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Abstract

Emerging data stream management systems ap-
proach the challenge of massive data distributions
which arrive at high speeds while there is only
small storage by summarizing and mining the dis-
tributions using samples or sketches. However,
data distributions can be “viewed” in different
ways. A data stream of integer values can be
viewed either as the forward distribution f(x), ie.,
the number of occurrences of x in the stream, or as
its inverse, f−1(i), which is the number of items
that appear i times. While both such “views”
are equivalent in stored data systems, over data
streams that entail approximations, they may be
significantly different. In other words, samples
and sketches developed for the forward distribu-
tion may be ineffective for summarizing or min-
ing the inverse distribution. Yet, many applica-
tions such as IP traffic monitoring naturally rely
on mining inverse distributions.

We formalize the problems of managing and min-
ing inverse distributions and show provable dif-
ferences between summarizing the forward dis-
tribution vs the inverse distribution. We present
methods for summarizing and mining inverse dis-
tributions of data streams: they rely on a novel
technique to maintain a dynamic sample over the
stream with provable guarantees which can be
used for variety of summarization tasks (build-
ing quantiles or equidepth histograms) and min-
ing (anomaly detection: finding heavy hitters, and
measuring the number of rare items), all with
provable guarantees on quality of approximations
and time/space used by our streaming methods.
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We also complement our analytical and algorith-
mic results by presenting an experimental study of
the methods over network data streams.

1 Introduction
Database systems are evolving to handle high speed data
“streams” where transactions arrive rapidly and have to be
processed while storing only a limited amount of informa-
tion. Many applications generate data streams: IP traffic
streams, click streams, financial transactions, text streams
at application level, sensor streams. Each of these appli-
cations demands systems to manage the vast streams and
provide basic analyses or mining capability. For exam-
ple, in the IP traffic analysis example, there is a great de-
mand for tools to analyze IP traffic in order to find pat-
terns for network provisioning, detect anomalous behavior
and intrusions for security purposes, verify Service Level
Agreements based on type and volume of data, supply
customer reports based on application-specific details such
as peer-to-peer or proprietary protocols, monitor for law
enforcement and governing purposes (eg., CALEA1), etc.
Therefore, there is a suite of reasons for using DSMSs
in IP networks. In AT& T for example, the Gigascope
DSMS [11] is used operationally, while Sprint uses IP-
MON and CMON 2; many small businesses (eg., NARUS3)
build and service such systems for ISPs. A similar case has
been built for using DSMSs in the financial industry (eg.,
StreamBase4) and in government [25]. Many general pur-
pose DSMSs are also being developed [30, 1, 5].

DSMSs approach the task of handling and mining mas-
sive data streams by summarizing the streams in small
space. These summaries may be various “samples” (se-
lection of subsets of items by sampling with or without
replacement, weighted sampling, deterministic sampling,
etc) or “sketches” (inner product or aggregate of subsets
of items using different hash functions that compactly de-
scribe the subsets in each inner product). Sampling and
sketching solutions have been designed for a number of

1http://www.calea.org
2http://ipmon.sprint.com/
3http://www.narus.com
4http://www.streambase.com/
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tasks such as finding heavy hitters, change detection, quan-
tiling, histogramming, etc. (See recent surveys and tutori-
als [28, 18, 3] etc.) For most of these tasks, a precise answer
is not paramount and also impossible to obtain within the
limited space and time constraints of DSMSs. Therefore,
workable approximations are necessary and indeed suffice
in these applications. As a result, samples or sketches have
proved to be a suitable fit in DSMSs since they provide ac-
curacy guarantees and have small footprint. Both sampling
and sketching are used in Gigascope [9] and CMON.

The departure of our work from extant literature
emerges from our experience with IP traffic stream anal-
ysis: input streams can be “viewed” in different ways, and
the summaries built to manage and mine one “view” may
differ significantly from those used for another.

1.1 Motivating Example: Forward and Inverse Views

We will expose the phenomenon of different “views” of
the input data stream using an example drawn from the IP
traffic analysis case. Consider the IP traffic on a link as
packet p representing (ip, sp) pairs where ip is the source
IP address and sp is the size of the packet (there are other
attributes of IP traffic on the link—destination IP addresses,
port numbers, payload or content—but for exposition, we
focus on these attributes).

Problem A. Which IP address sent the most bytes? That
is, find i such that

∑
p|ip=i sp is maximum.

Problem B. What is the most common volume of traffic
sent by an IP address? That is, find traffic volume W such
that |{i|W =

∑
p|ip=i sp}| is maximum.5

Both Problem A and B arise naturally in IP traffic analy-
sis. Problem A is a simplification of the problem of finding
the “elephant flows” [14]. Problem B is related to estimat-
ing the number of “mice” (small flows) and is a general-
ization of the problem of estimating the number of flows
with small number of packets [13]. “Port scanning” at-
tacks, which probe a large number of ports looking for vul-
nerabilities by trying to open connections on each port have
low volume per flow, but show up as small W ’s in Problem
B.

For Problem A, there are many known solutions using
samples [26] or sketches [10], and these solutions have
even been tested in live DSMSs on IP traffic [9]. In con-
trast, we are not aware of any solutions for Problem B with
strong guarantees.

1.2 Formalizing Different Views

We formalize the problems as follows:

• Problem A deals with the forward distribution, that is,
we work on f [0 . . . U ] where f(x) is the number of bytes
sent by IP address x. Each new packet (ip, sp) results in

5This can be thought of as determining the popular bandwidth require-
ment for hosts. In more detail, one may group bandwidth into ranges of
volume 1—2KB, 2—3KB, etc. and ask this question on such ranges rather
than precise volumes.

f [ip]← f [ip] + sp. We ask what is the x for which f [x] is
the largest.

• Problem B deals with the inverse distribution, that is,
we work on f−1[0 . . .K] where each new packet (ip, sp)
results in f−1[f [ip]] ← f−1[f [ip]] − 1 and f−1[f [ip] +
sp] ← f−1[f [ip] + sp] + 1. We ask which i gives the
largest f−1(i).

For conventional DBMSs where the input can be stored,
both views f and f−1 are equivalent as both can be ex-
pressed by nested SQL queries. So, if the data is stored, we
can derive either. However, in DSMSs where we maintain
only a summary of the data, f and f−1 can not be readily
derived, and operating on one from the input data stream
is fundamentally different from operating on the other. Of
course, summaries of both f and f−1 are of interest since
they give an idea of traffic size distribution in two, quite
different ways. Similarly, mining f and f−1 for changes or
anomalies will show quite different phenomena. However,
much of extant literature has developed methods for sum-
marizing and mining f , but not much is known for summa-
rizing and mining f−1.

Methods that have been successful in mining the for-
ward distribution do not obviously apply to f−1. Consider
maintaining the popular AMS [2] sketch on f−1 on the data
stream. Each new packet modifies f−1; because its AMS
sketch is based on precisely knowing f [ip], it is provably
impossible to know all ip’s in a small space streaming set-
ting. In other words, each new packet changes the “do-
main” itself in a way we can not track in small space over
the stream. Hence, sketch methods that rely on knowing
the precise domain value of each new update such as the
AMS sketch and all its variations fail directly.

1.3 Our Contributions

Our contribution is to introduce the problems of summa-
rizing and mining the inverse distribution, and proposing
solutions in full generality for them. More precisely:

1. We formalize the problems of summarizing and min-
ing the inverse data distribution on data streams. We have
given intuition why samples and sketches developed for the
forward distribution does not solve the inverse distribution
problems. We go on to prove concrete lower bounds that
separate the performance of algorithms for problems on
forward vs. inverse distribution on data streams, no mat-
ter what techniques are used.
2. We present a general summary for the inverse distribu-
tion based on dynamic inverse sampling and an algorithm
to maintain such samples dynamically, in presence of both
inserts and deletes, with provable guarantee. No such dy-
namic sampling method was previously known. Using such
samples, we present algorithms with provable guarantees
for a number of inverse distributions problems including
heavy hitters, range queries, quantiles, etc.
3. We complement our analytical and algorithmic results
by a thorough implementation study on real data and show
that our methods are both practical and effective.
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Figure 1: Example distribution, shaded to indicate items
with the same count. (a) Forward distribution f where
items have counts {1, 5, 2, 0, 1, 3, 3, 1, 0} (b) Inverse dis-
tribution, f−1. (c) Cumulative inverse distribution, F−1.

Our approach extends to a variety of scenarios,
and smoothly handles continuous distributions, fractional
counts, working on the sum or difference of two distribu-
tions and so on.

2 The Inverse Distribution
Let f be a discrete distribution over a large set X , with the
semantics that f(x ∈ X) = i means that item x occurs i
times. Let N =

∑
x∈X f(x), the total number of items,

and D = |{x|f(x) > 0}|, the number of distinct items.
The inverse distribution is defined as follows:

Definition 1. The inverse distribution, f−1(i) gives the
fraction of items from X whose count is i. That is,
f−1(i) = |{x|x ∈ X, f(x) = i, i 6= 0}|/D.6

The cumulative inverse distribution, F−1(i) is defined
as

∑
j≥i f−1(j).7

For clarity and simplicity, we assume that f is a discrete,
integer valued distribution, but generalizations to continu-
ous or real valued distributions follow naturally. An exam-
ple is shown in Figure 1. From this figure, it can be seen
that N =

∑
i if−1(i)D =

∑
i F−1(i)D.

2.1 Queries on the Inverse Distribution

Queries on the inverse distribution give a variety of infor-
mation about the distribution itself. We define the follow-
ing queries on the inverse distribution:

• Point Queries on the inverse distribution are, given i, to
return f−1(i). This corresponds to finding the fraction of
items that occurred exactly i times. For example, finding
f−1(1) over a stream of network flows corresponds to find-
ing flows consisting of a single packet — possible indica-
tion of a probing attack if f−1(1) is large. This quantity is
sometimes known as the rarity of the distribution.

• Range Queries on the inverse distribution gener-
alize point queries and given a range [j, k] return∑k

i=j f−1(i) = F−1(j)−F−1(k +1). Thus in a database
of transactions, one could ask “what percentage of items
sold between 10 and 20 units last month” by computing the
Inverse Range Query [10, 20] over the appropriate relation.

6This definition forces f−1(0) = 0 so that
P

i f−1(i) = 1.
7This definition computes the cumulative distribution of items with

counts i or above, not i or below, which is equal to 1− F−1(i).

• Inverse Heavy Hitters applies the notion of Heavy Hit-
ters (frequent items) to the inverse distribution. Given a
fraction φ, an Inverse Heavy Hitters Query must return
{i|f−1(i) > φ}. That is, which are the item counts that
occur most frequently?

• Inverse Quantiles takes a fraction φ and returns the φ-
quantile of the inverse distribution. That is, return the i
such that F−1(i − 1) > φ,F−1(i) ≤ φ. This allows to
pose queries such as, over a stream of connections, what is
the median number of connections made by consumers.

2.2 Computational Challenge

All the queries we have defined can be answered exactly
by taking the original distribution and performing sort-
ing and scanning passes over it. However, we seek solu-
tions that can answer queries on high speed data streams,
consisting of an arbitrary mix of insertions and deletions.
Deletions arise in many traditional database settings, where
records are inserted and deleted; they also occur in the net-
work scenarios we have discussed as flows begin and end.
Hence our solutions must consume only small space (much
smaller than the number of updates, and also smaller than
the size of the domain |X|). We analyze the complexity of
answering these queries rapidly and using only small space,
by allowing approximation and probabilistic methods. In
general, several computations over the inverse distribution
are strictly harder than their counterparts over the original
distribution. We demonstrate this for both exact and ap-
proximate query answering:

Lemma 1. Fixed point queries are point queries where the
point is given ahead of the data. Fixed point queries can
be answered exactly on the original distribution using con-
stant space (by simply counting the number of times the
given item occurs). They require space linear in the num-
ber of items, |X| to compute on the inverse distribution.
A probabilistic, relative error approximation still requires
linear space.

Lemma 2. The number of distinct values in the original
distribution, F0(f) can be approximated up to a fixed er-
ror with constant probability in O(1) space. However,
the number of distinct values in the inverse distribution
F0(f−1), requires linear space to approximate to a con-
stant factor.

Both lemmas follow by reducing the communication
complexity problem of disjointness [23]. to the queries
over the inverse distribution (we omit proofs for brevity)

We seek good approximations for the queries we have
defined over the inverse distribution, with strong guaran-
tees of the quality. To do this, we develop a new technique,
Dynamic Inverse Sampling, which effectively samples uni-
formly from the inverse distribution, as the original distri-
bution is modified by insert and delete transactions. We
will show how using this sample can give good estimators
for the queries over the inverse distribution.

27



There are two challenges in this approach. First, main-
taining random samples in the presence of inserts and
deletes in one-pass is quite challenging. All known meth-
ods resort to rescanning the past relation for populating the
sample when it dwindles under deletes. In order to make
our goals feasible, we must disallow the “adversarial” strat-
egy that asks for a sample from the inverse distribution and
then deletes the sampled items, and repeats. Clearly, such
a strategy can force any sampling method that uses sublin-
ear space to end up with an empty sample. We are able to
prove strong guarantees on our dynamic inverse sampling
algorithm under the standard assumption in probabilistic
algorithms that the randomization (coin tosses) our algo-
rithm uses is not known to the adversary. The adversary
may not use the output of queries to affect the stream of
updates (equivalently, we assume that the updates are spec-
ified in advance). The second challenge is that as we show
below, existing techniques of sampling from the original
distribution, and sketch summarization, fail to answer our
queries; this emphasizes the importance of sampling from
the inverse distribution.

Lemma 3. A uniform sample from the forward distribution
based on probing records is insufficient to answer queries
on the inverse distribution.

Proof Sketch. Consider the distribution where one item oc-
curs N − k times, and k items occur once each, for some
constant k, e.g. k = 2. Unless the sample of items is linear
in N , it is unlikely to draw any of the k items which occur
once, and so cannot distinguish this distribution from one
where one item occurs N times. But in the first distribu-
tion, f−1(1) = 1 − 1/(k + 1), whereas in the second it is
0. To correctly distinguish between these two cases, a very
large sample is required. �

Lemma 4. A sketch synopsis of the forward distribution is
insufficient to answer queries on the inverse distribution.

Proof Sketch. Queries to sketch data structures, such as the
AMS sketch [2], estimate the count of individual items with
additive error related to the L2 norm of the distribution. To
guarantee accurate answers to queries on the inverse distri-
bution, this error must be very small, requiring the sketch
to be at least linear in D (number of distinct values). �

3 Dynamic Inverse Sampling: Insertions
Our methods to answer queries on the inverse distribution
rely on a technique that we call “Dynamic Inverse Sam-
pling” (DIS). The goal of this technique is to process a se-
quence of insertions and deletions and then be able to draw
samples uniformly from the inverse distribution. Each sam-
ple is drawn with replacement, and returns a pair uniformly
from the set of {(i, x)|x ∈ X, f−1(x) = i}. The size of
this set is D, the number of distinct items in X , and so the
probability of returning any pair is 1

D .
In order to simplify the exposition, we introduce our dy-

namic inverse sampling method when the input consists of

insertions only. This shows the main structure of the algo-
rithm. In subsequent sections, we will show how to gener-
alize this to our main case of interest, where the input can
consist of an arbitrary sequence of insertions and deletions.

3.1 Data Structure and Update Procedure

We first describe the main structure, which draws a pair
(i, x) from the inverse distribution. We later analyze how
many independent copies of this data structure are required
to guarantee a sample of sufficiently large size. At a high
level, the procedure works by hashing the items to levels
such that the likelihood of being hashed to level l is expo-
nentially decreasing in l. So at some level l ≈ log D there
is a high probability that only one item hashes there, and
we recover this item and its count as the sampled count. In
order to prove correctness, we will have to show that this
item is selected uniformly, and that there is at least constant
probability that there is a level that has a unique item for us
to return. Throughout, we assume that X = [0 . . .m − 1]
for some m such that any x ∈ X is represented in a single
machine word; our approach naturally generalizes to other
settings but we focus on this case for simplicity.

Data Structure. Our data structure takes two parameters:
(1) a ratio 0 < r < 1 which is used to partition the input
items (2) M , the range of the hash function used to deter-
mine where items are stored within the data structure. We
fix values for these parameters based on our analysis. The
size of the data structure is proportional to L = log1/r M .
We keep three arrays of length L: item, which stores
items from the input; count, which stores item counts; and
boolean flags uniq. We initialize the array of counts to
zero. We keep a hash function h which maps from [1 . . .m]
to [1 . . .M ]. For the purposes of the analysis, we require h
to be (strongly) universal. Such hash functions are very fast
to compute and require only a constant amount of space [4].

Update process. For each insertion of an item x, we use
the hash function h to determine where in the data structure
it belongs. From h, we define

hl(x) = bh(x)/(rl ∗M)c
l(x) = l ⇐⇒ hl(x) = 0, hl+1(x) 6= 0.

The value l(x) determines the place where x is stored in
the data structure (it is the greatest l such that hl(x) =
0). Observe that l(x) can be computed in constant time by
solving hl(x) = l, which sets l(x) = dlog1/r(M/h(x))e.
We inspect count[l(x)]: if it is zero, then no item is stored
there, and so we set item[l(x)] = x, and set uniq[l(x)] =
true. If count[l(x)] is not zero, we inspect item[l(x)].
If item[l(x)] 6= x, then we have a collision, and we set
uniq[l(x)] = false. Lastly, in all cases we increment
count[l(x)].

Output process. In order to output an item from the
data structure, we search the data structure. We describe
two variations, one with guaranteed bounds, and a second,
“greedy” approach that extracts as many samples as pos-
sible from the data structure. Begin by setting l = L. If
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Time Level 1 Level 2 Level 3
Step item count uniq item count uniq item count uniq

1. 4 1 T 0 0 T 0 0 T
2. 4 1 T 7 1 T 0 0 T
3. 4 2 T 7 1 T 0 0 T
4. 4 3 F 7 1 T 0 0 T
5. 4 3 F 7 2 F 0 0 T
6. 4 4 F 7 2 F 0 0 T
7. 4 4 F 7 2 F 2 1 T
8. 4 5 F 7 2 F 2 1 T
9. 4 6 F 7 2 F 2 1 T
10. 4 6 F 7 2 F 2 2 T

Figure 2: Example of state of data structure at each time
step on sample input

count[l] is not zero, then we inspect uniq[l]: if it is true
then we output the pair (count[l], item[l]). If uniq[l] is
false, then we do not output an item, since we do not
have an accurate count for the item. Else, count[l] is zero,
so we decrement l and repeat the process. In the basic
output routine, we halt as soon as we find a level where
count[l] > 0; in the “greedy” version, we process every
level. The output routine scans the whole data structure, so
the time to run the output process is O(L).

Observe that one outcome is that no item is output from
the data structure. In our analysis, we will show that for
appropriate settings of the parameters r and M , the prob-
ability of this outcome is most a constant, p < 1. So by
sufficiently many repetitions of this data structure with dif-
ferent hash functions h, we can guarantee high probability
of returning a sample of the required size.

Example. We consider the following example sequence of
insertions of items:

Input: 4, 7, 4, 1, 3, 4, 2, 6, 4, 2

Suppose these hash to levels in an instance of our data
structure as follows:

x 1 2 3 4 5 6 7 8
l(x) 1 3 2 1 1 1 2 1

Figure 2 shows the state of the data structure after each up-
date. For each level we indicate whether there is a unique
item at that level that can be recovered as the sampled
value. Observe that at timesteps 5 and 6, no such item can
be found, but at all other times we can recover a sampled
item: at time 1 we return (1,4); between time 2 and 4 we
would return (2,7), from time 7 to time 9 we would return
item (1,2) and lastly at time 10 we return (2,2). The greedy
output routine would also return item 4 at times 2 and 3.

3.2 Analysis

We show that the Dynamic Inverse Sampling returns uni-
form samples from the inverse distribution. First, we show
that provided a unique item is found at some level then it
is drawn uniformly from the set of items with non-zero
counts. The main technical result is given in Lemma 6,
which shows that there is at least a constant probability that

such an item exists after our hashing procedure. Lastly, we
show that repeating this procedure several times over will
draw a sample (with replacement) of the desired size.

Lemma 5. If a pair (i, x) is returned from the output pro-
cedure, x is selected uniformly from the inverse distribution
and f(x) = i.

Proof. Firstly, we observe that if we return a pair (i, x),
then indeed f(x) = i, since we have counted the num-
ber of occurrences of x exactly. To show that x is drawn
uniformly, we rely on the universal properties of the hash
functions. The strong universality property of h(x) means

Pr[h(x) = a ∧ h(y) = b] = 1
M2

Applying this to hl(x) gives:
Pr[hl(x) = a ∧ hl(y) = b] = Pr[bh(x)

rlM
c = a ∧ bh(y)

rlM
c = b]

= rlM∗rlM
M2 = r2l

Thus, hl(x) is also strongly universal over r−l. Hence
(over choices of h), Pr[hl(x) = 0] = rl, and this is in-
dependent of x. �

Lemma 6. Over random choices of h, there is constant
probability of the output process returning a pair (i, x).

Proof. Let D denote the number of distinct items at output
time, and let Bl = 1/rl. The function hl maps onto values
0 . . . Bl − 1. From the previous lemma, hl is 2-universal
onto this set. Let Xl denote the number of distinct items
observed that satisfy hl(x) = 0. E(Xl) = D/Bl, and
Var(Xl) ≤ E(Xl), using the pairwise-independence of hl.

Consider the level l such that α/r ≤ D/Bl ≤ α/r2

for an appropriate scaling constant α > r. We analyze the
number of items that satisfy hl = 0, and show that there
is constant probability that this is small. By the Chebyshev
inequality,

Pr[|E(Xl)−Xl| ≥ E(Xl)] ≤ Var(Xl)/E(Xl)2
≤ 1/E(Xl) = Bl/D ≤ r/α.

We use this expression to analyze the probability that Xl is
either 1 or 2. The event |E(Xl)−Xl| ≥ E(Xl) occurs only
if Xl ≤ 0 or if Xl ≥ 2E(Xl). We set E(Xl) = 3/2, which
fixes r =

√
2α/3. Because 2E(Xl) ≤ 3, and Xl takes on

only integer values, |E(Xl)−Xl| < E(Xl)⇒ Xl ∈ {1, 2}.
Hence, Pr[Xl 6∈ {1, 2}] ≤ r

α =
√

2/3α. This is a constant
provided 2/3 < α < 3/2 (since both this probability and r
must be less than 1).

If Xl = 1, then there is one item, x, stored at level l or
above, and we can easily identify this item and its count.
However, if Xl = 2, it is possible that both items (say, x
and y), are stored at the same level, and we are unable to
find the identity of either of them. Assuming Xl = 2, we
bound the probability that both x and y are stored at the
same level. Using the universality of hl again,

Pr[l(x) ≥ l + a|l(x) ≥ l] = ra]⇒
Pr[l(x) = l + a|l(x) ≥ l] = ra − ra+1 = ra(1− r)⇒

Pr[l(x) = l(y)|l(x), l(y) ≥ l] =
l∑

a=0

(ra(1− r))2 +
1

r2L
,
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since Pr[h(x) = h(y) = 0] = 1
M2 = (r−l)2. Then:

(1− r)2
l∑

a=0

(r2)a +
1

r2L
≤ (1− r)2

1− r2
=

1− r

1 + r

This relies on the fact that the r2L term is dominated by
the residue of the infinite sum, which is true if M is chosen
sufficiently large. This is achieved provided M = Ω(m),
so we set M = 2m.
Using the Markov inequality, Pr[Xl ≥ 2] ≤ E(Xl)

2 ≤ r
2α .

So Pr[Xl = 2 ∧ l(x) = l(y)] ≤ r(1−r)
2α(1+r) , using (3.2).

The probability, p, that the output process does not re-
turn a pair (if there are not one or two items at level l or
below, or the two items are mapped to the same level) is

p = Pr[(|Xl − E(Xl)| > E(Xl)) ∨ (Xl = 2 ∧ l(x) = l(y))]
= r

α + r(1−r)
2α(1+r) = r

2α
2(1+r)+(1−r)

1+r = 1
3r

3+r
1+r

Which follows since we have set α = 3r2/2. Our con-
straints on r and α are that r and all probabilities should
be strictly less than 1. For concreteness, we set α = 1,
and find p = 3

√
3+

√
2

2
√

3+3
√

2
= 0.8577 . . . Thus there is constant

probability that the output function will return a pair. �

Having set r =
√

2/3 and M = 2m, the size of
the data structure is therefore O(log1/r M) = O(log m).
This gives constant probability at least 1 − p of extract-
ing a sampled item from the data structure. By keeping
log(1/δ)/ log(1/p) independent copies of the data struc-
ture the failure probability is reduced to arbitrarily small δ.
If we require a sample of size k and we keep k/(1 − p)
copies of the data structure, we recover k items in ex-
pectation. In general we need a stronger guarantee on
the number of items returned. For small k, we can just
keep k log(k/δ)/ log(1/p) copies of the data structure:
each group of log(k/δ)/ log(1/p) guarantees probability
of 1− δ/k of returning a sample, so overall, there is prob-
ability of 1 − δ of getting k samples. Asymptotically, the
cost is O(k log k) copies. For larger k we can give tighter
guarantees, using Chernoff bounds:

Lemma 7. Let ε =
√

2 log 1/δ
k . If k ≥ 8 log 1/δ and we

keep K = (1 + 2ε)k/(1 − p) copies of the data structure,
then with probability at least 1 − δ we are able to recover
at least k samples.

Based on the above results, our main theorem follows.

Theorem 1. We can maintain O(k) independent copies of
DIS in O(k log m) space, and guarantee with high proba-
bility to return a uniform sample of size k from the inverse
distribution. Each insertion operation takes time O(k); ex-
tracting the sample takes time O(k log m).

4 Dynamic Inverse Sampling: Deletions
In generalizing the data structure to handle deletions, we
will perform updates so each deletion precisely counteracts
the effect of a previous insertion of the same item, leaving

l(x)
2

3

. . . .

. . . .

0

Mr
Mr

Mr

collision
detectioncount

sum

M

x

Figure 3: Dynamic Inverse Sampling Data Structure: hash
function l maps item x to a level where count, sum and
collision detection information are updated.

Procedure update(x,tt)
Input: Item x, tt=insert/delete
1. h = h(x);
2. if (tt= insert) then
3. a = +1
4. else a = −1;
5. l = dlog(M/h)/ log(1/r)e;
6. sum[l] = sum[l] + x ∗ a;
7. count[l] = count[l] + a;
8. collision-update(x, a);

Procedure query(gr)
Input: gr flag for greedy output
Output: Samples from f−1

1. for l = L downto 0 do
2. if count[l] > 0 then
3. x = sum[l]/count[l];
4. if ((bxc = x) and
5. (collision-test()) then
6. output (count[l], x);
7. if (!gr) then break;

Figure 4: Pseudo-code for the dynamic inverse sampling

the data structure as if both the deletion and corresponding
insertion had never happened. To do this, we make both in-
sertion and deletion linear operations on the data structure,
which do not inspect the contents of the data structure but
rather have the effect of adding on or subtracting off quanti-
ties to various counters, independent of their current values.
The correctness of this approach then follows immediately
from the commutativity of addition and subtraction.

We keep the basic format of the data structure, but make
some modifications to how we treat it. Firstly, we replace
the item array with an array sum initialized to zero, which
will store the sum of item identifiers (which we treat as
integers). We also replace uniq with a very small (few
bytes in size) “collision detection” data structure, which
we will discuss in the next section. The collision detec-
tion data structure maintains a distribution of items (which
is a subset of the original distribution) under insertions and
deletions, and can be queried to find whether there is one
distinct item in the distribution or more than one.

Update process. For each insertion of an item x, we
compute l(x) as before. We increment count[l(x)], and
set sum[l(x)] ← sum[l(x)] + x. We update the collision
detection structure with x. For a deletion, we decrement
count[l(x)] and set sum[l(x)]← sum[l(x)]−x, and delete
a copy of x from the collision detection structure. Observe
that a deletion of x precisely cancels out the effect of a prior
insertion of x.
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Figure 5: Deterministic collision detection: to insert 13
(represented as a b = 5 bit integer) we write 132 = 01101,
and so increment c[1, 1], c[2, 0], c[3, 1], c[4, 1], c[5, 0], cor-
responding to the 1, 2, 4, 8 and 16 bits.
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Figure 6: Probabilistic collision detection: to insert 13,
with t = 3 hash functions, compute g1(13) = 1, g2(13) =
0, g3(13) = 0 and so increment c[1, 1], c[2, 0], c[3, 0].

Output process. In order to output an item from the data
structure, we search the data structure in a similar way to
before, by searching levels l from L down to 0. If count[l]
is not zero, then we try to extract an item from the sam-
ple. Suppose that x is the only item that is stored at this
level in the data structure. Then x can be recovered as
sum[l]/count[l]. However, we need to be sure that x is
the only item stored at this level. So we make use of the
collision detection data structure to tell us (either determin-
istically or with some probability of error) whether there is
only one distinct item stored here, or more than one.

The structure of our data structure is shown in Figure 3,
and pseudo-code for insert and query operations is given
in Figure 4. The cost per update is now dominated by the
cost of updating the collision detection mechanism, since
the rest of the update can be completed in constant time.

4.1 Collision Detection

We require a data structure that can be updated in the pres-
ence of insertions and deletions of items so that at query
time, we can distinguish between the following two events
for a given level: (a) a single item occurs at that level
one or more times; or (b) there are a mixture of items at
that level. One check we can make is to see that count[l]
divides sum[l] exactly: if not, then case (b) must hold.
But this is not sufficient: if we observe sum[l] = 20 and
count[l] = 2, the input can be any pair of items that sum
to 20, not necessarily two copies of item 10. To avoid out-
putting items that did not occur in the input we define three
approaches, which trade off speed, space and accuracy.

Deterministic. Suppose |X| = m = 2b so each x ∈ X
is represented as a b bit integer. We can keep 2b counters
c[j, k] indexed by j = 1 . . . b and k ∈ {0, 1}. Every time
we see an insertion of x, we increment the counts one count
for each value of j: we add one to c[j, bit(j, x)], where
bit(j, x) returns the jth bit of the binary representation of
x. Symmetrically, for a deletion of x, we decrement the
corresponding counts. At output, we can tell whether there
is exactly one item or more than one item stored: if and

only if there is one item in the bucket, then for all j exactly
one of c[j, 0] and c[j, 1] is non-zero. The space required is
O(b) counters, and the time to process each update is also
O(b). An example update is shown in Figure 5.

Probabilistic. The deterministic approach requires a lot of
space for large values of b. We can trade a small probabil-
ity of error for reduced space. A natural first approach is
to use an approximate counter capable of processing inser-
tions and deletions [15]. Applying such an algorithm can
distinguish between 1 item and 2 or more items in space
O(log m log 1/δ). But this space cost is still large.

Instead, a similar method to the deterministic approach
uses hashing to give a probabilistic test for collisions. We
draw t hash functions, g1 . . . gt which map items uniformly
onto {0, 1}, and use a set of t × 2 counters c[j, k]. For
every insertion, we increment c[j, gj(x)], and decrement
the same counter for a deletion. We apply the same test
as in the deterministic case. If for any j, c[j, 0] 6= 0 and
c[j, 1] 6= 0, then there is more than one distinct item in
the bucket. The probability of wrongly declaring a single
distinct item in the bucket is at most 2−t. The space used
is O(t) counters, and it takes O(t) time per update. An
example update is shown in Figure 6.

Heuristic. The previous method may still consume too
much space. A simple heuristic gives faster updates and
few errors in practice (we make no formal claims about the
error probability here). We compute q new hash functions
gj [x] mapping items x onto 0 . . .m and track the summa-
tion of g(x) as sumg[j, l(x)]. For every insertion of an
item, we add g(x) to sumg[j, l(x)], and for every dele-
tion, we subtract g(x) from sumg[j, l(x)]. At query time,
we extract x from the bucket as sum[l]/count[l]. If x
is the only distinct item in the bucket, then sumg[j, l] =
gj(x) ∗ count[l] for all j. We can check this condition
and reject if it is not satisfied by any hash. The space re-
quired for the heuristic collision detection mechanism is
O(q) counters per level, and O(q) time per update.

In all three cases, the collision detection data structures
are updated by summing positive and negative values, with-
out examining the contents of the counters. Therefore arbi-
trary combinations of insertions and deletions can be han-
dled by them. Pseudo-code for the three different collision
detection methods is shown in Figure 7. The analysis of
Lemma 6 can be applied again, leading to:

Theorem 2. Using O(k log m) space, we can maintain
O(k) dynamic inverse sampling data structures to process
a sequence of insertions and deletions and that guarantee
with high probability to return a uniform sample from the
inverse distribution of size k. Each update operation takes
time O(k); extracting the sample takes time O(k log m).

4.2 Extensions

We have discussed insertion and deletion of single items.
We now observe other ways in which our data structures
can be manipulated:
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Procedure deterministic-update(x, val)
Input: Item x, val=+1/-1 for insert/delete
1. for j = 1 to b do
2. bit = x&1
3. c[j, bit] = c[j, bit] + val;
4. x = x � 1;

Procedure deterministic-collision-test()
Output: true if no collision else false
1. for j = 1 to b do
2. if c[j, 0] 6= 0 and c[j, 1] 6= 0 then
3. return false;
4. return true;

Procedure probabilistic-update(x, val)
Input: Item x, val =+1/-1 for insert/delete
1. for j = 1 to t do
2. bit = gj(x);
3. c[j, bit] = c[j, bit] + val;

Procedure probabilistic-collision-test()
Output: true if no collision, else false
1. for j = 1 to t do
2. if c[j, 0] 6= 0 and c[j, 1] 6= 0 then
3. return false;
4. return true;

Procedure heuristic-update(x, val)
Input: Item x, val=+1/-1 for insert/delete
1. for j = 1 to q do
2. sumg[j] = sumg[j] + val ∗ gj(x);

Procedure heuristic-collision-test()
Output: true if no collision else false
1. for j = 1 to q do
2. if gj(sum/count) ∗ count

6= sumg[j] then
3. return false;
4. return true;

Figure 7: Pseudo-code for the different collision detection mechanisms.

Sliding Window. In many settings, we only want to
draw a sample from a recent history of an (insertions-only)
stream. The sliding window model [12] specifies that only
the most recent W updates (or updates that occurred within
W time units) should be considered, for some fixed value
of W . When W is too large to buffer the most recent W up-
dates, we can apply a variation of our technique. For each
update x, we overwrite the current item stored at level l(x).
We can modify the deterministic and probabilistic colli-
sion detection mechanisms so that instead of increment-
ing a counter, we overwrite the current contents with the
timestamp of the new item x. At output time, we check the
collision detection mechanism to see if there has been any
collision within the last W time units: if there is one unique
item, then for each pair of counters, exactly one will store
a timestamp from within the last W time units. Hence, we
can use this modified version of the data structure to draw
an item x uniformly from the inverse distribution over the
sliding window. However, this does not give us a value for
i; and to give the exact value of i is impossible without
using Ω(W ) space. Instead, we can use the counting tech-
niques of [12] to approximate the value of i for x, which
gives a doubly-approximate answer to queries on the in-
verse distribution.

Multiple insertions or deletions. We have considered the
case where a single item arrives or departs at a time. We
can easily generalize this to handle arbitrarily many copies
of a single item by appropriate scaling of the counts that we
add or subtract.

Fractional and negative item counts. Our analysis does
not require the counts of items to be positive integers, hence
we can allow counts to become negative and fractional. The
interpretation of the sample values returned is that these
are selected uniformly from the set of items whose count is
non-zero.

Unioning and Differencing of summaries. We can com-
bine two summaries that were created with the same param-
eters and hash functions by summing the values in their cor-
responding counters. The result is exactly identical to the
result if all updates had been processed by a single sum-
mary structure. Hence, the algorithm can easily be carried
out in a distributed fashion over a variety of streams, and
then the summaries merged to allow investigation of the in-

verse distribution of the union of all the streams. Similarly,
we can compute the difference of two summaries by sub-
tracting corresponding counters; scale all counts by a scalar
value; and so on.

5 Inverse Distribution Queries
We now show how to use a sample drawn by the Dynamic
Inverse Sampling algorithm to answer queries on the in-
verse distribution.

Theorem 3. Given a sample from the inverse distribution
of size O( 1

ε2 log 1
δ ), we can answer Inverse Point Queries

with additive error less than ε with probability at least 1−δ.

Proof. Let S be the sample drawn from by Dynamic In-
verse Sampling, which is a multiset of pairs. We approx-
imate f−1(i) with |{(i,x)∈S}|

|S| . To analyze this estimator,
we set up an indicator variable for each sample in S. Let
Yj = 1 if the jth sample in S is a pair (i, x), and Yj = 0
if the jth sample is a pair (i′, x′) for i′ 6= i. Since each
sample is drawn uniformly, Pr[Yj = 1] = {x|f(x) =
i}/D = f−1(i). So the estimate is correct in expectation.
By applying the Hoeffding inequality to

∑
j Yj/|S|, we get

Pr[|
∑

j Yj/|S| − f−1(i)| ≤ ε] ≥ 1− δ, as required. �

Corollary 1. Given a sample from the inverse distribution
of size O( 1

ε2 log 1
δ ), we can answer Inverse Range Queries

and queries to the cumulative inverse distribution with ad-
ditive error less than ε with probability at least 1− δ.

Proof. For an inverse range query [j, k], our estimator is
|{(i,x)∈S,j≤i≤k}|

|S| . A similar proof to the above shows that
this estimator is correct in expectation, and within ε with
probability at least 1− δ. Queries to the cumulative inverse
distribution can be reduced to open-ended inverse range
queries [i,∞], and so the same bounds apply. �

Corollary 2. Given a sample from the inverse distribution
of size O( 1

ε2 log 1
δ ), Inverse heavy hitters can be answered

with additive error ε with probability at least 1− δ.

Proof. In order to answer inverse heavy hitter queries, we
compute our estimate of f−1(i) for each i that is in the
sample, and output those for which |{(i,x)∈S}|

|S| ≥ φ. By the

32



 0

 50

 100

 150

 200

 250

 0  2  4  6  8  10  12  14  16  18  20

co
lli

si
on

 d
et

ec
tio

n 
er

ro
rs

hash functions

data: WorldCup98 size: 1138762 K: 100

DIS

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  100  200  300  400  500  600  700  800  900 1000

ac
tu

al
 s

am
pl

e 
si

ze

desired sample size

data: WorldCup98  data size: 2266137

DIS
Distinct

GDIS

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10  20  30  40  50  60  70  80  90  100

de
si

re
d 

sa
m

pl
e 

si
ze

fraction of deletions (%)

data: synthetic  data size: 5000000

DIS
Distinct

(c)

Figure 8: (a) Evaluating number of hash functions required for the probabilistic collision detection. (b) Number of samples
returned by the different inverse sampling methods as a function of desired sample size. (c) Number of samples returned
by the different inverse sampling methods as a function of deletion frequency.

above theorem, for each i that is output, there is ε error in
the estimate with probability 1 − δ, and so we guarantee
(with this probability) that every i that is output satisfies
f−1(i) > φ − ε. Similarly, since every i that does not
appear in the sample is approximated by f−1(i) = 0, we
conclude that with the same probability, every item with
f−1(i) > φ + ε is output. �

Corollary 3. Given a sample from the inverse distribution
of size O( 1

ε2 log 1
δ ), Inverse quantiles queries can be an-

swered with additive error ε with probability at least 1− δ.

Proof. For Inverse Quantile Queries, we compute the es-
timate of F−1(i) for all i in the sample. Observe that this
estimate gives a decreasing function as i increases. We out-
put the (unique) i such that the estimate of F−1(i−1) > φ
and F−1(i) ≤ φ. By the guarantees on cumulative inverse
distribution queries, we have (with probability 1− δ) the i
that is output has φ− ε ≤ F−1(i) ≤ φ + ε. �

6 Experimental Study
We implemented our Dynamic Inverse Sampling algo-
rithm, and evaluated it on large sets of network data drawn
from HTTP log files from the 1998 World Cup Web Site
(stored in the Internet Traffic Archive [24]), as well as on a
large synthetic data set of randomly generated distinct val-
ues. We took client ID and size attributes from the log data
totaling several million records. Our synthetic data set con-
tains 5 million randomly generated distinct items. To give
a data set with a large number of deletions, we built a dy-
namic transaction set by inserting all the records and then
deleting a fraction of these. Since one cannot predict which
records will survive the deletions, it gives a challenging test
for our methods.

For comparison, we implemented the Distinct Sampling
method [19, 21] augmented to handle deletions since this
can be used to draw a sample from the inverse distribution
under insertions only streams (see the discussion in Sec-
tion 7). The algorithms were implemented in C and were
run on a 2.4GHz processor desktop computer.

Collision Detection Experiments. We compared the dif-
ferent collision detection mechanisms for the Dynamic In-

Collision Hash Space Time
Detection Functions Factor Cost
None — — 96s
Deterministic — 32 132s
Heuristic q = 1 1 119s
Heuristic q = 2 2 140s
Heuristic q = 3 3 162s
Probabilistic t = 5 5 165s
Probabilistic t = 10 10 225s

Table 1: Timing results and space/time tradeoff for differ-
ent collision detection methods. ‘Space factor’ denotes rel-
ative space cost of each method.

verse Sampling (DIS). We ran the algorithm over a data set
consisting of insertions only, and counted the number of
times that the approximate methods reported no collision
(at any level in the data structure), when the deterministic
method (correctly) indicated that there was a collision.

We tested the probabilistic collision detection mecha-
nism by gradually increasing the number of hash functions
from 1 to 40. The results are shown in Figure 8 (a); it can
be observed that the total number of errors over all levels in
all data structures drops to 0 when we use 9 or more hash
functions. The heuristic collision detection mechanism was
run with the number of hash functions ranging from 1 to 5.
With one hash function, there were 3 collision detection
errors on a dataset of 1.3 million records. There were no
collision detection errors with two or more hash functions.

We compared the time cost of all three methods to pro-
cess a total of 260 million updates to the data structures.
Timing results are showing in Table 1. They show that
our method is capable of processing several million up-
dates per second (for comparison, our implementation of
Distinct sampling was faster still, processing 9 million
items/second). We see that the Deterministic method is
quite fast, since it requires no additional hash function com-
putation. But it still requires space for log m counters.
With two hash functions, an undetected collision under the
heuristic method is very unlikely, and this requires only
two additional counters per level, plus two hash functions
per copy of the DIS structure. This gives a good trade-off
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of time against space used. For the remainder of our ex-
periments, we worked with the deterministic method only,
knowing that for suitable settings of q and t we would get
identical results using the heuristic or probabilistic colli-
sion detection methods.

Returned Sample Size. We compared the size of sample
returned by the different methods over the datasets we used
in our experiments. We ran our experiments on the client
ID attribute of the HTTP log data. Each network dataset
generated a sequence of insertion and deletion transactions,
with over 3 million operations in total for each dataset. We
measured the actual sample size returned by the algorithms
after processing all the insertions and deletions, when 50%
of the inserted records were deleted. The results for other
network datasets were similar; we show a representative
plot in Figure 8 (b). For the desired sample size of 100, the
distinct sampling (“Distinct”) technique returned a sample
of about 45% of the desired size. When the desired sample
size was increased to 1000, the size of the sample was only
30% of the desired size. These results support our claim
that this approach has difficulty with handling a large num-
ber of delete operations.

The Dynamic Inverse Sampling algorithm (DIS) re-
turned a sample of almost 100% of the desired size for
all sample sizes (for instance, for k = 1000 it returned
998 samples when there were 1% deletions, 981 samples at
10%, 970 for 20% and 955 for 50%) which indicates that
in practice the probability of obtaining at least one sam-
pled record from each dynamic inverse sampling structure
is close to 1. Using the greedy output routine (GDIS) which
extracts all possible sample records from every dynamic
structure, returned approximately five items from each data
structure. Both variations of the Dynamic Inverse Sampling
method are not affected by the order and amount of insert
and delete operations.

Next we investigate the dependency between the size
of the sample returned by the methods and the fraction of
deletions in the data set. We ran our experiment on the syn-
thetic data set of distinct items, when the desired sample
size is 1000. The results are shown in Figure 8 (c). For a
data set with a large number of deletions, the distinct sam-
pling technique performs poorly. When 80% of the inserted
records were deleted from the sampling structure, the sam-
ple size was about 12% of the desired sample size. As the
number of deletions approaches the number of insertions
the sample size returned by the distinct sampling algorithm
decreases linearly. When the number of deleted records
was increased to 99% of the number of insertions, the re-
sulting size of the sample was less than 1% of the desired
sample size. The Dynamic Inverse Sampling algorithm was
stable under any number of deletions and returned a sample
(with replacement) of size almost 100% of the desired size.

Sample Quality. Lastly, we measured how well the ob-
tained sample represented the sampled dataset. To calcu-
late this estimate, we posed a series of inverse range queries
F−1(i) on the samples (to compute the fraction of records
with size greater than i), and compared it to the exact value

of this query computed offline. Figure 9 shows experiments
on two different network datasets for i = 1000, the first on
a linear scale and the second on a log scale. In Figure 9 (a),
we see that both the regular and the greedy output proce-
dure give very low error for small sample sizes — in partic-
ular, the greedy procedure achieves close to zero error for
as sample size as small as 15. This shows that this output
function seems to do very well in practice. In contrast, for
very small sample sizes, Distinct sampling is unable to re-
turn any sample at all. In Figure 9 (b), we see that GDIS
consistently outperforms Distinct sampling, by up to an or-
der of magnitude, making it the method of choice.

Another set of experiments was performed on the net-
work data set with over 4 million records by posing a series
of inverse quantile queries on the samples using the client
ID attribute of the records. In particular, we estimated the
median (to find i that F−1(i − 1) > 0.5, F−1(i) ≤ 0.5)
of the inverse distribution using the resulting sample, and
measured how far the true position of the returned item i
was from 0.5. Figure 9 (c)shows the results of the experi-
ment (“quality error” is computed as 2|F−1(i)− 0.5|). We
can see that for small desired sample sizes (under 100), the
distinct sampling algorithm does not have a large enough
sample to give any results. The algorithm’s error of median
estimation becomes sufficiently small only when the de-
sired sample size is about 350 or higher. In contrast, both
versions of the dynamic sampling algorithm are much more
accurate in their estimation of the median value even for
small sample sizes.

We ran a variety of other experiments to test the quality
of our methods to approximate functions over the inverse
distribution. We omit detailed analysis for brevity, but in
all cases we saw that our dynamic inverse sampling meth-
ods were able to give high quality estimates of the queries
of interest, in the presences of streams consisting of both
insertions and deletions.

7 Previous Work
The research community has developed a rich literature on
applications of random sampling algorithms in databases
and data streams. One of the most common and well stud-
ied applications of sampling in large data warehouse envi-
ronments is to provide fast approximate answers to com-
plex aggregation queries based on statistical summaries
which are created and maintained using various sampling
techniques [29, 20, 22]. Random sampling is a standard
technique for constructing approximate summary statistics,
such as histograms, for query optimization and query plan-
ning purposes [22, 8]. Random sampling is widely used
for distinct-values estimators [19, 21, 6] which play an im-
portant part in network monitoring and online aggregation
systems.

In today’s database systems random sampling is rou-
tinely used for a variety of purposes. Microsoft SQL
Server 2000 uses sampling to build and maintain his-
tograms which provide various statistics for the query op-
timizer to choose the most efficient plan for retrieving and
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Figure 9: (a) Accuracy of sampling methods on inverse range query (linear scale) (b) Accuracy of sampling methods on
inverse range query (logarithmic scale) (c) Accuracy of sampling methods on inverse quantiles

Algorithm Type Method Deletions Random
Reservoir Sampling [31] Fwd WoR No Full
Backing Sample [22] Fwd WoR Few Full
Weighted Sampling [7] Fwd WR No Full
Concise Sampling [20] Fwd CF No Full
Count Sampling [20] Fwd CF Few Full
Minwise-hashing [13] Inv WR No 1

ε
-wise

Distinct Sampling [19, 21] Inv CF Few Pairwise
Dynamic Inverse Inv CF, Yes Pairwise

Sampling (here) WR

Figure 10: Key features of existing sampling methods.

processing data. Statistics are maintained by re-sampling
column values whenever substantial update activity has oc-
curred8. The Oracle database system uses “dynamic sam-
pling” to improve server performance by determining more
accurate selectivity and cardinality estimates, which allow
the optimizer to produce better performance plans. Oracle
determines at compile time whether a query would benefit
from dynamic sampling. If so, a recursive SQL statement is
issued to scan a small random sample of the table’s blocks
to estimate predicate selectivities. 9 Thus, while commer-
cial DBMSs need dynamic sampling, they resort to rescan-
ning or re-sampling from stored databases, and therefore,
do not work in one pass.

Our focus is on providing a uniform sample of the in-
verse distribution which can be used to approximate queries
on the inverse distribution. Despite the many works on
sampling in databases, there is very little work that directly
applies to inverse distributions. Following [7] sampling
methods broadly fall into three categories: sampling With
Replacement (WR), Without Replacement (WoR), and coin
flipping (CF)10. All the sampling methods we consider can
be classified with one or more of these labels. In addition,
two other factors are relevant to our focus:
Processing of Deletions. Existing methods either do not
handle deletions (that is, it is unclear how to process a dele-
tion and still retain a uniform sample), or can handle only
a limited number of deletions: the result is still a uniform

8http://msdn.microsoft.com/library/en-us/
dnsql2k/html/statquery.asp

9http://www.dba-oracle.com/art dbazine
oracle10g dynamic sampling hint.htm

10Where the sample size is not fixed but rather each item is chosen to
be in the sample with some probability p.

sample, but in the presences of many deletions, the size of
the sample shrinks to zero.
Amount of Randomness Required. Early works assume
“truly random” numbers, but more recent work considers
what strength of randomness is needed. k-wise random
hash functions guarantee that any k items collide under the
hash function with independent probability [27], and such
functions are efficient to compute and store for small k (eg
pairwise hash functions with k = 2 [4]).

We summarize the relevant sampling techniques that can
draw a sample from a stream of updates in Figure 10. We
classify them on which distribution they sample from —
the forward distribution (fwd) or the inverse distribution
(inv); deletion handling; and the randomness required. Al-
though many algorithms maintain a uniform random sam-
ple of data items of the forward distribution in the presence
of insertions, none handle a significant number of deletions
to the data set while guaranteeing a sample of a certain size.

There is a limited prior work that relates to inverse dis-
tributions. Some existing techniques can be used to cre-
ate a sample from the inverse distribution on insert-only
streams. The Distinct Sampling technique of Gibbons et
al. [19, 21] draws a sample based on a coin-tossing pro-
cedure using a pairwise-independent hash function on item
values. This effectively draws a uniform sample from the
inverse distribution, which we can use to answer queries on
the inverse distribution, as discussed in Section 5. As with
all other existing sampling methods, deletions can deplete
the sample, and it is not possible to recover a sufficiently
large sample—in our streaming scenario, backtracking on
the past data for a rescan is simply not possible.

An alternative approach is to make use of Min-wise
hash functions, which sample uniformly from the set of
items seen. These were applied in [13] but deletions were
not considered; one can apply a “best effort” approach by
decrementing the counts of deleted items in the sample un-
til these fall to zero—but it is not possible to give worst case
bounds on the size of the sample stored. Work on estimat-
ing the cardinality of set expressions over data streams [17]
uses a similar data structure to the one we propose here, and
with some amount of modifications can be used to draw a
sample from the inverse distribution. However, this is not
the goal of that work, and the given analysis requires hash
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functions that are at least log 1/ε-wise independent. Here,
we show that for the purpose of sampling from the inverse
distribution, a simpler structure is sufficient, with only pair-
wise independence. Similar results have been recently ob-
tained by Indyk, and Frahling and Sohler [16] which ad-
dress problems in geometric data streams.

8 Concluding Remarks
Many of the existing methods for summarizing and mining
data streams focus on the forward distribution. In contrast,
we formulate summarization and mining problems on the
inverse distribution. We introduced the notion of the in-
verse distribution for massive data streams, and gave al-
gorithms that draw uniform samples from the inverse dis-
tribution when the data stream consists of insertions only,
as well as insertions and deletions. With a sample of size
O( 1

ε2 ), we can answer a variety of summarization and min-
ing tasks on the inverse distribution up to an additive ap-
proximation of ε. These are the first such results known for
managing inverse distributions on data streams. In our ex-
periments we saw that the methods we propose can process
massive data streams of updates at very high rates, and an-
swer queries on the inverse distribution with high accuracy.

Summarizing and mining the inverse distribution on the
stream provides insights on different aspects of the data
stream than is revealed by working with the summaries
of the forward distribution. It remains open to answer
more complex queries over the inverse distribution, such
as computing frequency moments or detecting anomalies.
A fundamental question that arises is to design algorithms
to maintain a uniform sample of the forward distribution
under both insertions and deletions over data streams or
show that this is impossible — as noted in the previous
section, no existing algorithms guarantee to return a non-
empty sample in this setting.
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