
Efficient Evaluation of XQuery over Streaming Data

Xiaogang Li Gagan Agrawal

Department of Computer Science and Engineering
Ohio State University, Columbus OH 43210�

xgli,agrawal � @cse.ohio-state.edu

Abstract

With the growing popularity of XML and emer-
gence of streaming data model, processing queries
over streaming XML has become an important
topic. This paper presents a new framework and
a set of techniques for processing XQuery over
streaming data. As compared to the existing work
on supporting XPath/XQuery over data streams,
we make the following three contributions:

1. We propose a series of optimizations which
transform XQuery queries so that they can be cor-
rectly executed with a single pass on the dataset.

2. We present a methodology for determining
when an XQuery query, possibly after the trans-
formations we introduce, can be correctly exe-
cuted with only a single pass on the dataset.

3. We describe a code generation approach which
can handle XQuery queries with user-defined ag-
gregates, including recursive functions. We ag-
gressively use static analysis and generate exe-
cutable code, i.e., do not require a query plan to
be interpreted at runtime.

We have evaluated our implementation using sev-
eral XMark benchmarks and three other XQuery
queries driven by real applications. Our ex-
perimental results show that as compared to
Qizx/Open, Saxon, and Galax, our system: 1)
is at least 25% faster on XMark queries with
small datasets, 2) is significantly faster on XMark
queries with larger datasets, 3) at least one or-
der of magnitude faster on the queries driven by
real applications, as unlike other systems, we can

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

transform them to execute with a single pass, and
4) executes queries efficiently on large datasets
when other systems often have memory over-
flows.

1 Introduction
XML is a flexible exchange format that has gained pop-
ularity for representing many classes of data, including
structured documents, heterogeneous and semi-structured
records, data from scientific experiments and simulations,
digitized images, among others. As a result, querying XML
documents has received much attention. At the same time,
a new model of data processing has also emerged in the
database community. In this data model, data arrives in
the form of continuous streams, usually from a data col-
lection instruments or a long running computer simulation.
The data needs to be analyzed in real-time, and using only
a single pass on the data. Many important applications
classes, like protecting network security, monitoring crit-
ical infrastructure, analyzing stock and business data, mon-
itoring climate and environment involve analysis of stream-
ing data [23, 6, 45].

With these two developments, processing and querying
XML streams has become an important topic. We believe
that there are two other important trends which also con-
tribute to the need for processing XML streams. The first
is related to distributed and grid-based processing. There
have been rapid improvements in the technologies for Wide
Area Networking (WAN), as evidenced, for example, by
the National Lambda Rail (NLR) effort. As a result, often
the data can be transmitted faster than it can be stored or
accessed from disks within a cluster, and streaming model
is gaining popularity. At the same time, XML has been
widely adapted in web-based [19], distributed [9], and grid
computing [21]. The second development is the popular-
ity of virtual XML, where XML is used as a logical view
to low-level data formats, such as flat-file Bioinformatics
data [40] or network data � .

To query and process (virtual) XML data streams,
XQuery designed by W3C [8] can be an ideal language,
because of its declarative nature and powerful features.�

Please see http://www.galaxquery.org/slides/xsym2004.pdf

265

XQuery is a high-level language like SQL, but it also sup-
ports more advanced and complex features such as types
and recursive functions. XQuery allows user-defined func-
tions, which are often key for specifying the type of pro-
cessing that is required for streaming data.

Currently, there is a limited work on query evaluation on
XML streams, and most of this handles only XPath frag-
ments [39, 38, 15]. Compared with XPath, XQuery is sig-
nificantly more expressive, and therefore, more challeng-
ing to handle. Some techniques have been proposed for
processing XQuery queries over streaming data [33, 29].
Transducer networks has been used in XSM[33] to handle
a small subset of XQuery, in which only join and node cre-
ation operations are allowed. Flux [29], on the other hand,
uses static analysis for optimize buffer size. There are two
important limitations in both these efforts. First, neither of
them can handle aggregation functions, which we believe
can be critical in specifying the type of analysis that is of-
ten done on streaming data. Second, neither of them have
presented query transformations techniques to reduce the
number of traversals, which again can be important for en-
abling a larger number of queries to be executed correctly
on streaming data.

This paper presents a new framework and a set
of techniques for processing XQuery over streaming
data. As compared to the existing work on supporting
XPath/XQuery over data streams, we make the following
contributions:

1) In many cases, direct translation of a XQuery query re-
quires multiple passes on the data, whereas the query can
be transformed to correctly execute with only a single pass.
We present techniques for enabling such transformations.
We model the dependencies in the query using a represen-
tation we refer to as the stream data flow graph. We apply
a series of high-level transformations, including horizon-
tal and vertical fusion. These techniques enable a larger
number of queries to be evaluated correctly on streaming
data, and efficiently on any large dataset. Furthermore,
such transformations reduce the workload of a query pro-
grammer, who otherwise must rewrite the query manually
to execute correctly on streaming data.

2) Based on our stream data flow graph, we present a
methodology to determine if a query can be evaluated cor-
rectly in a single pass. This enables us to avoid generating
a query evaluation plan that is going to fail, and instead, a
user can be given feedback sooner.

3) To the best of our knowledge, our system is the only
XQuery engine on streaming data that support aggregates,
including user defined recursive functions. Based on an in-
termediate representation called Generalized Nested Loops
(GNL), we propose low-level transformation techniques,
such as aggregation rewriting and recursion analysis, to op-
timize aggregations.

4) We propose a new technique to generate efficient stream-
ing code, using our GNL representation.

We have implemented our framework and techniques.

We have evaluated our implementation using several
XMark benchmarks and three other XQuery queries driven
by real applications. Our experimental results show that
as compared to Qizx/Open, Saxon, and Galax, our sys-
tem: 1) is at least 25% faster on XMark queries with small
datasets, 2) is significantly faster on XMark queries with
larger datasets, 3) at least one order of magnitude faster on
the queries driven by real applications, as unlike other sys-
tems, we can transform them to execute with a single pass,
and 4) executes queries efficiently on large datasets when
other systems often have memory overflows.

The rest of the paper is organized as follows. A moti-
vating application is described in Section 2. The overall
problem is described in Section 3. Our high-level analy-
sis, including the stream data flow graph, horizontal and
vertical fusion techniques, and the analysis to determine if
the query can be executed correctly on streaming data are
presented in Section 4. Low level analysis and code gener-
ation are presented in Section 5. Experimental evaluation is
presented in Section 6. We compare our work with related
research efforts in Section 7 and conclude in Section 8.

2 A Motivating Application

unordered(
for $i in ($minx to $maxx)

for $j in ($miny to $maxy)
let $p := /stream/data/pixel

where(($p/x = $i) and ($p/y = $j))
return�

pixel ��
latitute ��� $i � � /latitute ��
longtitute ��� $j � � /longtitute ��
summary �	� accumulate($p) � � /summary ��

/pixel �
)

declare function accumulate ($p)
as double�

let $inp := $p[1]
let $NVDI := (($inp/band1 - $inp/band0) div

($inp/band1 + $inp/band0)+1) * 512
return

if(fn:empty($p))
then 0
else � fn:max($NVDI, accumulate(fn:subsequence($p,2))) ��

Figure 1: Satellite Data Processing Expressed in XQuery
In this section, we describe an application we refer to as

satellite data processing [11]. We show how it can be ex-
pressed in XQuery, and the issues involved in transforming
and executing it correctly on streaming data.

This application involves processing the data collected
continuously from satellites and creating composite im-
ages. A satellite orbiting the Earth collects data as a se-
quence of pixels. Each pixel is characterized by the spatial
coordinate (the latitude and longitude) and a time coordi-
nate. The satellite contains sensors for five different bands.
Thus, each pixel captured by the satellite stores the latitude,
longitude, time, and 16-bit measurements for each of the 5

266

bands.
The typical computation on this satellite data is as fol-

lows. A portion of Earth is specified through latitudes and
longitudes of end points. For any point on the Earth within
the specified area, all available pixels (corresponding to dif-
ferent time values) are scanned and an application depen-
dent output value is computed. To produce such a value, the
application will perform computation on the input bands to
produce one output value for each input value, and then the
multiple output values for the same point on the planet are
combined by a reduction operation. For instance, the Nor-
malized Difference Vegetation Index (ndvi) is computed
based on bands one and two, and correlates to the “green-
ness” of the position at the surface of the Earth. Combining
multiple ndvi values consists of execution a max operation
over all of them, or finding the “greenest” value for that
particular position.

XQuery specification of such processing is shown in
Figure 1. The code iterates over the two-dimensional space
for which the output is desired. Since the order in which the
points are processed is not important, we use the directive
unordered. Within an iteration of the nested for loop, the
let statement is used to create a sequence of all pixels that
correspond to the those spatial coordinates. The desired re-
sult involves finding the pixel with the best NDVI value. In
XQuery, such reduction can only be computed recursively.

The computations performed to obtain the output value
of a given spatial coordinate are often associative and com-
mutative. In such cases, these computations can be per-
formed correctly on streaming data. When a pixel is re-
ceived, we can find the spatial coordinate it corresponds to,
and update the output value for that spatial coordinate.

However, direct translation of the XQuery specification,
as we had shown in Figure 1, will require multiple scans
on the entire dataset. It is clearly desirable that the stream-
ing XQuery processor can transform the query to execute
it correctly with only a single pass on the entire dataset.
Thus, we have the following challenges:

1. How can we systematically and correctly transform a
given XQuery query so that it can be executed on streaming
data, when possible ?
2. How can we determine if a given XQuery query, pos-
sibly after our transformations, can be executed correctly
with only a single pass on the entire dataset ?
3. How can we generate efficient code for a query like the
one shown in Figure 1, in view of the user-defined recursive
function it involves.

We address the above three challenges in the rest of this
paper.

3 Preliminaries

This section describes our data and evaluation model. We
introduce the notion of progressive blocking operators, and
describe the overall problem.

3.1 Evaluation Model

We assume that the length of the incoming XML stream
exceeds our capability of storing it. We only investigate the
possibility of obtaining exact query results in a single pass.
Approximate processing of queries using a single pass on
streaming data has been extensively studied by many re-
searchers, and we do not consider this possibility here. We
limit the number of input streams to be one. Also, we as-
sume that duplicate-preserving is always used for XPath
expressions in the query.

When an incoming tuple is available, it is fetched for
evaluation and a series of internal computations are per-
formed. As a result of this computation, an output tuple
may be dispatched. A limited amount of memory is avail-
able for internal buffering, which is much smaller than the
entire length of the data stream.

The internal computations can be viewed as a series of
linked operators. Each operator receives input from its
parent(s), performs an operation on the input, and sends
the output tuples to its children. An operator could be a
pipeline operator or a blocking operator, as described by
Babu and Widom [7].
Pipeline Operator: A pipeline operator can immediately
dispatch the output tuple after processing one input tuple.
In our system, assume that the input of the operator
 is����������
������ � ��� � � �"!"!#!"� � $&%
and the output stream is' � �(� � ���
��)�*� + ��� +,� �#!"!#!"� +&-#%
A pipeline operator
 has the property:

+,./�10 � �32,4 .65 �87 �
where, 9 is monotonically increasing and 7 is a bounded
size buffered synopsis of � �:� � � �"!"!#!"� ��2,4 .;5=< � . An example
of a pipeline operator is the selection operation.
Blocking Operator: A blocking operator must receive all
its input before generating the output. Using the above no-
tation for input and output, for a blocking operator we have

� + �:� +,� �"!;!6! +-#%3�>0 � � �?� ��� �"!;!;!6� � $��
An example of a blocking operator is the sort operation.

For our analysis, we introduce a special type of a block-
ing operator, which we refer to as the progressive block-
ing operator. This is based on the observation that not all
blocking operators require buffering of the entire input be-
fore generating the output. If the following two conditions
hold true, a blocking operator is a progressive blocking op-
erator.

@ ' ���(�������
�� @AB@ ����������
�� @ (1)0 � � �:� � � �"!;!6!;� ��$C�D�E0 � � 0 � � �:� ��F �#!6!;!;� � $ < � � � ��$�� (2)

In such cases, the operator can be evaluated as follows.
At each step, we only need to buffer the temporary results

267

and can discard the input. This is because the Equation 2
ensures that the input is no longer necessary for the later
computations. Equation 1 ensures that temporary results
can actually be buffered in our evaluation model. An ex-
ample of such an operator is the count operation.

3.2 Problem Overview

The analysis we perform in this paper is based on the fol-
lowing key observation. In a system with limited memory,
a query cannot be evaluated using a single pass on the en-
tire data stream to obtain an exact answer if the following
conditions holds true:G A blocking operator with unbounded input is involved

in the query, orG A progressive blocking operator with unbounded in-
put is involved and its output is used by another
pipeline or progressive blocking operator.

The first condition is straight-forward. Let us consider
the second condition. When the final output of a progres-
sive blocking operator
 � is referred by another operator
 � ,
which is either a pipeline or a progressive blocking opera-
tor,
:� must wait until the computation of
 � finishes. This
blocks the pipeline or progressive blocking computation
�
defines. Queries that satisfy this propriety are referred to as
correlated aggregates [22], which in most cases can only
be evaluated approximately with a single pass.

The dependence between blocking operators and
pipeline or progressive blocking operators that prevents
a query from being evaluated in a single pass can either
be a control dependence or a data dependence. Control
dependence between operators is involved in correlated
sub-queries, where the result of a sub-query is used as a
predicate to filter the tuple selection. Many research ef-
forts have focused on de-correlating such queries using
various unnesting techniques, in the context of both rela-
tional [28, 37] and object-oriented databases [32, 13, 16].

Data dependence occurs when an operator computes
a value that uses the result of a previous operator as an
operand. The following query, referred to as the Query
1, is an example where data dependence between operators
is involved. Here, pixel contains two elements, x and y.

Query 1:
let $b = count(stream/pixel[x>0])

for $i in stream/pixel
return $i/x idvi $b

Much of our analysis focuses on such dependencies.
One possible approach for such analysis could be the use of
algebras. However, due to the expressive power and flexi-
bility of XQuery, this approach is unlikely to model the in-
terdependencies between operators. This is especially true
for user-defined aggregations and recursive functions, for
which a simple yet complete algebra has not yet been pro-
posed.

In the rest of this paper, we propose to use static analysis
at the expression level to model the data flow and depen-
dence information for XQuery. Static analysis will be used
for guiding query transformation, as well as efficient code
generation for query evaluation. Static analysis techniques
have extensively been used in the programming language
community for optimization of imperative languages [2]
and quite recently, have been successfully used for analyz-
ing and optimizing XQuery [29, 35].

4 High-level Analysis
This section describes the high-level analysis done in our
system. Our goal is to correctly transform the query so that
it can be processed in a single pass, when it is possible, and
also to recognize when single pass analysis is not possible.
Low-level analysis to facilitate code generation for XQuery
with user-defined aggregates and recursive functions is dis-
cussed in the next Section. Initially, we give an overview
of our overall framework.

4.1 Overview

Analysis based on relational algebra has recently been pro-
posed to characterize the memory usage of SQL queries
over continuous streams [5]. Since our focus is on XQuery,
we do not use the algebra approach for the following two
reasons. First, as we had stated earlier, developing an alge-
bra to fully exploit the expressive power of XQuery is hard.
For example, most existing XQuery engines handle this
language one expression at a time, which does not allow
aggressive optimizations. Second, unlike SQL, data depen-
dence is frequently introduced in an XQuery code through
the use of binary expressions for computations. Such de-
pendence relationships are traditionally well represented by
dependence graphs in optimizing compilers. Specifically,
in the next subsection, we introduce a representation called
the stream data flow graph.

As we had discussed in the previous section, there are
two cases in which a query cannot be processed in a sin-
gle pass. The first one involves a blocking operator with
unbounded input. The second one involves a progressive
blocking operator with unbounded input whose output is
used by another pipeline or progressive blocking operator.
The first case is simple to detect. Therefore, for our analy-
sis in this section, we assume that we only have pipelined or
progressive blocking operators in our query, i.e., we do not
have a blocking operator which cannot be evaluated pro-
gressively.

Figure 2 shows the key phases in our system. First, we
construct the stream data flow graph representing the data
dependence information for the query. Then, we apply a
series of high-level transformations to prune and merge the
stream data flow graph. Such techniques not only simplify
the later analyses, but most importantly, they can rewrite
some queries to enable single pass processing. After prun-
ing the graph, a single pass analysis algorithm will be ap-
plied to the resulting data flow graph to check if single pass

268

Single−Pass Analysis

Recurrsion Analysis

GNL Generation

Stream Code Generation

Data Flow Graph Construction

High−level Transformations

Low−level Transformations

Aggregation Rewrite

Horizontal Fusion

Vertical Fusion

Figure 2: Overview of the Framework
evaluation is possible. If the answer is no, further process-
ing will not be performed. Otherwise, we apply low-level
transformations and our code generation algorithm, and ef-
ficient single pass execution code is generated.

4.2 Stream Data Flow Graph

We introduce the stream data flow graph to represent de-
pendence information and enable high-level analysis and
optimizations on XQuery.

Definition 1 Given any pair of variables H � , H?� , if the defi-
nition of H � uses the value of H � , or if the value of H � impacts
whether or not H � is evaluated, H � is considered dependent
on H � .
Definition 2 A stream data flow graph is a directed graph
in which each node represents a variable in the original
query and the directed edges IJ� � H �:� H?�#� implies that H,� is
dependent on H � .

We introduce nodes for the variables defined in the orig-
inal query, such as those defined in Let and For clauses, as
well as for output value of a function or an XPath expres-
sion that is not explicitly defined in the original query. We
distinguish between nodes that represent a sequence, and
nodes which represent atomic values. This is because de-
pendence relationships between sequences and atomic val-
ues are of particular importance. We represent nodes of
sequence type (of unbounded length) with rectangles and
nodes of atomic type (or sequences of bounded length) with
circles.

The stream data flow graph for the Query 1 described
in the previous section is shown in Figure 3. KML is
the implicit variable that represents the XPath expression
stream/pixel[x N 0]. Similarly, K)F is used to repre-
sent stream/pixel. The output of the aggregate func-
tion count() is represented by H L . Here O in the
3P�Q
clause is treated as an atom variable to represent each item
in the binding sequence.

Lemma 1 The stream data flow graph for a valid XQuery
query is acyclic.

Proof:The proof directly follows from the single assign-
ment feature of XQuery [8]. Assume there is a cycle, then

S1 S2

S1: Stream/pixel[x>0]

v1

 b

v1 : count()

The Original Dependence Graph

 i

S2: Stream/pixel

Figure 3: Example of Stream Data Flow Graph
one of the following conditions must hold true: 1) a vari-
able H is defined more than once, or 2) a variable H is re-
ferred to without definition.

Neither of the above are allowed in a valid XQuery
query. R

We distinguish between two types of dependence rela-
tionship among the nodes.

Definition 3 Given two variables H � , H � , we say that H � is
aggregate dependent on H � if: 1) H � is dependent on H � , and
2) H � is a sequence variable, H � is an atomic variable, and
moreover, H � is not used as the iterator variable for any
3P�Q expression. In such a case, we denote H �TS H � .

Aggregate dependence typically exists between a pro-
gressive blocking operator and its output.

Definition 4 Given two variables H � , H?� , we say that H?� is
flow dependent on H � if: 1) H?� is dependent on H � , and 2)H?� is not aggregate dependent on H � . In such a case, we
denote H �VU H?� .

Let us reconsider the Figure 3. We have used dashed
arrows to represent aggregate dependence, and solid arrows
for flow dependence.

4.3 High-level Transformations

Let us consider a stream data flow graph. If this graph
contains multiple rectangle nodes, the corresponding query
cannot be evaluated in a single pass, if we strictly follow
the original syntax and do not allow pipelined execution.
This is because each rectangle node represents a sequence
that may have an infinite length, which cannot be buffered
in the main memory.

However, by applying our query transformation and
graph pruning techniques, including horizontal and verti-
cal fusion, many queries can still be evaluated in a single
pass.

4.3.1 Graph Pruning with Horizontal Fusion

Consider a query that involves multiple traversals of a
data stream. If these traversals share a common prefix in
their corresponding XPath expressions, we can merge these
traversal into one, and could enable processing in a single
pass.

As an example, we consider the following query:

Query 2:
let $b = count(stream/pixel[x>0])

return sum(stream/pixel/y) idvi $b

269

v1 v2

The Original Dependence Graph

S1: Stream/pixel[x>0]

S2: Stream/pixel/y
v1 : count()
v2 : sum()

S1 S2

S0

v1 v2

S0: Stream/pixel
S1: [x>0]
S2: y
v1 : count()
v2 : sum()

Dependence Graph after Horizonal Fusion

S1 S2S1 S2

 b
 b

(a) (b)

Figure 4: Example of Horizontal Fusion
The original query involves two traversals of the entire

stream, and cannot be processed directly without buffer-
ing the stream. However, since the two XPath expressions
share a common prefix stream/pixel, the computation
of count and sum can be carried out in a single traversal
of stream/pixel.

To fuse multiple traversals together, we first generate a
new node representing their common prefix. Then, for each
original sequence node representing the traversal, the label
will be changed to the subexpression obtained by removing
the common prefix. A new edge will be added linking this
node to the new node. If the subexpression obtained after
removing the common prefix is empty, the corresponding
node is deleted, and its children have an edge from the par-
ent node.

The stream data flow graph for the Query 2 after hor-
izontal fusion is shown in Figure 4. In this example, a new
sequence node K�W is generated corresponding to the com-
mon prefix /stream/pixel. The label of the two origi-
nal sequence node are changed to the remaining XPath ex-
pressions, which are � �XNYW:% and Z�+ , respectively. Each
new node is linked to K�W .

Sometimes horizontal fusion in a query may lead to
incorrect results, because of inter-dependence among the
traversal of sequences. As an example, consider the Query
1. The data flow graph after horizontal fusion is shown
in Figure 5. When we combine the traversal to compute
count and the final output together, in each iteration, the
output will be computed using partial result of $b, which
is not correct. In our method, we just apply horizontal fu-
sion irrespective of such inter-dependence. Later, during
single pass analysis, such dependence will be detected and
the query will be eliminated from further processing.

For nested queries with pre-defined iteration space,
which are common in many scientific data processing ap-
plications, horizontal fusion can be applied after unrolling.
Unrolling is a commonly used technique in traditional com-
pilers. Consider the following simple query:
unordered(
for $i in (1 to 2)
let $b: =//stream/pixel[x=$i]

return count($b))

By unrolling the first for expression, we can generate the
following intermediate query:
unordered(

let $b1: =//stream/pixel[x=1]
let $b2: =//stream/pixel[x=2]

return count($b1), count($b2)

v1

 b

i

S0: Stream/pixel

S0

v1 : count()

 Query 1 After Horizonal Fusion

S0

S0: Stream/pixel
v1 : count()

i

v1

 b

Dependence Graph after Vertical Fusion(b)(a)

Figure 5: Horizontal and Vertical Fusion for Query 1

Since the XPath expressions generated after unrolling
share the same common prefix, horizontal fusion can be
applied to all the sequence node corresponding to the dif-
ferent iterations.

4.3.2 Graph Pruning with Vertical Fusion

The stream data flow graph can be further pruned using a
technique called vertical fusion. Vertical fusion exploits
the benefits of the pipelined processing, which can remove
unnecessary buffering and simplify the data flow graph.

Consider the following example.

Query 3:
let $b: = for $i in stream/pixel[x>0]

return $i
for $j in $b/y

return $j
where $j = count($b)

In this query, 7 contains all tuples from the original
stream with a positive value of the � coordinate. In a
pipelined fashion, we can further process each tuple in 7 as
soon as it is available without buffering the entire sequence
of 7 , which is required for unbounded streams.

As described in 3.2, we only need to check dependence
between a progressive blocking operator and a pipeline
operator, while dependence among pipeline operators can
be ignored. In vertical fusion, we try to merge multiple
pipeline operations on each traversal path into a single clus-
ter in the stream data flow graph. The cluster obtained after
fusion is referred to as a super-node. A super-node is rep-
resented in the data flow graph with a dashed box enclosing
all the merged nodes. By doing so, the pipeline operation
and the progressive blocking operations can be separated,
and the number of isolated nodes in the data flow graph is
reduced. This significantly simplifies later analysis on their
dependence relationships.

Our algorithm does a top-down traversal from each root
node, following only the flow dependence edges. For each
node visited during the traversal, it will be fused with the
current super-node, if it is not already in another super-
node. Note that not all sequence nodes can be merged by
vertical fusion. If a sequence [is flow dependent on both
the sequence node \ and the sequence node] , which nor-
mally occurs when [is the result of a join between \ and] , we will merge [with either \ or] , but not both of
them.

The details of the algorithm are shown in Figure 7. ^
is the set of the nodes in the graph that do not have an in-
coming edge. _ denotes the set of nodes that have been

270

S2: /x
S1: Stream/pixel

v: Avg()
S2: /x
S1: Stream/pixel

v: Avg()

S1

S2

 i

 j

b

 v

S1

S2

b

 i

 j

 v

(a)The Original Dependence Graph (b)Dependence Graph after Pruning

Figure 6: Example of Vertical Fusion (Query 3)
inserted in any super-node. `_ denotes the compliment of_ , i.e., the nodes in the graph that are not in the set _ . The
algorithm picks a sequence node a:. . It follows the flow de-
pendence edges (denoted as U) to find nodes that can be
fused into a super-node with a . . These nodes are put in the
set b . Any node that has already been fused into a super-
node, (i.e., is not in `_) is not inserted in b .

The data flow graph for the Query 1 after vertical fu-
sion is shown in Figure 5(b). The data flow graph for the
Query 3 after vertical fusion is shown in Figure 6 (b).

Vertical Fusion
Input: 1) data flow graph G =(V ,E)

2) root set Rcedgf
foreach node hji3kTlm�

if hni is a sequence nodeopd �8hniq�
do � crdscutJo

Let v d �nw,x y#z|{~}6z�k og�� }6zV��w � �opdgo*t }�v	�E�cT�� until }�v�� �cEd�d�f��
fuse M into super-node�

end

Figure 7: Algorithm for Vertical Fusion
Vertical fusion simplifies the stream data flow graph for

further analysis and optimization. After vertical fusion,
most of the queries that can be processed in a single pass
will have only one rectangle node in their data flow graph.

4.4 Single Pass Analysis

After horizontal and vertical fusion, analyzing whether a
query can be evaluated in a single pass becomes simpler.
For our discussion here, we treat all nodes in a super-node
after vertical fusion as a single sequence node. With this,
any stream data flow graph that contains more than one se-
quence node cannot be evaluated in a single pass. This is
because each such node represents one traversal of a se-
quence of length � �6� � . If two sequence nodes are not
fused with vertical fusion to apply pipelined execution, two
traversals must be used. Thus, we have the following theo-
rem.

Theorem 1 If a query � with dependence graph ����q� �n� � contains more than one sequence node after ver-

(a)

(1...*)

(1..*)

 (b)

Figure 8: Stream Data Flow Graphs that Require Multiple
Traversals
tical fusion, � may not be evaluated correctly in a single
pass.

However, for queries whose stream data flow graph con-
tains only one sequence node, a single pass evaluation may
still not be possible. Two types of dependence relationship
may prevent the query from being executed in a single pass.
Examples of these two cases are shown in Figure 8.

Theorem 2 Let K be the set of atomic nodes that are ag-
gregate dependent on any sequence node in a stream data
flow graph � . For any given two elements a �r� K anda�� � K , if there is a path between a � and a�� , the query may
not be evaluated correctly in a single pass.

Proof:For each a�. � K , a#. can only be computed after
the sequence

� . it depends on is fully scanned. Assume
there is a path from a � to a � , then the value of a � must be
computed using a � . Thus, the scan of

� � must follow the
scan of

� � . This implies that the query cannot be processed
with a single pass. R

In addition to the condition associated with the Theo-
rem 2, there is another condition we need to check for.

Lemma 2 If a stream data flow graph � contains a cycle,
it is formed after horizontal or vertical fusion.

Proof:From lemma 1 there is no cycle in the origi-
nal stream data flow graph. Therefore, the cycle must be
formed by either horizontal fusion or vertical fusion. R
Theorem 3 In there is a cycle in a stream data flow graph
G, the corresponding query may not be evaluated correctly
using a single pass.

Proof:From the lemma above, the cycle is formed af-
ter horizontal or vertical fusion. If the cycle is formed right
after horizontal fusion of a � and a�� , there must be a path be-
tween a � and a�� , which implies dependence of a:� on a � . In
this case, horizontal fusion will generate incorrect results,
and single pass evaluation is impossible.

If the cycle is formed after vertical fusion, a super-
node must be involved in the cycle. Assume the cycle isH ��� H?� �#!"!#!�� H,- � H � , and H . is a super-node. Then, it is true
that H .6� � is aggregate dependent on the node H . , otherwise,H?.;� � will be fused with H,. during vertical fusion. Thus, the
value of H?.;� � can only be valid after the pipelined execution
of H?. is completed. Because a cycle exists, the pipelined ex-
ecution of H?. also requires the value of H,.;� � . As a result,
pipelined execution of H,. is not possible, and the query can-
not be evaluated in a single pass. R

271

After vertical fusion, stream data flow graphs for both
Query 1 and Query 3 contain cycles, and therefore,
these queries cannot be executed with a single pass.

If the conditions corresponding to any of the above three
theorems hold true for a query, we cannot further process
the query using a single pass and ensure correct results. If
the original graph has

�
vertex, the conditions correspond-

ing to Theorems 1, 2, and 3 can be applied in
' ��� � ,' ��� � � , and

' ��� � time, respectively.
The next theorem shows that if the conditions corre-

sponding to the Theorems 1, 2, and 3 all hold false, the
query can be processed correctly in a single pass.

Theorem 4 If the results of a progressive blocking op-
erator with an unbounded input are referred to by a
pipeline operator or a progressive blocking operator with
unbounded input, then for the stream data flow graph ����q� �n� � , at least one of the following three conditions holds
true:

1. There are multiple sequence nodes.
2. There is a cycle involved.
3. � sequence node a � �

, � atomic nodes � �T� �
, �|� ��

, � � and �|� are aggregate dependent on a , and there
is a path from � � to �|� .

Proof:Assume that the progressive blocking operation is
represented in � with a sequence node a and an atomic
node � , such that � is aggregate dependent on a . Assume
that there is no other sequence node in � , otherwise the
first condition holds true.

If the value of � is referred to by another progressive
blocking operator to compute �C� , since a is the only se-
quence node in

�
, ��� must be aggregate dependent ona . Because ��� uses the value of � , there must be a path� � H �:�"!"!#!"� H,- � �|� , � U H �:�"!"!#!"� H,- U �|� . Therefore, the

third condition holds true.
Now, suppose the value of � is referred by a pipeline op-

erator. Then, there must be a super-node in the graph, and
there is a path � � H �:�"!"!#!"� H,- � a , such that � U H �:�"!"!#!"� H,- Ua . Since � is aggregate dependent on a , there will be a cycle� � H �:�"!"!#!"� H,- � a � � in the graph. Then, the second condition
holds true. R

Finally, it should be noted that as with all static analyses,
our analysis is conservative in nature. There could be cases
where a query can be processed in a single pass, but our
analysis will determine that it cannot be. We consider the
following example:

let $p: = stream/pixel/x
for $i in $p
where $i <= max($p)
return $i

This query has a redundant predicate [5]. Though the
predicate always returns true and does not impact the re-
sults from the query, it introduces a cycle in our graph, and
disallows processing with a single pass. Our analysis can
be extended to recognize and remove such redundant pred-
icates, but we do not expect them to arise frequently in real
situations.

5 Low-level Analysis and Code Generation
This section focuses on the analysis and optimizations we
perform for generating efficient streaming code for XQuery
codes. As compared to the existing work on evaluating
XQuery on streaming data, we make two significant contri-
butions in this section. First, we show how we can generate
process XQuery with user-defined aggregates. Second, we
present a new optimization called the control-aware opti-
mization, which can improve the efficiency of streaming
code.

For achieving efficiency and handling a general class of
XQuery codes, we generate executable for a query directly,
instead of decomposing the query at the operator level and
interpreting the query plan. This is similar in nature to the
optimized codes that are generated by a compiler accord-
ing to a specified underlying architecture. In comparison,
interpreted codes generally suffer in efficiency, as has been
shown for many languages, for example, Matlab [3]. Fur-
thermore, operators cannot model some features of XQuery
effectively, such as recursive functions.

5.1 GNL Representation

As described in the previous section, we generate a stream
data flow graph from a given XQuery code. However, the
stream data flow graph only represents a high-level view of
the dependencies among variables and expressions, while
details of the processing involved are not modeled. To fa-
cilitate generation of streaming code, we introduce a rep-
resentation called Generalized Nested Loops (GNL). This
representation helps exploit the imperative nature of XML
parsers such as SAX � . Though our current implementation
has been carried out on top of SAX, our code generation
techniques are more general.

5.1.1 Definition of GNL

Definition 5 A GNL
�

is a four tuple (
�
, �M� , �V� , �) where,

1.
�

is the index variable bound to
�

,
2. � � is the location path of the corresponding XPath

expression,
3. �V� is the predicate expression of ��� (if any), and
4. K is the loop body, which is an ordered sequence of

operations performed on any tuple bound to the index
variable

�
.

The semantic meaning of a GNL is similar to a foreach
loop or iterator, which iterates over tuples specified by the
XPath expression. For every element in the target XPath
expression � � filtered with � � , it is bound to the variable�

, and each statement a � K will be executed according to
their order in K .

By definition, the tuple stream that a GNL operates on
is specified by its path expression � � , and the aggregation
operations are specified by the statement sequence in its
body. With such a syntax structure, code generation for�

http://www.saxproject.org

272

for � � , stream/pixel, --��
for � � , /x, /x > 0
for �(¡ ,/y, -- w � d�¢¤£j¥?¦&§ } �¨ d w �w � d h ¥?© } �

return
¨�ª w �

(a) GNLs from the Stream Data
Flow Graph

for � � , stream/pixel, --��
for � � , /x, /x > 0 w � = w � «�¬
for �(¡ ,/y, -- w � = w �« �(¡ ;¨ d w � return

¨�ª w �
(b) GNL after Aggregation

Rewrite

Figure 9: Example of GNLs
Java functions triggered by SAX events becomes easier.
Furthermore, as we will describe later, low-level optimiza-
tions techniques on rewriting recursive functions and user-
defined aggregates are also facilitated by the GNL repre-
sentation.

5.1.2 GNL Formation

After the single pass analysis, only queries whose stream
data flow graph have only one super-node or sequence node
are left for further processing. If the query has only one se-
quence node, it is easy to map the query to the GNL repre-
sentation. Since the sequence node represents a traversal on
its path expression, we can directly map a sequence node to
a GNL with an empty loop body K . This GNL is denoted as� � . In addition, we introduce one GNL corresponding to
the main query, which is denoted as �¯® . The GNL � � , as
well as all atomic nodes in the stream data flow graph, are
inserted as statements in the loop body of �¯® . The order of
these statements in loop body of � ® needs to be consistent
with their order in the original query.

If there is a super-node in the data flow graph, the GNL
formation process is more complex. We create a GNL � ®
corresponding to the main query. We also create a GNL
corresponding to each sequence node in the super-node that
has an associated XPath expression. The GNL correspond-
ing to the root sequence node in the super-node is inserted
as a statement in the loop body of �¯® . Consider any other
node

�
in the super-node. We find the closest ancestor of

this node that has a GNL associated with it, and denote it
as]�\ . If the node

�
has a GNL associated with it (because

it is a sequence node with an XPath expression), this GNL
is inserted as a statement in the loop body of the GNL for]�\ . Otherwise, the statement corresponding to the node

�
is inserted in the loop body of the GNL for]�\ . Finally,
consider any atomic node that is not in the super-node. The
statement corresponding to this node is inserted in the loop
body of � ® . Whenever multiple statements are inserted in
a loop body, their sequence must be consistent with their
sequence in the original query.

GNL for the Query 2 is shown in Figure 9(a).

5.1.3 Aggregation Rewrite for GNLs

After the GNL representation is generated from the stream
data flow graph, aggregation functions, including those de-
fined by users, are typically placed outside the root GNL.

This is because the formation of GNL does not follow
any edge that represents aggregate dependence. Therefore,
we need to recognize such aggregation functions, rewrite
them into operations that can be applied a tuple at a time,
and move the aggregation into the corresponding GNL.
Here, we assume that any aggregation operation on a tu-
ple stream is performed through a function, which could be
user-defined or internal.

An aggregate function can be easily recognized by find-
ing all atomic nodes that are aggregate dependent on a
sequence node or a super-node. For each such node H ,
we move the corresponding function call into the GNL
by using function inlining. Internal functions, such as
sum, count, and average, can be easily rewritten in an it-
erative fashion. For example, we can rewrite sum() as�±°²� � �±°²�´³ H , where

�±°²�
is a temporary variable and H is

the tuple. For a user-defined function, including recursive
functions, we apply a previously developed static analysis
technique to extract an associative operation from the defi-
nition of the function [30]. The basic idea is to examine the
syntax tree from leaves and apply tree pattern matching to
retrieve the desired sub-tree. Our algorithm can only deal
with linear recursive functions.

The GNL of Query 2 after aggregation rewriting is
shown in Figure 9(b).

5.2 Code Generation

We now discuss details of evaluation for a query on stream-
ing XML. To achieve better performance, we generate ex-
ecutable code for a given query, instead of using a query
evaluation engine to interpret the query at runtime. Specif-
ically, we generate Java binary code using the XERCES
SAX XML Parser, which is executed using the JDK 1.4
runtime system.

Similar to Peng and Chawathe [39], our processing as-
sumes that an incoming data tuple is one of the follow-
ing three types: 1) startElement(n, attr), which is the start
event for the node

�
with attribute list � �±� Q , 2) character(n),

which is the content of the node
�

, and 3) endElement(n),
which is the end event for the node

�
.

5.2.1 From GNL to SAX Event Handling

The GNL generated from a query serves as a convenient
intermediate representation for code generation. GNL uses
a nested loop structure, which is commonly supported in
imperative languages such as Java. Since the SAX parser
internally supports streaming traversal, and generates a se-
ries of streaming events according to the document order,
the explicit traversal defined in a GNL does not appear in
the final code.

Specifically, we use the following strategy to evaluate
a GNL. For a given GNL � with �M� �XZ���Z�+�Z:µ , when the
event endElement(/z) is triggered, the body of � is executed
once. For nested GNLs � � and � � , with � � nested inside� � , the processing for � � is always performed before the
processing for � � . The code generated for evaluation of
Query 2 is shown in Figure 10.

273

Though our goal is to process queries on the fly, cer-
tain XML elements may need to buffered. For example, a
node may be issued for output after a condition involving
its children nodes is evaluated. Clearly, because buffering
requires memory, we want to buffer as few elements as pos-
sible. We use a filtering and projection technique similar to
the one described in [29]. However, our technique is sim-
pler because we do not process blocking operators like join
and sort. Specifically, we buffer a node with its entire sub-
tree if it is used as output. Also, we buffer any leaf node H
whose value is referred to in the query. In such a case, ifH is not in the subtree of a node used as output, the buffer
of H will be immediately dispatched when reference of H is
finished. Using the GNL representation, we check the lo-
cation path � � and filter � � of each GNL, and only mark
a node for buffering if it is referred to in the body of that
GNL.

The details of buffering for the Query 2 are shown
in Figure 10. In this example, no node is used as output,
and buffering of /x and /y is for using their values only.
Therefore, these nodes are dispatched during the handling
of endElement event.

foreach startElement (¶ji) �
switch(¶ji .node)

x: buffer.add(x)
y: buffer.add(y)�

foreach endElement (¶ji) �
switch(¶ji .node)

x: if (buffer.dispatch(x) � 0)w � d w � «�¬
y: w � d w � « buffer.dispatch(y)
root: � ¨ d w � ;

return b / w ���
Figure 10: Evaluation Code for Query 2

6 Experimental Results
To evaluate our implementation of the framework and
the techniques presented in this paper, we conducted a
series of experiments. We compared our implementa-
tion with other well known XQuery processors which are
publically available. Specifically, we use Galax (Version
0.3.1) [17], Saxon (Version 8.0) [27] and Qizx/Open (Ver-
sion 0.4/ p1) [1]. All these query processors are imple-
mented using a SAX Parser, which we believe makes the
comparison reasonable. Note that our transformations can
enable many queries to be executed with a single pass,
whereas other systems may require multiple passes for
them. Thus, an advantage of our framework is that we may
allow execution with a limited memory, or on unbounded
streams, while the other systems may simply fail to execute
the same query in such scenarios. For our comparison here,
we only focus on execution times, and not the memory re-
quirements or the ability of a system to process query on
streaming data.

We used two sets of queries for our experiments. The
first set comprised the queries 1, 5, 6, 7, and 20 from the
XMark benchmark set [41]. These five queries were chosen
because each of them could be processed in a single pass ei-
ther directly, or after our transformations. We use datasets
of different sizes, which were generated by the XMark data
generator using factors 0.01, 0.05, 0.25, 1, and 2, respec-
tively. The second set comprised three real applications
which involve streaming data. Satellite data processing was
described earlier in Section 2. Virtual microscope is an ap-
plication to support interactive viewing and processing of
digitized data arising from tissue specimens [18]. Frequent
element counting is a well known data mining problem,
here we use the one-pass algorithm by Karp et al. to find
a superset of frequent items in a data stream [26]. Each of
these three applications uses recursive functions to perform
aggregations. After applying our techniques and optimiza-
tions, including analysis of recursive functions, aggregate
rewriting, and horizontal and vertical fusion, each of these
could be processed correctly using only a single pass on the
entire data stream. We generated synthetic datasets of vary-
ing sizes to evaluate performance on these applications.

The results of our experiments are shown in Figure 11.
Our experiments were conducted on a 933 MHz Pentium
III workstation, with 256 MB of RAM, and running Linux
version 7.1, with JDK V1.4.0. Each of the systems we com-
pared was executed on this same environment. In the ta-
bles in Figure 11, Ours denotes our basic framework. Be-
cause we use compiled Java byte code, the running time
shown in the tables excludes the compilation time for other
XQuery systems. All available options for fast execution
and optimization are turned on for each system. Specifi-
cally, for Galax, we disable sorting and duplicate removal
on Path expressions, and set the option of projection to be
on.

The results show that we consistently outperform other
systems. For XMark queries with small datasets, Qizx is
often quite close, but our system is at least 25% faster.
There are at least two reasons for this. First, our static anal-
ysis based technique produced operations only on elements
that are referred in the query. Second, we generate imper-
ative code directly, which is more efficient compared with
interpreted execution used by other engines.

For XMark queries with larger datasets, either our sys-
tem was significantly faster, or other systems had a memory
overflow. It should be noted that none of the other sys-
tems have been designed to deal with large datasets and/or
streaming data. They often require in-memory process-
ing. For example, Saxon builds a DOM tree after retriev-
ing all data in memory, and therefore, cannot process large
datasets or streaming data.

For the three real streaming applications, our implemen-
tation outperforms other systems by at least one order of
magnitude, and often, much more. None of the other sys-
tems was able to execute these applications with only a sin-
gle pass on the data, whereas, our techniques and transfor-
mations enabled such execution.

274

XMark Query 1
Size Ours Qizx Saxon Galax

1.16M 0.76 1.03 2.46 4.65
5.75M 2.26 3.2 5.57 24.59
30M 9.98 11.23 MO 173.85

120M 13.97 MO MO *
240M 27.59 MO MO *

XMark Query 5
Size Ours Qizx Saxon Galax

1.16M 0.74 1.09 2.46 4.93
5.75M 2.30 3.35 5.55 25.26
30M 10.02 13.9 MO 174.08

120M 13.95 MO MO *
240M 27.87 MO MO *

XMark Query 6
Size Ours Qizx Saxon Galax

1.16M 0.73 1.07 2.42 4.75
5.75M 2.26 3.21 5.39 24.96
30M 9.94 13.68 MO 215.64

120M 13.87 MO MO *
240M 27.81 MO MO *

XMark Query 7
Size Ours Qizx Saxon Galax

1.16M 0.74 1.13 2.44 6.6
5.75M 2.28 3.45 5.53 47.79
30M 9.95 13.96 MO MO

120M 13.70 MO MO MO
240M 27.44 MO MO MO

XMark Query 20
Size Ours Qizx Saxon Galax

1.16M 0.78 1.32 2.57 5.15
5.75M 2.31 3.59 5.93 26.38
30M 10.00 15.77 MO 190.22
120M 14.16 MO MO *
240M 27.81 MO MO *

Satellite Processing
Size Ours Qizx Saxon Galax

0.05M 0.28 5.88 3.08 72.03
0.10M 0.33 20.48 4.45 136.7
0.66M 0.48 945.5 18.76 944.4
10.6M 3.47 * MO MO
100M 28.31 MO MO MO

Virtual Microscope
Size Ours Qizx Saxon Galax

0.05M 0.28 47.51 2.01 18.97
0.10M 0.32 * 2.47 38.98
0.66M 0.44 * 7.66 300.18
2.70M 1.54 * 24.56 MO
10.6M 3.29 * MO MO
100M 27.88 * MO MO

Karp Frequent Item
Size Ours Qizx Saxon Galax

0.05M 0.26 * 4.71 25.09
0.10M 0.32 * 10.66 122.63
0.66M 0.61 * 554.07 MO
2.70M 1.80 * 8302.7 MO
10.6M 5.61 * MO MO
100M 29.41 * MO MO

*: Unable to produce result after 24 hours MO: Out of memory

Figure 11: Experiments Results for XMark Queries and Real Streaming Applications (All Execution Times in Seconds)

7 Related Work
Currently, much of the research efforts on XQuery focuses
on evaluation on disk-resident XML documents. Tech-
niques that query XML views over relational database en-
gines include [43, 42, 14, 44, 34] and approaches based on
native XML datasets include [12, 24, 25]. Although various
evaluation and optimization strategies have been proposed,
they are not specially designed to handle continues XML
streams.

There have been many research efforts on efficient eval-
uation of XPath expressions over streaming data. Be-
cause of the regularity of XPath expressions, automaton
based approaches are most popular when predicates are not
present [4, 15, 10]. To deal with predicates and other fea-
tures, such as closures where buffering of certain elements
is necessary, transducers have been used in XSQ [39] and
SPEX [38].

Compared with XPath, XQuery is more expressive, and
therefore, involves additional challenges. Currently, there
is limited work on processing XQuery queries over stream-
ing data. Transducer networks have also been used to han-
dle a subset of XQuery, in which only join and node cre-
ation operations are investigated [33]. Without query trans-
formations and rewriting, their techniques will not work
on streaming data when the queries are not strictly written
to execute on streaming data. In Flux [29], an interme-
diate representation (IR) extends XQuery with new con-
structs for event-based processing. XQuery is translated
into this event-based IR and the buffer size is optimized

by analyzing the DTD as well as the query syntax. Fusion
of for expressions has been discussed in Flux, but algo-
rithms to systemically perform such optimizations are not
provided. In comparison, we present systematic and pow-
erful techniques for optimizing and transforming queries
that are not specifically written for single-pass processing.
For code generation based on SAX events, we use a similar
approach to enable efficient buffering. As we stated ear-
lier, our additional contribution in code generation is han-
dling user-defined aggregations with the use of GNLs. The
BEA/XQRL processor [20] supports pipelined processing
of streams by implementing the iterator model at the ex-
pression level. However, query optimizations specially de-
signed for XML streams are limited in this system, and
large documents cannot be processed.

Algebraic approach for deciding whether a SQL-like
query can be evaluated with a single pass on contin-
uous streams has been proposed recently by Babu and
Widom [5]. Their approach cannot handle user-defined ag-
gregates and computations described with binary expres-
sions, which are both frequently used in XQuery. Unlike
SQL, developing an algebra to handle complete XQuery is
hard. As an example, user defined functions allowed as part
of XQuery can be very hard to model through such an al-
gebra, and we are not aware of any existing effort which is
able to do this.

Optimization of nested queries has been investigated in
the context of SQL [28, 37] and Object-Oriented database
programming languages [32, 13, 16]. However, XQuery

275

is a more powerful and expressive language, and therefore,
it involves additional challenges for efficient evaluation and
translation. The merge of path navigations is reported in the
Lorel query language for XML [36], but is limited to paths
bound to the same variable. In comparison, our loop fu-
sion techniques are based on data dependence information
and are much powerful. Horizontal loop fusion technique
is used in [31] to separate lists of XML-QL, but is quite
different from the fusion optimizations we have developed.

8 Conclusions
This paper has presented a new framework and a set
of techniques for processing XQuery over streaming
data. As compared to the existing work on supporting
XPath/XQuery over data streams, we have made three con-
tributions. First, we have developed a series of optimiza-
tions which transform XQuery queries so that they can be
correctly executed with a single pass on the dataset. Sec-
ond, we have presented a methodology for determining
when an XQuery query, possibly after the transformations
we introduce, can be correctly executed with only a single
pass on the dataset. Finally, we have developed a code gen-
eration approach which can handle XQuery queries with
user-defined aggregates, including recursive functions.

References
[1] Qizx/open: An open source implementation of xml query in java. http://www.xfra.net/qizxopen/.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

[3] George Almási and David Padua. MaJIC: Compiling MATLAB for Speed and Responsiveness. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation (PLDI-02),
pages 294–303, 2002.

[4] Mehmet Altinel and Michael J. Franklin. Efficient Filtering of XML Documents for Selective Dissemination
of Information. In Proceedings of the 26th International Conference on Very Large Data Bases, pages 53–64,
2000.

[5] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlister, and Jennifer Widom. Characterizing Memory
Requirements for Queries over Continuous Data Streams. ACM Transactions on Database Systems, 29(1):162–
194, 2004.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in Data Stream Systems. In
Proceedings of the 2002 ACM Symposium on Principles of Database Systems (PODS 2002) (Invited Paper).
ACM Press, June 2002.

[7] Shivnath Babu and Jennifer Widom. Continuous Queries over Data Streams. SIGMOD Rec., 30(3):109–120,
2001.

[8] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon. XQuery 1.0: An XML Query
Language. W3C Working Draft, available from http://www.w3.org/TR/xquery/, November 2002.

[9] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer.
Simple object access protocol (soap) 1.1. World Wide Web Consortium (W3C) Note, 08 May 2000.

[10] C. Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of XML documents with XPath
Expressions. VLDB Journal: Very Large Data Bases, 11(4):354–379, December 2002.

[11] Chialin Chang, Bongki Moon, Anurag Acharya, Carter Shock, Alan Sussman, and Joel Saltz. Titan: A high per-
formance remote-sensing database. In Proceedings of the 1997 International Conference on Data Engineering,
pages 375–384. IEEE Computer Society Press, April 1997.

[12] Zhimin Chen, H. V. Jagadish, Laks V. S. Lakshmanan, and Stelios Paparizos. From Tree Patterns to Generalized
Tree Patterns: On Efficient Evaluation of XQuery. In Proceedings of the 29th International Conference on Very
Large Data Bases, pages 237–248, 2003.

[13] Sophie Cluet and Guido Moerkotte. Nested queries in object bases. In Workshop on Database Programming
Languages, pages 226–242, 1993.

[14] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing Semistructured Data with STORED. In Proceedings
of the 1999 ACM SIGMOD international conference on Management of data, pages 431–442, 1999.

[15] Y. Diao, P. Fischer, and M. J. Franklin. Y. Filter: Efficient and Scalable filtering of XML Documents. In
Proceedings of the 18th International Conference of Data Engineering, 2002.

[16] Leonidas Fegaras. Query Unnesting in Object-Oriented Databases. In Proceedings of the 1998 ACM SIGMOD
international conference on Management of data, pages 49–60, 1998.

[17] Mary F. Fernandez, Jérôme Siméon, Byron Choi, Amélie Marian, and Gargi Sur. Implementing Xquery 1.0:
The Galax experience. In VLDB 2003: Proceedings of 29th International Conference on Very Large Data
Bases, September 9–12, 2003, Berlin, Germany, pages 1077–1080, 2003.

[18] R. Ferreira, B. Moon, J. Humphries, A. Sussman, J. Saltz, R. Miller, and A. Demarzo. The Virtual Microscope.
In Proceedings of the 1997 AMIA Annual Fall Symposium, pages 449–453. American Medical Informatics
Association, Hanley and Belfus, Inc., October 1997. Also available as University of Maryland Technical Report
CS-TR-3777 and UMIACS-TR-97-35.

[19] Chris Ferris and Joel Farrell. What are Web Services. Communications of the ACM (CACM), pages 31–35,
June 2003.

[20] Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Riccardi, Till Westmann, Michael J.
Carey, Arvind Sundararajan, and Geetika Agrawal. The BEA/XQRL Streaming XQuery Processor. In VLDB
2003: Proceedings of 29th International Conference on Very Large Data Bases, September 9–12, 2003, Berlin,
Germany, pages 997–1008, 2003.

[21] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. In Open Grid Service Infrastructure Working Group,
Global Grid Forum, June 2002.

[22] Johannes Gehrke, Flip Korn, and Divesh Srivastava. On Computing Correlated Aggregates over Continual Data
Streams. In Proceedings of the 2001 ACM SIGMOD international conference on Management of data, pages
13–24, 2001.

[23] L. Golab and M. Ozsu. Issues in data stream management. In SIGMOD Record, Vol. 32, No. 2, pages 5–14,
June 2003.

[24] H. Jagadish, L. Lakshmanan, D. Srivastava, and K. Thompson. TAX: A Tree Algebra for XML. In DBPL 2001,
2001.

[25] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. Timber: A native xml database. The VLDB Journal,
11(4):274–291, 2002.

[26] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm for finding frequent
elements in streams and bags. ACM Trans. Database Syst., 28(1):51–55, 2003.

[27] Michael H. Kay. Saxon: The xslt and xquery processor. http://saxon.sourceforge.net/.

[28] Won Kim. On Optimizing an SQL-like Nested Query. ACM Trans. Database Syst., 7(3):443–469, 1982.

[29] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-based Scheduling of Event Processors
and Buffer Minimization for Queries on Structured Data Streams. In Proceedings of the 30th International
Conference on Very Large Data Bases, 2004.

[30] Xiaogang Li, Renato Ferreira, and Gagan Agrawal. Compiler Support for Efficient Processing of XML Datasets.
In Proceedings of the International Conference on Supercomputing (ICS), pages 67–77. ACM Press, June 2003.

[31] Hartmut Liefke. Horizontal Query Optimization on Ordered Semistructured Data. In Proceedings of the ACM
SIGMOD Workshop on the Web and Databases,1999, 1999.

[32] Daniel F. Lieuwen and David J. Dewitt. A Transformation Based Approach for Optimizing Loops in Database
Programming Languages. In Proceedings of ACM SIGMOD, pages 91–100, 1992.

[33] B. Ludascher, P. Mukhopadhayn, and Y. Papakonstantinou. A Transducer-Based XML Query Processor. In
Proceedings of the 28th International Conference on Very Large Data Bases, 2002.

[34] Ioana Manolescu, Daniela Florescu, and Donald Kossmann. Answering XML Queries on Heterogeneous Data
Sources. In Proceedings of the 27th International Conference on Very Large Data Bases, pages 242–250, 2001.

[35] Amelie Marian and Jerome Simeon. Projecting XML Documents. In Proceedings of the 29th International
Conference on Very Large Data Bases, 2003.

[36] Jason McHugh and Jennifer Widom. Query Optimization for XML. In Proceedings of the Twenty-fifth Interna-
tional Conference on Very Large Databases, Edinburgh, Scotland, UK, 7–10 September, 1999, pages 315–326,
1999.

[37] M. Muralikrishna. Improved Unnesting Algorithms for Join Aggregate SQL Queries. In 18th International
Conference on Very Large Data Bases, pages 91–102, 1992.

[38] D. Olteanu, T. Kiesling, and F. Bry. An Evaluation of Regular Path Expressions with Qualifiers against XML
Streams. In Proceedings of ICDE 2003, Psoter Session, 2003.

[39] Feng Peng and Sudarshan S. Chawathe. XPath Queries on Streaming Data. In Proceedings of the 2003 ACM
SIGMOD international conference on on Management of data, pages 431–442, 2003.

[40] C. Re, J. F. Brinkley, K. P. Hinshaw, and D. Suciu. Distributed XQuery. In Proceedings of the Workshop on
Information Integration on the Web (IIWeb), August 2004.

[41] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R.Busse. Xmark: A benchmark for xml
data management. In Proceedings of the 28th International Conference on Very Large Data Bases (VLDB),
pages 974–985, 2002.

[42] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene J. Shekita, Catalina Fan, and John Funderburk. Querying
XML Views of Relational Data. In The VLDB Journal, pages 261–270, 2001.

[43] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasundaram, Eugene Shekita, and Chun Zhang.
Storing and querying ordered XML using a relational database system. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of data, pages 204–215, 2002.

[44] Xin Zhang, Mukesh Mulchandani, Steffen Christ, Brian Murphy, and Elke A. Rundensteiner. Rainbow:
mapping-driven XQuery processing system. In Proceedings of the 2002 ACM SIGMOD international con-
ference on Management of data, page 614, 2002.

[45] Yunyue Zhu and D. Shasha. Efficient elastic burst detection in data streams. In ACM SIGKDD, 2003.

276

