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Abstract

We study XML stream-specific schema-based
optimization. We assume a widely-adopted
automata-based execution model for XQuery
evaluation. Criteria are established regard-
ing what schema constraints are useful to a
particular query. How to apply multiple opti-
mization techniques on an XQuery is then ad-
dressed. Finally we present how to correctly
and efficiently execute a plan enhanced with
our SQO techniques. Our experimentation on
both real and synthetic data illustrates that
these techniques bring significant performance
improvement with little overhead.

1 Introduction

Using schema knowledge to optimize queries, known
as semantic query optimization (SQO), has generated
promising results in deductive [21], relational [16] and
object databases [12]. Naturally, it is also expected
to be an optimization direction for XML stream query
processing. Among the three major functionalities of
an XML query language, namely, pattern retrieval, fil-
tering (e.g., join) and restructuring (e.g., group-by),
only pattern retrieval is specific to the XML data
model. Therefore, recent work on XML SQO tech-
niques [2, 6, 7, 9, 14] focuses on pattern retrieval opti-
mization. Most of them fall into one of the following
two categories:

1. Techniques in the first category are applicable
to both persistent and streaming XML. For exam-
ple, query tree minimization [2, 22] would simplify a
query asking for “all auctions with an initial price” to
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one asking for “all auctions”, if it is known from the
schema that each auction must have an initial price.
The pruned query is typically more efficient to evalu-
ate than the original one, regardless of the nature of
the data source.

2. Techniques in the second category are only appli-
cable to persistent XML. For example, “query rewrit-
ing using state extents” [14] assumes that indices are
built on element types. In persistent XML applica-
tions, it is practical to preprocess the data to build
indices. However, this is not the case for the XML
stream scenario since data arrives on the fly and usu-
ally no indices are provided in the data.

We instead focus on SQO specific to XML stream
processing. The distinguishing feature of pattern re-
trieval on XML streams is that it solely relies on the
token-by-token sequential traversal. There is no way
to jump to a certain portion of the stream. We however
can use schema constraints to expedite such traversal
by skipping computations that do not contribute to
the final result, as illustrated in Example 1.

Example 1 Given a query /news[source] [//keyword
contains “ipod”], without schema, whether a news ele-
ment satisfies the two filters is only known when an
end tag of news has been seen. Four computations
have to be performed all the time, namely, (1) buffer-
ing the news element, (2) retrieving pattern “/source”,
(3) retrieving pattern “//keyword” and (4) evaluating
whether a located keyword contains “ipod”. Suppose
instead a DTD <!ELEMENT news (title, source?,
date, keyword+, ...)> is given. The pattern “/date”
can be located even though it is not specified in the
query. If a start tag of date is encountered but no
source has been located yet, we know the current news
will not appear in the final result. We can then skip
all remaining computations within the current news
element. This can lead to significant performance im-
provement when the size of the XML fragment from
date to the end of news is large (saving the cost of com-
putation (1)) or there are a large number of keyword
elements (saving the cost of computations (3) and (4)).

Only a limited number of XML stream processing
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engines [3, 4, 7, 9, 13] have looked at the SQO oppor-
tunity. Among them, SQO in [7, 13] is not stream-
specific (further discussed in Section 2) while SQO in
[3, 9] is stream-specific but has the below drawbacks.

Limited Support for Queries. First, [3, 9] address
queries with limited expressive power, i.e., boolean
XPath matching that only returns boolean values in-
dicating whether an XPath is matched by the XML
stream. In other words, it does not differentiate
/news[source] from /news/source. A more powerful
language, like XPath or XQuery, raises new challenges
in SQO as listed below.

1. How to decide whether a schema constraint is
useful. We first use XPath as an example. Given a
query news/source, knowing that “source must occur
before date” is not helpful. Early detection of the ab-
sence of source will not lead to any cost savings in
buffering, since nothing besides the source needs to
be buffered (this constraint however would be useful
to the query news[source]). The above constraint will
not help the query news[source]/title either, because
title has already been retrieved when the absence of
source is detected as <date> is encountered. When
it comes to XQuery, more subtleties, such as variable
bindings and nested queries, have to be considered.

2. How to execute the optimized query. XML
stream-specific SQO may take place at a lower level
than the other SQO. Typically, SQO techniques
rewrite a query into a more efficient format at the
syntactic level (e.g., with less predicates[16], less pat-
terns [2] or smaller extents [14]). However, no XQuery
can capture the optimization in Example 1 at the syn-
tactic level. Specific physical implementations must
be devised for these optimization techniques. With
more powerful queries supported, the physical imple-
mentations become more complex. For example, for
an XQuery that buffers data, temporary data must
be cleaned carefully when computations are skipped.
In Example 1, when source is found not to appear,
the partially stored news must be cleaned. Or for an
XQuery that has nested subqueries, a failed pattern in
the inner query should not affect the computations in
the outer query (discussed more in Section 3.1).

Lack of Strategies for Applying Possibly Over-

lapping Optimization Techniques. [3, 9] both con-
sider a single optimization technique using one type of
schema constraint. Their proposed technique can be
independently applied on different parts of the query.
If more types of constraints are explored, multiple
techniques must be considered. We have observed that
when applying these different techniques or even one
complex technique on different parts of the query, they
may “overlap”, i.e., unnecessarily optimizing the same
part of the query which causes additional overhead.
Strategies are needed to avoid such redundant opti-
mization.

How to support SQO techniques in XQuery and
overcome the above drawbacks is the subject of this

work. We propose an optimization process consist-
ing of the following steps. First, we use query trees
to capture the structural pattern retrieval in the given
XQuery. Second, type inference is applied on the query
trees. The nondeterministic “*” or “//” navigation
steps are replaced with deterministic ones so that more
SQO can be applied on the previously schema-less pat-
terns. Third, SQO rules are applied on the query trees.
Finally, the query tree is translated back into a query
plan executable in our XQuery processing engine. Our
contributions include:

1. We utilize type inference to aid with the stream-
specific SQO. We handle the complexities caused by
type inference in SQO, namely, unions (e.g., $a/(b|c)
resolved from $a/∗) and recursions (e.g., $a/b+ re-
solved from $a//b when b is recursive).

2. We assume a widely-adopted automata execution
model for XML stream pattern retrieval. Based on the
analysis of this model, we derive the criteria regarding
what constraints are useful for a given query.

3. We design a set of optimization rules that utilizes
the constraints satisfying the “usefulness” criteria. We
derive a rule application order that ensures: no ben-
eficial optimization is missed (completeness); and no
redundant optimization is introduced (minimality).

4. We incorporate these SQO techniques into an
algebraic framework for XML stream processing. We
propose strategies for correctly and efficiently evaluat-
ing the query plans optimized with SQO.

2 Related Work

SQO for persistent XML may have some resemblance
to the stream-specific SQO. XQRL [6] stores the XML
data as a sequence of tokens. To find children of a cer-
tain type within a context element, the scan on tokens
can stop early if the schema tells that no more children
are relevant once a child of a particular type is found.

Since the token sequence can be repeatedly ac-
cessed, XQRL retrieves the patterns one by one. The
earlier one pattern retrieval stops, the smaller the over-
all cost is. However, in the stream context, as shown
in Section 1, not all early detections of failed patterns
lead to cost savings. It requires more discretion to
decide whether such detections are worthwhile. More-
over, in XQRL, when a pattern is found to fail, the
retrieval can simply terminate and another pattern re-
trieval can start. In the stream context, this process
is more complicated. In Example 1, when a source
is found not to exist, we cannot simply jump to the
next auction to skip the remaining computations in
the current auction. We have to suspend the compu-
tations, clean up the intermediate results and resume
as appropriate.

YFilter [7] and XSM [13] discuss SQO in the XML
stream context. They use schema knowledge to de-
cide whether results of a pattern are recursion-free and
what types of child elements can be encountered re-
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CoreExpr ::= ForClause WhereClause? ReturnClause
| PathExpr

PathExpr ::= PathExpr “/”|“//” TagName|“∗”
| varName
| streamName

ForClause ::= “for” “$”varName “in” PathExpr
(“,” “$”varName “in” PathExpr)∗

WhereClause :: = “where” BooleanExpr
BooleanExpr ::= PathExpr CompareExpr Constant

| BooleanExpr and BooleanExpr
| PathExpr

CompareExpr ::= “ >′′|“! =′′|“ <′′|“ <=′′|“ >′′|“ >=′′

ReturnClause = “return” CoreExpr
|<tagName>CoreExpr (“,” CoreExpr)∗ </tagName>

Figure 1: Grammar of Supported XQuery Subset

spectively. These in essence type inference techniques
belong to general XML SQO.

The goal of FluXQuery [4] is to minimize the buffer
size while ours is to reduce unnecessary computations.
These two goals sometimes come hand-in-hand: when
we reduce the buffering computation (like we do with
computation (1) in Example 1), we naturally reduce
the buffer size. But in many other cases, our tech-
niques are complementary. Let us consider a query
“for $a in /news[source] return <news> {$a/source,
$a//keyword} </news>”. If given the constraint that
source must occur before keyword, Flux will immedi-
ately output any located keyword elements, instead
of buffering them until the end of the news to ensure
they are output after any source. However Flux is un-
able to detect the non-existence of source and skip
the retrieval of $a//keyword as our techniques do. A
combination of their work and ours can boost the per-
formance of both systems.

Finally, there is another class of XML stream query
optimization which assumes indices are interleaved
with XML streams [8]. The stream index SIX [8] gives
the positions of the beginning and end of each ele-
ment. If an element is found to be irrelevant, the pro-
cessor can move to its end without parsing anything
in the middle. How to combine such indices that ar-
rive at run-time and the schema constraints available
at compile-time is an interesting direction to explore
in the future.

3 Type Inference on Query Trees

We first propose a query tree representation to capture
the pattern retrieval in an XQuery. We then describe
how to apply existing type inference techniques [14, 20]
on the query trees when an XML Schema is given.

3.1 Query Tree

We support a subset of XQuery as shown in Figure 1.
Basically, we allow “for... where... return...” expres-
sions (referred to as FWR) where the “return” clause
can further contain FWR expressions; and conjunc-
tive predicates each of which is a comparison between
a variable and a constant.

We propose query trees to represent the structural
patterns in an XQuery. Figure 2 (b) shows such a tree

for the XQuery in Figure 2 (a). Each navigation step
in an XPath is mapped to a tree node. The descendant
axis is also expressed as a tree node labeled “//”. The
blank node models the relationship between the inner
FWR and the outer FWR. We say the node mapped
from the first (resp. last) step on an XPath is the
context (resp. destination) node of any node mapped
from the same XPath. For example, in Figure 2 (b),
the auction node represents $a and is the context node
of seller. The seller node again represents $b and is the
context node of * and phone. We also say auction is
an ancestor context node of * and phone.

for $a in /auctions/auction, $b in $a/seller

where $
b/billTo
and $b/*/phone=
“
508
-
123
-
4567
”

return     

<auction> 


for $c in $a/item

where $c//keyword=
“
auto
”

return   

<
iteminfo
>


{$a/category, $c}

</
iteminfo
>


</auction>


(a)  Example Query


auctions


auction


seller


*


phone

//


(b)  Query Tree


billTo
 item


category


keyword


$a


$a

$b


$c


Figure 2: XQuery and Query Tree

There are two kinds of patterns in an XQuery.
XPaths in “for” clauses describe required patterns,
e.g., in Figure 2 (a), both $a and $b in the outer “for”
clause must not evaluate to empty for the FWR ex-
pression to return any result. In contrast, XPaths in
“return” clauses describe optional patterns, e.g., even
if $a/category evaluates to empty, an iteminfo element
will still be constructed. In the query tree, a solid
(resp. dashed) line indicates the child is required (resp.
optional) in its parent. For example, a dashed line
connects the blank node with its parent, indicating
$a/category, $a/item and $c//keyword appear in the
“return” clause of the outer FWR. A solid line con-
nects the item and the blank node, indicating $a/item
appears in the “for” clause in the inner FWR.

3.2 Type Inference

We assume that an XML schema is given for each
stream source. An XML schema is modeled as a di-
rected graph with ordered edges. A node in the schema
graph represents an element type, a sequence group
(labeled with “SEQ”), or a choice group (labeled with
“CHO”). Each edge from node u to node v is labeled
by (minOccur, maxOccur), indicating the minimal and
maximal occurrence of v within u. The default edge
label is (1, 1). Figures 3 (a) and (b) show the schema
(for compactness, we use an equivalent DTD) and its
graph representation.

Figure 4 shows the query tree from Figure 2 (b) af-
ter type inference [14, 20]. Each query tree node is
now associated with a set of type nodes. Each type
node identifies one possible deterministic navigation
step that the query tree node represents. Type nodes
are connected to capture the sequential relationship
among navigation steps. The blank node shares the
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(b)  Schema Graph


auctions


auction


seller


CHO
primary


phone

SEQ
sameAddr


shipTo
 billTo


secondary


item
 category


desc


emph
 keyword


(0,   )
8
(0,   )
8


(0,   )


8
(0,   )


8


CHO


CHO
 CHO

(0,   )
8
(0,   )
8


providedBy


<!ELEMENT auctions (auction+)>

<!ELEMENT auction (seller, item*, category+)>

<!ELEMENT seller (primary, secondary, 
 sameAddr|(shipTo
, 
billTo
), profile)> 

<!ELEMENT primary (phone)>

<!ELEMENT secondary (phone)>

<!ELEMENT item (
desc
, payment)>

<!ELEMENT 
desc((emph|keyword
)*, 
providedBy
+)>

<!ELEMENT 
emph
(#
PCDATA|emph|keyword
)*>

<!ELEMENT keyword (#
PCDATA|emph|keyword
)*>

…


(a)  Schema


profile


(1,   )
8
(1,   )
8


(0,   )
8
(0,   )
8


(1,   )
8
(1,   )
8


(1,   )
8
(1,   )
8


payment


Figure 3: XML Schema and Schema Graph

type nodes with its parent. In the rest of this pa-
per, we refer to a type node by the name of the type.
To differentiate between the two type nodes that both
represent keyword type in Figure 4, we refer to them
as keyword1 and keyword2 respectively.

A “*” is resolved to a union of types. In Figure
4, “*” is associated with type nodes primary and
secondary, indicating $b/*/phone = $b/(primary|
secondary)/phone. A “//” node is resolved to a
union of sequences of types, e.g., $c//keyword
is resolved to $c/desc/(∅|(emph+/keyword∗)+|
(keyword+/emph∗)+)/keyword, where p∗ (resp. p+)
indicates repeating a path p zero or more times (resp.
one or more times); ∅ represents an empty navigation
step. The nondeterministic number of navigation
steps in the expression (i.e., p∗ or p+) results from the
recursive keyword or emph elements (refer to Figure
3). The “//” node in Figure 2 (b) is now expanded to
a desc node and a “//” node in Figure 4.

auctions


auction


seller


*


phone


desc

billTo


item


category


auctions


auction


seller


primary


phone


secondary

item


desc


emph
keyword


keyword


billTo


category


keyword


//
 1


2


Figure 4: Query Tree after Type Inference

4 Guidelines for Stream XML SQO

We have to understand the processing style of pattern
retrieval, in particular what contributes to its costs, to
ensure the SQO techniques designed indeed improve

the performance. Therefore, we first review a widely-
adopted automata processing model and then general-
ize the guidelines for designing SQO techniques.

4.1 Automata-based Implementation

Automata are widely used [7, 8, 9, 11, 13, 15] for pat-
tern retrieval over XML token streams. We describe
one basic automata model [7, 11] that is general and
serves as the core of most other automata [8, 9, 15].
The pattern retrieval in the automaton consists of
three tasks as below.
Locating Tokens. Figure 5 shows the automaton for
retrieving the patterns in Figure 4. Each tree node
is mapped to transition edge(s) among states. The λ
transition between states 2 and 3 is mapped from the
blank node. This λ transition is necessary for execut-
ing the optimized plan as we will show in Section 6.
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Figure 5: Automata Implementation

A stack is used to store the history of state tran-
sitions. Figure 5 shows the snapshot of the stack af-
ter each token is processed. An incoming start tag is
looked up in the transition entries of every state at the
stack top. The states that are transitioned to are acti-
vated and pushed onto the stack. For example, when
<auction> is encountered, q1 is transitioned to from
q0 and pushed onto the stack. If no states are transi-
tioned to, an empty set is pushed onto the stack, e.g.,
when <annotation> is processed. When an end tag
is encountered, the states at the stack top are popped
out. The stack is therefore restored to the status be-
fore the matching start tag had been processed. For a
PCDATA token, no change is made to the stack.
Buffering Tokens. Tokens are buffered if they need
to be either further filtered or returned by the query.
A state can be associated with an extraction operator.
For example, in Figure 5, state 4 is associated with
an extraction operator. Once state 4 is activated, the
extraction operator raises a flag. As long as the flag is
raised, the incoming tokens will be buffered. When a
state 4 is popped out of the stack by a </category>,
its extraction operator revokes the flag to terminate
the buffering of the category element.
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Manipulating Buffered Data. The buffered data
are consumed by the data manipulation operators that
perform selections or structural joins. More details are
discussed in Section 6.1.

4.2 Design Guidelines for XML Stream SQO

There are two major optimization opportunities.
First, we should avoid transitions whenever possible.
This obviously reduces the cost of locating tokens. It
may also reduce the cost of buffering tokens when those
transitions, if not avoided, could otherwise activate
states associated with extraction operators. It may
even save manipulation cost on the buffered data.

The second opportunity is that an extraction oper-
ator should be prompted to revoke the buffering flag
once the data it is extracting is known to be irrelevant
to the final results. This saves buffering cost.

We now describe how to take advantage of the two
opportunities. A pattern $v/p may “fail” if its p may
not occur within $v, or it is involved in a selection, or
its required descendant patterns may fail. The failure
of a required $v/p filters out $v. If within a $v, no re-
sult of XPath p can occur after any result of XPath p′,
we say a result of p′ is an ending mark of p. When an
ending mark of p is encountered, we can test whether
p fails. This test is an early filtering because with-
out the ending mark, we could have only concluded
whether p fails when the end tag of $v is encountered.
If p fails, any transitions or active buffering flags can
be avoided or deactivated within this $v.

In some cases, even if early filtering of p does not
save within $v, it may save within the ancestor con-
text variables of $v. For example, in Figure 6, early
detection of the absence of billTo within a seller would
not save any computation within this seller. However,
since an auction has only one seller, the filtering out
of this seller leads to the filtering out of its parent auc-
tion element. The schema in Figure 3 indicates item
occurs after seller within an auction. The locating and
buffering $a/item is saved. Figure 7 summarizes the
guidelines of designing XML SQO.

for $a in /auctions/auction, 

$b in $a/
seller[billTo
]


return     

<auction> 


$b/@id, $a/item

</auction>


(a)  Example Query
 (b)  Query Tree


auctions


auction


seller


billTo


$a


item


$b


Figure 6: Filtering Propagation

5 Stream-Specific XML SQO

We now introduce three SQO rules (each utilizing a
different type of constraint). Note that our rule set
is open-ended. New rules utilizing new constraints
could be similarly developed following the guidelines
and added into the rule set.

An SQO technique should find ending marks for a
pattern $v/p that satisfies the following criteria:

1. early filtering is possible.

(a) p is a required pattern in $v.

(b) p may possibly fail in a binding of $v.

2. early filtering is beneficial: after the ending
marks within a binding of $v or $u ($u is an an-
cestor context variable of $v), there exist raised
buffering flags or states that may be activated.

Figure 7: SQO Design Guidelines

5.1 SQO Rules

Each rule is defined with respect to a patten $v/p.
A rule has a pre-condition, a rule body and a post-
condition. The precondition ensures that p satisfies
criterion 1 in Figure 7. When the precondition holds,
the rule body is fired to find the ending marks of
p. The post-condition keeps only those ending marks
that satisfy criterion 2. The pre-condition and post-
condition checking is similar across the rules. We here
only describe their different parts, the rule bodies.

Occurrence Rule.

This rule utilizes occurrence constraints. We use
maxOccur(t1, t2) to represent the maximal occurrence
of type node t1 within type node t2. For each type t
of $v, we derive the maximal cardinality of the results
of p within a binding of $v of type t. If the maximal
cardinality is a bounded integer i, then the end tag of
the ith result of p is an ending mark in $v of type t.

Example 2 In Figure 4, maxOccur(phone, seller) =
2. The end tag of the 2nd phone is an ending mark of
/∗/phone within a seller.

Exclusive Rule.

This rule utilizes the the “CHO” node in the schema
graph. For each type t of $v, we find whether there is
a path p′ that never coexists with p within a binding
of $v of type t. If yes, the start tag of the result of p′

is the ending mark of p in $v of type t. This rule may
introduce new nodes for p′ into the query tree when p′

is not specified in the query.

Example 3 From Figure 3 we know /sameAddr is
exclusive to /billT o in a seller element. <sameAddr>
is the ending mark of /billT o within a seller.

Order Rule.

This rule utilizes the order constraints. For each
type t of $v, we find whether there exists a path p′

that must occur after p within a binding of $v of type
t. If yes, the start tag of the first result of p′ is an
ending mark of p in $v of type t. Similar to Exclusive
Rule, this rule may also introduce new nodes into the
query tree.
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Example 4 In Figure 4, keyword either occurs as
a child element of desc, or occurs within a child
element emph or keyword of desc. Within desc,
providedBy occurs after both emph and keyword.
Also, maxOccur(desc, item) = 1. Therefore the start
tag of the first result of /desc/providedBy within $c is
an ending mark for //keyword.

5.2 Desired Properties of Rule Application

We now consider the order of applying the rules on the
patterns, i.e., on the destination nodes in the query
tree (each destination node identifies a pattern). The
application order should ensure two properties: com-
pleteness and minimality. Completeness means that
no beneficial ending mark is missed while minimality
means no redundant ending mark is introduced.

5.2.1 Completeness

We now define the independence of two rules, which is
an important property for ensuring the completeness
of our rule application algorithm.

Definition 1 We use dest(Q) to denote the destina-
tion nodes in a query tree Q. We denote a new query
tree after the application of rule r on a destination
node n in Q as apply(r,Q, n). dest(Q) - dest(Q′) de-
notes the destination nodes in query tree Q but not in
Q′. em(Q) denotes the set of ending marks already
found for the patterns in Q. Rules r1 and r2 are in-
dependent of each other if:

em(apply(r2, apply(r1,Q, n), n′)) =
em(apply(r1, apply(r2,Q, n′), n)), ∀n, n′ ∈ dest(Q) (1)

em(apply(r2, apply(r1,Q, n), n′)) = em(apply(r1,Q, n)),
∀n ∈ Q, n′ ∈ dest(apply(r1,Q, n)) − dest(Q) (2)

em(apply(r1, apply(r2,Q, n), n′)) = em(apply(r2,Q, n)),

∀n ∈ Q, n′ ∈ dest(apply(r2,Q, n))−dest(Q) (3)

Equation (1) says r1 and r2 can be applied on the
destination nodes in any order and still find the same
set of ending marks. Equations (2) and (3) (they are
symmetric) say that if the application of one rule in-
troduces new destination nodes into the query tree,
the application of the other rule on these new nodes
would not result in new ending marks.

Lemma 1 If rules in a rule set are all independent of
each other, then as long as each SQO rule is applied
on each destination node in the query tree once, this
application process ensures completeness.

Lemma 2 All possible pairs of rules r1-r2 in our cur-
rent rule set are independent of each other.

We briefly explain Lemma 2. First, when a rule in Sec-
tion 5.1 is applied on a node, it is not affected by the
ending marks previously found. Equation (1) in Def-
inition 1 holds. Second, any newly introduced node
represents an XPath that is not specified in the query.

Such a path is optional and not qualified to have end-
ing marks. Equations (2) and (3) in Definition 1 also
hold. Lemmas 1 and 2 will be combined later to show
our rule application algorithm achieves completeness.

5.2.2 Minimality

A plain node-by-node rule-by-rule application, though
ensuring completeness (Lemma 1), may not ensure
minimality. It may introduce redundant ending marks.

Example 5 (Rules Applied on Same Node) Ex-
clusive and Order Rules, if applied on node billT o in
Figure 4, introduce /sameAddr and /profile respec-
tively. However the latter ending mark is redundant:
if billT o does not appear, its absence will be caught by
ending mark /sameAddr first; if billT o does appear,
ending mark /profile then leads to unnecessary check-
ing. In either case, /profile does not help.

Example 6 (Rules Applied on Ancestor and
Descendant Nodes) Suppose the schema for auction
in Figure 3 is changed to <!ELEMENT auction (...,
item, ...)>. The Order Rule on node keyword finds
an ending mark: /desc/providedBy (see Example 4)
in an item. Also, Order Rule on node item finds
an ending mark /category in an auction since item
must occur before category. The latter ending mark
is meant to detect whether any $c (item) that satisfies
$c//keyword = “Auto” exists in a $a (auction). This
is equivalent to detecting whether the only $c in $a
satisfies the predicate (a $a has exactly one $c). How-
ever this will always be first detected by ending mark
/desc/providedBy in a $a. Therefore the ending mark
/category is redundant.

An ending mark of $v/p is said to be surely-working if
it is able to catch all failure of /p in a binding of $v.
Not all ending marks are surely-working. For exam-
ple, if the DTD in Figure 3 is instead <!ELEMENT
item (desc?, payment)>, /desc/providedBy does not
necessarily occur in an item. The failure of //keyword
in $c thus is not ensured to be caught by this ending
mark. Based on this concept, we have Observations 1
and 2 which generalize the cases illustrated in Exam-
ples 5 and 6 respectively.

Observation 1 For a $v/p, any ending marks after
a surely-working one are redundant.

Observation 2 Any ending marks of $v/p are redun-
dant if (1) within $v′ where $v′ = $v/p, any pattern
$v′/p′ satisfying Criterion 1 (a) and (b) in Figure 7
has a surely-working ending mark, and (2) $v′ occurs
within $v exactly once.

5.3 Rule Application Algorithm

The rule application algorithm has two main compo-
nents: the traverser and the rule applier. The tra-
verser traverses the query tree and directs rule applier
to operate on every destination node. From Lemmas
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1 and 2, we know the algorithm achieves complete-
ness. The rule applier outputs a set of event-condition-
action constructs in the form of (an ending mark, a
pattern, a type node of an ancestor context node).
When an ending mark is encountered (event happens),
if the pattern fails (condition holds), all computations
within the ancestor context node will be suspended
(actions are taken). The rule applier follows Observa-
tions 1 and 2 and thus achieves minimality.

Algorithm: traverser(tn, atn)

-Input: tn - a type node of a context node $v
atn - a type node of $v’s farthest ancestor context node

that has maxOccur(tn, atn) = 1
-Output: a set of event-condition-actions
01 Set ecas;
02 for each destination node $v′ of $v
03 ecas = ecas ∪ applyRule($v′, tn, atn);
04 for each type node tn′ of $v′

05 if maxOccur(tn′, tn)=1 and
$v′ has only one type node that is a descendant of tn

06 ecas = ecas ∪ traverser(tn′, atn);
07 else
08 ecas = ecas ∪ traverser(tn′, tn).
09 return ecas.

Figure 8: Traverser

The traverser algorithm in Figure 8 takes two in-
puts. The first input is a type node of a context node
$v. The traverser picks qualifying destination nodes
of $v for the rule applier. The second input is a type
node of an ancestor context node. This type node will
appear as the action part of the event-condition-action
output of the rule applier.

Initially, the traverser is called with tn and atn both
set to the only type node of the query tree root (the
root must have only one type node that identifies the
type of the root element in the stream). Starting from
the root, the rule applier operates on each destination
node $v′ (lines 2-3). Next, the subtree rooted at $v′ is
recursively traversed (lines 4-8). The filtering out of a
binding of $v′ leads to the filtering out of the binding
of an ancestor context variable $v (see Figure 6), if the
binding of $v′ is the only one occurring in the binding
of $v (line 5). We now walk through an example to
show how this works, especially when a context node
has multiple type nodes.

Example 7 Figures 9 (a) and (b) show a query and
a schema. The traverser starts from the root node in
Figure 9 (c) and finds its destination node $v. The rule
applier operates on /a/∗, namely, /a/(c|d) according
to the type inference. An ending mark /a/e is found.
Next, the traverser navigates into the subtree rooted at
$v which has two type nodes c and d. With respect to
$v of type c (resp. of type d), an ending mark, i.e., the
second occurrence of /b (resp. the first occurrence of
/b), is found for $v/b. Filtering of any binding of $v
will not be propagated up to the root. This is because
even a binding of $v of type c does not contain element
b that satisfies text() = “001”, another binding of $v
of type d may still contain such b.

a


*

$v


b


c  d   

b


for $v in /a/*,

Where $
v/b/text
() = 
“
001
”

return $v


a   


(a) Original query
 (b) Schema
 (c) Query Tree


<!ELEMENT a (c?, d?, e)>

<!ELEMENT c (b, b, 
…
)>

<!ELEMENT d (b, 
…
)>


Figure 9: Traverser on Context Node with Multiple Types

Algorithm: applyRule(dest, tn, atn)

Input: dest - a destination node;
tn - a type node of the context node of dest;
atn - a type node of an ancestor node of dest

Output: a set of event-condition-actions
01 Set ecas;
02 T = type nodes of dest that are descendants of tn
03 find t′ where

(i) t′∈T and t′ occurs after all other types in T
(ii) maxOccur(t′, tn) = 1

04 if t′ exists {
05 for each destination node dest′ of dest
06 applyRule(dest′, t′, atn);
07 if every dest′ has a surely-working ending mark
08 return an empty set;
09 }
10 ecas = ecas ∪ localApplyRule(dest, tn, atn).
11 return ecas.

Figure 10: Rule Applier

In Figure 10, applyRule algorithm operates on a des-
tination node with respect to its context node of type
tn. Following Observation 2, it first checks whether
ending marks for the pattern identified by dest will
always be redundant (lines 2 - 9). If not, localAp-
plyRule algorithm is applied on dest. localApplyRule
follows Observation 1, that is, if a surely-working end-
ing mark is found, we terminate the rule application.
Due to the space limitations, we skip localApplyRule
algorithm here. Interested readers are referred to [10].

6 Execution of Optimized Queries

We have incorporated the proposed SQO techniques
into Raindrop [19, 18], an XQuery stream processing
engine. We describe (1) how to encode the event-
condition-actions derived in Section 5 in the query
plans and (2) how to execute such query plans. The de-
scribed techniques for optimized execution are general
to any system that wants to apply the stream-specific
XML SQO in Section 5.

6.1 Raindrop Overview

Raindrop represents an XQuery as an algebraic plan.
The algebra consists of XML specific operators and
SQL like operators such as Select. The input and out-
put of the operators are a collection of tuples. A cell
in a tuple can contain a token, a single XML node or a
collection of XML nodes. Table 1 gives the semantics
of the XAT operators that will be used later while the
full set of XAT operators can be found in [23].

The top part in Figure 11 shows the plan for the
XQuery in Figure 2 (a). For ease of illustration, each
operator is annotated with an identifier. For example,
the inner FWR expression in Figure 2 (a) is modeled as

283



Operator Description

SourcesourceName$s Bind data source to column $s
Taggerpattern$v Tagger an input tuple according to

pattern.
TokenNav$v1,path$v2 Locate elements $v2 that are descen-

dants accessible via path from a context
element $v1.

ExtractUnnest$v1$v2 Take inputs from
TokenNav$v1,path$v2 to compose
tokens into XML nodes. It captures
the variable binding semantics in a “for
$v2 in $v1/path” clause.

ExtractNest$v1$v2 Similar to ExtractUnnest$v1$v2 but
differs in that it captures the vari-
able binding semantics in a “where
$v1/path” or “return $v1/path” clause.

Selc Apply filter c on an input tuple.
StructuralJoin$b Joins input tuples whose column $b con-

tains the same element.

Table 1: Semantics of XAT Operators

the subplan within the box in Figure 11. The patterns
$a/item and $c//keyword are located by TokenNav
operators 4 and 8 respectively. item and keyword el-
ements are extracted by operators 7 and 11. Finally,
an item is coupled with the keyword elements located
within it by StructuralJoin$c.
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Figure 11: Encoding SQO into Algebraic Plan

6.2 Encoding Event-Condition-Actions

The bottom of Figure 11 also depicts the automaton
for locating the patterns. The automaton has encoded
three event-condition-actions derived in Section 5.1.

Compared to the original automaton in Figure 5, new
states have been added for the newly introduced pat-
terns, e.g., state 13 for $b/sameAddr (see Example
3). The property below must hold in the automata in
order for the event-condition-actions to work correctly.

Property 1 Suppose tn and tn′ are type nodes of $v
and $v′ ($v′ = $v/p) respectively. A set of automata
states S will be activated by bindings of $v′ of type tn′

within a binding of $v of type tn. We say the pair
(tn, tn′) is mapped to S. In the query tree, if for any
two pairs of type nodes which are mapped to S and S′,
S ∩ S′ = ∅, the “conflict-free” property holds in the
automaton.

Figure 12 shows two alternative automata con-
structed for the query tree in Figure 9. Both the type
node pairs (c, b) and (d, b) in Figure 9 are mapped to
state 4 in Figure 12 (a). The automaton in Figure 12
(a) does not satisfy the “conflict-free” property and is
incorrect. This is because when state 4 is activated,
we cannot infer whether the binding of $v is type c
or d. We however need to know this to decide which
ending mark to use for $v/b. Figure 9 (b) shows a cor-
rect automaton where the above type node pairs are
mapped to states 4 and 5 respectively.

0 1
2a c

3

4

d

b

b

(a) Incorrect Automaton (b) Correct Automaton

0 1

2a c

3

4

d 5

b

b

Figure 12: “Conflict-free” Property of Automata

To encode the event-condition-actions, i.e., (ending
mark, $v/p, type node atn of an ancestor context node
$u of $v), we first find a set of states S that will be
activated or deactivated by the ending mark. For each
state q in S, we associate a construct (i, tagType,
checkOp, p) with it, where i is the occurrence number
for the ending mark found by the Occurrence Rule;
tagType is either startTag or endTag; checkOp is the
operator which holds the results of $v/p; p is a state
that will be activated by bindings of $u of type atn.

For example, in Figure 11, state 4 is associated with
(1, startTag, Operator 15, state 3). It indicates when
a start tag of category is encountered, operator 15 is
checked. If operator 15 does not have any output, i.e.,
no $c that satisfies $c//keyword = “auto” exists, com-
putations that would occur after state 3 is activated
are all suspended. The locating of seller within the
auction is not affected due to the separation of state
2 from state 3. This captures the query semantics in
Figure 2. A binding of $a may still appear in the fi-
nal results even if it does not contain any qualifying
bindings of $c.

6.3 Execution Strategy

We now present how a plan encoding event-condition-
actions is executed. A construct (i, tagType, checkOp,
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p) associated with state q indicates when p is acti-
vated (when tagType is start tag) or deactivated (when
tagType is end tag) i times, if checkOp does not have
any output, we suspend any computations related to
the states after p. p and q are activated by bindings
of $u and $v respectively where $u is an ancestor con-
text variable of $v. Due to space limitations, we do
not discuss the event detection and condition check-
ing. We focus on taking actions. This process consists
of three steps, namely, computation suspension, tem-
porary data cleanup and recovery preparation.

In the first step, all computations within the current
binding of $u identified by p are suspended. In a naive
implementation, we suspend states including (1) p, (2)
any states reachable via λ transitions from p, and (3)
intermediate states between p and q. For example, to
take action for the construct (2, endTag, operator 12,
state 2) associated with state 12 in Figure 11, we need
to remove the transitions from q2, q3 as well as q9,
q11 and q12. We need not suspend states 4 to 8 since
suspension of state 3 has ensured no transition would
ever start from them. In contrast, the intermediate
states between q2 and q12 such as q9, even though
q2 has been suspended, still need to be suspended.
Otherwise, a subsequent token after the ending mark
(i.e., a </phone>) such as <billT o> still triggers the
transition from state 9 to state 10.

We actually can reduce the number of states to be
suspended so as to reduce the suspension overhead.
For example, in an optimized implementation, q11 and
q12 do not have to be suspended. No transition would
ever start from them after the ending mark anyway.

In the second step, the temporary results originat-
ing from the current binding of $u are cleaned. For
example, in a naive implementation, we clean the out-
put buffers of operators 10 and 15 in case category and
qualified item (i.e., satisfying $c//keyword = “auto”)
have been located within the current auction. How-
ever, similar to the optimization in the first step, we
actually only need to clean the buffers which may have
contained outputs generated within this $u before the
ending mark. Therefore in the above example, we need
not clean any output buffers, since item and category
elements occur only after the ending mark within an
auction (refer to Figure 3).

Third, since the suspended states need to be re-
sumed later, we prepare for the recovery. For example,
when states 2, 3 and 9 are suspended, i.e., transitions
from them are removed, we set a “suspended” flag for
these states and backup their transitions. Later, when
a start tag of auction (resp. seller) activates states
2 and 3 (resp. seller), the “suspended” flag triggers
the backup transitions to be recovered. Computations
start again.

7 Experimentation

We implemented the SQO techniques in Raindrop
[18, 19] using Java 1.4. Experiments are run on two

for $a in /ProteinDatabase/ProteinEntry[p11 ][p12]...

where $a/p21 = val21 and $a/p22 = val22 ...

return

<result> $a/p31, $a/p32, ..., </result>

Figure 13: Query Template

Pentium III 800 Mhz machines with 768M memory.
One machine sends the XML stream to the second
machine, i.e., the query engine. We implemented an
XML parser which, assuming the incoming data is
well-formed, does not check the well-formedness. The
parsing time in the overall execution time thus is neg-
ligible.

7.1 Practicability of SQO Techniques

We now report the performance of our SQO techniques
on a real dataset from the Protein Sequence Database
(PSD) [1]. From its DTD, we can see that the data can
be highly irregular. This dataset contains a sequence
of ProteinEntry elements. A ProteinEntry element has
13 subelements: 8 of them can be optional; and 4 of
the remaining 5 required subelements can again have
optional subelements. Many real-life queries access the
optional subelements, according to a biologist we have
consulted.

We design a set of queries in the format in Figure 13.
The notations p11, ..., p21, ..., p31, ... stand for XPath
expressions and val21, val22, ... stand for constant
strings. Table 2 shows the features of each query.

Query # of Filters in
“for” clause

# of Paths in “re-
turn” clause

# of Selection
Predicates

Q1 1 1 0
Q2 1 5 0
Q3 6 5 0
Q4 1 8 0
Q5 1 8 0
Q6 0 8 10

Table 2: Query Characteristics

Figure 14 shows 5 bars for each query: one for the
original plan; the other three for plans applied on by
the Occurrence, Exclusive or Order Rule respectively;
and the fifth for the plan applied on by all three rules.
Q1, Q2 and Q3 are common in that no ending marks
can be found by the Occurrence or Exclusive Rule.
Therefore, the plans after the Occurrence or Exclusive
Rule is applied are the same as the original plan. The
only filter in Q1 has a selectivity of 23%. Order Rule
reduces the original execution time by 13%. Q2 has
more paths within the “return” clause so that more
savings can be gained with early filtering. Order Rule
reduces the original execution time by 36%. Q3 has
more filters than Q1 and Q2. Order Rule reduces the
execution time by 40%. The performance gain dif-
ference between Q2 and Q3 is not major because the
additional filters in Q3 are not very selective.

Both Q4 and Q5 have a pattern for which Exclu-
sive rule can find ending marks. The selectivities of
the patterns are 78% and 2% respectively. For both
queries, the plan optimized with the Exclusive Rule is
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better than the plan optimized with the Order Rule
because Exclusive Rule detects the failure of the pat-
tern before Order Rule. The performance gain in Q5 is
more obvious due to the low selectivity of the pattern.

Q6 contains 10 predicates. The Occurrence Rule is
most useful when the occurrence number of elements is
deterministic (i.e., minimal occurrence = maximal oc-
currence). If an element occurs less than the maximal
occurrence, the Order Rule helps to catch the failure
of the predicates. When these two rules are combined,
the performance is the best.

7.2 Necessity of “Usefulness” Criteria

The data sets used in the rest of the paper are gener-
ated by an XML generator ToXGene [5]. They con-
form to the schema used in XMark [17]. We now illus-
trate the necessity of introducing only ending marks
that satisfy the criteria in Figure 7.

For the query in Figure 2 (a), we turn off the crite-
ria checking and adopt all ending marks found for the
required patterns (we do not allow ending marks for
optional patterns since they lead to incorrect results).
Among 30 ending marks, only one ending mark for
the pattern $b/billT o satisfies the criteria. The result
is shown in Figure 15. When the selectivity of /billT o
is low, the only necessary ending mark of /billT o of-
ten suspends transitions, including those activating
the unnecessary ending marks. However, as the se-
lectivity of /billT o reaches above 30%, the overhead
of unnecessary ending marks makes the plan perform
even worse than the original plan.

7.3 Factors on Performance Gains

How useful an ending mark of a pattern p is depends
on two factors: how often p occurs within its context
node, i.e., the selectivity of p; and how much compu-
tation can be saved when an early filtering occurs, i.e.,
the unit gain. We now study the influence of these
factors on the effectiveness of the SQO techniques.

We design three sets of queries. Each query set
is meant to test the effectiveness of SQO on saving
certain types of computations, i.e., path location, data
buffering, or selection evaluation. Each query set is
composed of three queries that differ in the unit saving.
For example, in the query set for testing the saving on

path recognition, the evaluation of 1, 9 and 18 path
expressions can be saved when an early filtering occurs
in queries 1, 2 and 3 respectively. In other words,
minor, medium and major gains can happen in the
three queries respectively.

Figures 16, 17 and 18 report the results on the three
query sets. In each such figure, (a), (b) and (c) corre-
spond to queries with minor, medium and major gains
respectively while (d) gives a summary of the ratio of
the execution time of the plan without SQO to that of
the plan with SQO. The higher the ratio is, the more
effective the SQO is. We can see that the lower the
selectivity of the pattern with ending marks, or the
bigger the unit saving is, the more effective the SQO
is. In the best case of three types of queries (i.e., selec-
tivity is 0% and unit gain is major), plans optimized
with SQO reduce the execution time of original plan
by 79%, 44% and 86% respectively.

7.4 Overhead of SQO

We now test the overhead of our SQO techniques. For
a SQO technique, we design a query and a schema so
that the SQO technique can be applied on a pattern p
in the query. This query is run on a data set in which
the selectivity of p is 100%. In other words, none of the
ending marks of p will ever lead to any computation
savings. The performance difference between such a
plan and the original plan is then the overhead of SQO
in worst case. Due to space limitation, we only report
the overhead of Order Rule.

Order Rule may introduce multiple ending marks
for one pattern in the query. For example, if we have
a DTD <a (b?, c?, d?)>, both c and d can serve as
the ending mark of b within a. If all b, c and d always
appear within an a, the existence of b will be checked
twice (equvalent to the number of its ending marks).
The overhead of the plan with a different number of
ending marks on different data sets is reported in Fig-
ure 19. We can see that when ending marks occur
frequently (refer to the third group of bars), the more
ending marks are introduced, the more expensive the
query is to evaluate. However when ending marks fre-
quently occur, the ratio of the execution time of the
plan with 20 ending marks to that of the original plan
is 108%, which indicates the overhead is still small.
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Figure 16: Effect of Pattern Selectivity/Unit Gain on Saving Path Location Cost
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Figure 17: Effect of Pattern Selectivity/Unit Gain on Saving Buffering Cost

7.5 Experimental Summary

Our experiments on real data reveal that our SQO
is practical in two senses. First, the constraints the
techniques rely on do occur frequently. Second, the
savings brought by the techniques can be significant.

Our experiments on synthetic data focus on three
aspects. First, we show the necessity to follow the
SQO design guidelines. Second, we study the impact
of various factors on the effectiveness of our techniques.
These factors include the kind of computation (i.e.,
pattern location, buffering, or selection evaluation),
the unit gain, and the frequency of the occurrence of

optimization. Third, we test the overhead of the SQO
techniques which turns out to be rather low.

8 Conclusion

Our work provides SQO support for optimizing
XQuery over XML token stream. We derive criteria
for deciding what schema constraints are useful for an
XQuery. Correspondingly, we develop a set of SQO
rules that are able to utilize those useful constraints.
An optimal rule application order is also proposed to
guarantee the quality of the optimized queries. Our
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Figure 18: Effect of Pattern Selectivity/Unit Gain on Saving Selection Evaluation Cost
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Figure 19: Overhead of Applying Order Rule in Worst Case

experiments show that these SQOs can improve the
performance significantly while at the same time in-
troducing negligible overhead in most cases.
Acknowledgement. Hong Su would like to thank
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