicate and a high selectiv-
ity text expression. The results are shown in Figure

8.
The reason for the difference is in the plans used

by the three systems. Systems A and C use a nested
loops join to combine relational and text results. How-
ever, system A always chooses to scan the results from
the text expression as the outer access method. Thus,
for low selectivity (few records selected) text queries,
the overall response time is low. Conversely, for high
selectivity text expressions, most probes from the text
expression will not yield any results. System C on the
other hand exchanges the inner and outer relations
thus probing by the lower selectivity relational predi-
cate, obtaining overall faster response times. System
B takes an entirely different approach by converting
each join input to a bitmap, intersecting, and fetching
records by RID.

The multMix workload uses a two-word text expres-
sion to determine whether optimizers are sensitive to
the type of text expression. The text expression used
is from andTxt (AND queries) which have a higher
selectivity than the relational predicate. The results
(not shown) are nearly identical to the andTxt result
shown in Figure 6 for systems A and C. However, the
difference between System B and the the other systems
decreases.

5.1.3 Multiple Relation Workloads

This section considers join queries. The lowJoin work-
load joins two relations, R and S with relation R be-
ing the 5x relation and S being the 2.5x relation. The
join condition is on NUM-U whose values are unique
so at most one record from R matches a record from
S. Additionally, S has a low selectivity text expression
whereas R has a high selectivity text expression. The
average response time for systems A and C is 47 and
28 seconds, respectively. System B was unable to com-
plete the experiment in a reasonable amount of time
(over two orders of magnitude slower).

The query evaluation plans uncover another differ-
ence between systems A and C compared to system
B. Systems A and C first select tuples using the low
selectivity text expression on S. Then, relation R is
joined, followed by a selection on R using high selec-
tivity text expression. System B selects tuples using
both text expressions on R and S, then join the result-
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Figure 8: Scaling trends for medMix
query workload.

Figure 9: Scaling trends for medMix
workload with top-k optimization.

Figure 10: Scaling trends for the
lowTxt workload using VLC2-DB.

ing tuples. Many unnecessary tuples from R are seen,
thus leading to poorer performance.

5.2 Sort Order and Top-k Optimization

Thus far, our evaluation has focused on the case where
the sort order is based on the score of the record with
respect to its text expression. This corresponds to a
web application in which a user would like to see the
most relevant results where relevance is defined exclu-
sively in terms of their text expression. Alternatively,
the results could be sorted in terms of a relational at-
tribute such as time. In either case, it is assumed that
only the first few results are presented. For either sort
clause, how do the systems’ optimizations for top-k
queries perform? The results in Table 4 show the aver-
age elapsed time for both text type queries and mixed
queries where the sort order and top-k optimization
hint are independently toggled. The results shown are
obtained using the 10x relation.

Score S-Topk Rel. R-Topk

System A

medMix 136 3.8 136 1.5
lowMix 4.0 1.5 4.0 3.8

System B

medMix 194 183 186 1,520
lowMix 57 57 57 90

System C

medMix 54 2.8 54 2.8
lowMix 3.4 1.5 3.5 1.5

Table 4: Average elapsed time in seconds for the med-
Mix and lowMix workloads using the 10x relation. Query
results are sorted by Score in the first two columns and
by a relational attribute in the last two columns. All re-
sults are retrieved for columns 1 and 3 whereas the top-k

optimization is used for columns 2 and 4.

The results in Table 4 show that for Systems A and
C, performance is not affected by the choice of sort
order. Similarly, the added benefit of using a top-k
optimization is similar for either sort order. System B
is also indifferent to the sort order used. However, the
effect of a top-k clause differs depending on which sort
is used. When using a score based sort, top-k does
not affect the performance as significantly as it did for

the other systems. However, using a relational sort in
combination with a top-k hint results in a significant
degradation in performance.

Now we examine how the systems fare when the
data set size is scaled up. Results for the medMix
workload is shown in Figure 9. The primary difference
is the level of performance degradation for System B.

5.3 Results Using VLC2 Data Set

The results obtained using VLC2-DB highlight some
of the differences between basing the TXT-LONG at-
tribute on the VLC2 collection, rather than the AP
collection. As shown in Figure 10, the response times
are considerably lower than the comparable lowTxt
queries over AP-DB shown in Figure 5. The reason
is that due to the much larger vocabulary in VLC2,
there are, on the average, fewer results for the low
frequency workload. In addition, system C is shown
to perform more poorly than system A which was not
the case when using the AP data set. The results from
the other experiments (not shown) are similar to basic
trends observed with the AP data set: (1) systems A
and C generally out-perform system B and (2) system
B has significant degradation in performance for top-k
query workloads. However, system A does not domi-
nate over system C or vice-versa across all workloads.

5.4 A Note on Loading and Indexing

While loading and indexing are not the focus of TEX-
TURE, performance across systems was found to vary
widely. The large variability was problematic for scal-
ing up to larger dataset sizes. For example, loading
846, 780 tuples, requiring 2.5 GB of storage into sys-
tem A required roughly 6 minutes. The other systems
each required on the order of hours to load the same
dataset. The indexing times for the VLC2 data set are
summarized in Table 5. The bulk-mode indexing op-
tion for each system was used. We refer the reader to
compare these times with times reported in [15] which
are over the full VLC2 collection. We believe there is
significant room for improvement with regard to load-
ing and indexing TextType data.
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VLC2 1x 2.5x 5x 7.5x 10x

A 38 72 145 205 242
B 17 41 80 112 146
C 5 19 40 63 80

Table 5: Index times reported in minutes.

6 Synthetic Text Generation

The objective of the TextType generator, TextGen, is
to populate the TXT-LONG attribute with text, thus
must generate as many text values, i.e., documents as
there are tuples in a TEXTURE relation. In this sec-
tion, we focus on growing a collection of documents by
increasing the number of documents, while preserving
features of the collection that affect performance. A
document is modeled as a bag of words. TextGen is
given a collection Cinput consisting of n documents as
input, and outputs a scaled up collection Coutput with
m documents, where m > n.

The design of TextGen can be understood in terms
of: (1) the features from Cinput that are maintained
during scale up, (2) the analytical models used to main-
tain the features while scaling, and (3) the model pa-
rameters.

While there are many features one could pick to
characterize collection growth (see [4] for a more com-
plete discussion), we focus on the features that we ex-
pect to have the most impact on performance:
• Word Distribution (W ): The word distribu-

tion W (w, c) associates with every unique word w
in the collection, the number of times c it appears
in the collection.

• Vocabulary Growth (G):Vocabulary growth
refers to the observation in [16] that the num-
ber of unique words grows as new documents are
added to a collection.

• Unique Words per Document (U ) and Doc-
ument Length (D).

Each feature can be characterized using one of sev-
eral analytical models, as discussed in [4]. The models
used in TEXTURE for the features listed above are as
follows:
• W , Empirical Model: The model used for

maintaining W is based on the empirical distribu-
tion derived from the input collection. The model
is used as a means for approximating the proba-
bility that a word will be selected for inclusion in
the collection. If word wi appears xi times, then
it will be chosen approximately xi

X
times where X

is the total number of words in Cinput.
• G, Heaps Law: Vocabulary growth G is modeled

using an empirical law, Heaps Law [16], which
states that the number of unique words |V | in
a collection is a function of the number of total
words in the collection G(x) = αxβ .

• U , D: Average: The unique and total numbers
of words in a document are modeled using their
respective averages, computed directly over the

set of documents in the input collection.
Heaps Law requires extra model parameters, α

and β, that are derived from the input collection. The
derivation is done by fitting 20 evenly spaced points,
each point being the number of total words versus the
number of unique words seen in a collection. The fit
is done using a least squares fit function (in Matlab).

TextGen constructs a synthetic collection in the fol-
lowing three phases.

1. The input collection is preprocessed in order to
derive model parameters.

2. The models are used in the core algorithm that
populates documents with words. This algorithm
is based upon drawing random, independent sam-
ples from W .

3. Independent sampling from the previous step does
not support AND query workloads. The synthetic
collection is post-processed in order to maintain
word co-occurrence.

The three phases are discussed in more detail in the
following Sections.

6.1 Text Generator Pre-Processing

The pre-processing phase serves two purposes. First,
the necessary model parameters are derived as dis-
cussed above. Second, the input words are “random-
ized” meaning that all words in the input collection
are assigned new words of the same length consisting
of random letters.

Following randomization of the vocabulary, the col-
lection words are then mapped to the new words to
form a new collection. Thus, the randomization re-
places each word. That is, a word prior to randomiza-
tion will be replaced with a randomized word of the
same length at every location in the collection where
it appears.

The reasons for randomization are two-fold. The
first is to ensure that all systems produce the same
number of results for a given text expression. Sys-
tems may differ in how words are mapped to index
keys; randomizing effectively levels the playing field
with respect to the amount of data that is returned
to the user. Empirically, we have seen that random-
ization produces nearly identical sets of resulting tu-
ples across systems, whereas without randomization,
the variance in the result set size across systems can
be quite high. Therefore with randomization, we can
compare system performance with out needing to fac-
tor differing result set sizes into observed differences
between systems.

The second reason for randomization is to
anonymize a possibly sensitive sample collection. A
client may request that TEXTURE be run external to
her organization, in which case, anonymization may
first be run locally and the result handed over to the
TEXTURE user.

A drawback of randomization is that system effort
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spent in improving ranking quality is partially ignored.
However, comparing systems with respect to quality,
irrespective of randomization, would require agreed
upon quality judgments for an ad hoc collection of doc-
uments and query workload, and is beyond the scope
of this paper. It is fair to ask whether randomization
affects performance; the results in Section 6.4.1 show
that this is not the case.

6.2 Text Generator Algorithm

The core TextGen algorithm ties together the features
and models introduced thus far in a common frame-
work, allowing us to instantiate a specific TextGen for
given features and models. Assuming that the model
parameters have been estimated from the input collec-
tion Cinput, the main loop of the generator proceeds as
shown in Figure 11.

TextGen

INPUT: [W]:word distribution, [G]:growth func-
tion, [U]:unique words per document, [D]:total
words per document, [m]:target number of docu-
ments, [k]:increment for growing vocabulary

OUTPUT: collection

for 1 to m

1. Every k documents, GrowVocabulary using G
2. Create document d

3. for 1 to U

Choose word w from distr. W;

Add w to document d

4. AddRemainingWords up to D words to d

5. Add d to collection

Return collection

Figure 11: Pseudo code for the TextGen procedure.

Each document is constructed by sampling indepen-
dently u times from the word distribution W . Subse-
quently, AddRemainingWords fills in the rest of the
document with repeated words in order to maintain
the total number of words per document, D. Ad-
dRemainingWords proceeds by constructing a distri-
bution from the u sampled words, and re-samples to
obtain the remaining words.

6.2.1 Vocabulary Growth

The function GrowVocabulary is used to expand the
current vocabulary from which document words are
drawn. Consider the (i + k)th invocation. First,
x = G(ni+k) − G(ni) new words are generated where
ni is the total number of words sampled for i docu-
ments. Next, the sampled word counts observed from
the ith to the i + k document are merged into W and
W is normalized. Subsequent word samples favor the
new x words over W until each has been included at
least once in the next k documents. The new words

are merged into W during the next GrowVocabulary
invocation.

Two issues remain unresolved: how many docu-
ments k before the next invocation, and how is a new
word generated? If k is too small, the algorithm renor-
malizes more frequently, so is slower. If it is too large,
the resulting growth curve will be less precise. The
value for k that was empirically found to balance these
trade offs is k = 5, 000.

According to [4], word lengths are expected to in-
crease logarithmically as new words are introduced
into the vocabulary. A simplification to word genera-
tion is made by growing existing words by a constant
factor. Since most systems use a level of indirection
between an actual word and its representation in a
TextIndex, the word length is assumed to not have a
significant effect on performance.

6.3 Text Generator Post-Processing

Once all documents are constructed, a post-process
phase fixes some anomalies that may result from
the algorithm. One important anomaly is word co-
occurrences. Recall from Figure 11 that samples from
W are independently drawn. As a result, word clusters
that co-occur in documents in the input collection may
not co-occur in the synthetic collection. While this
sampling approach is simple and efficient, the draw-
back is that performance prediction for AND queries
may suffer. In order to maintain word clustering,
which may appear in real collections, we use a post-
processing step called FixClusters.

FixClusters takes as input a collection of word pairs
along with the degree to which they are clustered. The
task of FixClusters is to make the appropriate modi-
fications to the output collection in order to maintain
the given clustering degree for all input pairs.

The clustering degree is based on the similarity be-
tween a word pair < w1, w2 > found in the sample and
synthetic collection. Similarity is defined in terms of
how far the word pairs are from independence. Since
W may differ between Cinput and Coutput, we cannot
use the joint distribution P (w1, w2). Thus the mea-
sure of similarity used is the ratio of the observed joint
probability to the joint probability under the indepen-

dence assumption: s = P (w1,w2)
P⊥(w1,w2)

. The numerator

is the number of documents containing < w1, w2 >
over n. The denominator is defined in terms of the
probability that a document contains a given word:
P (w1)P (w2).

The algorithm works for a given pair by swap-
ping w1 or w2 from documents containing exclusively
one into another document containing exclusively the
other until the target s is achieved assuming s > 1.
Care has to be taken in order to preserve document
lengths and W . Thus, when swapping in a cluster
word, the word with the closest collection-wide fre-
quency that is not another cluster word must be cho-
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Collection W G(x) Document Length Unique Clustering

Real AP AP 315 211 AP
Synthetic1 Zipf, θ = 0.8358

Heaps:
α = 51.1273, β = 0.495

311
N/A

none
Synthetic2 Empirical 207
Synthetic3 FixClusters

Real VLC2 VLC2 444 196 VLC2
Synthetic2 Empirical Heaps: α = 3.4187, β = 0.7566 438 197 none

Table 6: The features, their models, and model parameters derived from the AP and VLC2 data sets versus the synthetic
collections, derived from their samples, that are used to evaluate text generation performance.

sen.
Once n such documents are produced, and post-

processed by FixClusters, Coutput is complete and
TextGen terminates.

6.4 Text Generator Evaluation

Ideally, performance over document collections pro-
duced by TextGen will be identical to performance
over real document collections from which TextGen
is parameterized. In order to test equality, we use the
following experiment: given a Real collection of m doc-
uments, obtain a sample of n documents, n < m which
are used to parameterize TextGen to create a Synthetic
collection with m documents. In order to show that
TextGen collections are reasonable for several work-
loads, we wish to show that workloads evaluated over
commercial systems A, B, and C yield performance
that is similar to evaluating the same type of work-
load over the Real collection.

We use TEXTURE to run the experiment. As op-
posed to using TEXTURE for identifying differences
between systems as was done in Section 5, now it is
used to test whether a system performs similarly on
multiple document collections.

For the Real collection, we use the AP and VLC2
as seed collections. Each has its words replaced with
random words as discussed in Section 6.1. Their model
parameters are summarized in Table 6. A TEXTURE
database is created for each along with the derived,
Synthetic collection. The sample used is 10% so the
1x relation has 8, 467 tuples and the 10x relation has
84, 678 tuples.

The query workload consists of text-only queries
as described in Section 3. We consider only text
queries since we are interested in testing the validity
of TextGen.

By using TEXTURE, we can vary the collection
size as well as the collection. Thus, several competing
synthetic document collections are tested by varying
the model that TextGen uses. In this sense, varying
TextGen models and validating is a type of search that
uses TEXTURE in order to rank TextGen models ac-
cording to performance that is measured on their gen-
erated document collections.

Specifically, we compare the performance of
three synthetic document collections, Synthetic1,
Synthetic2, and Synthetic3 against the Real collec-

Feature Synthetic3

W Empirical
G(x) Heaps, α = 30.1361, β = 0.5217
Document Length 315
Unique 211
Clustering FixClusters

Table 7: Synthetic3 parameters used for AP-DB.

tion. The synthetic collections differ in the model that
TextGen uses. Synthetic3’s model is described in the
previous section. We vary the model for the other two
collections in order to shed light on which parts of
TextGen’s model affect performance.

Synthetic1 collections are generated by replacing
the empirical distribution used for W with a model
based on Zipf’s Law [23]. Modeling word distributions
using Zipf’s Law is a common approach used in [14],
[7], [9], and [12] to name a few. Its advantages in-
clude simplicity of implementation and its drawback
is that it has been shown not to produce the best fit
for word distributions[5]. In addition, Synthetic1 does
not explicitly maintain the number of unique words per
document U .

Synthetic2 collections are generated by excluding
FixClusters. We wish to know if FixClusters is useful
for AND workloads and does not hurt performance for
other workloads.

Before comparing performance using the synthetic
collections versus the real collection, we present results
showing that randomization does not have a signifi-
cant affect on performance. Then we use the random-
ized real collection as the real collection and show that
Synthetic3 out-performs the other text generators. As
a result, the AP based TEXTURE database, AP-DB
used in Section 5 uses the parameters shown in Table
7. Its parameters are derived from the whole AP col-
lection so differ from the parameters shown in Table 6
which are derived from a sample.

6.4.1 Effect of Randomization

In order to test the effect of randomization, we use
two collections: AP and randomized AP, where each
unique word in AP was replaced with a randomized
word. Then we compared the performance of lowTxt
and medTxt workloads on AP as well as their trans-
lations to randomized AP words. First, however, we
removed those queries that produced different results,
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Figure 12: Synthetic1 overestimates
performance for lowTxt queries on Sys-
tem C.

Figure 13: Synthetic1 underestimates

performance for lowTxt queries on sys-
tem B so is inconsistent across systems.

Figure 14: Synthetic3 outperforms
Synthetic2 for andTxt queries on sys-
tem A due to FixClusters.

either due to punctuation or stemming, in order to fo-
cus on the effect or randomization when the workloads
and their results are held constant. The difference in
response time across systems A, B, and C was found
to be typically low (< 1%) and did not exceed 4.4%.
Therefore, we conclude that using randomized words is
reasonable for the purpose of measuring performance.

6.4.2 Comparative Results

The results show that even for the simplest of work-
loads, the choice of text generator may lead one to
incorrectly conclude that one system out-performs an-
other. Looking at individual systems versus multiple
text generators, Figures 12 and 13 show that the same
generator leads to a different ranking of systems with
regard to performance. More importantly, Synthetic3

predicts performance well and consistently across sys-
tems, while e.g., Synthetic1 predicts that System C
can be expected to degrade more rapidly than the
baseline indicates. The results for System A, not
shown, have the same trend as System C except that
Synthetic1 underestimates the real collection perfor-
mance. Also note that applying FixClusters in the
case of Synthetic3 does not effect single term work-
loads. Similar results were obtained for orTxt queries.

A significant difference between Synthetic1 and the
other generators is its use of Zipf’s Law. The model a
text generator uses for word distribution determines to
a large extent the number of results that match a word.
This corresponds to the length of a word’s posting list,
which a text index uses to store a word’s matching doc-
uments. The other difference between Synthetic1 and
the others is that it does not model unique words per
document as a feature. 2 Without maintaining unique
words, more unique words are included per document,
leading to more document matches per word.

The AND query workload poses challenges due
to the independence assumption implicit in the core
algorithm of text generator. Since Synthetic3 and
Synthetic2 are found to be more accurate for single

2A similar generator using an empirical model for distri-
bution was implemented without modeling unique words and
proved to be uniformly worse than Synthetic2 but better than
Synthetic1.

word and OR workloads, the results in Figure 14 com-
pare only these two generators to the real collection.
The results show better predictions with FixClusters
(Synthetic3) when applied to System A than without
(Synthetic2). The lower predicted response time with
Synthetic2 is expected since the workload with clus-
ters returns more results when the data preserves the
clusters as seen in the real collection as well as Fix-
Clusters in Synthetic3.

The experiments based on the VLC2 collection are
similarly encouraging. As a result of the poorer results
obtained when using Synthetic1, we compare the real
VLC2 collection against Synthetic2 using query work-
loads medTxt and lowTxt. The results for medTxt
are shown in Figure 15. As with the experiments run
against AP, System B is slower than the other two but
the generator is more accurate for Systems A and B
when compared to System C.

Figure 15: Results over all systems from evaluating
medTxt using Synthetic2 seeded with VLC2 data.

The results demonstrate that Synthetic3 is more
robust across workloads and systems in comparison to
the other text generators. Thus, Synthetic3 is used in
the evaluation in Section 5.1 for scale-up experiments
up to 10 times the input collection.

7 Related Work

There are several relational database benchmarks that
measure performance using TextType. For exam-
ple, TPC-W [3], specifies single word containment
queries without a sort order or relational predicates.
The ASP3 [13] and SetQuery [13] benchmarks spec-
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ify relational queries that mimic information retrieval
processing. ASP3, for example includes an informa-
tion retrieval type query whose objective is to test if
a system utilizes index intersection plans. The Set
Query benchmark specifies document retrieval queries
as a count over similar types of queries found in ASP3.
In contrast, TEXTURE focuses on end-to-end perfor-
mance and does not make an assumption regarding
how text processing is implemented.

Similarly, there are many benchmarks that focus
exclusively on information retrieval systems. These
include Full-Text Document Retrieval Benchmark
(FTDR) [9], the Very Large collection (VLC) track
from the TREC conferences [2], numerous research
projects [6, 7, 21] to name a few. Amongst other dif-
ferences, all differ from TEXTURE by not specifying
relational predicates.

The TREC benchmarks focus on the quality of re-
sults given a user task. While each participant submits
a summary of their experiment that includes indexing
and query times, the granularity of this information is
too coarse to make a detailed, systematic comparative
analysis with the performance numbers obtained using
TEXTURE.

The VLC Track from the TREC conference investi-
gates how scale impacts performance and quality [15]
when using a real data set. In addition, VLC com-
pares systems by measuring indexing time and ma-
chine costs. These are both interesting and useful di-
rections in which TEXTURE should be extended.

FTDR uses real data so it includes a wider vari-
ety of query workloads, including proximity queries.
While scaling is specified, the assumption made is that
a sufficiently large data set is available. TEXTURE,
in contrast, trades diversity of the query workload in
order to generate larger data sets in a systematic and
potentially anonymizing manner. In addition, FTDR
does not consider top-k queries or ordering results ac-
cording to score, which is a significant limitation given
the central role of such queries in practice.

Synthetic text generation has been used for the past
fifty years [18]. It is being used in speech synthesis,
benchmarking, and text retrieval research. TPC-W [3]
for example includes the WGEN program that popu-
lates the benchmark’s text attributes using a static
collection of words and a grammar.

In [19], text generation is used to study the effect
of a growing collection on inverted index maintenance
strategies. A similar approach is taken in that an em-
pirical word distribution and growth curve are used in
text generation. However, the scale-up is limited to 3x
as a result of the growth curve and fit that is used. In
addition, clustering amongst words is not handled.

8 Conclusions

We have presented a text database benchmark and
a detailed synthetic text generator that can scale up

a given collection of documents. Additional benefits
of synthetic generation include understanding one’s
dataset, the ability to finely control experiments, and
to potentially anonymize a data set. Our results shed
light on the support for text in current relational data-
base systems, which is timely given the intense focus
on enhancing this support. Future work includes ad-
dressing the other important issues including updates
and how quickly they are propagated to indexes by
different systems and at what cost, and the impact of
multi-user workloads.
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