
FiST: Scalable XML Document Filtering by Sequencing

Twig Patterns ∗

Joonho Kwon∗ Praveen Rao† Bongki Moon† Sukho Lee∗

∗School of Electrical Engineering and Computer Science
Seoul National University

Seoul 151-742, Korea
joonho@db.snu.ac.kr shlee@snu.ac.kr

†Department of Computer Science
University of Arizona

Tucson, AZ 85721, USA
{rpraveen, bkmoon}@cs.arizona.edu

Abstract

In recent years, publish-subscribe (pub-sub) sys-
tems based on XML document filtering have
received much attention. In a typical pub-
sub system, subscribed users specify their in-
terest in profiles expressed in the XPath lan-
guage, and each new content is matched against
the user profiles so that the content is deliv-
ered to only the interested subscribers. As the
number of subscribed users and their profiles
can grow very large, the scalability of the sys-
tem is critical to the success of pub-sub ser-
vices. In this paper, we propose a novel scal-
able filtering system called FiST (Filtering by
Sequencing Twigs) that transforms twig pat-
terns expressed in XPath and XML documents
into sequences using Prüfer’s method. As a
consequence, instead of matching linear paths
of twig patterns individually and merging the
matches during post-processing, FiST performs
holistic matching of twig patterns with incoming
documents. FiST organizes the sequences into a
dynamic hash based index for efficient filtering.
We demonstrate that our holistic matching ap-
proach yields lower filtering cost and good scal-
ability under various situations.

∗This work was done while Joonho Kwon visited the Univer-
sity of Arizona, whose visit was supported by the Brain Korea 21
Project and the Information Technology Research Center(ITRC)
Supprot Program. This work was also sponsored in part by NSF
Grant No. IIS-0100436, and NSF Research Infrastructure program
EIA-0080123, and the ACIST Fund from the State of Arizona. The
authors assume all responsibility for the contents of the paper.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or special
permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1 Introduction

The publish-subscribe (pub-sub) systems play an impor-
tant role in e-commerce and Internet applications by en-
abling selective dissemination of information. In a typi-
cal pub-sub system, whenever new content is produced,
it is selectively delivered to interested subscribers. They
have enabled new services such as alerting and notifi-
cation services for users interested in knowing about the
latest products in the market, current affairs, stock price
changes etc. on a variety of devices like mobile phones,
PDAs and desktops. Such services necessitate the de-
velopment of software systems that enable scalable and
efficient matching of a large number of content against
millions of user subscriptions.

Today we come across e-commerce sites such as
Priceline.com and Hotwire.com that provide email no-
tifications to subscribers about price changes and hot
deals. A recent service by Google.com called Google
Alerts provides email updates to users regarding relevant
Google results. Users can choose to receive notifications
by selecting a topic and providing a list of search key-
words. Another interesting example is the stock quote
tracking service provided by Yahoo.com. There is a
growing use and demand for large-scale information dis-
semination systems.

The popularity of extensible markup language XML
as a standard for information exchange has triggered sev-
eral research efforts to build scalable XML filtering sys-
tems for information dissemination. In such a system,
user profiles are typically expressed in the XPath lan-
guage [4]. In this paper, we consider user profiles that
can be represented as twig patterns. These twig patterns
contain the child and descendant XPath axes. For ex-
ample, a path expression given in XPath syntax

book[author//name="John"]/title

qualifies XML documents by specifying a twig pattern
composed of four elements book, author, name and
title in an XML document, and a value-based selection
predicate name="John". In the filtering system, each in-
coming XML document is examined against user profiles
represented by XPath expressions. The XML document
is sent to users whose profiles are matched. One of the
key challenges in building such a system is to effectively

217

organize a large number of profiles in order to minimize
the filtering cost and achieve good scalability.

It should be noted that the XML filtering problem
is different from the problem of finding all occurrences
of a twig pattern in an XML document. This is due
to the reversal in the roles of twig patterns and XML
documents. Essentially, the filtering problem that we
address in this paper is stated as follows.

Given a set of XPath expressions, identify those
XPath expressions that appear in a given XML
document.

XFilter [1] was one of the early work in XML filtering.
XFilter handles simple XPath expressions by transform-
ing each path expression into a single finite state ma-
chine. Subsequently, the YFilter system [19] was pro-
posed that focused on shared path matching to improve
the scalability of the filtering system. YFilter constructs
a single non-deterministic finite automaton (NFA) for
all the XPath expressions. YFilter supports twig pat-
terns by first matching individual linear paths from root-
to-leaf and then by performing post-processing to iden-
tify matching twig patterns. Consider a nested XPath
expression book[author//name]/title. YFilter splits
the pattern and indexes two linear path expressions in
its NFA, namely book/title and book/author//name.
The individual linear path matches are used during post-
processing to identify twig pattern matches.

In this paper, we propose a novel filtering system
called FiST (Filtering by Sequencing Twigs) that per-
forms holistic matching of twig patterns with each in-
coming XML document. The matching is holistic since
FiST does not break a twig pattern into root-to-leaf
paths. Rather the twig pattern is matched as a whole
due to sequence transformation. Our system focuses on
ordered twig pattern matching, which is essential for ap-
plications where the nodes in a twig pattern follow the
document order in XML. For example, an XML data
model was proposed by Bow et al. for representing in-
terlinear text for linguistic applications, which is used
to demonstrate various linguistic principles in different
languages [7]. Bow’s XML model provides a four-level hi-
erarchical representation for the interlinear text, namely,
text level, phrase level, word level and morpheme level.
For the purpose of linguistic analysis, it is essential to
preserve linear order between the words in the text [18].
Thus, there is a compelling need for ordered twig pat-
tern matching. In addition to interlinear text, language
treebanks have been widely used in computational lin-
guistics. Treebanks capture syntactic structure of text
data and provide a hierarchical representation of text by
breaking them into syntactic units such as noun clauses,
verbs, adjectives and so on. A recent paper by Müller et
al. used ordered pattern matching over treebanks for
question answering systems [15].

Our FiST system matches twig patterns holistically
using the idea of encoding XML documents and twig
patterns into Prüfer sequences [17]. The Prüfer’s method
constructs a one-to-one correspondence between labeled
trees and sequences. (Refer to Section 3). It was shown
in the PRIX system [17] that the above encoding sup-
ports ordered twig pattern matching efficiently. A collec-
tion of sequences for twig patterns are organized into a

 <E> v </E>2

 <D> v </D>1

 <F> v </F>5

 <F> v </F>4

 <G> v </G>3

 </E>

 <E>

<A>

(v1,1) (v5,10),3)
2(v (v3,6) (v4,8)

(F,9) (F,11)(G,7)

(B,5)

(E.4)(D,2)

(E,12)

(A,13)

(a) XML document (b) Tree representation

Figure 1: A sample XML document
dynamic hash based index for efficient filtering. Our fil-
tering algorithm involves two phases: Progressive Subse-
quence Matching and Refinement for Branch Node Ver-
ification. While the first phase identifies a superset of
twig patterns that potentially match an incoming doc-
ument, the second phase discards false matches by per-
forming post-processing for branch nodes in the twig pat-
terns. Our extensive experimental study shows that the
holistic matching approach enables FiST to outperform
the state-of-the-art YFilter system by achieving better
scalability under various situations.

The key contributions of our work are summarized as
follows.

• We have developed a new filtering system called
FiST that supports the holistic matching of twig
patterns against incoming XML documents. The
matching is holistic since the twig pattern is
matched as a whole rather than matching individual
linear paths from root-to-leaf first.

• Our filtering algorithm involves a novel progressive
subsequence matching phase followed by a refine-
ment phase for branch node verification. This two-
phase processing guarantees that matching by FiST
is free of false positives and false negatives.

• By using a single runtime stack, the subsequence
matching phase is optimized by avoiding redundant
accesses to the hash index. The stack enables the
testing of parent-child and ancestor-descendant re-
lationships and limits the search space during the
subsequence matching.

• The FiST system provides ordered twig matching
for applications that require the nodes in a twig pat-
tern to follow document order in XML.

The remainder of this paper is organized as follows.
Section 2 provides the background and motivations of
our work. We present the overview of the FiST system
in Section 3. In Section 4 we describe the core algorithms
and optimizations in FiST. Section 5 discusses our ex-
perimental results. A survey of related work is presented
in Section 6. We conclude our work in Section 7.

2 Background and Motivations

XML documents can be modeled as ordered labeled
trees. For example, the XML document in Figure 1(a)
can be represented as an ordered labeled tree as shown
in Figure 1(b). Each node in a tree corresponds to an
element or a value. Values are represented by charac-
ter data (CDATA, PCDATA) and appear at the leaf nodes.
The tree edges represent a relationship between two ele-
ments or between an element and a value. Each element
can have a list of (attribute, value) pairs associated with
it. In this paper, attributes are treated the same way

218

as elements. Hence, no special distinction will be made
between elements and attributes in the subsequent dis-
cussions. In the following sections, we will overview the
key ideas of XFilter and YFilter, and provide motiva-
tions for our work.

XFilter and YFilter

The XFilter system maps each location path expres-
sion into a finite state machine (FSM). The collection
of FSMs are indexed to support efficient filtering. YFil-
ter system builds on XFilter and relies on shared path
matching to improve the scalability of the filtering sys-
tem. YFilter constructs a single non-deterministic finite
automaton (NFA) for all the path expressions. YFilter
supports incremental construction and maintenance. In
addition, YFilter supports value-based predicates in the
path expressions. YFilter handles twig patterns by de-
composing them into individual linear paths and then
performing post-processing over linear path matches.
Path sharing is also exploited for twig queries.

Our Motivations

None of the previous work on XML filtering supports
holistic matching of twig patterns against incoming XML
document. In addition, no previous work has addressed
ordered matching of twig patterns, which is needed in ap-
plications where the order of the nodes in the twig pat-
terns should follow the document order in XML. These
shortcomings have motivated us to build a filtering sys-
tem that supports holistic matching of twig patterns
with inherent support for ordered pattern matching.

3 The FiST System

In this section, we present the key ideas of the FiST
system. We first formulate the filtering problem that
we address in this paper. We then provide an architec-
tural overview of the FiST system and briefly describe its
core components. Finally, we explain the construction of
Prüfer sequences for labeled trees.

3.1 XML Document Filtering

The filtering problem is different from the task of finding
all occurrences of a twig pattern in an XML database.
In traditional XML indexing and query processing,
XML documents are indexed to quickly find all occur-
rences of a twig pattern (e.g., XISS [13], TwigStack [6],
PRIX [17]). However, in XML filtering, the role of twig
patterns and documents are reversed. It is the twig
patterns that are indexed in order to quickly determine
whether those twigs appear in the input document to be
filtered. Formally the problem of XML document filter-
ing can be stated as follows.

Given a set Q of twig patterns and an XML
document D, find the subset Q

′

⊆ Q such that
every q ∈ Q

′

has a match in D.

In this paper, we focus on ordered matches, where the
ordering of twig pattern nodes should match the docu-
ment order.

+
Filtering
Algorithm

XPath parser SAX parser

XML

Matching

XPath Twig
 patterns

(User profiles)

Send
filtered

Users

Document

 document

Filtering engine

Sequence Index

Profile Sequences

Sequences
Prufer

Sequence
Prufer

user profiles

Figure 2: Architecture Overview

3.2 Architectural Overview

In this section, we shall describe the core components
of the FiST system. Figure 2 shows an architectural
overview. The core filtering engine is shown in a dotted
box.

User profiles expressed in XPath are parsed using an
XPath parser and converted into Prüfer sequences. We
defer the description of Prüfer sequence construction to
Section 3.3. User profiles can be updated during the exe-
cution of the filtering engine. The collection of sequences
are stored in a hash based dynamic index called Sequence
Index. For each sequence an auxiliary list called Profile
Sequence is maintained. The Sequence Index and a col-
lection of Profile Sequences make up the core data struc-
tures of our filtering engine. We will delve into the details
pertaining to the index construction and maintenance in
Section 4.

Incoming XML documents that need to be filtered are
first parsed using a SAX parser [14]. The SAX parser
generates a start tag event for each opening tag of an
element and an end tag event for each closing tag of an
element. The filtering engine progressively constructs
the Prüfer sequence representation of the document and
performs certain operations on these events. With this
high level overview of the FiST system, we shall move
on to explain the Prüfer sequence construction.

3.3 Prüfer Sequences for Labeled Trees
Prüfer (1918) proposed a method that constructed a
one-to-one correspondence between a labeled tree and
a sequence by removing nodes from the tree one at a
time [12]. The algorithm to construct a sequence from
tree Tn with n nodes labeled from 1 to n works as follows.
From Tn, delete a leaf with the smallest label to form a
smaller tree Tn−1. Let a1 denote the label of the node
that was the parent of the deleted node. Repeat this pro-
cess on Tn−1 to determine a2 (the parent of the next node
to be deleted), and continue until only two nodes joined
by an edge are left. The sequence (a1, a2, a3, ..., an−2)
is called the Prüfer sequence of tree Tn. From the se-
quence (a1, a2, a3, ..., an−2), the original tree Tn can be
reconstructed. The length of the Prüfer sequence of tree
Tn is n− 2. Similar to the PRIX system, we construct a
Prüfer sequence of length n− 1 for Tn by continuing the
deletion of nodes till only one node is left.

The labeled Prüfer sequence (LPS) of an XML doc-
ument tree is obtained by replacing the node numbers
in the sequence with XML tags [17]. Extended Prüfer
sequences can be constructed by extending leaf nodes
of the document tree with dummy child nodes. As re-
sult, the leaf node labels of the original tree appear in

219

Twig Pattern Q1: /A[B//D]//E[G]/F
LPS(Q1) = D B A G E F E A

E

A

G F

B

D

Figure 3: Twig Pattern to Sequence Conversion

the LPS. The following example illustrates the sequence
representation for an XML document tree.

Example 1 Consider the XML document tree in Fig-
ure 1(b). The nodes of the tree are labeled in postorder.
The Prüfer sequence of the tree using the node numbers
is 2 5 4 5 13 7 12 9 12 11 12 13. The LPS of this tree is
D B E B A G E F E F E A. By extending the leaf nodes
of the document tree with dummy child nodes v1 through
v5, the extended LPS can be constructed and is v1 D B
v2 E B A v3 G E v4 F E v5 F E A.

4 Index Structure and Filtering Algo-
rithm

With a high level overview of our system, we shall now
describe the index structure and the filtering algorithm
of FiST. Subsequently, we will present a few optimiza-
tions to speed-up the filtering process. In the following
sections, we will use the terms “user profiles” and “twig
patterns” interchangeably.

4.1 Transforming User Profiles into Sequences
In the FiST system, user profiles expressed as XPath
expressions are transformed into Prüfer sequences. The
twig patterns we deal with have either parent-child rela-
tionship (‘/’) or ancestor-descendant (‘//’) relationship
between two nodes. In this section, we shall describe
the method to map twig patterns into sequences. For
simplicity let us first consider patterns without wildcard
‘*’. Later in Section 4.4, we will describe how ‘*’ can be
handled.

A twig pattern is first mapped to a tree structure by
treating the nodes in the pattern as tree nodes. Both
‘/’ and ‘//’ in the pattern are treated as regular tree
edges. Note that in this paper, we focus on ordered
twig pattern matching. For example, consider the tree
representation of the pattern Q1 in Figure 3. The ex-
tended LPS of Q1 is D B A G E F E A. For each user
profile, in addition to the LPS, additional information
like the relationships between the nodes (parent-child or
ancestor-descendant) and branch node information are
stored. This auxiliary list is called the Profile Sequence.
Each profile sequence is represented by an ordered list of
nodes. For a parent-child (or ancestor-descendant) pair
of nodes in the twig pattern, this relationship informa-
tion is stored in the profile sequence node corresponding
to the child (or descendant). Each node in the profile
sequence has four attributes namely Label, Qid, Pos,
and Sym. These attributes are summarized in Table 1.
The attribute Label stores the Prüfer sequence label,
Qid contains an unique identifier, Pos denotes the posi-
tion of the node in the profile sequence, and Sym stores
a combination of values listed in Table 2. Given a node
q in the profile sequence, the four attributes are denoted
by qLabel, qQid, qPos and qSym respectively.

Attribute Description

Label A Prüfer sequence label
Qid An unique sequence identifier
Pos An integer that describes the

location of this sequence node
in the profile sequence

Sym A set of values that describe the
type of sequence node

Table 1: Node Information

Value Description

‘/’ A parent-child relationship
‘//’ An ancestor-descendant relationship
‘$’ A branch node
‘#’ The root node in the profile sequence

Table 2: Symbol Values

Example 2 Figure 4(a) shows two profile sequences for
the twig patterns Q1 and Q2 where LPS’s are D B A G E
F E A and E B C B respectively. So there are eight nodes
in the profile sequence of Q1 and four nodes in that Q2.
The relationships are stored in the Sym attribute of each
node in a profile sequence. For example in the profile
sequence of Q1, the Sym attribute of node D has the
value ‘//’ because the first node D and the second node B
have an ancestor-descendant relationship in Q1. Q1 has
two branch nodes A and B which have two child nodes
each. Hence the third, fifth, seventh and eighth nodes in
the profile sequence of Q1 have $ in their Sym attribute.
Note that some branch nodes have two symbol values at
the same time. For example, in the profile sequence of
Q1, the seventh node with Label E has and ancestor-
descendant relationship with the eighth node representing
node A in Q1. Hence its Sym attribute has values ‘$’
and ‘//’. The last node in the profile sequence always
corresponds to the root of the twig pattern. We call this
node as the root node of the profile sequence. The Sym
attribute of this node has value ‘#’.

4.2 Indexing User Profiles

Given a large number of user profiles that need to be
matched against incoming XML documents, it is natural
that a good indexing strategy should be developed for
efficient filtering. In this section, we propose an index
structure to store the profile sequences.

Conceptually, the first phase of the filtering algorithm
in FiST involves subsequence matching between the pro-
files sequences and the input document sequence in order
to compute the superset of the twig patterns that match
the input document. The following theorem states the
relationship between the sequence representation of a
twig pattern and an XML document.

Theorem 1 ([17]) If tree Q is a subgraph of tree T,
then LPS(Q) is a subsequence of LPS(T).

The nodes in a profile sequence can be mapped to a
state machine. (See Figure 4(c).) This figure is a simpli-
fied illustration since the actual state machine has more
transitions and is not shown here for the purpose of clar-
ity. As new tags in the input document are parsed, the
state machine undergoes appropriate transitions. If the
state machine reaches the final state, the profile sequence

220

Q1 : /A[B//D]//E[G]/F LPS(Q1) = D B A G E F E A

$

5

1

E

/

6

1

F

/

4

1

G

$

3

1

A

$#$/////

8721

1111

AEBD

$

5

1

E

/

6

1

F

/

4

1

G

$

3

1

A

$#$/////

8721

1111

AEBD

Sym

Seq

Qid

Label

Sym

Seq

Qid

Label

$#/$/

4321

2222

BCBE

$#/$/

4321

2222

BCBE

Q2: //B[E]/C LPS(Q2) = E B C B

A

Q1,1D

B

C

Q2,1E

A

Q1,1D

B

C

Q2,1E

(a) Profile Sequence (b) Sequence Index
D B A G E F E A

E B C B

Q1 :

Q2 :

(c) Simplified State Machine

Figure 4: Profile Sequence, Sequence Index and State
Machine

has a subsequence match in the document sequence. For
efficient filtering, however, it is desired to perform sub-
sequence matching on all the profile sequences simulta-
neously. To do so, we maintain a dynamic hash-based
index called the Sequence Index.

Example 3 A Sequence Index is shown in Figure 4(b).
The XML tags are used as keys in the hash table. For
each key, the value is a list of nodes from the profile se-
quences. At the start of filtering, the first nodes of the
profile sequences are added to the hash index. As new
Prüfer sequence labels of the input XML documents are
obtained, state transitions take place and the nodes are
added to the hash table. It can be observed that the Se-
quence Index contains the first node of profile sequences
for patterns Q1 and Q2 for hash keys D and E respec-
tively.

4.3 Filtering Algorithm
In this section we will describe our filtering algorithm
that involves progressive subsequence matching followed
by a refinement phase for branch node verification. Theo-
rem 1 is a necessary but not a sufficient condition. In the
subsequence matching phase, our filtering algorithm per-
forms additional tests to eliminate most false matches.
For a given a profile sequence node q, the nature of the
test depends on the value of qSym. To facilitate these
tests, a runtime global stack is maintained by our filter-
ing algorithm that stores the tags along the path from
the current tag being processed to the root of the doc-
ument. The elements are pushed to and popped from
the global stack in document traversal order. Note that
the maximum depth of the stack is no more than the
maximum height of the incoming documents.

4.3.1 Progressive Subsequence Matching
It is essential that we find the subsequence matches si-
multaneously for all the twig sequences in a scalable
manner. We call the subsequence matching progres-
sive, because we generate the sequence representation
of the document incrementally and find those profile
sequences that are subsequences in steps. The LPS of
an XML document is constructed incrementally by ex-
amining the run time global stack as the document is
being parsed. In the FiST system, a SAX parser is
used to parse input XML documents. A few modifi-
cations need to be made to the StartTagHandler and
EndTagHandler procedures of the SAX parser to accom-
modate our filtering algorithm. Algorithm 1 shows the

C F F

E

GED

A

BB

A

B

D

XML document tree T
Stack

LPS(T): DB EBA CBA GE FE FEA

C F F

E

GED

A

BB

A

B

E

XML document tree T

Stack

LPS(T): DB EBA CBA GE FE FEA

(a) EndTagHandler of D (b) EndTagHandler of E

Figure 5: Generation of LPS(T)

StartTagHandler and the EndTagHandler procedures.
When the StartTagHandler is invoked with a tag name,
the tag name is pushed onto the stack as shown in Line 1.
When the EndTagHandler is invoked, the element tag is
checked if it is a leaf node in the document in order
to generate an extended LPS (Line 2). If the tag is a
leaf node, the top element of the stack is used as the
next Prüfer sequence label and the filtering procedure
(FindSubsequence(·)) is invoked (Line 3). Whether the
tag is a leaf or not, the top element is popped from the
stack and the new top element is used as the next Prüfer
sequence label (Line 4). The filtering procedure is again
invoked (Line 5).

Algorithm 1: SAX Handlers

stack S; /* a runtime global stack */
procedure StartTagHandler(tag)
1: S.push(tag)
end

procedure EndTagHandler(tag)
/* for extended Prüfer sequence */

2: if tag is a leaf node then
3: FindSubsequence (S.top());

end
4: S.pop();
5: FindSubsequence (S.top());
end

Example 4 We illustrate the construction of the LPS of
the XML document tree T as shown in Figure 5. For this
document LPS(T) is DBEBACBAGEFEFEA. When the
StartTagHandler(·) of an element is invoked, the element
is pushed onto the stack. When the EndTagHandler(·)
of D is invoked, the state of the stack is shown in Fig-
ure 5(a). Element D is a leaf node in T. So the top
element in the stack represents the 1st label of LPS(T).
The top element D is then popped from the stack. As a
result, the new top element B in the stack represents the
2nd label of LPS(T). Note that element B is still kept in
the stack after it is used. When the EndTagHandler(·)
of E (child of B) is called, the state of the stack is shown
in Figure 5(b). E is also a leaf node in T. Hence the
top element E in the stack represents the the 3rd label of
LPS(T). Then, the top element of the stack is popped.
After this, the new top element B in the stack repre-
sent the 4th label of LPS(T). Subsequently when the End-
TagHandler of B is invoked, B and A are the two ele-
ments in the stack. Since element B is not a leaf node in
the XML document tree T, the top element in the stack is
popped. The new top element A in the stack represents
the 5th label of LPS(T). The above process is repeated
till the EndTagHandler of the root element (i.e., A) is
invoked.

Each time the EndTagHandler(·) is invoked, the top
element of the stack indicates the ith element of the LPS

221

of the document. Our filtering algorithm uses the Se-
quence Index to find matching subsequence simultane-
ously for all the profile sequences. As a result, the doc-
ument and its LPS are scanned only once. Hence it is
suffice to generate the LPS incrementally by accessing
the global stack without actually storing the entire se-
quence.

Algorithm 2: Progressive Subsequence Matching

Input: {L} - L is a Prüfer sequence label;

procedure FindSubsequence(L)
1: CurrentList ← SequenceIndex[L];
2: foreach SequenceNode q in CurrentList do
3: test← false;
4: foreach value v in qSym do
5: switch v do

/* Parent-Child or Ancestor-Descendant
relationship */

6: case ‘/’ or ‘//’:
7: if doSimpleStackTest (q, v) =

true then test← true;
/* Branch node */

8: case ‘$’: doBranch (q);
/* Root node of twig pattern */

9: case ‘#’:
BranchNodeVerification (qQid);

end
end

10: if ((qSym = ‘/’ or qSym = ‘//’) and (test = true))
or (qSym = ‘$’) then

11: q
′

← NextNode(q);

12: copy q
′

to Sequence Index using key q
′

Label;

end
end

end

During subsequence matching, FiST performs addi-
tional tests to eliminate most false matches by using a
runtime stack. In essence, transitions occur in a state
machine (e.g., Figure 4(c)) when both the tag name
is matched and the stack test succeeds. The runtime
stack has three main benefits during filtering namely
(a) for testing parent-child and ancestor-descendant re-
lationships, (b) for avoiding frequent node copying into
the hash index, and (c) for pruning subsequences by
limiting the range of subsequence matching. The core
operations during filtering are shown in Algorithm 2.
The procedure FindSubsequence(·) is invoked from the
EndTagHandler(·). Using the label L as the key, the Se-
quence Index is searched to obtain the list of nodes to
be tested (Line 1). For each node q in the list, an appro-
priate action is taken depending on the values in qSym

(Lines 6-9). Note that since qSym is a list of values, we
iterate through each value in Line 4.

Processing Parent-Child and Ancestor-
Descendant Relationships

The runtime stack will be used for testing parent-child
and ancestor-descendant relationships between nodes
in the input document that match the nodes in the
profile sequences. Let us refer to these two tests
as TestPC(·) (parent-child) and TestAD(·) (ancestor-
descendant). These tests will differ in the extent to
which the stack is checked. Consider two nodes q and

q
′

= NextNode(q) in a profile sequence. TestPC(q, q
′

)

is successful, if q
′

Label is immediately below qLabel in
the stack. On the other hand, TestAD(q) is success-

ful, if q
′

Label occurs somewhere below qLabel in the stack.
Whenever such a test is successful, the state machine
moves to the next state.

For example, in Figure 6, when the EndTagHandler
of E is called, the state of the stack is shown on the left.
The jth element in the profile sequence for Qi matches
the top of the stack. Since the symbol value of the jth

element is ’//’, we apply TestAD(Qi,j, Qi,j+1). Since el-
ement C is two elements below E in the stack, TestAD(·)
is successful. This means that the ancestor-descendant
relationship between nodes Qi,j+1 and Qi,j in the twig
pattern in Figure 6 is satisfied in the document T. Next
we attempt to match Qi,j+1. Element C in the stack
matches Qi,j+1. Besides, element B is one element be-
low C in the stack. This means that the parent-child
relationship between nodes Qi,j+2 and Qi,j+1 is satis-
fied in the document T, that is, TestPC(·) is success-
ful. Note the procedure doSimpleStackTest(·) is called
from FindSubsequence(·) to perform the above opera-
tions (Line 6).

A

B

C

… B

E

D

C

B

A

E

D

C

B

A

stack

D

E

//

j+3

i

F

…

…

…

…

…$$///

…j+2j+1j

…iii

…BCE

//

j+3

i

F

…

…

…

…

…$$///

…j+2j+1j

…iii

…BCE

Twig pattern Qi LPS(Qi): … E C BF…XML Document T

LPS(T): … ED C B A …C B A …

…

Sequence Index

…

C

B

C

E

...

… F

...

B

C

E

...

… F

...

…

A

Qi,jE

F

…

A

Qi,jE

F

…

A

Qi,jE

Qi,j+3F

…

A

Qi,jE

Qi,j+3F

Figure 6: Benefits of Runtime Global Stack

Algorithm 3: Simple Stack Checking

Input: q is a node in the profile sequence;
v is a value in the Sym attribute of q

procedure doSimpleStackTest(q, v)

1: q
′

← NextNode(q);

2: if (v = ‘/’ and TestPC(q, q
′

) is successful) OR

(v = ‘//’ and TestAD(q, q
′

) is successful) then
3: return true;
4: else return false;

Note that the twig pattern in Figure 6 can match
anywhere in the incoming document. However if node
B was required to match the root of the document (‘/’),
then the runtime stack is checked to determine if B is
the only element in the stack. If so, then this implies
that node B in the twig pattern matches the document
root.

Avoiding Frequent Node Copy to Sequence Index

Let us again consider the example in Figure 6. Based on
Algorithm 1, FindSubsequence(·) is invoked each time
the EndTagHandler is called. In the example, when the
EndTagHandler for leaf E is called, the set of elements
in the stack represent a segment of the LPS(T), i.e., E D
C B A. Note that the node A is a branch node. A naive
way is to invoke FindSubsequence(·) once for each of
E D C B A in order using Algorithm 1. This requires

222

copying the next node of a profile sequence to the Se-
quence Index each time FindSubsequence(·) matches a
node in the profile sequence. However, since the runtime
stack stores a segment of the LPS till the branch node
A, we can use it as a look-ahead buffer. Thus instead of
performing doSimpleStackTest(·) for each tag, a recur-
sive stack check can be performed thereby eliminating
the copying of nodes in the profile sequence up to the
branch node. This process is shown in Algorithm 4.

A modification to Algorithm 2 is done by
replacing the procedure doSimpleStackTest with
doRecursiveStackTest on Line 6 and by omitting
Lines 10 through 12. In Algorithm 4, on a successful
stack test (Line 2), the next node of q in the profile se-

quence, i.e., q
′

is used for subsequence matching by per-
forming tests similar to Algorithm 2. Thus our algorithm
tries aggressively to find subsequence matches up to the
branch node. On success, the next node of the branch
node is copied to the Sequence Index. In essence, we have
effectively skipped copying nodes up to the branch node
in the twig pattern. Note that in Algorithm 4, if a branch
node in the profile sequence has a ‘/’ or ‘//’ relationship
with the next node, then the subsequence matching con-
tinues by invoking doRecursiveStackTest(·).

Algorithm 4: Recursive Stack Checking to Avoid
Node Copying

Input: q is a node in the profile sequence;
v is a value in the Sym attribute of q

procedure doRecursiveStackTest(q, v)

1: q
′

← NextNode(q);

2: if (v = ‘/’ and TestPC(q, q
′

) is successful) OR

(v = ‘//’ and TestAD(q, q
′

) is successful) then

3: foreach value v
′

in q
′

Sym do

4: switch v
′

do
5: case ‘/’ or ‘//’:

doRecursiveStackTest (q
′

, v
′

);

6: case ‘$’: doBranch (q
′

);
7: case ‘#’:

BranchNodeVerification (q
′

Qid);

end
end

8: if qSym = ‘$’ then

9: copy q
′

into Sequence Index using key q
′

Label;

end
end

Limiting the Range of Subsequence Matching

Another important benefit of the runtime stack is that
we can limit the range of the document sequence for sub-
sequence matching. Consider an XML document T and a
twig pattern Qi in Figure 6. For document T, LPS(T) =
. . . E B C B A . . .C B A . . . For twig pattern Qi, LPS(Qi)
= . . . E C B . . . LPS(T) has two subsequence instances
that match ‘E C B’. (They are underlined in Figure 6.)
In the XML document, the second element C (leaf node
in T) and its parent, i.e., B, do not have any relation-
ship with element E. When the Prüfer sequence label E
of LPS(T) is generated, there is only one C and B in a
global stack. Thus our filtering algorithm finds only one

instance of subsequence ‘E C B’ using the elements in the
stack. As a result, the stack provides pruning capability
by avoiding the computation of matching subsequences
that do not represent true matches.

Below we illustrate the execution of our filtering al-
gorithm with an XML document T in Figure 7(a) and
twig patterns Q1, Q2 and Q3 in Figure 7(b). The nodes
Q1,1, Q2,1, and Q3,1 are initially stored in the Sequence
Index shown in Figure 7(c). This figure also shows the
changes to the Sequence Index during the filtering pro-
cess. In this example, we will illustrate the use of stack
tests for parent-child and ancestor-descendant relation-
ships. The branch detection techniques are deferred until
Section 4.3.2.

Example 5 When FindSubsequence(D) is invoked,
the state of the runtime stack is shown in Figure 7(a).
The node list in the Sequence Index for key D is first
processed. Currently two nodes Q1,1 and Q2,1 qualify.
First, let us consider Q1,1. The next node for Q1,1 is
Q1,2. The progressive subsequence matching phase suc-
ceeds since Q1,2Label

= B, Q1,1Sym
= ‘//′, and B is

one element below D, the stack test is successful (i.e.,
TestPC(·)). Now doRecursiveStackTest(Q1,2, ‘/

′) is
invoked (Line 5 in Algorithm 4). The next node for
Q1,2 is Q1,3. Because the label A is one element be-
low the label B in the stack, the stack test is successful
again. Q1,3 is a branch node, so the next node Q1,4 is
added to the Sequence Index using hash key G. Thus we
have matched nodes Q1,1 through Q1,3. Here we can skip
copying the Q1,2 and Q1,3 into a Sequence Index. Next,
let us consider Q2,1. The next node for Q2,1 is Q2,2.
A stack test for Q2,1 is successful and Q2,2 is matched.
Then doRecursiveStackTest(Q2,2, ‘/

′) is called but a
stack test for Q2,2 is unsuccessful since C is not present
in the stack. In this case, no node copying is done, and
the Q2,1 remains in the Sequence Index as shown in Fig-
ure 7(c).

Next, when FindSubsequence(B) is invoked, there
are no nodes in the Sequence Index for hash key B.
Hence nothing is done. Then, FindSubsequence(E) is
invoked, Q3,1 passes the stack check and Q3,2 is matched.
Because Q3,2 is a branch node, the next node Q3,3 is
copied to the Sequence Index using hash key C. Next
FindSubsequence(B) is invoked again, there are no
nodes in the Sequence Index for hash key B. Hence noth-
ing is done. When FindSubsequence(C) is invoked, the
global stack at this instant has elements C, B, and A in
it. Only node Q3,3 is active in the Sequence Index for
hash key C. Since Q3,3Sym

= ‘/′ and label B is below the
label C in the runtime stack, we have matched the next
node Q3,4 which a branch node and a root node.

4.3.2 Branch Node Processing

It was shown that filtering by subsequence matching
alone can lead to false matches [17]. To eliminate such
false matches in FiST, we have developed refinement
techniques to test the connectedness property for branch
nodes in twig patterns. In this section, we begin with an
example to motivate the need for special branch node
processing to support the refinement phase. The refine-
ment phase will be described in Section 4.3.3. For

223

(A,1)

(B,2)

(D,3)

(B,5)

(E,4) (C,6)

(E,7)

(G,8)(F,9) (F,10)

D

B

A

D

B

A

stack

LPS(T) : DBEBA CBA GE FE FEA
E

B

CE

B

C

$#//$//

54321

22222

CECBD

$#//$//

54321

22222

CECBD

$#/$/

4321

3333

BCBE

$#/$/

4321

3333

BCBE

Q2 : /C[B/D]//E Q3 : //B[E]/C

Q1: /A[B//D]//E[G]/F $//

7

1

E

$

5

1

E

/

4

1

G

$#/$///

86321

11111

AFABD

$//

7

1

E

$

5

1

E

/

4

1

G

$#/$///

86321

11111

AFABD
A

B

D

E

G F

A

B

D

E

G F

C

B

D

E

C

B

D

E

A

Q1,1D

B
C

Q3,1E
F
G

Q2,1

A

Q1,1D

B
C

Q3,1E
F
G

Q2,1

D

A

Q1,1D

B
C

Q3,1E
F

Q1,4G

Q2,1

A

Q1,1D

B
C

Q3,1E
F

Q1,4G

Q2,1

E

A

Q1,1D

B
Q3,3C

Q3,1E
F

Q1,4G

Q2,1

A

Q1,1D

B
Q3,3C

Q3,1E
F

Q1,4G

Q2,1

(a) XML document Tree T (b) Twig Patterns (c) Sequence index during filtering

Figure 7: Progressive Subsequence Matching

convenience, assume that the nodes in each XML docu-
ment tree are numbered in preorder. 1 Annotating the
elements in an XML document with the preorder num-
bers is straightforward during SAX parsing. A counter
can be maintained and incremented on every call to the
StartTagHandler. The counter value is then assigned
to the tag being processed.

Example 6 Consider the example in Figure 7. The
XML document tree T is numbered in preorder (see Fig-
ure 7(a)). Figure 7(b) shows two twig patterns Q1 and
Q3. For document tree T, LPS(T) = D B E B A C B A
G E F E F E A. For twig pattern Q1, LPS(Q1) = D B A
G E F E A and for Q3, LPS(Q3) = E B C B. LPS(Q1)
is a subsequence of LPS(T) and LPS(Q3) is also a sub-
sequence of LPS(T). Both twig patterns Q1 and Q3 are
candidates that could be possible matches in T. However,
Q3 is not a true match since there is no node B in T that
has both E and C as child nodes. Thus Q3 matches two
different B nodes in T, i.e., (B,2) and (B,5). In order
to eliminate such false matches, it is essential to ensure
that the B nodes that were matched during subsequence
matching represent one and the same node in T.

On the other hand, two E nodes of LPS(Q1) matched
two E nodes in LPS(T) that represent one and the same
node in T, i.e., (E,7). And two A nodes of LPS(Q1)
matched two A nodes in LPS(T) that represent one and
the same node in T, i.e., (A,1). Note that Q1 has a
match in T.

FiST performs special processing for branch nodes in
the profile sequences in order to facilitate the refinement
phase to discard false matches. Thus the main role of
a branch node processing is to store the information of
matched tag in the input XML document. This informa-
tion is used in the refinement phase to check the connect-
edness property. A data structure called the BranchID
Set (i.e., a list) is maintained for each occurrence of
a branch node in the profile sequence to keep track of
the preorder number of the node in the document that
matches the sequence node.

During the subsequence matching phase, when the
profile sequence node say q is a branch node, then
doBranch(q) stores the preorder number of the node in
the document with label qLabel (that matches q) in the
BranchID set for q. In a Prüfer sequence, the number of
times a given node appears in it depends on the num-
ber of its child nodes [17]. Thus a profile sequence has
two types of branch nodes for any given branch node
in a twig pattern. For example, in Figure 7(b), the

1Other numbering schemes like postorder can also be used.
However preorder numbering seems to be a natural choice since
the tags in the document are parsed in document traversal order.

profile sequence nodes of Q1 i.e., Q1,5 and Q1,7 corre-
spond to the branch node E in the twig pattern. Q1,5

does not correspond to the last occurrence of E. We re-
fer to such nodes as internal branch nodes. Note that
the internal branch nodes in a profile sequence do not
have any relationship with the next node in its profile
sequence. Hence no stack checks are necessary and the
filtering algorithm can proceed to test the next node for
subsequence matching. However the last occurrence
of the branch node has either a parent-child or ancestor-
descendant relationship with its next node. For example,
node Q1,7 in Figure 7(b) has an ancestor-descendant re-
lationship with Q1,8. We refer to such nodes in a profile
sequence as final branch nodes. For a final branch node,
in addition to storing the preorder number of the docu-
ment node in its BranchID set, the stack test is required.
Only on successful stack test, the filtering algorithm ex-
amines the next node for subsequence matching. Note
that the recursion in doRecursiveStackTest(·) termi-
nates when an internal branch node is processed.

In Figure 7(b), two BranchID sets are maintained for
Q1,3 and Q1,8 corresponding to node A. Similarly, two
BranchID sets are maintained for Q1,5 and Q1,7 corre-
sponding to node E.

4.3.3 Root Node Processing

In this section, we present the Refinement by Branch
Node Verification phase to determine twig patterns that
appear in the incoming document. The subsequence
matching phase computes a superset of twig patterns
that are candidates. False matches are eliminated by
verifying the connectedness property at the branch nodes
in the twig patterns from this candidate set.

For each candidate profile sequence, its BranchID Sets
that are constructed during the subsequence matching
phase are examined. Algorithm 5 shows the steps in-
volved. The procedure BranchNodeVerification(·) is
invoked from Algorithms 2 and 4 when the root node of
a profile sequence is processed. For each branch node l in
the candidate twig pattern, the algorithm computes the
intersection of the BranchID sets for each occurrence of
the branch node in its profile sequence (Lines 3 through
6). A non-empty result set implies that this branch node
l in the twig patterns matches a branch node in the input
document since there exists at least one matching sub-
sequence where all matching occurrences of this branch
node in the profile sequence represent one and the same
node in the document. If every branch node in the twig
pattern matches at least one branch node in the docu-
ment, then it is reported as a match (Line 7).

For example, consider the twig pattern Q1 in Fig-
ure 7(b). The intersection of the BranchID sets for node

224

Algorithm 5: Branch Node Verification

Input: {qQid }: qQid is a profile sequence identifier;
Output: Report a match;

procedure BranchNodeVerification (qQid)
1: test← true;
2: LB ← list of labels of the branch nodes in the twig

pattern with id Qid;
3: foreach l in LB do
4: n ← number of BranchID sets for l in the profile

sequence;
5: let Bl1, Bl2, ..., Bln denote the n BranchID sets for l
6: if

Tn

i=0
Bli = ∅ then test← false;

end
7: if test = true then report qQid as a match;

A is {1}. Similarly, the intersection of the BranchID sets
for node E is {7}. As a result, Algorithm 5 reports Q1

as a match, since Q has a true match in T.

4.4 Wildcard Processing

If the wildcard ‘*’ appears in a non-branch node in the
twig pattern, it is refered to as a regular wildcard node.
If a branch node has a wildcard in the twig pattern, then
it is refered to as a branch wildcard node.

In the case of a regular wildcard node in a twig pat-
tern, the sequence nodes for the wildcards are not gen-
erated in the profile sequence. Instead, the wildcard in-
formation is added to a sequence node which is the next
label of a wildcard in the LPS. Thus in our filtering algo-
rithm, when we process a node which contains wildcard
information during a stack test, its wildcard information
is also checked.

In the case of a branch wildcard node, we generate
sequence nodes for the wildcard. When the filtering al-
gorithm processes a branch wildcard node, we store pre-
order numbers of all the matched tags that passed the
stack test. Finally the intersection of the BranchID sets
is computed as before.

Qi: /A[*//D]//E[*]/F
$#$//$$//

5

i

E

3

i

E

6421

iiii

AFAD

$#$//$$//

5

i

E

3

i

E

6421

iiii

AFAD

LPS(Qi): * D A * E F E A
� LPS(Qi): D A E F E A

// *//*//

A

*

D

E

* F

A

*

D

E

* F

Wildcard
Information

Qj: /A/*[//B]/C
#$//$//

3

j

C

5421

jjjj

A**B

#$//$//

3

j

C

5421

jjjj

A**B

LPS(Qj): B * C * A
Wildcard
Branch Nodes

A

*

B C

A

*

B C

(a) Regular ‘*’ Nodes (b) Branch ‘*’ Nodes

Figure 8: Processing Wildcard ‘*’

Example 7 Consider the example in Figure 8. The twig
pattern Qi in Figure 8(a) has two regular branch wild-
card nodes. The 2nd node and the 3rd node in the profile
sequence have extra wildcard information. When we pro-
cess the 1st node and 2nd node, the wildcard information
will be checked. If there are some labels between label
D and label A in the runtime stack, the stack check will
succeed. Then, the next node (3rd node) of the branch
node is copied to the Sequence Index. When the 3rd

node is processed, we check whether there are some nodes
above label E in the stack or not based on the ancestor-
descendant relationship of the wildcard node.

A twig pattern Qj in Figure 8(b) shows two branch
wildcard nodes in its profile sequence, which are the 2nd

and the 4th nodes respectively. Assume there are four
elements B, D, E and A (top to bottom) in a global

stack when we process the 1st node and the 2nd node.
During the stack test, all the elements below the label B
are eligible to be a match for a branch wildcard node be-
cause of the ancestor-descendant relationship. Thus the
BranchID set stores the preorder numbers of all these
candidate tags. Again assume that there are three ele-
ments C, E and A (top to bottom) in the stack when we
process the 3rd node and the 4th node. In this case, only
the preorder number of E is stored because of the parent-
child relationship. The branch node verification phase
computes the intersection of the BranchID sets for the
two wildcard nodes.

5 Experiments

In our experiments we compared the FiST with the YFil-
ter system [19]. FiST was implemented in C++ using
Xerces XML Parser version 2.5.0 [2]. The YFilter pack-
age was implemented in Java and was obtained from the
University of California at Berkeley. We measured the
performance of YFilter and FiST for a variety of XML
document sizes and user profiles (twig patterns). For
the FiST, we observed a strong correlation between the
number of matching twig patterns and the total filtering
time. The filtering time of FiST decreased as the the
number of matching user profiles was reduced. On the
other hand, the filtering time for YFilter grew quickly
as the size of the twig patterns increased. The results
from our experiments show that FiST scales better than
YFilter with an increasing number of twig patterns and
documents of growing size due to holistic processing of
twig patterns.

5.1 Experimental Setup

We ran all our experiments on a 2.4 GHz Pentium IV
machine with 512 MB memory running Linux. Our code
was compiled using GNU g++ compiler version 3.3.2.
The YFilter code was run using Eclipse 3.0.1 with Java
virtual machine version 1.4.2.

5.2 Datasets and Twig Patterns

We used synthetic Treebank data for our experiments.
These data were generated by an XML Generator from
IBM [9]. We generated 1000 documents of different sizes
with a maximum document depth of 36 using the Tree-
bank DTD. The Treebank data had deep recursion of
elements. The generated documents were categorized
into four datasets based on the document sizes in bytes.
The four datasets had sizes in the range [1KB, 10KB),
[10KB, 20KB), [20KB, 30KB), and [30KB, 123KB).
In subsequent discussions, we will refer to these four
datasets as “1k”, “10k”, “20k”, and “30k” respectively.

We also generated user profile sets of two different
distributions using the XPath generator available in the
YFilter package. In one set, the element names were
chosen from uniform distribution. In the other set, the
element names are chosen from a skewed distribution
with Zipfian skew parameter of z = 0.9. The maximum
depth of a twig pattern was fixed at 10. For each uni-
form and skewed distribution, the number of branches
in the twig patterns were varied from 3 to 7. We var-
ied the number of twig patterns that were indexed by
the filtering system from 50,000 to 150,000 in steps of
25,000.

225

5.3 Different Aspects of Scalability and Evalu-
ation Metrics

We have evaluated the FiST system in three different as-
pects of scalability. We compared the scalability of FiST
and YFilter (1) by varying the total number of twig pat-
terns, (2) by varying the number of branches in the twig
patterns and (3) by varying the size of input documents.
Note that FiST supports ordered twig pattern matches
and YFilter supports unordered twig pattern matches. A
simple post-processing step can be added to YFilter to
support ordered matches. For YFilter, we measured the
total time without the post-processing stage.

We compared YFilter and FiST by observing the
trend in the filtering cost in different aspects of scala-
bility. This is because YFilter was implemented in Java
and FiST was implemented in C++. In order to make
fair comparisons between the two systems implemented
in different languages and tested on different execution
environments, we measured the performance of YFilter
and FiST in terms of scaleup as well as wall clock time.
When we measured the wall clock time, the average fil-
tering time per document was computed for each dataset
for a given twig set. Note that the filtering time is the
sum of the document parsing time and the time taken by
the filtering algorithm. The parsing time was very small
compared to the filtering time. For example, the aver-
age parsing time consumed by YFilter for the dataset
30k was just 30 ms.

To measure the scaleup performance, we used the fol-
lowing formula.

scaleup =
tAvg − tAvgbase

tAvgbase

(1)

where tAvg is the filtering time measured for the case
under observation and tAvgbase is the filtering time mea-
sured for the base case. Depending on the type of scal-
ability being measured, the tAvgbase can be the filtering
time for the smallest number of twig patterns, the small-
est number of branches, or the smallest size of input
document. For example, if scalability is evaluated by
varying the number of twig patterns that are indexed,
then tAvgbase is the filtering time measured for a twig
set of 50,000 user profiles. Thus, a positive (or nega-
tive) measurement of scaleup indicates that the filtering
cost increases (or decreases), as the scale of test cases
grows. We observed throughout the experiments that
FiST scales better (i.e., the filtering time grows more
slowly) than YFilter under various situations.

5.4 Performance Analysis

In this section, we analyze the performance of FiST and
YFilter in terms of scaleup and wall clock time. Due
to the space limitations, we present the scalability trend
only for a few representative cases of document sizes,
twig set sizes and the number of branches.

5.4.1 Varying Number of Twig Patterns

Figure 9 summarizes the wall clock time for FiST and
YFilter for uniform and skewed twig sets with 6 or 7
branches per a twig. The number of twig patterns in-
dexed by FiST and YFilter was varied from 50,000 to

150,000 in steps of 25,000. The results for dataset 1k
are omitted since their trend was similar to that of 10k
for both FiST and YFilter.

Let us analyze the results shown in Figure 9(a). The
number of branches in the twig patterns was six. The
filtering time for both YFilter and FiST grew as the
number of twig patterns increased. For datasets 20k
and 30k, FiST was significantly faster than YFilter. For
example, for 150,000 twig patterns, FiST was 34% faster
than YFilter for 20k dataset. Similarly for 150,000 twig
patterns with 7 branches (see Figure 9(b)), FiST was
43% faster than YFilter for 20k. For dataset 10k (and
1k) FiST and YFilter yielded comparable performance.
Similar trend was observed for the skewed twig set and
the results are shown in Figures 9(c) and (d). The above
results demonstrate that FiST scales better than YFilter
as the size of the input documents increases.

Another observation that can be made from Figure 9
is that the filtering time increased for both FiST and
YFilter as the document sizes were increased. This is
consistent with the expected trend. See Section 5.4.3 for
more about the scalability with respect to the document
sizes.

5.4.2 Varying Number of Branches in Twig Pat-
terns

In this section, we compare the scalability of FiST and
YFilter with respect to the varying number of branches
in the twig patterns. The results are shown in Figure 10.
Figures 10(a) and (b) show the scaleup for dataset 20k
using the uniform twig set for YFilter and FiST, respec-
tively. The filtering cost of YFilter increased as the the
number of branches in the twig patterns increased from
3 to 7. This trend was observed for all the twig set sizes
that we used. On the contrary, the filtering time for FiST
decreased with increase in the number of branches. This
is shown by the negative scaleup in Figure 10(b). The
reason why the filtering time for FiST decreased with
increase in the number of branches was due to the re-
duction in the number of matching twig patterns. This
downward trend was consistent across all twig set sizes.
For example, the dataset 30k had an average of 185.3,
16.9, 3.9, 2.4, and 1.9 matching twigs per document for
the twig sets with 3, 4, 5, 6 and 7 branches respectively.
On the other hand, YFilter’s performance degraded with
increase in the number of branches despite the decrease
in the number of matching twigs. Similar performance
trend was observed in other cases shown in Figures 10(c)
through (h). These results demonstrate that the holistic
matching of twig patterns by FiST yields better scala-
bility than YFilter.

Figures 11(a) and (b) show the wall clock time for
FiST and YFilter for datasets 20k and 30k. FiST con-
sistently outperformed YFilter for twig sets with 4, 5,
6, and 7 branches. As described above, we observed an
increasing trend in the filtering cost for YFilter and a
decreasing trend in the filtering cost for FiST. We also
observed that the filtering time increased as the docu-
ment sizes increased.

5.4.3 Varying XML Document Sizes

In this section, we analyze the performance of FiST and
YFilter by comparing their scaleup factor, as the size of

226

 0

 1

 2

 3

 4

 5

 6

 7

 8

50,000 75,000 100,000 125,000 150,000

W
al

l c
lo

ck
 ti

m
e

(s
ec

s)

of XPath twig patterns

of Branches: 6

FiST,10k
FiST,20k
FiST,30k

YFilter,10k
YFilter,20k
YFilter,30k

 0

 1

 2

 3

 4

 5

 6

 7

 8

50,000 75,000 100,000 125,000 150,000

W
al

l c
lo

ck
 ti

m
e

(s
ec

s)

of XPath twig patterns

of Branches: 7

FiST,10k
FiST,20k
FiST,30k

YFilter,10k
YFilter,20k
YFilter,30k

 0

 1

 2

 3

 4

 5

 6

 7

50,000 75,000 100,000 125,000 150,000

W
al

l c
lo

ck
 ti

m
e

(s
ec

s)

of XPath twig patterns

of Branches: 6

FiST,10k
FiST,20k
FiST,30k

YFilter,10k
YFilter,20k
YFilter,30k

 0

 1

 2

 3

 4

 5

 6

 7

50,000 75,000 100,000 125,000 150,000

W
al

l c
lo

ck
 ti

m
e

(s
ec

s)

of XPath twig patterns

of Branches: 7

FiST,10k
FiST,20k
FiST,30k

YFilter,10k
YFilter,20k
YFilter,30k

(a) uniform (b) uniform (c) skewed (d) skewed

Figure 9: Varying Number of Twig Patterns (User Profiles)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

3 4 5 6 7

S
ca

le
up

of branches

50,000
75,000

100,000
125,000
150,000

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

3 4 5 6 7

S
ca

le
up

of branches

50,000
75,000

100,000
125,000
150,000

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

3 4 5 6 7

S
ca

le
up

of branches

50,000
75,000

100,000
125,000
150,000

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

3 4 5 6 7

S
ca

le
up

of branches

50,000
75,000

100,000
125,000
150,000

(a) YFilter (uniform, 20k) (b) FiST (uniform, 20k) (c) YFilter (uniform, 30k) (d) FiST (uniform, 30k)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

3 4 5 6 7

S
ca

le
up

of branches

50,000
75,000

100,000
125,000
150,000

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

3 4 5 6 7

S
ca

le
up

of branches

50,000
75,000

100,000
125,000
150,000

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

3 4 5 6 7

S
ca

le
up

of branches

50,000
75,000

100,000
125,000
150,000

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

3 4 5 6 7

S
ca

le
up

of branches

50,000
75,000

100,000
125,000
150,000

(e) YFilter (skewed, 20k) (f) FiST (skewed, 20k) (g) YFilter (skewed, 30k) (h) FiST (skewed, 30k)

Figure 10: Varying Number of Branches

 0

 1

 2

 3

 4

 5

 6

 7

3 4 5 6 7

W
al

l c
lo

ck
 ti

m
e

(s
ec

s)

of branches

of twig patterns: 150,000

(FiST,20k)
(FiST,30k)

(YFilter,20k)
(YFilter,30k)

 0

 1

 2

 3

 4

 5

 6

3 4 5 6 7

W
al

l c
lo

ck
 ti

m
e

(s
ec

s)

of branches

of twig patterns: 150,000

(FiST,20k)
(FiST,30k)

(YFilter,20k)
(YFilter,30k)

(a) uniform (b) skewed

Figure 11: Filtering Time
the documents increases.

The results are summarized in Figure 12. For each
of the plots, results for twig sets with 4 and 6 branches
were omitted since they showed trend similar to twig sets
with 3, 5, and 7 branches for both YFilter and FiST. Fig-
ure 12(a) shows scaleup for YFilter and FiST for a uni-
form twig set of 125,000 twig patterns. Along the x-axis,
we show the increase in the document sizes by using the
datasets 1k, 10k, 20k and 30k. The scaleup of YFilter
grew quicker than that of FiST indicating that YFilter’s
filtering cost increased much faster than FiST. Note that
the lower set of lines correspond to FiST. We observed
that the gap in the scaleup between YFilter and FiST
was widened, as the size of the documents increased.
Similar trend was observed in other scenarios shown in
Figures 12(b) through (d). These results demonstrate
that FiST scales better than YFilter, as the document
sizes increase.

From the graphs shown in Figures 12(a) through (d),
it can be seen that the performance trend for FiST al-
most overlap each other for twig sets with 3, 5 and 7
branches indicating that the trend is similar despite the
increase in the number of branches. This is consistent

with the performance trend shown in Figure 10 for vary-
ing the number of branches.

6 Related Work
The popularity of extensible markup language XML as
a standard for information exchange has triggered sev-
eral research efforts to build scalable XML filtering sys-
tems. Most of the previous approaches have been based
on constructing automaton representations for the user
profiles.

XFilter [1] was one the early work in XML filtering.
XFilter handles simple XPath expressions by transform-
ing each expression them into a single finite state ma-
chine. YFilter [19] is a continual work of XFilter and
uses a non-deterministic finite automata (NFA) based
approach for shared processing of XPath expressions.
A trie-based data structure, called XTrie [8], was pro-
posed to support filtering of complex twigs. YFilter and
XTrie decompose twig patterns into linear paths and
match them individually. Twig patterns are matched
by post-processing linear path matches. Our system
FiST, supports holistic matching of twig patterns by
transforming twig patterns and incoming documents into
Prüfer sequences with inherent support for ordered pat-
tern matching. Note that both FiST and YFilter use
a runtime stack. FiST uses the stack to store the tags
along the path from the current tag being processed to
the root of the document. The size of the stack is bound
by the depth of the document. On the other hand, YFil-
ter uses the stack to track the active and previously pro-
cessed states during the execution of the NFA. Note that
many states in the NFA can be active simultaneously.

There has been work on filtering using automata with

227

 0

 5

 10

 15

 20

 25

 30

 35

1k 10k 20k 30k

S
ca

le
up

Size of documents

of Twig Patterns: 125000

FiST (3,5,7)

YFilter (3,5,7)

FiST (3,5,7)

YFilter (3,5,7)

FiST,3
FiST,5
FiST,7

YFilter,3
YFilter,5
YFilter,7

 0

 5

 10

 15

 20

 25

 30

 35

1k 10k 20k 30k

S
ca

le
up

Size of documents

of Twig Patterns: 150000

FiST (3,5,7)

YFilter (3,5,7)

FiST,3
FiST,5
FiST,7

YFilter,3
YFilter,5
YFilter,7

 0

 5

 10

 15

 20

 25

 30

 35

1k 10k 20k 30k

S
ca

le
up

Size of documents

of Twig Patterns: 125000

FiST (3,5,7)

YFilter (3,5,7)

FiST (3,5,7)

YFilter (3,5,7)

FiST,3
FiST,5
FiST,7

YFilter,3
YFilter,5
YFilter,7

 0

 5

 10

 15

 20

 25

 30

 35

1k 10k 20k 30k

S
ca

le
up

Size of documents

of Twig Patterns: 150000

FiST (3,5,7)

YFilter (3,5,7)

FiST,3
FiST,5
FiST,7

YFilter,3
YFilter,5
YFilter,7

(a) uniform (b) uniform (c) skewed (d) skewed

Figure 12: Varying XML Document Sizes

buffers. XSM [5] adopted a transducer based approach
and used a subset of XQuery as a query language. To
handle a subset of XQuery properly, the authors intro-
duced the use of internal buffers. XPush [3] proposed the
use of a modified deterministic pushdown automaton to
simulate the execution of XPath filters and can handle
predicates. XSQ [10] system handles multiple predicates,
closures, and aggregations by using a hierarchical net-
work of pushdown transducers augmented with buffers.
Bruno et al. studied index-based and navigation-based
XML multi-query processing [16] and showed both tech-
niques have their own advantages. More recently, Tian et
al. proposed the use of a relational database system for
XML-based publish/subscribe system [11]. The XML
filtering problem is turned into a join query that evalu-
ates both the value predicate part and the tree structure
part of the pattern which are both stored in relational
tables.

7 Conclusion
In this paper, we have presented a novel XML filter-
ing system called FiST. FiST performs holistic match-
ing of twig patterns with incoming XML documents un-
like the previous systems that rely on matching linear
paths and merging the results of linear path matches.
For this purpose, XML twig patterns (or user profiles)
and XML documents are transformed into Prüfer se-
quences. Our filtering algorithm involves a progressive
subsequence matching phase followed by a refinement
phase to discard false matches. Furthermore, FiST pro-
vides ordered twig pattern matching for applications
that require the nodes in the twig patterns to follow
the document order in XML. Our experimental stud-
ies showed that FiST outperformed the state-of-the-art
YFilter system by yielding better scalability under vari-
ous situations.

Acknowledgments
We would like to thank Yanlei Diao and her colleagues
for providing the YFilter code for our experiments. We
are also grateful to the anonymous reviewers for their
constructive comments.

References

[1] Mehmet Altinel and Michael J. Franklin. Efficient Filtering of
XML Documents for Selective Dissemination of Information.
In Proceedings of the 26th VLDB Conference, pages 53–64,
Cairo, Egypt, September 2000.

[2] Apache. Apache Xerces C++ Parser. http://xml.apache.-
org/xerces-c/.

[3] Ashish Kumar Gupta and Dan Suciu. Stream processing of
XPath queries with predicates. In Proceedings of the 2003
ACM-SIGMOD Conference, pages 419–430, San Diego, CA,
June 2003. ACM Press.

[4] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fer-
nandez, Michael Kay, Jonathan Robie, and Jrme Simon. XML
path language (XPath) 2.0 W3C working draft 16. Techni-
cal Report WD-xpath20-20020816, World Wide Web Consor-
tium, August 2002.

[5] Bertram Ludscher, Pratik Mukhopadhyay and Yannis Pa-
pakonstantinou. A Transducer-Based XML Query Processor.
In Proceedings of the 28th VLDB Conference, pages 227–238,
Hong Kong, China, August 2002.

[6] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic
twig joins: Optimal XML pattern matching. In Proceedings
of the 2002 ACM-SIGMOD Conference, Madison, Wisconsin,
June 2002.

[7] Baden Hughes Catherine Bow and Steven Bird. Towards a
General Model of Interlinear Text. In Proceedings of EMELD
Workshop, Lansing, MI, July 2003.

[8] Chee Yong Chan, Pascal Felber, Minos N. Garofalakis and
Rajeev Rastogi. Efficient Filtering of XML Documents with
XPath Expressions. In Proceedings of the 18th IEEE Interna-
tional Conference on Data Engineering, pages 235–244, San
Jose, CA, February 2002.

[9] Angel Luis Diaz and Douglas Lovell. XML Genera-
tor. http://www.alphaworks.ibm.com/tech/xmlgenerator,
September 1999.

[10] Feng Peng and Sudarshan S. Chawathe. XPath queries on
streaming data. In Proceedings of the 2003 ACM-SIGMOD
Conference, pages 431–442, San Diego, CA, June 2003. ACM
Press.

[11] Feng Tian, Berthold Reinwald, Hamid Pirahesh, Tobias Mayr
and Jussi Myllymaki. Implementing a Scalable XML Pub-
lish/Subscribe System Using a Relational Database System.
In Proceedings of the 2004 ACM-SIGMOD Conference, pages
479–490, Paris, France, June 2004.

[12] H. Prüfer. Neuer Beweis eines Satzes über Permutationen.
Archiv für Mathematik und Physik, 27:142–144, 1918.

[13] Quanzhong Li and Bongki Moon. Indexing and querying
XML data for regular path expressions. In Proceedings of the
27th VLDB Conference, pages 361–370, Rome, Italy, Septem-
ber 2001.

[14] David Megginson. Simple API for XML. http://sax.-
sourceforge.net/.

[15] Karim Müller. Semi-Automatic Construction of a Question
Treebank. In Proceedings of the 4th International Confer-
ence on Language Resources and Evaluation, Lisbon, Portu-
gal, 2004.

[16] Nicolas Bruno, Luis Gravano, Nick Koudas and Divesh Srivas-
tava. Navigation- vs. Index-Based XML Multi-Query Process-
ing. In Proceedings of the 19th IEEE International Confer-
ence on Data Engineering, pages 139–150, Bangalore, India,
March 2003.

[17] Praveen R. Rao and Bongki Moon. PRIX: Indexing and
Querying XML Using Prüfer Sequences. In Proceedings of
the 20th IEEE International Conference on Data Engineer-
ing, pages 288–299, Boston, MA, March 2004.

[18] William D. Lewis. Personal communications. http://zimmer.-
csufresno.edu/˜wlewis/.

[19] Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang
and Peter Fischer. Path sharing and predicate evaluation
for high-performance XML filtering. ACM Trans. Database
Syst., 28(4):467–516, 2003.

228

