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Abstract

Developing cost models for query optimization is sig-
nificantly harder for XML queries than for traditional
relational queries. The reason is that XML query
operators are much more complex than relational
operators such as table scans and joins. In this
paper, we propose a new approach, called Comet,
to modeling the cost of XML operators; to our
knowledge, Comet is the first method ever proposed
for addressing the XML query costing problem. As
in relational cost estimation, Comet exploits a set of
system catalog statistics that summarizes the XML
data; the set of “simple path” statistics that we
propose is new, and is well suited to the XML setting.
Unlike the traditional approach, Comet uses a new
statistical learning technique called “transform regres-
sion” instead of detailed analytical models to predict
the overall cost. Besides rendering the cost estimation
problem tractable for XML queries, Comet has the
further advantage of enabling the query optimizer
to be self-tuning, automatically adapting to changes
over time in the query workload and in the system
environment. We demonstrate Comet’s feasibility by
developing a cost model for the recently proposed
XNav navigational operator. Empirical studies with
synthetic, benchmark, and real-world data sets show
that Comet can quickly obtain accurate cost estimates
for a variety of XML queries and data sets.

1 Introduction

Management of XML data, especially the processing of
XPath queries [5], has been the focus of considerable
research and development activity over the past few
years. A wide variety of join-based, navigational,
and hybrid XPath processing techniques are now
available; see, for example, [3, 4, 11, 25]. Each of
these techniques can exploit structural and/or value-
based indexes. An XML query optimizer can therefore
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choose among a large number of alternative plans for
processing a specified XPath expression. As in the
traditional relational database setting, the optimizer
needs accurate cost estimates for the XML operators
in order to choose a good plan.

Unfortunately, developing cost models of XML
query processing is much harder than developing cost
models of relational query processing. Relational
query plans can be decomposed into a sequence of
relatively simple atomic operations such as table scans,
nested-loop joins, and so forth. The data access
patterns for these relational operators can often be
predicted and modeled in a fairly straightforward way.
Complex XML query operators such as TurboX-
Path [14] and holistic twig join [7], on the other
hand, do not lend themselves to such a decomposi-
tion. The data access patterns tend to be markedly
non-sequential and therefore quite difficult to model.
For these reasons, the traditional approach [21] of
developing detailed analytic cost models based on a
painstaking analysis of the source code often proves
extremely difficult.

In this paper, we propose a statistical learning
approach called Comet (COst Modeling Evolution
by Training) for cost modeling of complex XML
operators. Previous research on cost-based XML
query optimization has centered primarily on cardi-
nality estimation; see, e.g., [1, 9, 18, 23]. To our
knowledge, Comet is the first method ever proposed
for addressing the costing problem.

Our current work is oriented toward XML reposito-
ries consisting of a large corpus of relatively small XML
documents, e.g., as in a large collection of relatively
small customer purchase orders. We believe that such
repositories will be common in integrated business-
data environments. In this setting, the problems
encountered when modeling I/O costs are relatively
similar to those encountered in the relational setting:
assessing the effects of caching, comparing random
versus sequential disk accesses, and so forth. On the
other hand, accurate modeling of CPU costs for XML
operators is an especially challenging problem relative
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to the traditional relational setting, due to the com-
plexity of XML navigation. Moreover, experiments
with DB2/XML have indicated that CPU costs can
be a significant fraction (30% and higher) of the total
processing cost. Therefore our initial focus is on CPU
cost models. To demonstrate the feasibility of our
approach, we develop a CPU cost model for the XNav
operator, an adaptation of TurboXPath. Our ideas,
insights, and experiences are useful for other complex
operators and queries, both XML and relational.

The Comet methodology is inspired by previous
work in which statistical learning methods are used to
develop cost models of complex user-defined functions
(UDFs)—see [13, 15]—and of remote autonomous
database systems in the multidatabase setting [19, 26].
The basic idea is to identify a set of query and data
“features” that determine the operator cost. Using
training data, Comet then automatically learns the
functional relationship between the feature values and
the cost—the resulting cost function is then applied
at optimization time to estimate the cost of XNav for
incoming production queries.

In the setting of UDFs, the features are often fairly
obvious, e.g., the values of the arguments to the
UDF, or perhaps some simple transformations of these
values. In the multidatabase setting, determining the
features becomes more complicated: for example, Zhu
and Larson [26] identify numerically-valued features
that determine the cost of executing relational query
plans. These authors also group queries by “type”,
in effect defining an additional categorically-valued
feature. In the XML setting, feature identification
becomes even more complex. The features that
have the greatest impact on the cost tend to be
“posterior” features—such as the number of data
objects returned and the number of candidate results
inserted in the in-memory buffer—that depend on the
data and cannot be observed until after the operator
has finished executing. This situation is analogous
to what happens in relational costing and, as in the
relational setting, Comet estimates the values of
posterior features using a set of catalog statistics that
summarize the data characteristics. We propose a
novel set of such “simple path” (SP) statistics that are
well suited to cost modeling for complex navigational
XML operators, along with corresponding feature-
estimation procedures for XNav.

The Comet approach is therefore a hybrid of
traditional relational cost modeling and a statistical
learning approach: some analytical modeling is still re-
quired, but each analytical modeling task is relatively
straightforward, because the most complicated aspects
of operator behavior are modeled statistically. In this
manner we can take advantage of the relative sim-
plicity and adaptability of statistical learning methods
while still exploiting the detailed information available
in the system catalog. We note that the query features
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Figure 1: Use of Comet in self-tuning systems

can be defined in a relatively rough manner, as long
as “enough” features are used so that no important
cost-determining factors are ignored; as discussed in
Section 3.3, Comet’s statistical learning methodology
automatically handles redundancy in the features.

Any statistical learning method that is used in
Comet must satisfy several key properties. It must
be fully automated and not require human statistical
expertise, it must be highly efficient, it must seamlessly
handle both numerical and categorical features, and
it must be able to deal with the discontinuities and
nonlinearities inherent in cost functions. One contri-
bution of this paper is our proposal to use the new
transform regression (TR) method recently introduced
by Pednault [17]. This method is one of the very few
that satisfy all of the above criteria.

A key advantage of Comet’s statistical learning
methodology is that an XML query optimizer, through
a process of query feedback, can exploit Comet in
order to be self-tuning. That is, the system can
automatically adapt to changes over time in the query
workload and in the system environment. The idea
is illustrated in Figure 1: user queries are fed to
the optimizer, each of which generates a query plan.
During plan execution, the runtime engine executes
the operator of interest and a runtime monitor records
the feature values and subsequent execution costs. The
Comet learner then uses the feedback data to update
the cost model. Our approach can leverage existing
self-tuning technologies such as those in [2, 10, 15, 19,
22]. Observe that the model can initially be built
using the feedback loop described above, but with
training queries instead of user queries. The training
phase ends once a satisfactory initial cost model is
generated, where standard techniques such as n-fold
cross-validation (see, e.g., [12, Sec. 7.10]) can be used
to assess model quality.

The rest of the paper is organized as follows. In
Section 2, we provide some background information
on XML query optimization and the XNav operator.
In Section 3, we describe the application of Comet
to cost modeling of XNav. In Section 4, we present
an empirical assessment of Comet’s accuracy and
execution cost. In Section 5 we summarize our findings
and give directions for future work.

2 Background

We first motivate the XML query optimization prob-
lem and then give an overview of the XNav operator.
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2.1 XML Processing and Query Optimization

We use a running example both to motivate the
query optimization problem and to make our Comet
description concrete. The example is excerpted from
the XQuery use cases document [8] with minor modi-
fications.

Example 1 Consider the following FLWOR expres-
sion, which finds the titles of all books having at least
one author named “Stevens” and published after 1991.

<bib>
{

for $b in doc("bib.xml")/bib/book
where $b/authors//last = "Stevens" and

$b/@year > 1991
return

<book>{ $b/title }</book>
}

</bib>

The three path expressions in the for- and where-
clauses constitute the matching part, and the return-
clause corresponds to the construction part. In order
to answer the matching part, an XML query processing
engine may generate at least three query plans:

1. Navigate the bib.xml document down to find all
book elements under the root element bib and,
for each such book element, evaluate the two
predicates by navigating down to the attribute
year and element last under authors.

2. Find the elements with the values “Stevens” or
“1991” through value-based indexes, then navi-
gate up to find the parent/ancestor element book,
verify other structural relationships, and finally
check the remaining predicate.

3. Find, using a twig index, all tree structures in
which last is a descendant of authors, book
is a child of bib, and @year is an attribute of
book. Then for each book, check the two value
predicates.

Any one of these plans can be the best plan, depend-
ing on the circumstances. To compute the cost of a
plan, the optimizer estimates the cost of each operator
in the plan (e.g., index access operator, navigation op-
erator, join) and then combines their costs using an ap-
propriate formula. For example, let p1, p2, and p3 de-
note the path expressions doc("bib.xml")/bib/book,
authors//last[.="Stevens"], and @year[.>1991],
respectively. The cost of the first plan above may be
modeled by the following formula:

costnv(p1) + |p1| × costnv(p2) + |p1[p2]| × costnv(p3),

where costnv(p) denotes the estimated cost of eval-
uating the path expression p by the navigational
approach, and |p| denotes the cardinality of path
expression p. Therefore the costing of path-expression
evaluation is crucial to the costing of alternative query
plans, and thus to choosing the best plan.

Algorithm 1 XNav Pattern Matching

Xnav(P : ParseTree, X : XMLDocument)

1 match buf ← {root of P};
2 while not end-of-document
3 do x← next event from traversal of X;
4 if x is a startElement event for XML node y
5 if y matches some r ∈ match buf
6 set r’s status to true;
7 if r is a non-leaf
8 set r children’s status to false;
9 add r’s children to match buf ;

10 if r is an output node
11 add r to out buf ;
12 if r is a predicate tree node
13 add r to pred buf ;
14 elseif no r ∈ match buf is connected by //-axis
15 skip through X to y’s following sibling;
16 elseif x is endElement event for XML node y
17 if y matches r ∈ match buf
18 remove r from match buf ;
19 if y is in pred buf
20 set y’s status to the result of evaluating

the predicate;
21 if the status of y or one of its children is false
22 remove y from out buf ;

2.2 The XNAV Operator

XNav is a slight adaptation of the stream-based Tur-
boXPath algorithm described in [14] to pre-parsed
XML stored as paged trees. As with TurboXPath,
the XNav algorithm processes the path query using a
single-pass, pre-order traversal of the document tree.
Unlike TurboXPath, which copies the content of
the stream, XNav manipulates XML tree references,
and returns references to all tree nodes that satisfy a
specified input XPath expression. Another difference
between TurboXPath and XNav is that, when
traversing the XML document tree, XNav skips those
portions of the document that are not relevant to
the query evaluation. This behavior makes the cost
modeling of XNav highly challenging. A detailed
description of the XNav algorithm is beyond the scope
of this paper; we give a highly simplified sketch that
suffices to illustrate our costing approach.

XNav behaves approximately as pictured in Algo-
rithm 1. Given a parse tree representation of a path
expression and an XML document, XNav matches
the incoming XML elements with the parse tree while
traversing the XML data in document order. An
XML element matches a parse-tree node if (1) the
element name matches the node label, (2) the element
value satisfies the value constraints if the node is also
a predicate tree node, and (3) the element satisfies
structural relationships with other previously matched
XML elements as specified by the parse tree.

An example of the parse tree is shown in Figure 2. It
represents the path expression /bib/book[authors//
last="Stevens"][@year>1991]/title. In this parse
tree, each unshaded node corresponds to a “NodeTest”
in the path expression, except that the node labeled
with “r” is a special node representing the starting
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Figure 2: A parse tree

node for the evaluation (which can be the document
root or any other internal node of the document tree).
The doubly-circled node is the “output node”. Each
NodeTest with a value constraint (i.e., a predicate)
has an associated predicate tree. These are shaded in
Figure 2. Edges between parse tree nodes represent
structural relationships (i.e., axes). Solid and dashed
lines represent child (“/”) and descendant (“//”)
axes, respectively. Each predicate is attached to an
“anchor node” (book in the example) that represents
the XPath step at which the predicate appears.

For brevity and simplicity, we consider only path
expressions that contain / and //-axes, wildcards,
branching, and value-predicates. Comet can be
extended to handle position-based predicates and vari-
able references (by incorporating more features into
the learning model).

3 The COMET Methodology

Comet comprises the following the basic approach:
(1) Identify algorithm, query, and data features that
are important determinants of the cost—these features
are often unknown a priori; (2) Estimate feature
values using statistics and simple analytical formulas;
(3) Learn the functional relationship between feature
values and costs using a statistical or machine learning
algorithm; (4) Apply the learned cost model for
optimization, and adapt it via self-tuning procedures.

The Comet approach is general enough to apply
to any operator. In this section, we apply it to
a specific task, that of modeling the CPU cost of
the XNav operator. We first describe the features
that determine the cost of executing XNav, and
provide a means of estimating the feature values
using a set of “SP statistics.” We then describe
the transform regression algorithm used to learn the
functional relationship between the feature values and
the cost. Finally, we briefly discuss some approaches
to dynamic maintenance of the learning model as the
environment changes.

3.1 Feature Identification

We determined the pertinent features of XNav both
by analyzing the algorithm and by experience and
experimentation. We believe that it is possible to

identify the features automatically, and this is part
of our future work.

As can be seen from Algorithm 1, XNav em-
ploys three kinds of buffers: output buffers, predicate
buffers, and matching buffers. The more elements
inserted into the buffers, the more work performed
by the algorithm, and thus the higher the cost. We
therefore chose, as three of our query features, the total
number of elements inserted into the output, predicate,
and matching buffers, respectively, during query exe-
cution. We denote the corresponding feature variables
as #out bufs, #preds bufs, and #match bufs.

In addition to the number of buffer insertions,
XNav’s CPU cost is also influenced by the total
number of nodes in the XML document that the
algorithm “visits” (i.e., does not skip as in line 15
of Algorithm 1). We therefore included this number
as a feature, denoted as #visits. Another important
feature that we identified is #results, the number of
XML elements returned by XNav. This feature affects
the CPU cost in a number of ways. For example,
a cost is incurred whenever an entry in the output
buffer is removed due to invalid predicates (line 22);
the number of removed entries is roughly equal to
#out bufs−#results.

Whenever XNav generates a page request, a CPU
cost is incurred as the page cache is searched. (An
I/O cost may also be incurred if the page is not in
the cache.) Thus we included the number of page
requests as a feature, denoted as #p requests. Note
that #p requests cannot be subsumed by #visits,
because different data layouts may result in different
page-access patterns even when the number of visited
nodes is held constant.

A final key component of the CPU cost is the “post-
processing” cost incurred in lines 17 to 22. This
cost can be captured by the feature #post process,
defined as the total number of endElement events that
trigger execution of one or more of lines 18, 20, and
22.

3.2 Statistics and Feature Estimation

Observe that each of the features that we have iden-
tified is a posterior feature in that the feature value
can only be determined after the operator is executed.
Comet needs, however, to estimate these features at
optimization time, prior to operator execution. As
in the relational setting, Comet computes estimates
of the posterior feature values using a set of catalog
statistics that summarize important data characteris-
tics. We describe the novel SP statistics that Comet
uses and the procedures for estimating the feature
values.

3.2.1 Simple-Path Statistics

Before describing our new SP statistics, we introduce
some terminology. An XML document can be rep-
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Figure 3: An XML tree, its path tree and SP statistics

resented as a tree T , where the nodes correspond
to elements and the arcs correspond to 1-step child
relationships. Given any path expression p and an
XML tree T , the cardinality of p under T , denoted
as |p(T )| (or simply |p| when T is clear from the
context), is the number of result nodes that are
returned when p is evaluated on the XML document
represented by T . A simple path expression is a linear
chain of (non-wildcard) NodeTests that are connected
by child-axes. For example, /bib/book/@year is a
simple path expression, whereas //book/title and
/*/book[@year]/publisher are not. A simple path p
in T is a simple path expression such that |p(T )| > 0.
Denote by P(T ) the set of all simple paths in T .

For each simple path p ∈ P(T ), Comet maintains
the following statistics:

1. cardinality: the cardinality of p under T , that
is, |p|.

2. children: number of p’s children under T , that
is, |p/ ∗ |.

3. descendants: number of p’s descendants under
T , that is, |p// ∗ |.

4. page cardinality: number of pages requested in
order to answer the path query p, denoted as ‖p‖.

5. page descendants: number of pages requested
in order to answer the path query p//∗, denoted
as ‖p// ∗ ‖.

Denote by sp = 〈sp(1), . . . , sp(5)〉 the forgoing statis-
tics, enumerated in the order given above. The SP
statistics for an XML document represented by a tree
T are then defined as S(T ) = { (p, sp) : p ∈ P(T ) }.

SP statistics can be stored in a path tree [1], which
captures all possible simple paths in the XML tree.
For example, Figure 3 shows an XML tree and the
corresponding path tree with SP statistics. Note
that there is a one-to-one relationship between the
nodes in the path tree Tp and the simple paths in
the XML tree T . Alternatively, we can store the
SP statistics in a more sophisticated data structure
such as TreeSketch [18] or simply in a table. Detailed
comparisons of storage space and retrieval/update
efficiency are beyond our current scope.

3.2.2 Feature Estimation

Algorithm 2 Estimation Functions

Visits(proot : ParseTreeNode)

1 v ← 0;
2 for each non-leaf node n in depth-first order
3 do p← the path from proot to n;
4 if p is a simple path (i.e., no //-axis)
5 if one of n’s children is connected by //-axis
6 v ← v + |p//∗|;
7 skip n’s descendants in the traversal;
8 else v ← v + |p/∗|;
9 return v;

Results(proot : ParseTreeNode)

1 t← the trunk in proot
2 return |t|;

Pages(proot : ParseTreeNode)

1 p← 0; R← ∅;
2 L← list of all root-to-leaf paths in depth-first order;
3 for every pair of consecutive paths li, li+1 ∈ L
4 do add common subpath between li and li+1 to R;
5 for each l ∈ L
6 do p← p + ‖l‖;
7 for each r ∈ R
8 do p← p− ‖r‖;
9 return p;

Buf-Inserts(p : LinearPath)

1 if p is not recursive
2 return |p|;
3 else m← 0;
4 for each recursive node u such that p = l//u

5 do m← m +
Pd

i=1 |l{//u}∗i|;
6 return m;

Match-Buffers(proot : ParseTreeNode)

1 m← 0;
2 for each non-leaf node n
3 do p← the path from proot to n;
4 m← m + Buf-Inserts(p)× fanout(n);
5 return m;

Pred-Buffers(proot : ParseTreeNode)

1 r ← 0;
2 for each predicate-tree node n
3 do p← the path from proot to n;
4 r ← r + Buf-Inserts(p);
5 return r;

Out-Buffers(proot : ParseTreeNode)

1 t← the trunk in proot
2 return Buf-Inserts(t);

Post-Process(proot : ParseTreeNode)

1 L← all possible paths in the parse tree rooted at proot ;
2 n← 0;
3 for each l ∈ L
4 do n← n + Buf-Inserts(l);
5 return n;

Algorithm 2 lists the functions that estimate the
feature values from SP statistics. These estimation
functions allow path expressions to include arbitrary
number of //-axes, wildcards (“*”), branches, and
value-predicates. The parameter proot of the functions
is the special root node in the parse tree (labeled as ”r”
in Figure 2). In the following, we outline the rationale
behind each function and illustrate using the example
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shown in Figure 2.
Visits: The function Visits in Algorithm 2 is

straightforward. At each step of a path expression,
if the current NodeTest u is followed by /, then a
traversal of the children of u ensues. If u is followed by
//, then a traversal of the subtree rooted at u ensues.
E.g., for the parse tree in Figure 2,

#visits = 1 + |/*|+ |/bib/*|+ |/bib/book/*|+
|/bib/book/authors//*|,

where the first term in the sum corresponds to the
document root, matched with the node r in the parse
tree.

Results: We estimate #results as the cardinality
of the “trunk,” i.e., the simple path obtained from
the original path expression by removing all branches.
This estimate is cruder than the more expensive
methods proposed in the literature, e.g., [1, 18].
Our experiments indicate, however, that a rough
(over)estimate suffices for our purposes, mainly due
to Comet’s bias compensation (Section 3.3.1; also see
Section 4.3 for empirical verification). For the parse
tree in Figure 2, the estimate is simply

#results ≈ |/bib/book/title|.

Page Requests: The function Pages computes the
number of pages requested when evaluating a particu-
lar path expression. We make the following buffering
assumption: when navigating the XML tree in a
depth-first traversal, a page read when visiting node x
is kept in the buffer pool until all x’s descendants are
visited.

Under this assumption, observe that, e.g.,:

1. ‖/a[b][c]‖ = ‖/a/b‖ = ‖/a/c‖ = ‖/a/*‖.
2. ‖/a[b/c][d/e]‖ ≈ ‖/a/b/c‖ + ‖/a/d/e‖ −

‖/a/*‖.

The above observation is generalized to path expres-
sions with more than two branches in function Pages
of Algorithm 2. For the parse tree in Figure 2, the
feature estimate is:

#p requests ≈ ‖/bib/book/authors//*‖
+ ‖/bib/book/title‖+ ‖/bib/book/@year‖
− ‖/bib/book/*‖ − ‖/bib/book/*‖

= ‖/bib/book/authors//*‖

Buffer insertions for recursive queries: Before we
explain how the values of #out bufs, #preds bufs,
and #match bufs are estimated, we first describe
Comet’s method for calculating the number of buffer
insertions for a recursive query. Buffer insertions
occur whenever an incoming XML event matches
one or more nodes in the matching buffer (line 5 in
Algorithm 1). An XML event can create two or more
matching-buffer entries for a single parse tree node
when two parse-tree nodes connected by one or more
//-axes have the same name.

In this case, the number of buffer insertions induced
by a recursive parse tree node u can be estimated as
follows: first, all nodes returned by l//u are inserted
into the buffer, where l is the prefix of the path from
root to u. Next, all nodes returned by l//u//u are
inserted, then all nodes returned by l//u//u//u, and
so forth, until a path expression returns no results.
The total number of nodes inserted can therefore be
computed as

∑d
i=1 |l{//u}∗i|, where d is the depth

of the XML tree and {//u}∗i denotes the i-fold
concatenation of the string “//u” with itself.

The function Buf-Inserts in Algorithm 2 calcu-
lates the number of buffer insertions for a specified
linear path expression that may or may not contain
recursive nodes. If the path has no recursive nodes,
the function simply returns the cardinality of the path.
Otherwise, the function returns the sum of number
of insertions for each recursive node. Buf-Inserts is
called by each of the last four functions in Algorithm 2.

Matching buffers: The feature #match bufs is the
total number of entries inserted into the matching
buffer, which stores those candidate parse tree nodes
that are expected to match with the incoming XML
nodes. In Algorithm 1, whenever an incoming XML
event matches with a parse tree node u, a matching-
buffer entry is created for every child of u in the
parse tree. Therefore, we estimate #match bufs
by summing fanout(u) over every non-leaf parse-tree
node u, where fanout(u) denotes the number of u’s
children. For the parse tree in Figure 2, there are no
recursive nodes, so that #match bufs is estimated
as:

#match bufs ≈ |/bib|+ 3× |/bib/book|
+ |/bib/book/authors|+ |/bib/book/authors//last|,

where the factor 3 is the fanout of node book in the
parse tree.

Predicate buffer and output buffer: The derivation
of the function Out-Buffers is similar to that of
Results, and the derivation of Pred-Buffers is
straightforward.

Post-processing: According to Algorithm 1, post-
processing is potentially triggered by each endEle-
ment event (line 16). If the closing XML node was
not matched with any parse tree node, no actual
processing is needed; otherwise, the buffers need to
be maintained (lines 17 to 22). Thus the feature
#post process can be estimated by the total number
of XML tree nodes that are matched with parse tree
nodes. For the parse tree in Figure 2, #post process
is estimated as

#post process ≈ 1 + |/bib|+ |/bib/book|
+ |/bib/book/authors|+ |/bib/book/authors//last|
+ |/bib/book/title|+ |/bib/book/@year|,

where the first term results from the matching of the
root node.
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3.3 Statistical Learning

We now discuss Comet’s statistical learning compo-
nent.

3.3.1 The General Learning Problem

Given a set of d features, the goal of the statistical
learner is to determine a function f such that, to a
good approximation,

cost(q) = f(v1, v2, . . . , vd) (1)

for each query q—here v1, v2, . . . , vd are the d feature
values associated with q. Comet uses a supervised
learning approach: the training data consists of n ≥ 0
points x1, . . . , xn with xi = (v1,i, v2,i, . . . , vd,i, ci) for
1 ≤ i ≤ n. Here vj,i is the value of the jth feature for
the ith training query qi and ci is the observed cost
for qi. As discussed in the introduction, the learner
is initialized using a starting set of training queries,
which can be obtained from historical workloads or
synthetically generated. Over time, the learner is
periodically retrained using queries from the actual
workload.

For each “posterior” feature, Comet actually uses
estimates of the feature value—computed from catalog
statistics as described in Section 3.2—when building
the cost model. That is, the ith training point is of
the form x̂i = (v̂1,i, v̂2,i, . . . , v̂d,i, ci), where v̂j,i is an es-
timate of vj,i. An alternative approach uses the actual
feature values for training the model. The advantage
of our method is that it automatically compensates
for systematic biases in the feature estimates, allowing
Comet to use relatively simple feature-estimation
formulas. This desirable feature is experimentally
verified in Section 4.3.

3.3.2 Transform Regression

For reasons discussed previously, we use the recently-
proposed transform regression (TR) method [17] to fit
the function f in (1). Because a published description
of TR is not readily available, we expend some effort on
outlining the basic ideas that underlie the algorithm;
details of the statistical theory and implementation
are beyond the current scope. TR incorporates a
number of modeling techniques in order to combine
the strengths of decision tree models—namely com-
putational efficiency, nonparametric flexibility, and
full automation—with the low estimation errors of a
neural-network approach as in [6]. In our discussion,
we suppress the fact that the feature values may
actually be estimates, as discussed in Section 3.3.1.

The fundamental building block of the TR method
is the Linear Regression Tree (LRT) [16]. TR uses
LRTs having a single level, with one LRT for each
feature. For the jth feature, the corresponding LRT
splits the training set into mutually disjoint partitions
based on the feature value. The points in a partition

vj

cost

h v1, j j( )

partition 1 partition 2 partition 3

(a) Cost vs vj

wj

cost
45o

(b) Cost vs wj

Figure 4: Feature linearization

are projected to form reduced training points of the
form (vj,i, ci); these reduced training points are then
used to fit a univariate linear regression model of cost
as a function of vj . Combining the functions from each
partition leads to an overall piecewise-linear function
h1,j(vj) that predicts the cost as a function of the jth
feature value. A typical function h1,j is displayed in
Figure 4(a), along with the reduced training points.
Standard classification-tree methodology is used to
automatically determine the number of partitions and
the splitting points.

Observe that, for each feature j, the cost is approx-
imately a linear function of the transformed feature
wj = h1,j(vj); see, e.g., Figure 4(b). In this figure,
which corresponds to the hypothetical scenario of
Figure 4(a), we have plotted the pairs (wj,i, ci), with
wj,i = h1,j(vj,i) being the value of the transformed
jth feature for query qi. In statistical-learning termi-
nology, the transformation of vj to wj “linearizes” the
jth feature with respect to cost. A key advantage of
our methodology is the completely automated deter-
mination of this transformation. Because the cost is
now linear with respect to each transformed feature,
we can obtain an overall first-order cost model using
multiple linear regression on the transformed training
points { (w1,i, . . . , wd,i, ci) : 1 ≤ i ≤ n }. The current
implementation of the TR algorithm uses a greedy
forward stepwise-regression algorithm. The resulting
model is of the “generalized additive” form

g(1)(v1, v2, . . . , vd) = a0 +

dX
j=1

ajwj = a0 +

dX
j=1

ajh1,j(vj).

So our initial attempt at learning the true cost function
f that appears in (1) yields the first-order model
f (1) = g(1). Note that, at this step and elsewhere, the
stepwise-regression algorithm automatically deals with
redundancy in the features (i.e., multicolinearity):
features are added to the regression model one at a
time, and if two features are highly correlated, then
only one of the features is included in the model.

The main deficiency of the first-order model is that
each feature is treated in isolation. If the true cost
function involves interactions such as v1v2, v2

1v2, or
vv2
1 , then the first-order model will not properly ac-

count for these interactions and systematic prediction
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errors will result. One approach to this problem is
to explicitly add interaction terms to the regression
model, but it is extremely hard to automate the
determination of precisely which terms to add. The
TR algorithm uses an alternative approach based on
“gradient boosting.” After determining the first-order
model, the TR algorithm computes the residual error
for each test query: r

(1)
i = ci − f (1)(v1,i, v2,i, . . . , vd,i)

for 1 ≤ i ≤ n. TR then uses the methodology
described above to develop a generalized additive
model g(2) for predicting the residual error r(1)(q) =
cost(q) − f (1)(v1, v2, . . . , vd). Then our second-order
model is f (2) = g(1)+g(2). This process can be iterated
m times to obtain a final mth-order model of the form
f (m) = g(1) +g(2) + · · ·+g(m). The TR algorithm uses
standard cross-validation techniques to determine the
number of iterations in a manner that avoids model
overfitting.

The TR algorithm uses two additional techniques
to improve the speed of convergence and capture non-
linear feature interactions more accurately. The first
trick is to use the output of previous iterations as re-
gressor variables in the LRT nodes. That is, instead of
performing simple linear regression analysis during the
kth boosting iteration on pairs of the form (vj,i, r

(k)
i )

to predict the residual error as a function of the jth
feature, TR performs a multiple linear regression on
tuples of the form (vj,i, r

(0)
i , r

(1)
i , . . . , r

(k−1)
i , r

(k)
i ); here

r
(0)
i = f (1)(v1,i, v2,i, . . . , vd,i) is the first-order approx-

imation to the cost. This technique can be viewed as
a form of successive orthogonalization that accelerates
convergence; see [12, Sec. 3.3]. The second trick is
to treat the outputs of previous boosting iterations as
additional features in the current iteration. Thus the
generalized additive model at the kth iteration is of
the form

g(k)(v1, . . . , vd, r
(0), . . . , r(k−1))

= a0 +
d∑

j=1

ajhk,j(vj) +
k−1∑
j=0

ad+j+1hk,d+j+1(r(j)),

where each function hk,s is obtained from the LRT for
the jth feature using multivariate regression.1

We emphasize that the features v1, v2, . . . , vd need
not be numerically valued. For a categorical feature,
the partitioning of the feature-value domain by the
corresponding LRT has a general form and does not
correspond to a sequential splitting as in Figure 4(a);
standard classification-tree techniques are used to
effect the partitioning. Also, a categorical feature
is never used as a regressor at the LRT node—this
means that the multivariate regression model at a
node is sometimes degenerate, that is, equal to a fixed
constant a0. When all nodes are degenerate, the LRT

1Strictly speaking, we should write hk,j(vj , r(0), . . . , r(k−1))

instead of hk,j(vj) and similarly for hk,d+j+1(r(j)).

reduces to a classical “regression tree” in the sense of
[12, Sec. 9.2.2]).

3.3.3 Updating the Model

Comet can potentially exploit a number of existing
techniques for maintaining statistical models. The
key issues for model maintenance include (1) when
to update the model, (2) how to select appropriate
training data, and (3) how to efficiently incorporate
new training data into an existing model. We discuss
these issues briefly below.

One very aggressive policy updates the model when-
ever the system executes a query. As discussed
in [19], such an approach is likely to incur an un-
acceptable processing-time overhead. A more rea-
sonable approach updates the model either at peri-
odic intervals or when cost-estimation errors exceed
a specified threshold (in analogy, for example, to
[10]). Aboulnaga, et al. [2] describe an industrial-
strength system architecture for scheduling statistics
maintenance; many of these ideas can be adapted to
the current setting.

There are many ways to choose the training set
for updating a model. One possibility is to use all of
the queries seen so far, but this approach can lead to
extremely large storage requirements and sometimes a
large CPU overhead. Rahal, et al. [19] suggest some
alternatives, including using a “backing sample” of
the queries seen so far. An approach that is more
responsive to changes in the system environment [19]
uses all of the queries that have arrived during a recent
time window (or perhaps a sample of such queries).
It is also possible to maintain a sample of queries
that contains some older queries, but is biased towards
more recent queries.

Updating a statistical model involves either re-
computing the model from scratch, using the cur-
rent set of training data, or using an incremental
updating method. Examples of the latter approach
can be found in [15, 19], where the statistical model
is a classical multiple linear regression model and
incremental formulas are available for updating the
regression coefficients. There is currently no method
for incrementally updating a TR model, although
research on this topic is underway. Fortunately, our
experiments indicate that even recomputing a TR
model from scratch is an extremely rapid and efficient
operation; our experiments indicate that a TR model
can be constructed from several thousand training
points in a fraction of a second.

4 Performance Study

In this section, we demonstrate the Comet’s accuracy
using a variety of XML datasets and queries. We
also study Comet’s sensitivity to errors in the SP
statistics. Finally, we examine Comet’s efficiency and
the size of the training set that it requires.
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data sets total size # of nodes avg. depth avg. fan-out # simple paths

rf.xml 3 MB 108,832 4.94 11.94 20
rd.xml 865 KB 12,949 15.16 2.43 2,354
nf.xml 6.7 MB 200,293 5.25 24.11 109
nd.xml 188 KB 4,096 7.5 2.0 4,096
TPC-H 34 MB 1,106,689 3.86 14.79 27
XMark 11 MB 167,865 5.56 3.66 514
NASA 25 MB 474,427 5 2.81 95

XBench (DC/MD) 43 MB 933,480 3.17 6.0 26
XBench (TC/MD) 121 MB 621,934 5.16 3.73 32

Table 1: Characteristics of the experimental data sets

4.1 Experimental Procedure

We performed experiments on three different plat-
forms running Windows 2000 and XP, configured with
different CPU speeds (1GHz, 500MHz, 2GHz) and
memory sizes (512MB, 384MB, 1GB). Our results are
consistent across different hardware configurations.

We used synthetically generated data sets as well
as data sets from both well-known benchmarks and
a real-world application. Although our motivating
scenario is XML processing on large corpus of rela-
tively small documents, we also experimented on some
data sets containing large XML documents to see how
Comet performs. The results are promising.

For each data set, we generated three types of
queries: simple paths (SP), branching paths (BP),
and complex paths (CP). The latter type of query
contains at least one instance of //, *, or a value
predicate. We generated all possible SP queries
along with 1000 random BP and 1000 random
CP queries. These randomly generated queries
are non-trivial. A typical CP query looks like
/a[*][*[*[b4]]]/b1[//d2[./text()<70.449]]/c3.
For each data set, we computed SP statistics. Then,
for each query on the data set, we computed the
feature-value estimates and measured the actual
CPU cost. The estimated feature values together
with actual CPU costs constituted the training data
set. To measure the CPU time for a given query
accurately, we ran the query several times to warm
up the cache, and then used the elapsed time for the
final run as our CPU measurement.

We applied 5-fold cross-validation to the training
data in order to gauge Comet’s accuracy. The cross-
validation procedure was as follows: we first randomly
divided the data set into five equally sized subsets.
Each subset served as a testing set and the union of
the remaining four subsets served as a training set.
This yielded five training-testing pairs. For each such
pair, Comet learned the model from the training set
and applied it to the testing set. We then combined
the (predicted cost, actual cost) data points from all
five training-testing pairs to assess Comet’s accuracy.

The above procedure was carried out in the same
way for synthetic and benchmark workloads, except
that for each benchmark data set, we not only used
synthetic queries, but also used the path expressions
in the benchmark queries for testing. More specifically,

we added (predicted cost, actual cost) data points
obtained from those path expressions into each of the
testing sets during the 5-fold cross-validation.

4.2 Accuracy of COMET

We use several metrics to measure Comet’s accuracy.
Each metric is defined for a set of test queries Q =
{ q1, q2, . . . , qn }, and for query qk, we denote by ck

and ĉk the actual and predicted XNav CPU costs.

• Normalized Root-Mean-Squared Error
(NRMSE): This metric is a normalized measure
of the average prediction error, and is defined as

NRMSE =
1

c̄

�
1

n

nX
i=1

�
ci − ĉi

�2�1/2

,

where c̄ is the average of c1, c2, . . . , cn.

• Coefficient of Determination (R-sq): This
metric, which measures the proportion of variabil-
ity in the cost predicted by Comet, is given by

R-sq =

�Pn
i=1 (ci − c̄)(ĉi − ¯̂c)

�2
�Pn

i=1 (ci − c̄)2
��Pn

i=1 (ĉi − ¯̂c)2
� ,

where ¯̂c is the average of ĉ1, ĉ2, . . . , ĉn.

• Order-Preserving Degree (OPD): This met-
ric is tailored to query optimization and measures
how well Comet preserves the ordering of query
costs. A pair of queries (qi, qj) is order preserving
provided that ci (<,=, >) cj if and only if ĉi (<,=
, >) ĉj . Given a set of queries Q = {q1, q2, . . . , qn},
we then set OPD(Q) = |OPP|/n2, where OPP is
the set of all order preserving pairs.

• Maximum Under-Prediction Error (MUP):
This metric, defined as MUP = max1≤i≤n(ci−ĉi),
measures the worst-case underprediction error.
This metric is frequently used by commercial
optimizers that strive for good average behavior
by avoiding costly query plans. Over-costing good
plans is less of a concern in practice.

In the figures that follow, we plot the predicted
versus actual values of the XNav CPU cost. Each
point in the plot corresponds to a query. The solid 45◦
line corresponds to 100% accuracy. We also display in
each plot the accuracy measures defined above. For
ease of comparison, we display in parentheses the MUP
error as a percentage of the actual CPU cost.
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Figure 5: Accuracy of Comet for synthetic, benchmark, and real-world workloads

4.2.1 Synthetic Data

Figures 5(a)–5(f) illustrate the accuracy of Comet
using the synthetic workloads, which systematically
“stress test” Comet. We show the results only for
CP queries; results using other queries are similar.

The synthetic datasets are generated according to
the recursiveness and the depth of the XML tree.
The four combinations produce four XML data sets:
rf.xml, rd.xml, nf.xml, and nd.xml, where “r”, “n”,
“f”, and “d” stand for “recursive”, “non-recursive”,
“flat”, and “deep”. These combinations represent a
wide range, and usually extreme cases, of different
properties in the documents. Table 1 displays various

characteristics of the synthetic data sets.
Figures 5(a)–5(d) show results for CP queries on

relatively homogeneous data sets. Comet’s accuracy
is very respectable, with errors ranging between 3%
and 17%. Figure 5(e) shows results for CP queries
with mixed data sets, and Figure 5(f) shows the results
of mixed SP, BP, and CP queries with mixed data
sets. We note that the presence of heterogeneous XML
data does not appear to degrade accuracy when the
queries are of the same type. That is, it suffices to
use a single mixed set of data to train Comet. A
comparison of Figures 5(e) and 5(f) indicates that
the presence of different query types can adversely
impact Comet’s accuracy. This result is borne out by
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other experiments (not reported here), and suggests
that query type might fruitfully be included as an
additional (qualitative) feature.

4.2.2 Benchmarks and Real-World Data

The TPC-H benchmark is relational data wrapped in
XML tags. The schema is very regular: it has no
recursion and the tree is quite flat. The XMark [20]
data set is generated with scale factor 0.1. It has a
fair amount of recursion and the tree is fairly deep.
The NASA data set2 is real-world data having a
small degree of recursion and medium depth. We
also used two data sets from XBench [24]. The data-
centric multi-document (DC/MD) data set models the
Web-based e-commerce transactional data TPC-W.
It consists of 25,920 small files of size 1 KB to 2
KB. The documents are non-recursive and quite flat.
The text-centric multi-document (TC/MD) data set
has statistical properties similar to the Reuters news
corpus and the Springer digital library. This data set
consists of 2, 422 files with various sizes from 1 KB to
100 KB. The documents contain recursion and some
of them are quite deep. Other characteristics of the
data sets are given in Table 1.

Figures 5(g), 5(h), and 5(i) show Comet’s accuracy
on the XMark, TPC-H, and XBench TC/MD data,
respectively, using mixed SP, BP, and CP queries.
We omit the figures for the NASA and XBench
DC/MD data as they are very similar. Comet
performs consistently well on all of these data sets.
As in the synthetic case, Comet’s accuracy is fairly
insensitive to the type of data, making it suitable in
an environment with heterogeneous data or changing
schemas.

4.3 Effect of Errors in SP Statistics

To test Comet’s sensitivity to errors in the SP
statistics, we multiplied each statistic by a random
nonnegative “error ratio” prior to training and testing.
We observed the values of NRMSE, R-sq, and OPD
as we varied the expected value of the error ratios.
Figure 6 displays results for using mixed queries on
the NASA data; results for other scenarios are similar.

As can be seen, Comet remains accurate despite
the perturbation of the SP statistics. A key reason, as
mentioned previously, is that Comet is both trained
and tested using estimated feature values. So long
as the feature-value estimates err in a consistent way
(which they tend to do in practice), Comet can
automatically compensate for the bias and produce
accurate cost estimates. This feature allows us to use
fairly simple statistics, as well as efficient algorithms

2Available at http://www.cs.washington.edu/research/
xmldatasets/www/repository.html

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.5  1  1.5  2  2.5

A
cc

ur
ac

y 
m

et
ric

Expected error ratio

Sensitivity to random errors in SP-stats (NASA)

NRMSE
R-sq
OPD

Figure 6: Sensitivity of accuracy to SP stats errors (NASA,
mixed queries)

to estimate feature values, without compromising the
accuracy of cost prediction.

4.4 Efficiency of COMET

There are two types of cost incurred by the Comet
system over and above the usual costs incurred by a
query optimizer: the cost of collecting the training
data and the cost of building the prediction model
from the training data. In the self-tuning scenario
discussed in Section 1, the test queries are generated
as part of the production workload, so that the first
type of cost reduces to the overhead of recording and
maintaining the query feedback results. Experience
with query feedback systems [22] suggests that this
additional monitoring cost is small in practice (less
than 5% overhead). To assess the magnitude of the
second type of cost, we tested 190 training sets of
sizes 20, 40, . . . , 3800. In every case, the time to build
the TR model is less than 1 second, ranging from
0.36 to 0.83 second. Such fast performance greatly
simplifies the issue of how to update the cost model—
the optimizer can simply build a new model from
scratch whenever necessary.

4.5 Size of the Training Set

We investigated Comet’s learning rate using CP
queries over a heterogeneous synthetic data set com-
prising 3982 training points. We selected 50 random
queries as test queries. Then, from the rest of the
data set, we randomly chose 20 points as the first
training set, built the TR model, and then computed
the NRMSE for the 50 test queries. We then added 20
more queries to the training set, rebuilt the TR model,
and recomputed the NRMSE for the 50 test queries.
Continuing in this manner, we generated the learning
curve displayed in Figure 7.

As can be seen from the figure, accuracies of around
10% can be achieved with a training-set size of about
1000 training queries; as discussed above, for this
number of queries a TR model can be built in less
than one second.
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Figure 7: Effect of training-set size on accuracy

5 Conclusion

As query operators become more and more elaborate
and data becomes more complex, the traditional ap-
proach of using detailed analytical models to estimate
query costs is becoming increasingly unworkable. In
this paper, we have outlined the Comet statisti-
cal learning approach to cost estimation, and have
demonstrated its feasibility by applying it to the
XNav operator. To our knowledge, Comet represents
the first proposed solution to the problem of XML
cost modeling. Comet avoids the need for detailed
cost models: the problem is reduced to the simpler
task of identifying a sufficient (usually small) set of
cost-determining features and developing a relatively
simple method of estimating each feature. A key ad-
vantage of our approach is that it permits adaptation
and flexibility in the face of changing workloads and
a changing computing environment. Such flexibility
is becoming increasingly important in light of current
trends toward highly distributed systems composed
of extremely heterogeneous, possibly remote and/or
unreliable data sources.

We plan to apply the Comet to the problem of
estimating I/O costs and also to devise mechanisms
for automatic feature identification. We also plan to
refine our methods for dynamically maintaining the
learning model in order to minimize overheads while
dealing effectively with multiuser environments.
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J. Siméon. StatiX: Making XML Count. SIGMOD 2002.

[10] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. VLDB 1997.

[11] A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krishna-
murthy, A. N. Rao, F. Tian, S. D. Viglas, Y. Wang, J. F.
Naughton, and D. J. DeWitt. Mixed Mode XML Query
Processing. VLDB 2003.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning. Springer, 2001.

[13] Z. He, B. S. Lee, and R. R. Snapp. Self-tuning UDF Cost
Modeling Using the Memory-Limited Quadtree. EDBT
2004.

[14] V. Josifovski, M. Fontoura, and A. Barta. Querying XML
Streams. The VLDB Journal, 14(2), 2005.

[15] B. S. Lee, L. Chen, J. Buzas, and V. Kannoth.
Regression-Based Self-Tuning Modeling of Smooth User-
Defined Function Costs for an Object-Relational Database
Management System Query Optimizer. The Computer
Journal, 2004.

[16] R. Natarajan and E. P. D. Pednault. Segmented Regression
Estimators for Massive Data Sets. SDM 2002.

[17] E. Pednault. Transform Regression and the Kolmogorov
Superposition Theorem. Technical Report RC23227
(W0406-014), IBM Thomas J. Watson Research Center,
2004.

[18] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Approxi-
mate XML Query Answers. SIGMOD 2004.

[19] A. Rahal, Q. Zhu, and P.-Å. Larson. Evolutionary
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